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Abstract—Entity resolution constitutes a crucial task for
many applications, but has an inherently quadratic complexity.
Typically, it scales to large volumes of data through blocking:
similar entities are clustered into blocks so that it suffices to
perform comparisons only within each block. Meta-blocking
further increases efficiency by cleaning the overlapping blocks
from unnecessary comparisons. However, even Meta-blocking
can be time-consuming: applying it to blocks with 7.4 million
entities and 2.2·1011 comparisons takes almost 8 days on a
modern high-end server. In this paper, we parallelize Meta-
blocking based on MapReduce. We propose a simple strategy
that explicitly creates the core concept of Meta-blocking, the
blocking graph. We then describe an advanced strategy that
creates the blocking graph implicitly, reducing the overhead
of data exchange. We also introduce a load balancing algo-
rithm that distributes the computationally intensive workload
evenly among the available compute nodes. Our experimental
analysis verifies the superiority of our advanced strategy and
demonstrates an almost linear speedup for all meta-blocking
techniques with respect to the number of available nodes.

I. Introduction
Entity resolution (ER) is the task of mapping different en-

tities to the same real-world object [6]. In the context of Big
Web Data, it constitutes a batch process of quadratic com-
plexity that is confronted with two Vs: volume, as it receives
a large number of profiles as input, and variety, because
the profiles are described by diverse schemata [16], [17]
(velocity appears in Incremental ER). Volume is typically
addressed by blocking, which places similar profiles into
blocks and performs comparisons within each block. Variety
is addressed by schema-agnostic blocking methods, which
completely disregard attribute names; for instance, Token
Blocking [16] creates one block for every token shared by
at least two entities. Most of these blocking methods are
redundancy-positive, placing profiles into multiple blocks
so that the more blocks two profiles share, the more likely
they are to be matching [16]. On the flip side, they entail
two kinds of unnecessary comparisons: the rendundant ones
repeatedly compare the same profiles in multiple blocks,
while the superfluous ones involve non-matching profiles.
For example, the blocks b2 and b4 in Figure 1(a) contain one
redundant comparison each, repeated in b1 and b3; assuming
that profiles e1 and e2 match with e3 and e4, b5, b6, b7
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Figure 1. (a) A set of redundancy-positive blocks, (b) the corresponding
blocking graph with Jaccard similarity as edge weight, and (c) one of the
possible pruned blocking graphs.

and b8 contain superfluous comparisons. In total, there are
13 comparisons: (4·3/2=)6 in b8 and 1 in each of the 7
remaining blocks; 3 of these comparisons are redundant and
8 superfluous. Such comparisons increase the computational
cost without contributing any identified duplicates.

Current state-of-the-art. Block Processing is the task
of discarding unnecessary comparisons to enhance the ef-
ficiency of block collections. Established approaches in-
clude Iterative Blocking [19] and Meta-blocking [17], with
the latter consistently outperforming the former in both
effectiveness and time efficiency [17]. This is achieved as
follows. First, it transforms the input block collection B into
a blocking graph GB that contains a node ni for every profile
ei in B and an edge <ni, n j> for every pair ei and e j that
share at least one block. Every edge <ni, n j> is associated
with a weight wi, j ∈ [0, 1], analogous to the likelihood that
the adjacent profiles are matching. For instance, the graph
in Figure 1(b) is extracted from the blocks in Figure 1(a)
using Jaccard similarity for weighting the edges. Note that
there are no parallel edges, thus eliminating all redundant
comparisons at no cost in recall (i.e., without missing any
matching comparison). Second, the edges with low weights
are discarded according to a pruning criterion so as to
eliminate part of the superfluous comparisons. For instance,
the graph G′B in Figure 1(c) is derived from the graph
in Figure 1(b) by discarding the edges with weight lower
than the average one (1/4). G′B is then transformed into a
collection B′ by creating a new block for every retained
edge. G′B yields 5 blocks, each containing a pair of entities.
Out of the 5 comparisons, only 3 are superfluou, as the edges
<n1, n3> and <n2, n4> connect matching entities. Compared



to the initial block collection in Figure 1(a), the comparisons
were reduced by 62% without missing any pair of duplicates.

Scalability Limitations. Theoretically, Meta-blocking in-
volves a linear time complexity with respect to the number
of comparisons in the input block collection [17]. In practice,
though, its running time depends also on the average number
of blocks associated with every profile. The reason is that the
edge <ni, n j> is weighted after estimating the intersection of
the list of blocks associated with ei and e j. Therefore, the
higher the redundancy in a block collection, the more time-
consuming the processing of Meta-blocking.

So far, the largest dataset processed by Meta-blocking
involves 3.4M profiles (4.0·1010 comparisons), each placed
in 15 blocks on average (Ddbpedia and DBC in Tables I and II,
respectively) [17]. Using a high-end server with Intel i7
(3.40GHz), 64 GB of RAM and Debian Linux 7, Meta-
blocking requires 3 hours to execute. To assess its scalability,
we tested it on 7.4M profiles (2.2·1011 comparisons), each
associated with 40 blocks on average (D f reebase and FRD

in Tables I and II, respectively). Using the same server,
the required time raised to 186 hours (∼8 days), i.e., a 2x
increase in the size of the input resulted in a 62x increase
in execution time. Therefore, even as a pre-processing step
for ER, Meta-blocking is a heavy computational task with
serious efficiency limitations at the scale of the Web. We
expect this problem to aggravate over time, as Web Data
grow constantly, both in terms of the number of entity
profiles and the amount of information inside each profile
(see http://stats.lod2.eu). To overcome these limitations
of the existing serialized techniques, novel distributed ap-
proaches are required.

Proposed Solution. In this paper, we adopt MapReduce
for parallelizing Meta-blocking and scaling its techniques to
voluminous Web Data collections. We provide two strate-
gies. The first one explicitly targets the blocking graph,
building and storing all edges along with their weights.
Although MapReduce leads to a significant speedup, it bears
a high I/O cost that may become the bottleneck, when
building very large graphs. The second approach overcomes
this shortcoming, by using implicitly the blocking graph;
it enriches the input block collection with the necessary
information for computing the edges’ weights on demand,
without explicitly storing them. To avoid potential bot-
tlenecks associated to the computation-intensive parts of
our MapReduce functions, we also introduce a novel load
balancing algorithm. It exploits the power law distribution
of block sizes in redundancy-positive collections to split
them in partitions of equivalent computational cost (i.e., total
number of comparisons).

Finally, we provide an extensive experimental eval-
uation of our methods over the Hadoop environment
(https://hadoop.apache.org). We apply the main Meta-
blocking configurations to four large-scale, real-world
datasets and measure the qualitative performance as well

as the corresponding running times. The outcomes ex-
hibit an almost linear speedup with respect to the avail-
able nodes. To facilitate other researchers to experiment
with parallel Meta-blocking, we have publicly released
the data and the implementation of our methods (See
https://github.com/vefthym/ParallelMetablocking).

Contributions. In summary, these are our contributions:
• We provide a parallelized version of the Meta-blocking
workflow based on the MapReduce paradigm. For each stage
of the workflow, we offer two alternative strategies: a basic
and an advanced one of higher scalability.
• We present a load balancing technique that deals with

skewness in the input block collection, splitting it evenly
into partitions with the same number of comparisons.
• We demonstrate the high performance and the linear

speedup of our techniques through a thorough experimental
evaluation over four real, voluminous datasets.

The rest of the paper is organized as follows: Section II
describes related work, Section III provides the preliminaries
for blocking and Meta-blocking, in Section IV we adapt
Meta-blocking to MapReduce and evaluate its performance
in Section V. We summarize our findings in Section VI.

II. RelatedWork

ER constitutes a well-studied problem [7], [6], [9]. Due to
its quadratic complexity, a bulk of work aims at improving
its scalability. Parallel ER methods, e.g., [5], [13], [10],
exploit the processing power of multiple cores to minimize
the ER response time. Recent approaches are based on
MapReduce, which offers fault-tolerant, optimized execution
for applications, distributed across independent nodes. Its
programs consist of two consecutive procedures grouped
together into jobs: Map receives a (key, value) pair and
transforms it into one or more new pairs; Reduce receives a
set of pairs that share the same key and are sorted according
to their value, and performs a summary operation on them
to produce a new, usually smaller set of pairs. Based on
MapReduce, [3] introduces an approach in which a decision
about matching two entity profiles triggers further decisions
about matching their associated profiles. Similar approaches
are used by other iterative techniques, which employ some
partial results of the ER process to locate new matches
(e.g., [1], [2], [8], [12]).

In a different line of work, approximate techniques aim
to achieve a good balance between the number of identified
duplicates and the number of executed comparisons. The
most prominent technique is blocking [4]; it represents
profiles by sets of keys and groups similar profiles into
blocks based on similar or identical keys. Comparisons
are then executed inside the resulting blocks. More recent
methods, e.g., [16], target data of low structuredness, such as
those stemming from the Web. Most of these techniques are
redundancy-positive, yielding a large number of unnecessary



comparisons when applied to large datasets. Yet, their blocks
can be significantly enhanced by Meta-blocking.

This work bridges the gap between the two lines of
research for ER over Web data, parallelizing Meta-blocking
to achieve even higher scalability. A similar effort for tabular
data is made in [14], [15], which adapt Standard Blocking
and Sorted Neighborhood, respectively, to MapReduce.

III. Preliminaries

Blocking. An entity profile comprises a set of name-value
pairs, uniquely identified through a global id; ei denotes a
profile with id i. Two profiles that refer to the same object
are called duplicates or matches. A set of profiles is called
entity collection (E); D(E) stands for the duplicate profiles in
E, and |D(E)| for the number of duplicates in E. A blocking
method groups the entities of a collection into clusters, called
blocks; bi is a block with id i. The number of entities in bi

is called block size (|bi|), while the number of comparisons
it involves is called block cardinality (||bi||). Collectively, a
set of blocks is called block collection (B); |B| stands for its
size, and ||B|| for its total cardinality, which is the number
of comparisons it involves, i.e., ||B|| =

∑
bi∈B ||bi||. The set of

blocks containing a particular entity ei is denoted by Bi(⊆B),
with |Bi| representing its size. Two entities ei, e j placed in the
same block are called co-occurring, and their comparison,
ci, j, is called matching if ei, e j are duplicates; Bi, j represents
the set of blocks they co-occur in and its size, |Bi, j|, stands
for the number of blocks they share.

Typically, the performance of a block collection is in-
dependent of the entity matching method that executes the
pair-wise comparisons [4], [17]. The main assumption is that
two duplicates are detected as long as they co-occur in at
least one block. The set of co-occurring duplicate entities is
denoted by D(B), with |D(B)| representing its size. In this
context, two established measures are used for assessing the
performance of a block collection [4], [16]:
• Pairs Completeness (PC) is analogous to recall, estimat-

ing the portion of existing pairs of duplicates that are co-
occurring: PC = |D(B)|/|D(E)|. It is defined in the interval
[0, 1], with higher values indicating better recall.
• Pairs Quality (PQ) is analogous to precision, estimating

the portion of executed comparisons that involve a non-
redundant pair of duplicates: PQ = |D(B)|/||B||. Defined in
the interval [0, 1], higher values indicate better precision.

Ideally, the goal of blocking is to maximize both PC and
PQ. However, there is a trade-off between these measures:
the more comparisons are contained in B, the more du-
plicates are co-occurring and the higher PC gets. Given,
though, that ||B|| increases quadratically for a linear increase
in |D(B)| [11], PQ is reduced. For this reason, the goal of
blocking methods in practice is to achieve a good balance
between the two measures – with an emphasis on recall.

Meta-blocking. Redundancy-positive blocking trades
high PC for low PQ, i.e., it yields a large number of un-
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 Figure 2. The formal definition of the weighting schemes.

necessary comparisons to achieve high recall. Meta-blocking
operates on its blocks to tip the balance in favor of precision
at a small cost in recall. It restructures a redundancy-
positive block collection B into a new one B′ such that
PC(B′)≈PC(B) and PQ(B′)�PQ(B) [17]. Its performance
depends on two parameters that affect the pruning of the
blocking graph: the weighting and the pruning scheme.

The weighting scheme receives as input the entities defin-
ing an edge in GB along with the block collection B and
estimates the corresponding weight. We focus on three
schemes [17], formally defined in Figure 2. CBS captures
the fundamental property that the more blocks two entities
share, the more likely they are matching. ECBS improves
CBS by discounting the contribution of entities participating
in many blocks. Finally, JS estimates the portion of blocks
shared by two entities. In all cases, their weights are re-
stricted to [0, 1] through normalization.

For the pruning scheme, there are four options [17]:
• Weighted Edge Pruning (WEP) retains all edges with a

weight higher than the overall mean one.
• Cardinality Edge Pruning (CEP) retains the top-K edges

of the entire blocking graph, where K = b
∑

bi∈B |bi|/2c.
• Weighted Node Pruning (WNP) amounts to the average

edge weight of each neighborhood.
• Cardinality Node Pruning (CNP) retains, for each

neighborhood, the top-k edges with k=b
∑

bi∈B |bi|/|E| − 1c.
In this work, we adapt to the MapReduce framework, the

combination of all pruning schemes with the CBS, ECBS
and JS weighting schemes1.

All pruning schemes benefit greatly from Block Filtering
[18], which like Meta-blocking cleans a block collection
from many unnecessary comparisons. Instead of using a
graph, though, it simply removes every entity from the least
important of its blocks. The main assumption is that the
larger a block is, the less important it is for its entities.
In more detail, Block Filtering orders the blocks of B in
ascending order of cardinality and retains every entity ei in
the top Ni blocks of Bi (i.e., the Ni smallest blocks that
contain ei), where Ni=br×|Bi|c and r∈[0, 1] is the ratio of
Block Filtering. In this work, we employ Block Filtering
as an integral part of our parallelized approach, setting
r = 0.80. This value was experimentally verified to prune
at least 50% of the blocking graph’s edges, while having a
negligible impact on recall [18].

1Due to lack of space, we cover the remaining weighting schemes,
namely ARCS and EJS, in the extended version of our paper: http:
//www.csd.uoc.gr/∼vefthym/MetaBlockingExt.pdf.
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Figure 3. An example for the advanced strategy of Block Filtering.

IV. Approach

We now elaborate on the adaptation of Meta-blocking
to MapReduce. The serialized workflow consists of two
consecutive stages: the first one applies Block Filtering to the
input block collection B, while the second one applies Meta-
blocking to yield the final, restructured collection B′. The
parallelized counterpart consists of three stages. Again, the
first one applies Block Filtering to the input block collection
and the last one Meta-blocking. The only difference is in the
second stage, which preprocesses the blocks to transform
them into a suitable form for Parallel Meta-blocking.

For every stage of the parallelized workflow, we consider
two different approaches: (i) a basic strategy, which applies a
straightforward adaptation with high I/O between the nodes,
and (ii) an advanced strategy, which reduces the overhead
of data exchange through a more elaborate processing. We
analyse each stage separately, in Sections IV-A to IV-C.
In Section IV-D, we introduce a novel algorithm for load
balancing that applies to both strategies. In all cases, special
care was taken to minimize the I/O between the independent
nodes. Part of this effort focused on optimizing our repre-
sentation model. Instead of using the textual blocking keys
and URIs to identify the blocks and the entities, respectively,
our model relies exclusively on numbers: blocks and entities
are uniquely identified by integer ids; edges are represented
by the concatenation of the adjacent entity ids.

A. Stage 1: Block Filtering

The first stage applies Block Filtering to the input blocks
in order to reduce the size of the blocking graph. Central to
this procedure is the sorting of blocks in ascending order of
cardinality, from the smallest to the largest one. Depending
on how this sorting is performed, we present two possible
approaches for adapting Block Filtering to MapReduce.

The basic strategy orders once and globally all input
blocks, using two MapReduce jobs that exploit the automatic
sorting of the input to the reduce function. The advanced
strategy employs a single MapReduce job that orders lo-
cally the blocks associated with every entity at the cost of
repeating some computations across the independent nodes.

For both strategies, every (key, value) pair of the input
corresponds to a block bk; the key is the block id, while the
value contains the list of the entity ids placed in bk: key=k
and value={i, j, . . . ,m} for bk={ei, e j, . . . , em}. The output
of both strategies comprises the N most important blocks
associated with the individual entities. Every key denotes the
id of an entity ei, while the corresponding value contains the
list of block ids still containing ei: key=i and value=B′i .

1) Basic Strategy: It employs two jobs. The first one
sorts all blocks globally in ascending order of cardinality,
producing a sorted list Bsorted. Specifically, the map function
receives a block id k along with the entities contained in bk.
It computes the corresponding cardinality, ||bk ||, and emits
a (||bk ||, k) pair. All pairs are sorted in descending order of
their keys (i.e., cardinalities), before they are forwarded as
input to the single reduce function. The reducer extracts
and stores to the disk the values of the sorted input, i.e.,
the block ids that form Bsorted. The second job uses Bsorted

to identify the most important blocks for each entity. The
map function gets the same input as the first job: a block
id along with the entity ids it contains. For every entity ei

contained in the given block bk, it emits a pair (i, k). All
pairs having the same key are grouped together so that the
reduce function receives as input all block ids assigned to
a specific entity ei (i.e., key=i, value=Bi). It loads from the
disk the sorted list of block ids, Bsorted, and uses it to get
the ranking position of every block. The N blocks with the
highest ranking positions form the list of retained block ids
B′i , which are emitted as output: key=i, value=B′i .

2) Advanced Strategy: It uses a single job that provides
the reduce function with the necessary information for sort-
ing the blocks of each entity locally. The map function gets
as input the id and the entities of a block bk and estimates
its cardinality, ||bk ||. For every entity ei ∈ bk, it emits a pair
with the entity id as the key, while the (composite) value
concatenates the id and the cardinality of block bk: key=i
and value=k.||bk ||. The reduce function gathers all blocks
associated with an entity ei along with their cardinality. It
sorts them in ascending number of comparisons and extracts
the top N elements from the resulting list to form B′i . Similar
to the basic strategy, it then emits a pair (i, B′i).

Figure 3 illustrates the functionality of the advanced
strategy of Block Filtering. For the three entities e1, e2 and
e3 of b1, we emit in the Map phase a pair with each of
them as the key and b1.3 as value, since there are three
comparisons in this block. In the Reduce phase, we gather
all four pairs having e1 as key and keep only the top-3 blocks
for this entity. Thus, we discard b7 from the blocks of e1.

B. Stage 2: Preprocessing

This stage prepares the data that will be processed by
the pruning algorithm in the third stage. Its output actually
determines the complexity of the pruning algorithm: the
more computations are performed by Preprocessing and are



integrated into its output, the simpler is the functionality of
the pruning algorithms and vice versa. This trade-off gives
rise to two different strategies, which share the same input
(i.e., the outcome of Block Filtering), but differ in their
output. Basic Preprocessing explicitly creates the blocking
graph: it performs all weight computations and stores all
edges to the disk in order to simplify the functionality
of the pruning algorithm. Advanced Preprocessing defers
all weight computations, but facilitates them by enriching
the input of the pruning algorithms with all the necessary
information. Again, the basic strategy involves two jobs,
while the advanced one uses just one job.

1) Basic Strategy: The first job transforms the output
of Block Filtering into a block collection. Its map function
receives as key the id of an entity ei and as value the list of
associated blocks, Bi. It swaps values and keys, emitting for
every block bk ∈ Bi a pair (k, i.|Bi|), where k and i are the
block and the entity id, respectively, while |Bi| is the number
of blocks containing ei after Block Filtering. The reduce
function groups together all entities contained in a block bk

and reproduces all comparisons. For every comparison ci, j

between entities ei and e j, it emits the concatenation of their
ids as key (key=i. j) and |Bi|.|B j| as value – this information
is necessary for the ECBS and JS weighting schemes.

The second job consists of an identity mapper and a
reduce function that estimates the weight for every edge
of the blocking graph. The value list of its input, V , clusters
together the information pertaining to the edge <ni, n j> iden-
tified by the input key. Based on them, the reducer computes
the corresponding edge weight wi, j from the formulas in
Figure 2. For example, we simply have wi, j = |V | for CBS,
as the size of the value list equals the number of common
blocks, |Bi, j|. As output, the reducer emits a pair with the id
and the weight of the edge: key=i. j and value=wi, j.

2) Advanced Strategy: The key to this approach is that
every edge <ni, n j> of the blocking graph GB corresponds
to a non-redundant comparison ci, j in the block collection B.
A comparison ci, j in bk is non-redundant only if it satisfies
the Least Common Block Index (LeCoBI) condition. That
is, if the id of bk equals the least common block id of the
entities ei and e j: k=min(Bi∩B j) [16]. To assess the LeCoBI
condition for two entities ei and e j, we need to compare the
lists of associated blocks, Bi and B j (for higher efficiency,
their elements should be sorted in ascending order of block
ids). Advanced Preprocessing integrates this information to
its output, so that all edge and weight computations are
carried out by the pruning algorithm.

This functionality is performed by one job. The map
function receives as input the id of an entity ei as key
and the associated blocks Bi as values. First, it sorts Bi in
ascending order of block ids. Then, for every block bk ∈ Bi,
it emits its id as the key, while the value concatenates the
id of ei with the entire sorted list Bi: key=k, value=i.Bi.
MapReduce then reassembles all blocks, by grouping to-
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Figure 4. An example for the advanced strategy of Preprocessing.

gether all pairs with the same key. The reduce function
receives as input the entity list of a specific block along
with the blocks that are associated with every individual
entity and emits the same (key, value) pairs as output:
key=k and value={i.Bi, j.B j, . . . ,m.Bm}.

Figure 4 provides an example for the functionality of the
advanced strategy of Preprocessing. For each block b1, b4
and b6, to which e1 belongs, we emit a pair with their block
ids as key and e1, concatenated with b1, b4, b6 as value in
the Map phase. In the Reduce phase, all the entities of b1
are grouped together (i.e., e1, e2 and e3), each accompanied
with the block ids in which it belongs. We just concatenate
them and emit them as the value of the key=b1.

C. Stage 3: Meta-blocking

This stage applies one pruning algorithm to the output
of Preprocessing and yields a set of retained edges; every
edge corresponds to a new block that is part of the final,
restructured block collection. We present two strategies for
each algorithm: the basic and the advanced one, applied on
top of the basic and the advanced preprocessing outputs.

1) Weighted Edge Pruning: Both strategies employ a
single job that estimates the average edge weight in the
Map phase and discards the edges that do not exceed it in
the Reduce phase. They use the same reduce function and
differ only in the map function.

Basic Strategy. This identity mapper receives the id of
an individual edge <ni, n j> as key (key=i. j) and its weight
wi, j as value. Before forwarding the input to the reducer, it
updates two counters used for estimating the average edge
weight: the size of the blocking graph |EG | and the total edge
weight tw. The reducer receives the id and the weight of an
individual edge. If the weight is greater than the mean weight
of the graph (wi, j > tw/|EG |), the input edge is retained and,
thus, the input pair (i. j, wi, j) is emitted as output.

Advanced Strategy. It operates on the enriched descrip-
tion of an individual block bk: the input key contains its id
(k), while the input value contains a list with the entity ids
in bk and the blocks ids associated with each entity, i.e.,
value = {i.Bi, j.B j, . . .}. The map function iterates over all
comparisons in bk and assesses the LeCoBI condition for the
involved entities. For every non-redundant comparison ci, j,
it estimates the corresponding edge weight wi, j and emits
it along with the edge id: key=i. j and value=wi, j. It also
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Figure 5. An example for the advanced strategy of Weighted Edge Pruning,
using the JS weighting scheme.

updates the two counters that are used in the reduce phase,
|EG | and tw. As in the Basic strategy, the reducer emits the
input pairs (i. j, wi, j) for which (wi, j > tw/|EG |).

In Figure 5, we present the functionality of the advanced
strategy of WEP, with an example using the JS weighting
scheme. Applying the map function to block b1, which
contains the entity profiles e1, e2 and e3, we output, for
every non-redundant comparison the id of the comparison
as key (i.e., e1.e2, e1.e3 and e2.e3) and the weight of the
comparisons as value. According to the JS weighting
scheme, e1-e2 weight is 1/3, because the e1, e2 entities
share only one block (b1) from all 3 blocks they belong
to. Assuming that the average weight is 1/3, in the reduce
function we emit only the pairs with a weight above 1/3, so
we prune the comparisons e1-e2, e1-e4 and e3-e4.

2) Cardinality Edge Pruning: Ideally, we could gather all
edges in a single node and sort them in descending weight to
retain the top K ones. In practice, though, this approach does
not scale to large blocking graphs with millions of nodes
and billions of edges, due to limited memory resources. To
overcome this limitation, we convert the global cardinality
threshold into a global weight threshold. We use one job to
compute the minimum edge weight wmin such that at least
K edges have a weight greater than or equal to it. Then, a
second job outputs exactly K edges with a weight greater
than or equal to wmin. For every job, the two strategies again
differ in the mapper, but share the same reducer.

Basic Strategy. For both jobs, the mapper receives as
input key the id of an individual edge <ni, n j> (i. j) and
as input value the corresponding weight (wi, j). The map
function of the first job emits a pair (wi, j, 1), enabling the
reducer to compute the minimum edge weight wmin. The
reducer receives as input the list of all distinct weights,
sorted in descending order, along with their frequencies (i.e.,
the number of edges with the same weight). It iterates this
list starting from the largest weight and keeps a counter with
the number of edges that have a weight greater than or equal
to the current one. As soon as the counter reaches K, the
reducer stops and stores the current weight wmin to the disk.

The map function of the second job processes the same
input <ni, n j> (i. j), (wi, j), swaps keys with values and emits
a pair (wi, j, i. j), only if wi, j ≥ wmin. It is possible that
the overall number of edges <ni, n j>, with wi, j ≥ wmin, is
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Figure 6. An example for the advanced strategy of Cardinality Edge
Pruning, using the JS weighting scheme.

larger than K, due to ties. The single reducer of the second
job addresses this issue, ensuring that exactly K edges are
retained. It receives as input all pairs of edge weights and
ids (wi, j, i. j), for which wi, j ≥ wmin. They are automatically
sorted in descending order, from the largest weight to the
lowest. The reducer extracts the top K elements and emits
them, after swapping keys and values.

Advanced Strategy. For both jobs, the mapper iterates
over all comparisons of the input block, using its enriched
description. For every non-redundant comparison ci, j, it
computes the edge weight wi, j from the block ids associated
with ei and e j. Then, the map function of the first job emits a
pair (wi, j, 1), while the map function of the second job emits
a pair (wi, j, i. j), only if wi, j ≥ wmin. The reduce function
for both jobs is the same with that of the Basic Strategy.

In Figure 6, we provide an example with the functionality
of the advanced strategy of CEP, using the same input
with Figure 5 and the JS weighting scheme. In the map
function of the first job, we process each block and emit
the weights of its non-redundant comparisons as keys (e.g.,
for b1 the non-redundant comparinsons are e1.e2, e1.e3
and e2.e3), and 1 as value. In the reduce function, we
retrieve, in descending order of weight, the first k input
pairs and emit the current key as wmin; in our example we
assume to be 1/3. In the second job, we use the same map
function, this time emitting the comparison ids as values,
for those comparisons whose weight is greater than or equal
to wmin = 1/3. Hence, we prune the comparison e1-e4 already
from the map phase. In the reduce function, we emit each
input pair, sorted in descending order of weight, until we
have emitted the k-th pair, which is e1-e2 (pairs with the
same weight are sorted randomly).

3) Weighted & Cardinality Node Pruning: Both node
pruning schemes use one job with the same map function.
They differ in the reduce function, which applies their
pruning logic to an individual node neighborhood.
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Figure 7. An example for the advanced strategy of Weighted Node Pruning,
using the JS weighting scheme.

Basic Strategy. The map function takes as input key the
id of an individual edge <ni, n j> (i. j) and as input value,
the corresponding weight (wi, j). To ensure that each reducer
gathers all edges adjacent to a specific node, it emits two
(key, value) pairs – one for each of the adjacent entities.
In each case, the key contains one of the entity ids (i or
j), while the value concatenates the other entity id with the
edge weight ( j.wi, j or i.wi, j).

WNP Reduce Function. Its input key comprises the id
i of an entity ei that defines a neighborhood NG(vi) in
the blocking graph G. Its input value comprises the adja-
cent node/entity ids concatenated with the respective edge
weights. From them, it estimates the average weight of the
neighborhood, w̄i. Then, it iterates over all adjacent edges
and discards those that are assigned a lower weight. For each
retained edge <ni, n j>, it emits a pair (i. j, wi, j).

CNP Reduce Function. It receives the same input as
the WNP reduce function and orders all edges of the
neighborhood in descending order of weight. For the top
k ones, it emits their id with their weight – a pair (i. j, wi, j).

Advanced Strategy. The map function of the advanced
strategy operates on the enriched description of an individual
block, iterating over all its comparisons. For every non-
redundant comparison, it computes the corresponding edge
weight from the associated block ids and emits two (key,
value) pairs, one for each of the adjacent entities – just
like the basic map function. The aforementioned WNP and
CNP Reduce functions process the input.

Figure 7 shows an example of the advanced strategy of
WNP to the same input as that of Figures 5, 6, using JS. In
the map function, for the comparison e1-e2, we emit the pairs
(e1, e2.1/3) and (e2, e1.1/3). In the Reduce phase, we group
all the pairs with key=e1 and calculate, for this group, a
local weight threshold (e.g., 1/3). Then, for the group of e1,
we emit only the pairs with a weight higher than 1/3, i.e.,
e1-e3, which has a weight of 2/3. Accordingly, the advanced
strategy of CNP differs only in the last step, in which we
emit only the top-k pairs of each group. If we assume that
we want the top-2 comparisons that involve e1, out of the

Algorithm 1: Load Balancing.
Input: B the current block collection
Output: P the set of block partitions

1 B′ ← sort(B); // sort in descending cardinality
2 b0 ← B′.remove(0); // remove largest block
3 maxCost ← ||b0 ||; // max comparisons per partition
4 P0 ← {b0}; // first partition
5 Q ← {P0}; // priority queue, sorting partitions in ascending
cost

6 while B′ , {} do // while not empty
7 bi ← B′.remove(0); // remove first block
8 Phead ← Q.poll(); // get lowest cost partition
9 totalCost ← ||bi || + Phead .currentCost();

10 if totalCost ≤ maxCost then
11 Phead ← Phead ∪ {bi}; // add to partition
12 else
13 Pi ← {bi}; // create new partition
14 Q.add(Pi); // add to queue

15 Q.add(Phead); // place back to queue

16 return Q;

three comparisons shown in the group of e1, we would emit
(e1.e3, 2/3) and (e1.e2, 1/3).

D. Load Balancing

The default load balancing of Hadoop creates a predeter-
mined number of partitions using a hash function. It involves
a negligible overhead and is expected to work fine for jobs
that entail linear processing of the input data. This applies to
most of the functions defined above, but they are expected
to account for a small portion of the overall computational
cost. The main computational cost pertains to functions with
quadratic complexity: they receive an individual block and
iterate over all the comparisons it contains, estimating (part
of) the corresponding edge weights. These are the reduce
function in the first job of the basic strategy for Stage 2 and
all map functions of the advanced strategies for Stage 3. For
these functions, the default partitioning disregards the block
cardinalities and leads to significant skews in the workload
distribution (see Section V).

To address this issue, we developed a specialized algo-
rithm for load balancing. Our goal is to split the input blocks
into partitions that share almost the same number of compar-
isons. The key idea is to exploit the power law distribution
of block cardinalities that appears in redundancy-positive
block collections: the vast majority of blocks involves one or
two comparisons and the frequency of blocks decreases with
larger cardinalities [16], [17]. For better results, the number
of partitions is determined dynamically.

The functionality of our approach is outlined in Algo-
rithm 1. It sorts the block collection in descending cardi-
nality (Line 1) and removes the first and largest block, b0,
from it (Line 2). The maximum computational cost of each
partition, maxCost, is set equal to the cardinality of b0 (Line
3). A partition is created for b0 (Line 4) and placed in the
priority queue Q, which sorts partitions in ascending order of
comparisons (Line 5); this means that the head of Q always
corresponds to the partition with the smallest computational



Ddbpedia D f reebase

D1 D2 D1 D2

Entities |E| 1,190,733 2,164,040 3,157,726 4,204,942
Triples 1.69·107 3.50·107 1.42·108 3.90·107

Attribute Names 30,757 52,554 37,825 11,108
Triples per Entity 14.19 16.18 44.84 9.29
Duplicates |D(E)| 892,579 1,347,266
BF Comparisons 2.58·1012 1.33·1013

Table I
The heterogeneous entity collections we employed in our experiments.

cost so far. Subsequently, our algorithm iterates over the
remaining blocks and examines whether the current block
fits into the partition at the head of the queue, Phead (Lines
6-10); that is, it checks whether their combined cardinality
is lower than maxCost. If so, the current block is added to
Phead (Line 11); otherwise, it is placed in a new partition that
is added to the queue (Lines 13-14). Then, Phead is placed
again in Q (Line 15). The time complexity of our approach is
dominated by the sorting of blocks, thus having a complexity
of O(|B| log |B|). This means that our approach scales well
to large block collections, involving a low overhead.

V. Experiments

Setup. All approaches were implemented in Java v7,
using Apache Hadoop v1.2.0 on a cluster2 with 15 Ubuntu
12.04.3 LTS servers, one master and 14 slaves, each having
8 AMD 2.1 GHz CPUs and 8 GB of RAM. Each node
can run 4 map or reduce tasks simultaneously, assigning
1024 MB to each task. The available disk space (4 TB) was
equally partitioned to the nodes. Each time measurement
was repeated twice and the average value was considered to
eliminate external factors effects (e.g., network overhead).
For Load Balancing, we employed the default mechanism
of Hadoop for map and reduce functions with linear com-
plexity; for those with a quadratic complexity, we partitioned
the relevant blocks to the available nodes using Algorithm 1.

Datasets. We employ the largest datasets that have been
applied to Meta-blocking. Their characteristics are presented
in Table I. Ddbpedia involves entities from two snapshots
of DBpedia3 infoboxes, which chronologically differ by 2
years – v3.0rc for D1 and v3.4 for D2. In total, there are
3.3M entities, of which less than 900,000 are common,
having the same URL. This dataset has been employed
widely in the literature [16], [17]. D f reebase contains entities
from the Billion Triple Challenge 20124. In this case, D1
encompasses entities from DBpedia and D2 entities from
Freebase5. To avoid noisy profiles, we disregard URIs that
appear in just one triple. 7.4M entities were left, of which
1.3M are common according to the owl:sameAs statements.

Both datasets are suitable for Clean-Clean ER, where
the goal is to identify the matching entities shared by

2∼okeanos (https://okeanos.grnet.gr) GRNET cloud service
3http://dbpedia.org
4https://km.aifb.kit.edu/projects/btc-2012
5https://www.freebase.com

Ddbpedia D f reebase

DBC DBD FRC FRD

Task Clean-Clean ER Dirty ER Clean-Clean ER Dirty ER
|B| 1,239,424 1,499,534 1,309,145 4,522,222
||B|| 4.23·1010 8.00·1010 1.05·1011 2.19·1011

|D(B)| 891,708 891,572 1,319,050 1,271,512
BPE 15.30-16.08 14.79 75.55-4.43 40.12
PC 0.999 0.999 0.979 0.944
PQ 2.11·10−5 1.12·10−5 1.26·10−5 5.82·10−6

Table II
The block collections that were used as input toMeta-blocking.

two duplicate-free collections D1 and D2. We use them
for Dirty ER, as well, merging D1 and D2 into a single
collection with duplicates in itself; the goal is to partition
the resulting collection into clusters of matching entities. To
derive redundancy-positive block collections, we used Token
Blocking and Block Purging [16], which simply discards
the blocks that contain more than half the input entities.
The characteristics of the resulting blocks are presented in
Table II. In total, we have four block collections, two for
each ER task, that vary significantly in their characteristics.

Measures. To assess the quality of the restructured block
collections, we employ the established measures of Pairs
Completeness PC (recall) and Pairs Quality PQ (precision)
– see Section III. To assess the time efficiency of the Meta-
blocking workflow, we use the Overhead Time (OTime).
This is the time (in minutes) that intervenes between re-
ceiving a redundancy-positive block collection as input and
returning the restructured blocks as output. The lower its
value is, the more efficient is the corresponding workflow.

Load Balancing. We compare the performance of Algo-
rithm 1 to the default Hadoop balancer through the distri-
bution of partition cardinalities they produce (i.e., the total
number of comparisons in the blocks of each partition). We
summarize these distributions using minimum, maximum,
median and mean partition cardinalities. The closer these
measures are to each other, the more balanced the workload
of each node. We applied both approaches to the input of
Stage 2 and present the experimental outcomes in Table III.

Algorithm 1 produces a set of partitions with a practically
constant distribution of cardinalities across all datasets. The
four measures have identical values, while the standard
deviation of the distribution is lower than 1. This means that
the partitions differ by a handful of comparisons in the worst
case. In contrast, the default balancer yields distributions
with much larger variance. The standard deviation is an
order of magnitude lower than the other measures for DBC

and DBD, while for FRC and FRD it is almost equal to the
average cardinality. The difference between the minimum
and the maximum cardinality raises to four and one orders of
magnitude for FRC and FRD. Thus, serious bottlenecks are
expected to rise in all datasets. For this reason, we did not try
to measure the actual running time of the default balancer.
On the whole, we conclude that Algorithm 1 outperforms
the default balancer of Hadoop. The only advantage of the
latter is its low overhead, as it is integrated and optimized
for Hadoop. However, our approach is quite scalable and



DBC DBD FRC FRD
Algorithm 1 Default Algorithm 1 Default Algorithm 1 Default Algorithm 1 Default

Partitions 442 223 378 223 2,042 1,674 1,735 1,119
Mininimum Part. Cardinality 2.71·107 4.18·107 5.74·107 7.88·107 1.45·107 3.21·104 3.76·107 9.81·106

Maximum Part. Cardinality 2.71·107 8.20·107 5.74·107 1.48·108 1.45·107 2.35·108 3.76·107 9.81·107

Median Part. Cardinality 2.71·107 5.83·107 5.74·107 9.59·107 1.45·107 2.02·107 3.76·107 9.01·107

Average Part. Cardinality 2.71·107 5.87·107 5.74·107 9.68·107 1.45·107 3.14·107 3.76·107 5.84·107

St. Dev. Part. Cardinality 0.48 7.59·106 0.19 9.98·106 0.48 3.01·107 0.27 4.64·107

Table III
The distribution of partition cardinalities produced by Algorithm 1 and the default load balancer of Hadoop.

DBC DBD FRC FRD
Basic Advan. Basic Advan. Advan. Advan.

Block Filtering 2 2 2 2 3 6

CEP
CBS 222 22 250 29 184 584
ECBS 240 38 278 55 235 721
JS 223 28 279 39 197 606

CNP
CBS 491 301 559 527 1,488 2,514
ECBS 555 383 639 633 1,949 3,058
JS 534 363 618 620 1,637 2,546

WEP
CBS 220 38 250 63 271 479
ECBS 219 46 254 103 371 559
JS 219 41 254 90 337 524

WNP
CBS 498 304 569 539 1,534 2,671
ECBS 568 389 658 647 1,971 3,046
JS 553 373 641 644 1,636 2,790

Table IV
Overhead Time in minutes for allMeta-blocking techniques.

terminates within a few minutes over all datasets.
Time Efficiency. We applied the basic and the advanced

strategy of all techniques to the four datasets twice and
measured the corresponding (average) OTime. The outcomes
are presented in Table IV. Note that the basic approach was
inapplicable to FRC and FRD, as its space requirements
exceeded the available 4 TB of disk space.

For Stage 1, both Block Filtering strategies exhibit prac-
tically equivalent OTime, as the basic strategy offsets the
cost of using two jobs by avoiding the computations re-
peated by the advanced one. However, the main reason for
the equivalent overheads is the linear time complexity of
Block Filtering and its simple functionality that processes
large block collections at a negligible cost. Its exemplary
performance also justifies the lack of a specialized load
balancing for functions with linear complexity. The qualita-
tive performance of Block Filtering is reported in Table V.
Compared to Table II, the cardinality of all block collections
is reduced by more than 60%, while their recall drops by
less than 2%. As a result, the precision raises by 3 times,
on average. The average number of blocks per entity is also
significantly reduced, thus accelerating the computation of
edge weights.

Stages 2 and 3 are treated as a whole in order to compare
both strategies on an equal basis. When moving from left to
right in Table IV, i.e., from the smallest block collection to
the largest, the overhead time increases analogously for both
strategies. Even for the largest dataset, though, the advanced
strategy requires less than 12 hours in most cases, thus
being dramatically faster than the serialized workflow, which
requires almost 8 days over the high-end server described

Ddbpedia D f reebase

DBC DBD FRC FRD

|B| 1,239,315 1,499,422 1,308,970 4,521,129
||B|| 1.20·1010 2.17·1010 2.96·1010 6.53·1010

BPE 12.12-12.68 11.72 57.28-3.86 19.70
PC 0.998 0.998 0.961 0.907
PQ 7.44·10−5 4.11·10−5 4.38·10−5 1.87·10−5

Table V
The block collections after Block Filtering.

in the introduction.
Note also that there is a considerable variance between

the efficiency of the two strategies, which designates that
the parallelization of Meta-blocking is not a trivial task.
The basic approach is consistently slower than the advanced
one and their difference is particularly intense in the case
of WEP and CEP. The inferior performance of the basic
strategy should be attributed to the more jobs it employs and
the higher I/O it yields between the independent nodes of the
cluster: it creates a distinct edge for all comparisons, even
the redundant ones, whereas the advanced approach creates
a distinct edge only for the non-redundant comparisons; this
means around 30% less comparisons in our datasets.

For the advanced strategy, CEP is the fastest algorithm
in most cases, partly because it outputs the lowest number
of comparisons. WEP follows in close distance, due to
its similarly simple processing. CNP and WNP exhibit
similar overhead times, as there are minor differences in the
computational cost of their processing. They are the most
time-consuming algorithms by far, since they process every
edge twice, inside the neighborhoods of both adjacent nodes.
They also retain significantly more comparisons than CEP
and WEP, respectively (see RR below).

Qualitative Performance. To assess the quality of the
restructured blocks produced by Meta-blocking, we consider
the performance of the four pruning algorithms with respect
to PC (recall), PQ (precision) and RR, namely the Reduction
Ratio. RR expresses the relative decrease in the number of
comparisons conveyed by Meta-blocking. Formally, RR =

1− ||B′||/||B||, where B is the original and B′ the restructured
block collection [4]. For all measures, we estimated the
average value and the standard deviation across the five
weighting schemes per dataset. The outcomes are presented
in Figures 8(a) to (c). In all diagrams, the higher a bar is,
the better the corresponding performance.

Figure 8(a) demonstrates that the relative recall of the
pruning algorithms remains the same across all datasets: the
node-centric schemes, CNP and WNP, are more robust and



Figure 8. Average performance of the four pruning algorithms with respect to (a) PC, (b) RR, and (c) PQ.

Figure 9. Scalability of advanced strategy for WEP over DBC .

detect more duplicates than their edge-centric counterparts,
CEP and WEP. The cardinality-based schemes, CEP and
CNP, consistently achieve lower PC than the weight-based
ones, WEP and WNP, which exceed 0.8 across all datasets.
This means that they reduce the original PC by less than
10%, despite the significant enhancements in efficiency they
convey. Indeed, Figure 8(b) shows that WEP achieves an RR
close to 0.8, thus saving 80% of the original comparisons.
The pruning of WNP is more shallow, as it retains at least
one edge per node. Its RR fluctuates between 0.46 and
0.65, thus saving around half the original comparisons. For
CEP and CNP, RR is consistently higher than 0.99. In
fact, they perform such a deep pruning that they reduce the
pairwise comparisons by 2 to 3 orders of magnitude across
all datasets (still CNP retains twice as many comparisons as
CEP, on average). This explains their poor recall. Yet, CEP
and CNP achieve significantly higher precision across all
datasets (Figure 8(c)). There is actually a trade-off between
precision and recall for the four pruning algorithms: the
higher PQ is for a specific method and dataset, the lower
is the corresponding PC and vice versa. These patterns
are in accordance with earlier findings about the relative
performance of the pruning algorithms [17].

Scalability. Finally, we examined the scalability of the
advanced strategy with respect to the available nodes. We
applied all WEP to DBC in combination with the 3 weighting
schemes using 4, 9 and 14 slave nodes – including the
master node. Figure 9 presents the speedup results along
with the ideal case, in which the speedup is linear to the
number of nodes (similar patterns were exhibited for the
other datasets and are omitted for brevity). We observe that
all the weighting schemes show a speedup close to the ideal
one. For 14 slave nodes, it fluctuates between 11.8 and 12.3.
This means that using more cluster nodes than we did in our
experiments will improve the overhead time of the advanced
strategy of Meta-blocking almost proportionally.

VI. Conclusions
We proposed two parallel versions of Meta-blocking based

on MapReduce and equipped them with a load balancing
algorithm that distributes the workload evenly among the
cluster nodes. Our approaches dramatically increase the time
efficiency of the serialized version, enabling blocking-based
Entity Resolution in voluminous datasets. We observe that
the basic parallelization strategy leads to significantly higher
space requirements and is consistently slower than the ad-
vanced one, especially in the case of edge-centric algorithms.
Our advanced strategy offers an optimized implementation
that reduces the overhead of data exchange, leading to a
speedup with the number of cluster nodes that is close to
the ideal – regardless of the weighting scheme.
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[3] C. Böhm, G. de Melo, F. Naumann, and G. Weikum. LINDA: distributed web-

of-data-scale entity matching. In CIKM, 2012.
[4] P. Christen. A survey of indexing techniques for scalable record linkage and

deduplication. TKDE, 24(9), 2012.
[5] P. Christen, T. Churches, and M. Hegland. Febrl - A parallel open source data

linkage system. In PAKDD, 2004.
[6] V. Christophides, V. Efthymiou, and K. Stefanidis. Entity Resolution in the Web

of Data. Synthesis Lectures on Data Management. Morgan & Claypool, 2015.
[7] A. Doan and A. Y. Halevy. Semantic integration research in the database

community: A brief survey. AI Magazine, 26(1), 2005.
[8] X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconciliation in complex

information spaces. In SIGMOD, 2005.
[9] X. L. Dong and D. Srivastava. Big Data Integration. Synthesis Lectures on

Data Management. Morgan & Claypool Publishers, 2015.
[10] V. Efthymiou, K. Stefanidis, and V. Christophides. Big data entity resolution:

From highly to somehow similar entity descriptions in the Web. In IEEE Big
Data, 2015.

[11] L. Getoor and A. Machanavajjhala. Entity resolution: Theory, practice and open
challenges. PVLDB, 5(12), 2012.

[12] M. Herschel, F. Naumann, S. Szott, and M. Taubert. Scalable iterative graph
duplicate detection. IEEE Trans. Knowl. Data Eng., 24(11), 2012.

[13] H. Kim and D. Lee. Parallel linkage. In CIKM, 2007.
[14] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient deduplication with hadoop.

PVLDB, 5(12), 2012.
[15] L. Kolb, A. Thor, and E. Rahm. Multi-pass sorted neighborhood blocking with

mapreduce. Computer Science - R&D, 27(1), 2012.
[16] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and W. Nejdl. A blocking

framework for entity resolution in highly heterogeneous information spaces.
IEEE Trans. Knowl. Data Eng., 25(12), 2013.

[17] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. Meta-blocking: Taking
entity resolution to the next level. IEEE Trans. Knowl. Data Eng., 2014.

[18] G. Papadakis, G. Papastefanatos, and T. Palpanas. Boosting the efficiency of
large-scale entity resolution with enhanced meta-blocking. Technical Report
http://www.mi.parisdescartes.fr/%7Ethemisp/EMB-TR15.pdf, 2015.

[19] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina.
Entity resolution with iterative blocking. In SIGMOD, 2009.


