UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF SCIENCES AND ENGINEERING

Entity Resolution in the Web of Data

Vasilis Efthymiou

PhD Dissertation
Presented
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, September 2017

UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE
Entity Resolution in the Web of Data
PhD Dissertation Presented
by Vasilis Efthymiou
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

APPROVED BY:

Author: Vasilis Efthymiou

Supervisor: Vassilis Christophides, Professor, University of Crete, Greece

Committee Member: Dimitris Plexousakis, Professor, University of Crete, Greece

Committee Member: Yannis Tzitzikas, Associate Professor, University of Crete, Greece

Committee Member: Yannis Velegrakis, Associate Professor, University of Trento, Italy

Committee Member: Manolis Koubarakis, Professor, National and Kapodistrian University of Athens, Greece

Committee Member: Fabian Suchanek, Professor, Télécom ParisTech University, France

Committee Member: Grigoris Antoniou, Professor, University of Huddersfield, UK

Department Chairman: Angelos Bilas, Professor, University of Crete, Greece

Heraklion, September 2017

Dedicated to my parents, Panagiotis and Magdalini, and my sister, Maria.

Acknowledgments

There are not enough words to express my deepest gratitude and respect to my PhD advisor, Pro-
fessor Vassilis Christophides. His passion for research, his insight, and ability to always have the
big picture, but above all, his personality and ethics, have been a true inspiration to me. I feel
extremely lucky and honored to have met and worked with him.

I also thank the members of my advisory committee, Professor Dimitris Plexousakis, and As-
sociate Professor Yannis Tzitzikas, for their valuable comments and suggestions all these years. 1
am also grateful to the other members of my examination committee, Associate Professor Yannis
Velegrakis, Professor Manolis Koubarakis, Professor Fabian Suchanek, and Professor Grigoris An-
toniou. Their constructive comments, showing their expertise in the field, helped me improve this
thesis. Special thanks to Prof. Suchanek for providing any information that I have asked about the
source code and datasets used in his research. This is the right way, if not the only way, for research
to progress, but unfortunately his stance was the exception, rather than the rule.

I would like to deeply thank Associate Professor Kostas Stefanidis, the third member of our
research team, for his great guidance and support. I owe him a lot and I feel that he has helped me
improve in many aspects during our collaboration.

I would also like to express my sincere gratitude to all my co-authors for their help and sup-
port throughout our collaboration. This PhD would not be the same without their significant
contribution. Especially, I would like to thank Professor Themis Palpanas for his valuable contri-
bution in this PhD and in my career, as well as Dr. George Papadakis for the essential role that he
played in our collaboration. I would also like to thank Dr. Oktie Hassanzadeh and Dr. Mariano
Rodriguez-Muro from IBM Research for our great collaboration and for providing an ideal working
environment during my internship.

A special mention is worth to Professor Timos Sellis for hosting me at RMIT, Melbourne. See-
ing how much people within and outside the academia respect him both as a person and as a
researcher has been inspiring. Meeting him in person has justified this level of respect.

I would like to acknowledge the support of the Institute of Computer Science of the Foun-
dation of Research and Technology (ICS-FORTH), and especially the Information Systems Labo-
ratory (ISL), for both the financial support and the facilities. In particular, I thank the Head of
ISL, Professor Dimitris Plexousakis, as well as all the faculty and staff members of ISL, for creat-
ing a highly creative and inspiring environment for me. Furthermore, I would like to thankfully
acknowledge the support of DIACHRON (EU FP7-1CT-2011-9), SemData (EU FP7-PEOPLE- 2013-
IRSES), and IdeaGarden (EU FP7-1CT-318552). Part of my dissertation was supported and influ-
enced by these projects.

vii

During this PhD, I was fortunate to meet many exceptional and inspiring friends and col-
leagues: Kostas Petrakis, Dimitra Zografistou, Argyro Avgoustaki, Katerina Papantoniou, Pavlos
Fafalios, Yannis Marketakis, Chrysostomos Zeginis, Ioannis Chrysakis, Thanos Yannakis, Nikos
Minadakis, Giannis Roussakis, Georgia Troullinou, Konstantina Konsolaki, Vassilis Papakonstanti-
nou, Aleka Seliniotaki, Mingzhao (Kane) Lee, Lance Song, Farhana Choudhury, Xiaolu Lu, Josep
Pon Farreny, Siddharth Jain, Varun Chandramouli, Sanjay Surendranath Girija, Bilge Acun, Bog-
dan Ghit, Nicolas Fauceglia, Victor Han, loannis Petromichelakis, loannis Liodakis, and Giorgos
Lyronis. Special thanks to Panagiotis Papadakos and Vangelis Kritsotakis for their valuable help in
setting up and using the ISL cluster for the last part of this PhD. Last but not least, I would like to
thank Myrto for her patience, love and support during the last four years.

This PhD is dedicated to my parents, Panagiotis and Magdalini, who have always stood by me
and my sister in any possible way, teaching us that life is more about sharing than receiving, and
to my sister, Maria, who has been a second mother for me and now a real mother of the most
brilliant child I have ever met, my niece Marilia. I hope that one day I will become half as good a
parent as they are.

Abstract

Entity resolution (ER) is the problem of identifying descriptions of the same real-world entities
among or within knowledge bases (KBs). In this PhD thesis, we study the problem of ER in the Web
of data, in which entities are described using graph-structured RDF data, following the principles
of the Linked Data paradigm. The two core ER problems are: (a) how can we effectively compute
similarity of Web entities, and (b) how can we efficiently resolve sets of entities within or across
KBs. Compared to deduplication of entities described by tabular data, the new challenges for these
problems stem from the Variety (i.e., multiple entity types and cross-domain descriptions), the
Volume (i.e., thousands of Web KBs with billions of facts, hosting millions of entity descriptions)
and Veracity (i.e., various forms of inconsistencies and errors) of entity descriptions published in
the Web of data.

At the core of an ER task lies the process of deciding whether a given pair of descriptions
refer to the same real-world entity i.e., if they match (problem a). The matching decision typi-
cally depends on the assessment of the similarity of two descriptions, based on their content or
their neighborhood descriptions (i.e., of related entity types). This process is usually iterative, as
matches found in one iteration help the decisions at the next iteration, via similarity propagation
until no more matches are found. The number of iterations to converge clearly depends on the
size and the complexity of the resolved entity collections. Moreover, pairwise entity matching is by
nature quadratic to the number of entity descriptions, and thus prohibitive at the Web scale (prob-
lem b). In this respect, blocking aims to discard as many comparisons as possible without missing
matches. It places entity descriptions into overlapping or disjoint blocks, leaving to the matching
phase comparisons only between descriptions belonging to the same block. For this reason, over-
lapping blocking methods are accompanied by Meta-blocking filtering techniques, which aim to
discard comparisons suggested by blocking that are either repeated (i.e., suggested by different
blocks) or unnecessary (i.e., unlikely to result in matches) due to the noise in entity descriptions.

To address ER at the Web-scale, we need to relax a number of assumptions underlying several
methods and techniques proposed in the context of database, machine learning and semantic
Web communities. Overall, the Big Data characteristics of entity descriptions in the Web of data
call for novel ER frameworks supporting: (i) near similarity (identify matches with low similar-
ity in their content), (ii) schema-free (do not rely on a given set of attributes used by all descrip-
tions), (iii) no human in the loop (do not rely on domain-experts for training data, aligned rela-
tions, matching rules), (i v) non-iterative (avoiding data-convergence methods at several iteration
steps), and (v) scalable to very large volumes of entity collections (massively parallel architecture
needed).

ix

To satisfy the requirements of a Web-scale ER, we introduce the MinoanER framework. Our
framework exploits new similarity metrics for assessing matching evidence based on both the con-
tent and the neighbors of entities, without requiring knowledge or alignment of the entity types.
These metrics allow for a compact representation of similarity evidence that can be obtained from
different blocking schemes on the names and values of the descriptions, but also on the values of
their entity neighbors. This enables the identification of nearly similar matches even from the step
of blocking. This composite blocking, accompanied by a novel composite Meta-blocking captur-
ing the similarity evidence from the different types of blocks, set the ground for a non-iterative
matching. The matching algorithm, built on a massively parallel architecture, is equipped with
computationally cheap heuristics to detect matches in a fixed number of steps. The main contri-
bution of MinoankER is that it achieves at least equivalent results over homogeneous KBs (stem-
ming from common data sources, thus exhibiting strongly similar matches) and significantly bet-
ter results over heterogeneous KBs (stemming from different sources, thus exhibiting many nearly
similar matches) to state-of-the-art ER tools, without requiring any domain-specific knowledge,
in a non-iterative and highly efficient way.

Keywords: Entity Resolution, Blocking, Meta-blocking, Linked Data, MinoanER

Supervisor: Vassilis Christophides
Professor
Computer Science Department
University of Crete

[TepiAndn

H avaivomn ovtotntwy eivor T0 TEOPANUO. TNG OVOYYWOPELONG TTEQLYQPOPWY TWY (OLwY
OVTOTNTWY TOL TPAYUOTIXOD XOOUOL OVAUESO O JLOPOPETLXES PAOELS YVWOTNG. XE
oLTN TN SL3OXTOPLXY] EQYATLO, UEAETAUE TO TIEOPRANULO TV OWVAALGYG OVTOTHTWY GTOY
Moyxdopto 1oté twv Acdopévewy, aTov 0TTolo oL ovToTNTES TTEPLYpApovTaL Uuéaw RDF
YOAQwY, axohovhwvTag T apxEg TV Ataovvdedepévmy Acdopévwy. Toa SVo xevtpLxd
TEOBMLATO TNG OWVAAVONS OVTOTATWY lvart: (o) TTdC LTTOPOVILE VoL LTTOAOYLGOLILE TNV
OLOLOTNTOL OVTOTATWY ATOTEAEGUATLXE, XoL (B) TG UTTOPOVUE Vo avaAbooLE GOVOARL
OVTOTNTWY EVTOG M LETAED TV BACEWY YVHONG ATOSOTIXA. XE TYEDN UE TNV ATTOLAOLYT
SLTAOTUTIWY TTEPLYPXPLY OVTOTNTWY OE OYECLOXES BATELS, OL VEEG TTPOXANOELS YLO VT
Ta TpoPApato. TTydllovy ormtd Tty MowtAior (TOMGTAOL TOTTOL OVTOTATWY oL dLo-
depatinég mepLypopéc), tov ‘Oyxo (tAtédeg Baoelg Yvwong otov Toayxdopto 1ot pe
SLOEXATORPDPLOL YEYOVOTOL, TTOL PLAOEEVOLY EXOITOUUDOLOL TIEQLYPAPES OVTOTHTMY), XOLL
v Eyxvpdtrta (ToAhég pop@ég aovvémelog %ot AoBY) Tmy TEPLYPOPWY OVTOTATWY
o dnpoatevovtol otov [loyxdoplo 1oté Twv Aedopevwy.

2TOV VPNV TNG AYAAVGTG OVTOTNTWY PBploxetol 1 dtadixacion ANPNG TG aTtdPoL-
ong yLow To oy €va 800y (eELYAPL TTEPLYPOUPWY OVAPEPOVTUL GTNY (SLOL TTOOYLOITLYY
ovtéTTe, dMAadn av towptdlouy (TpdPAnua o). H amdeaoy towpLdopotog ouvidng
eEoptator oo TY EXTIUNON TNG OROLOTNTOG SO0 TTEPLYPAPWY, e BAam TO TEPLEXOUE-
VO N OXOPO RO TLG YELTOVLXEG TOLG TEEPLYPOUPES (YLow OVTHTNTEG SLAPOPETLXLY TOTTWY).
Avt) 7 Sradwxaoio lvor cLINBWG ETAVOANTTLXY, X0OWG OL ATTOPATELS TALPLAOULOTOG
oe plow emaveAndn Bonbody ot M amopdoewy o emOUEVES ETOVOANPELS, XON-
OLULOTIOLWVTOG OLAS00Y] OLOLOTNTAG, WS OTOL vor uny Bploxovtor GANEG TEQLYPOPES
mov TapLafovy. To TANHOG TWY ATTALTOVUEVLWY YLt TN OOYXALON ETTaVOANPEWY eExp-
TaTo amd To pé€Yehog xoL TNV TOAVTAOXOTNTO TWY GLUAAOYWY TEQLYPXPWY OVTOTN-
Twv. EmmAdov, To talplaopon LEVYOQLOY TEQLYQOPWY EIVOL EX QVOEWS TETOOYWYLXNG
TOAVTTAOXOTNTOS WG TPOS TO TANDOG TWY TEPLYPUPWY XOL GO OTTOYOPEVTLXO GTNY
xAlpoxo tou Toayxdopiov Iotod (mpdPAnuoe B). Eto mAaiolo awtd, 1 cLOTASOTOL-
NomN €xeL 0TOYO Vo OTOTPEPEL 6GO TO SLYATOV TEPLOCOTEPES GUYXPLOELS, XWPELG Vo
yobovy tarpLtaotéc meptypopéc. Tomobetel TG TTEPLYPOUPES OVTOTATWY OE ETLXOAL-
TITOUEVES 1] UN-ETUXOAVTTTOUEVEG OCVOTAJES, TPOWOWDYTAG OTN PAGYN TOULPLAGUATOS TLG
ovYxpLoelg LOvo UETOED Teplypoptdy TTov €xovy Tomobetnbel oe xdmola xowvn ov-
otado. Ou péhodol emxaALTTTOUEYNG GLOTASOTIOIMONG CLYOSEVOVTOL OTTO TEYVLXEG
Meta-ovoTaSOTOINONG, TOL EYOLY WG GTOYO TNV ATOTPOTY] TWY ETOVUAXUBOVOUEVWY

gL

OLYXPLOEWY TTOL TTPOTELVOVTOL ATO TTOAAATIAEG CLOTASES, *X0HWG KoL TWY CLYXPICEWY
KeToED mepLypawy Tou elval mhovdtepo vo uny tonpldlovy, ahAd €xovy TpoTobEL
AOY® OTTaPENS J0POBOL OTLE TEQLYPAPES OVTOTNTWY.

[Mo voo ovtipetwmioovpe T0 TEOPANUO TNG AVAAVGNG OVTOTNTWY OTNY XALLAXO TOU
[Moyxdoprov Iotod, ypetdletor vo yohapwoovpe éva TAnHog vTtobéoewy ToL LTTOXEL-
VToL TTOAAGY LEBOB WY oL TEXVLXWY, OL OTTOLEG €XOLY TTPOTAbEL OTLG EPELYNTIXEG XOLVO-
™MTEG TV BAOEWY JESOUEVLY, TNG UNYOVLXNG LabNong xot Tov onuactoloytxod lotol.
YUVOALXE, TO YOEOXTNELOTIXA MeYdAwy Acdopévwy Tov ep@avilovy oL TEQLYPXPES
ovtotNtwy otov Ilayxdopto 1oté twv Acdopévwy amattody vEao GLUGTNULOTO OVOAD-
oG ovToTATWY oL vo bTroatnEilovy: (i) oxeddy opoldtnTa TEPLYPOPWY (avaryvw-
ptlovy mepLypopéc oL ToLELELovY oL EXoLY YoUNAT opoLdTTor TEELEYOUEVOL), (ii)
aveEaptnoto VropEne oyfuatog (dev otnpilovtar oty VTOEEN EVOC GLYXEXPLUEVOL
GLYOAOL YVWELOUGTWY TTOL YOEMNOLLOTTOLOOVTHL oTtd OAEC TLg TePLYPaéc), (iii) AN
avtopotoroinon (Sev otnpilovtar oe eldixolg NG EXAGTOTE TEPLOYAS YLo. OESOUEva
eExPAONoNG, avTLoTOlYLoN OYECEWY, XAVOVES TALPLAOUATOS), (iV) UN-ETOVaANTTLXOTTO
(ov emavanmtinég nébodor oLYXAIVOLY PETE aTtd LTEPPBOALXA TTOAAEG ETTOVOAPELS
otov Hoayxdopto 1016 twv Aedopévmv), xot (V) ¥ALUOXWOLLOTNTO 68 TOAD PEYGAOLG
Gyrovg dedopévwy (amortodvtor polixnd ToPUANAOTOLACLUES OOYLTEXTOVLXES).

[at vou LXavoTToLooVUE TLG ATTOLTNOELS AVAAVGOTG OVTIOTNTWY GTNY XAlpoxa Tov Ilo-
YxoopLov lotov, etadyovpe 1o abotnuo MinoanER. To abotnud pog expetodiedeton
VEEG UETPLXES OUOLOTNTOS YLOL TV EXTLUNON TWY eVOELEEWY TOLPLACUOTOS TOGO Ot
TO TEPLEYOUEVO OGO XAl OTtH TLG YELTOVLES TWY TEPLYPOLPWY, XWPELC Vo ot tel TtpdTte-
O YVWON N AVTLOTOLYLON TWY TOTWY TWY OYVTOTATWY. AUTEC OL UETPLXEG ETLTPETOVY
ULl COUTIOYN] OVOTTOPAOTAOY TWY EVOELEEWY OUOLOTNTOG TTOL TTOPOVY VO GITTOXTY-
doVv amd StopopeTixd oYESLO GLGTASOTOINOYG TTAVW CTO OVOUOTO XOL TLG TULES TWV
TEPLYPAPWY, X0 HWG eTLONG xOL OTLG TLUES TWY YELTOVLXW®Y TOLG TEQLYPXPWY. ALTO
ETILTPETIEL TNV OVOYYWELOY OXEIOY OUOLWY TTEPLYPUPKY TTOL TOLPLALOLY YWELG, ATd TO
Bue g ovotadomoinons. H odvbetn avt) ovotadomoinoy, axorovboduevy amd pia
véa obvbetn Meta-oLoTAdOTOINOY TTOL ATOTUTTWVEL TLG eVIELEELS opoLtdTTO aTtd SLox-
QOPETLXOV TUTTOL CLOTAJES, VETOLVY TIG BAOELS YL EVOL UN-ETTOVOANTITLXO TOLOLOGUOL.
O oAydpLbpoc TonpLdopotog, oYeSLOOUEVOS UE (it LOTLXE TTORAAANAY] OLOYLTEXTOVLXY),
XONOLUOTTOLEL LTTOAOYLOTLXA PTNVES EVPLOTIXES LEHOBOLG YLOL VOr VoY VWPLOEL TTEPLY PO~
@Eg Tov TarpLalovy oe éva tpoxaboplopevo ANbog Prudtwy. H xbdpLta cvvelapopd
Tou MinoanER eivol 6Tt TETLYALVEL TOVAAYLOTOY LOGELO ATTOTEAEGLOTO. OE OULOLOYEVELS
Béoeic yYviong (ov €xovy %0oLVéC TNYEC %KoL CGLVETC TEPLEXOLY TTOAD OUOLEC TTEQL-
YOOUPEG OVTOTHTWY), KOL ONUOVTLXA XOUADTEQO ATTOTEAECULOTOL OE OVOULOLOYEVELS BdoeLg
YVo1g (TToL €X0VY BLAPOPETIXES TINYES KO GUVETIWG TEPLEYOLY ALYOTEQO OULOLEG TLEQL-
YOOPEQ), OE OYEON LE CLOTARATO OLYUNAG OTNY OVEALGY] OVTOTATWY, XWEIC VO OTTOLTEL
OTTOLASNTTOTE YVWOY] EVOG GUYXEXPLLEVOL TEDLOL, UE UN-ETTAVOANTITLXO xOL EEXLPETLXA

otodoTxd TPITO.

AEEeig xAewdid: Avdivom Ovtotntwy, Xvotadoroinoy, Meta-cvotadonoinoy, Awo-
ovvdedepeva Aedopéva, MinoanER

Emémtng: Baoiing Xplotoeidng
Kobnyntig
Tunuo Emiomung Ymoroylotdy
[Mavemotuto Kontne

Contents

Acknowledgments e vii
ADSITACT . . . o o e e e e e e e ix
[Mepindm (Abstractin Greek) ot xi
Tableof Contents e XV
Listof Figures o o e e e xvii
Listof Tables Xix
1 Introduction e e
1.1 The Value of Entity Resolution
1.2 Entity Resolution Workflow
1.3 Requirements for a Web-scale Entity Resolution
1.4 Contributionsand Outline. 10
2 Blocking 13
2.1 Introduction e e e 13
2.2 Formal BlockingModel 14
23 RelatedWork 18
2.3.1 Schema-basedBlocking 18
2.3.2 Schema-freeBlocking 20
2.4 Scaling Blocking Methods to Very Large Entity Collections 25
24.1 TokenBlocking 25
2.4.2 Attribute ClusteringBlocking 25
2.4.3 Prefix-Infix(-Suffix) Blocking 27
2.5 Benchmarking Content-based Blocking Methods in the Web of Data. 28
251 Datasets e e e e e 29
252 QualityResults e 31
253 PerformanceResults L L L 38
254 LessonsLearned 38
26 Conclusion e 39
3 Meta-Blocking e 41
3.1 Introduction e e e e 41
3.2 Formal Meta-blockingModel 44
33 RelatedWork 48
3.4 Scaling Meta-Blocking to Very Large Entity Collections 50
3.4.1 Approach Overview. i i ittt e e e e 50

3.4.2 Stagel:BlockFiltering 51

3.4.3 Stage2: Preprocessing i e e 52
3.4.4 Stage3:Pruning WNP) 57

3.5 LoadBalancing e 60
3.5.1 DefaultLoadBalancing, 61
352 MaxBlockLoadBalancing 61

3.6 Experiments e e 64
3.6.1 Setup e e 65
3.6.2 LoadBalancing e 66
3.6.3 TimeEfficiency 70
3.6.4 Scalability 74
3.6.5 QualitativeResults e 75
3.6.6 DISCUSSION 76

3.7 Conclusion e 77
4 EntityMatching e 79
4.1 Introduction i e e 79
42 RelatedWork e 81
4.3 BasicDefinitions 83
4.3.1 Entitysimilaritybasedonvalues 84
4.3.2 Entity similarity based onneighbors. 86

4.4 Blocking e e 88
4.4.1 Composite BlockingScheme 88
4.4.2 Disjunctive BlockingGraph o L. 88
4.4.3 Graph Weighting and Pruning Algorithms 89

4.5 Non-Iterative Matching 91
4.5.1 ImplementationinSpark, 94

4.6 Experimental Evaluation. e 94
4.6.1 Effectiveness Evaluation 98
4.6.2 EfficiencyEvaluation 101

47 Conclusion e 102
5 Conclusionand FutureWork 105
5.1 Synopsisof Contributions e 105
5.2 Short-termImprovements e 106
5.3 Directions for FutureResearch 107
Bibliography e e 111

GloSSary e e e e e 119

List of Figures

1.1

1.2
1.3
1.4

2.1
2.2

23

2.4
2.5
2.6

2.7
2.8

3.1

3.2
3.3

3.4
3.5

3.6

A part of the Web of data from two KBs: DBpedia (blue) and Freebase (red). Each ta-
ble corresponds to an entity description, each header row to the URI of the described
entity, and each other row to an attribute (left)- value (right) pair.
Searching for the entity “Stanley Kubrick” in the Web ofdata.
Outline of the entity resolution process.

Value and neighbor similarity distribution of matching entities in 4 real dataset. . . .

Asetofentitydescription. L
Token blocking example. Descriptions having a common token are placed in a com-
monblock. e e
Attribute clustering blocking example. Pairs of most similar attributes are linked (a).
Connected attributes form clusters (b). Descriptions with a common token in the
values of attributes of the same cluster, are placed in a common block (c).
Prefix-infix(-suffix) blocking example. A set of descriptions (a), their subject URIs (b),
and the blocks from their tokens and infixes (¢).
Token blockingin MapReduce.
Attribute clustering blocking in MapReduce.
Prefix-infix(-suffix) blockingin MapReduce.
Common tokens (top) and common tokens in common clusters (bottom) per entity
description distributions for D1-D7. e

(a) A set of heterogeneous entity description, (b) the overlap-positive block collec-
tion derived from them using token blocking, (c) the respective blocking graph that
uses Jaccard similarity for edge weights, (d) one of the possible pruned blocking
graphs, and (e) the restructured block collection after Meta-blocking.
(a) The serialized workflow of Meta-blocking, and (b) its parallelized counterpart. . .
Pseudo-code interpretation of (a) the basic and (b) the advanced strategy for Block
Filtering. They employ a global and a local ordering of blocks, respectively.
An example of the advanced strategy for Block Filtering.
Pseudo-code interpretation of the edge-based Preprocessing strategy, which explic-
itly creates the blockinggraph. o ...
Pseudo-code interpretation of the edge-based Preprocessing strategy for the EJS
weightingscheme.

xvii

x® O b W

21

21

22
23
26
26
27

33

42
50

51
53

54

3.7 Pseudo-code interpretation of the comparison-based Preprocessing strategy, which
creates the blocking graph implicitly, enriching the description of the input block
with the necessary information for weight estimation.

3.8 An example of the comparison-based strategy for Preprocessing.

3.9 Pseudo-code interpretation of the entity-based strategy for Preprocessing, which
does not use the blockinggraph.

3.10 Pseudo-code interpretation of (a) the edge-based and (b) the comparison-based strat-
egy for WNP. They share the same reduce function.

3.11 An example of the comparison-based strategy for WNP, using the JS weighting

3.12 Pseudo-code interpretation of the entity-based strategy for WNP.
3.13 An example of running MaxBlock for load balancing.
3.14 Overhead Time in minutes for all configurations of the serialized workflow over DBc.
3.15 Speedup over DB¢ of (a) the comparison-based strategy for WEP, and (b) the entity-
based strategy for CNP.
3.16 Average performance of the four pruning algorithms with respect to (a) Recall, (b)
RR, (c) Precision,and (d) H3R. i

4.1 (a) Parts of entity graphs, representing the Wikidata (left) and DBpedia (right) KBs,
(b) parts of the corresponding disjunctive blocking graph, and (c) the corresponding
graph after pruning. e

4.2 An example of running our heuristics on a pruned disjunctive blocking graph.

4.3 The architecture of MinoanERinSpark.,

4.4 Scalability of matching in MinoanER w.r.t. running time (left vertical axis) and speedup
(right vertical axis) as more coresareinvolved.

4.5 The area of matches from Figure 1.4 targeted by each of the employed heuristics. . .

56
56

57

58

59

60

63

73

74

75

80
95
96

103

List of Tables

2.1
2.2
23
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4

3.5

3.6
3.7

4.1
4.2
4.3
4.4

Quality Measures. vt e e e e 17
Co-occurrence functions for considering two descriptions candidate match. 24
Blocking methods with respect to the redundancy attitude and algorithmic attitude. 24
KBscharacteristics. e 29
Datasets characteristics. e 31
Statistics and evaluation of blocking methods. 32
Characteristics of the missed match of token blocking. 36
Analysis of 1K sampled match and 1K sampled non-match. 37
Summary of the notation used in Meta-blocking. 45
The datasets employed in our experiments. 65
The block collections that were given as input to Meta-blocking. 66
The distribution of partition cardinalities produced by the default load balancer of

Hadoop, PairRangeand MaxBlock. 67
The wall-clock time (in minutes) of Meta-blocking using the default Hadoop bal-
ancer, the two variations of PairRange, and MaxBlock for the entity-based strategy
over DB, using the CBS weighting scheme across all pruning algorithms. The over-
head of executing each load balancing algorithm, compared to the default balancing,

is common for all pruning algorithms and is included in the wall-clock times. 69
The block collections after Block Filtering. 70
Overhead Time (OTime) in minutes for all Meta-blocking techniques across the four

realdatasets. 71
KBstatistics. o o e 97
Block statistiCs. e 98
Evaluation of MinoanER compared to existing methods. 98
Evaluation of heuristics. L 101

Xix

Chapter 1
Introduction

An increasing number of government organizations, local bodies, private companies, scientific
or citizen communities are currently describing a great variety of real-world entities (e.g., per-
sons, places, products, events) as Linked Data', in the form of RDF triples?, i.e., subject-predicate-
object facts. The emerging Web of data aims to support a global data infrastructure, in which real-
world entities are described on the Web by data rather than documents. Exhibiting a higher degree
of interoperability than documents and ease of reuse both by humans and machines, Linked Data
emerges as a prominent paradigm for publishing structured information worldwide.

Comprehensive, machine-readable entity descriptions are hosted in Knowledge Bases (KBs).
Traditionally, KBs are manually crafted by a dedicated team of knowledge engineers (e.g., Word-
net® and Cyc*); with the explosion of the Web, however, more and more KBs are built from existing
Web content using information extraction tools [25]. Such an automated approach offers an un-
precedented opportunity to scale-up KB construction and leverage existing knowledge published
in HTML documents [50], but it also comes at the cost of a significant degree of redundancy in
the descriptions provided across domains for the same real-world entities. Such KBs may contain
complementary and sometimes conflicting information regarding the same entity, which could
be combined in order to provide a more complete picture of the described entities than each in-
dividual KB offers and be exploited by a multitude of applications. A prerequisite for merging
complementary information or repairing contradicting information is to identify first the descrip-
tions that refer to the same real-world entity (called matches). This is the problem of entity resolu-
tion (ER), on which we focus in this work. This clearly requires an understanding of the similarity
among described entities that goes beyond strong similarity studied in traditional deduplication
and cleaning problems [76]. We essentially need to explore entity descriptions that are nearly sim-
ilar [88], since those descriptions have been created by various extraction tools of different quality,
focusing on different aspects of the entities.

http://linkeddata.org/

2http:/ fwww.w3.0rg/RDF
3http:/ /wordnet.princeton.edu
4http://www.cyc.com

2 Chapter 1. Introduction

Example 1.1. Consider the entity descriptions presented in Figure 1.1. An entity description in the
Web of data is an identifiable set of attribute-value pairs. In this example, the entity identifiers are
given in the header rows and the attribute-value pairs are the remaining rows (attributes left, val-
ues right). The example shows entity descriptions hosted in two KBs: DBpedia (blue) and Freebase
(red). DBpedia describes two movies, Eyes Wide Shut and A Clockwork Orange, their director Stan-
ley Kubrick and his place of birth Manhattan, while Freebase provides alternative descriptions for
the same four entities. We say that two descriptions (e.g., Stanley Kubrick and A Clockwork Orange)
that are linked through such relations (e.g., director) are entity neighbors (see red edges). The sets of
attribute-value pairs used for describing these entities essentially group per subject URI (i.e., identi-
fier) a collection of RDF triples. For example the fact that Stanley Kubrick is the director of the movie
Eyes Wide Shut, expressed in the first row of the first entity description in this Figure, is expressed in
RDF (in N-triples format) as the triple: “<dbpedia:Eyes_Wide_Shut> <dbpedia-owl:director> <db-
pedia:Stanley_Kubrick> ., where “dbpedia:” is short for http://dbpedia.org/resource/ and
‘“dbpedia-owl:” is short for http://dbpedia.org/ontology/. Each triple expresses a fact about
an entity, while triples having the attribute rdf:type express the semantic types of an entity. In this ex-
ample, dbpedia:Stanley_Kubrick is declared to belong to the types Person, AmericanFilmDirectors,
and AmateurChessPlayers. Such type declarations do not impose the use of a specific set of attributes
in the Web of data, for entities of specific types. Note that different KBs may provide different (com-
plementary or conflicting) facts regarding the same entity. E.g., Freebase states that the runtime of
A Clockwork Orange is 137 minutes, while DBpedia suggests 136.

One can notice that, in our example, there exist both strongly similar and nearly similar descrip-
tions. For example, we can say that the descriptions referring to Eyes Wide Shut are strongly similar,
since they have very similar values for semantically equivalent attributes (e.g., name, runtime, cast).
However, this is not the case with the descriptions that refer to Stanley Kubrick; those descriptions
do not use any common words in their descriptions, while their attributes mostly refer to different
aspects of this entity (birthplace, active years and semantic types, versus name, birthplace and par-
ents). Hence those descriptions are more heterogeneous and in order to check if they match, we can
additionally exploit the similarity of their entity neighbors (such as birthplace and films directed by
them). For such descriptions, we can say that they are only nearly similar.

1.1 The Value of Entity Resolution

To allow better understanding a user’s intents, an entity-centric Web infrastructure enables power-
ful new user experiences, from search results that directly show key facts about people, places and
things, to improved refinement interfaces that allow searchers to quickly locate Web documents
that mention only the specific people, places or other things they are looking for [55]. We are
witnessing a new generation of Web applications that rely on entity descriptions to better serve
navigational or information seeking needs of users, namely, entity-centric search [7, 8,15, 69] and
recommendations (14, 75, 105]. The former semantically enrich the answers of keyword queries

1.1. The Value of Entity Resolution

dbpedia:Eyes_Wide_Shut

dbpedia:Stanley_Kubrick dbpedia:Manhattan

dbpedia:Stanley Kubrick

dbpedia-owl:director

dbpedia-owl:birthPlace dbpedia:Manhattan rdf:type yago:IslandsOfTheHudsonRiver

dbpedia-owl:Work/runtime “159”

1999-01-01 rdfs:label “Manhattan”

dbpedia-owl:activeYearsEndYear

dbpedia-owl:starring dbpedia:Nicole_Kidman

dbpedia-owl:activeYearsStartYear 1951-01-01 foaf:name “Manhattan”

dbpedia-owl:starring dbpedia:Tom_Cruise

rdfs:label “Eyes Wide Shut” rdf:type foaf:Person

rdf:type yago:AmericanFilmDirectors

foaf:name “Eyes Wide Shut”

rdf:type yago:AmateurChessPlayers

fbase:m.0cc56

dbpedia-owl:director dbpedia:Stanley Kubrick

fbase:m.06mn7 &

i
dbpedia- “136” fbase:type.object.name “Manhattan

owl:Work/runtime

fbase:type.object.name “Stanley Kubrick”

fbase:common.topic.alias “New_York_County”

rdfs:label “A Clockwork Orange (film)”

fbase:people.person.place_of_birth fbase:m.0cc56

rdf:type travel.travel_destination

foaf: “A Clockwork O "
oatname ockwork Orange fbase:people.person.parents fbase:m.02g68r

fbase:location.administrativ
e_division.capital

fbase:m.Ojvw4b_

fbase:people.person.parents fbase:m.02g656g

fbase:m.09c7wO0

fbase:m.05ldx! fbase:m. 02qcr e_division.country

fbase:film.film.film.directed_by =~ m.06mn7

fbase:type.object.name “Eyes Wide Shut”

fase:filmfilm.runtime 137" fbase:film.film.tagline “Cruise. Kidman. Kubrick”

fbase:film.film.starring m.0235qd0

rdfs:label “Eyes Wide Shut”

fbase:film.film.starring m.0jsqls ‘

fbase:film.film.runtime “159” —

fbase:ilm.film.soundtrack ~ fbase:m.01frx9q |\ | ===
AN

Figure 1.1: A part of the Web of data from two KBs: DBpedia (blue) and Freebase (red). Each
table corresponds to an entity description, each header row to the URI of the
described entity, and each other row to an attribute (left)- value (right) pair.

with references to entities that are mentioned in the queries®, while the latter also provides rec-
ommendations of related entities based on relationships explicitly encoded in a KB [41]. Popular

use-cases of such Web applications include Google’s search that exploits the ER results of Knowl-

edge Vault [26], and Microsoft’s recommender system based on entity search results [11].

Example 1.2. Consider the query “Stanley Kubrick’, as shown in Figure 1.2. The user would prob-

ably like to know information about Stanley Kubrick, such as his age, birth place and profession,

instead of being given a list of relevant documents that, combined, contain this information, or, po-

tentially irrelevant documents that just contain these keywords. To serve this query in the Web of

data, the following process would be engaged.

Initially, a number of entity descriptions related to the entertainment industry (e.g., film mak-
ers) have been extracted from semantic annotations of Web pages and/or from domain specific KBs
(e.g., LinkedMDB®) and cross-domain KBs (e.g., DBpedia, YAGO, Freebase). Such descriptions can
be matched and matching descriptions can be linked to each other. Then, the mentions of various

entities in the user queries are recognized and matched to the extracted entity descriptions. For ex-

ample, besides Web documents related to “Stanley Kubrick’, an entity search system would enrich

SA process known as named-entity extraction [13, 38, 39,49] and disambiguation [58].
Swww.linkedmdb.org

4 Chapter 1. Introduction

-~
7,

e\
Y]

Entity Entity

extractjon - é y:j* resolutjon
Y
-&i! Dipeda

~Frecbase

Documents ! T& [~zLinked movie natasase] /(/&g ia—/'('m

~—-— L|nked entltles
Entity ‘
descriptions

P [stanley Kubrick

P Entity-centric

. ’’ ~ Entity-centric search results

& director N| ﬁ ia \ recommendations

=3 N\) /

NP am g, -
birth (e‘ ia \
L)

spouse
/

place

et BT

place

~ -

— -

Figure 1.2: Searching for the entity “Stanley Kubrick” in the Web of data.

the answer with the descriptions of Stanley Kubrick in DBpedia and/or Freebase. To serve users will-
ing to extend their knowledge or simply satisfy their curiosity, an entity recommender system could
provide additional entities describing information of potential interest for the user. For example,
consider the information that Kubrick was born in Manhattan, extracted from DBpedia, that he
was married to Ruth Sobotka, extracted from YAGO, that he was the director of the movie A Clock-
work Orange, extracted from LinkedMDB, and so forth.

Given the open and decentralized nature of the Web of data, reliability and usability of entity
descriptions need to be constantly improved. Specifically, entity descriptions published in the
Web of data can be incomplete, i.e., only partially described in KBs, redundant, i.e., descriptions of
the same real-world entities usually overlap in multiple KBs, inconsistent, i.e., real-world entities
may have conflicting descriptions across KBs, and incorrect, since errors can be propagated from
one KB to the other due to manual copying or automated extraction techniques. In this respect,
ER improves the quality of Web KBs in terms of completeness, since linking nearly similar descrip-
tions will increase coverage of entity facts and relationships, conciseness, since merging strongly
similar descriptions will reduce duplicate entity facts and relationships, consistency, since match-
ing similar descriptions will enable to detect conflicting assertions, and correctness, since splitting
complex descriptions will facilitate entity repairing. In this work, we will focus on the first two of

those issues.

1.2. Entity Resolution Workflow 5

1.2 Entity Resolution Workflow

The general processing steps involved in an ER task are illustrated in Figure 1.3 [35, 95, 96]. The
two core ER problems are (a) how can we effectively compute similarity of Web entities, and (b) how
can we efficiently resolve sets of entities within or across KBs.

Regarding problem (a), at the core of an ER task lies the process of making the matching deci-
sion: for a given pair of descriptions, decide if they refer to the same real-world entity (i.e., if they
match). This process aims to place matches at the same partition of the input entity collection &,
and all the descriptions placed into the same partition should match. Specifically, the matching
decision is typically made by a match function M, mapping each pair of entity descriptions (e;, e;)
to {true, false}, with M(e;, e;) = tr ue meaning that e; and e; are matches, and M(e;, e;) = false
meaning that e; and e; are not matches.

The match function M introduces an equivalence relation among entity descriptions, so it
should satisfy the following properties:

* Reflexivity: Ve; € &, M(e;, e;) = true,
* Symmetry: Ve;, ej €&, M(ej, ej) = M(ej, e;), and
* Transitivity: Ve;, ej, e €&, (M(e;, ej) = true) A (M(ej, ex) = true) = (M(e;, ex) = true).

In practice, the match function is defined via a similarity function sim, measuring how sim-
ilar two entity descriptions are to each other, according to certain comparison criteria. Given a
similarity threshold 0:

true, if sim(e;,e;) =0,
M(ej, ej) =
false, otherwise.

To support the identification of nearly similar matches, existing works perform more than a
simple similarity computation on the values of two descriptions; they propagate the similarity of
the entity neighbors of two descriptions to the similarity of those descriptions. In this inherently
iterative process, the employed match function is based on a similarity that dynamically changes
from iteration to iteration, and its results include a third state, the uncertain one. Specifically,
given two similarity thresholds 6 and 6’, with 6" < 0, the match function at iteration » is given by:

true, if sim" ! (e;, ej) =0,
M"(e;, ej) = | false, if sim" ! (e;, ej) < 6',

uncertain, otherwise.

It should be clear from Example 1.1 that finding a similarity function which can perfectly dis-
tinguish all matches from non-matches for all entity collections is impossible. Thus, in reality, we
seek a similarity function that will be only good enough, i.e., minimize the number of misclassified

pairs.

6 Chapter 1. Introduction

Blocking Matching

Resolved

Entity
entities

descriptions

Meta-blocking

Figure 1.3: Outline of the entity resolution process.

Regarding (b), pairwise entity matching is by nature quadratic to the number of entity descrip-
tions, and thus prohibitive at the Web scale. In this respect, blocking aims to discard as many
comparisons as possible without missing comparisons that could result into a match. It places
similar entity descriptions into blocks, leaving to the matching phase comparisons only between
descriptions within the same block, based on some criteria (called blocking keys). Specifically,
given an entity collection &, blocking creates overlapping or disjoint partitions B = {by, by, ..., bn}

of &, called blocks, for which it holds that |J b; = &. A blocking method is called a partitioning
bi€B
(or disjoint) blocking when Vb;,b; € B,b; nb; = ¢, and overlapping blocking, else. The goal of

blocking is to quickly split the input entity collection into blocks that are as close as possible to
the final matching results. Hence, following the definition of the match function M, which relies
on a similarity function sim, the goal of blocking is for each pair of descriptions e;, e; that belong
to the same block, it should hold that sim(e;, e;) = 6.

Overlapping blocking methods are usually accompanied by Mefa-blocking, which aims to dis-
card comparisons suggested by blocking that are repeated across different blocks, as well as com-
parisons that are unlikely to result in matches, suggested due to noise in entity descriptions. The
core idea for Meta-blocking is that the number and size of blocks that two descriptions share pro-
vide matching evidence: the more common blocks two descriptions share, the more similar those
descriptions are, while, the smallest the common blocks (i.e., the fewer the descriptions placed in
those blocks), the more discriminating they are, thus increasing the matching likelihood for the de-
scriptions that share them. This matching evidence is represented in the form of a blocking graph,
in which nodes correspond to entity descriptions and edges connect descriptions that co-occur in
at least one common block. The weights of the edges, extracted entirely from block statistics, rep-
resent the likelihood that connected descriptions match, i.e., how strong the matching evidence
for those descriptions is considered to be.

1.3. Requirements for a Web-scale Entity Resolution 7

1.3 Requirements for a Web-scale Entity Resolution

ER is challenged by the Variety, Volume and Veracity of the Web of data, across all the steps of the
ER workflow.

» Varietyis mainly due to the descriptive, rather than prescriptive usage of ontologies/vocabularies
in entity descriptions (i.e., no DB-like schema), as well as the variety of domains of entity
types covered in KBs (there are ~2,600 diverse vocabularies, but only 109 of them are shared

by more than one KB").

¢ Volume is related both to the number of KBs and entities in KBs; the LOD cloud alone con-
tains almost 10,000 KBs with ~150B triples describing more than 55M entities’.

¢ Veracity stems from various forms of inconsistencies and errors in entity descriptions, due
to the limitations of the automatic extraction techniques or of the crowd-sourced contribu-

tions.

The above Big Data characteristics of the Web of data call for novel ER frameworks that relax
a number of assumptions underlying several methods and techniques proposed in the context of
database, machine learning and semantic Web communities [22, 27]. The first is related to the
notion of similarity that better characterizes entity descriptions in the Web of data. Clearly, Vari-
ety renders inapplicable all schema-based similarity measures, which compare specific attribute
values. Similarity evidence of entities inside and across KBs can be obtained only by looking at
the bag of literals (mostly strings) contained in descriptions, regardless of the attributes they ap-
pear as values. As the value-based similarity of a pair of entities may still be weak due to Veracity
(e.g., the two descriptions of A Clockwork Orange from DBpedia and Freebase in Figure 1.1 having
different values for runtime), we need to consider additional sources of evidence related to the
similarity of neighboring entities, i.e., connected via semantic relations (see the two descriptions
of Eyes Wide Shut in DBpedia and Freebase, and the two descriptions of Manhattan, which are
neighbors of Stanley Kubrick in both KBs in Figure 1.1).

Figure 1.4 depicts two types of similarity for entities known to match from 4 benchmark datasets
used in the literature (details in Table 4.1). Every dot corresponds to a different matching pair,
while its shape denotes its origin dataset. The horizontal axis reports the normalized value similar-
ity based on the descriptions common words in a pair (weighted Jaccard [66]), while the vertical
one reports the maximum value similarity of their respective entity neighbors. We can observe
that the value-based similarity of matching entities significantly varies across different datasets.
For strongly similar entities (e.g., with a value-based similarity > 0.5) - typically hosted in homo-
geneous KBs from similar or common data sources - existing duplicate detection techniques work
well. However, to resolve nearly similar entities (e.g., value similarity < 0.5) - typically hosted in
heterogeneous KBs from diverse data sources - which cover a large part of the matching pairs

7http ://stats.lod2.eu

8 Chapter 1. Introduction

0.9

0.8

neighborSim
o o o
w (o)} ~

o
'S

o
w

£‘ A£ A i X W
0.1 ducoyy 508 B0 is | oP + o
A A @A S
<&
o ©
0 ¢ ot i it Gt G- G D G- 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

valueSim
A BBCmusic-DBpedia ¢ YAGO-IMDb o Rexa-DBLP ® Restaurant

Figure 1.4: Value and neighbor similarity distribution of matching entities in 4 real dataset.

of entities in the Web of data, we need to additionally exploit evidence regarding the similarity
of neighboring entities. Existing works in blocking and Meta-blocking in the Web of data are also
considering only the content similarity of descriptions, and are thus challenged when dealing with
nearly similar entities.

Overall, the main requirements for a Web-scale ER method are the following:

* Near similarity support. The heterogeneity of entity descriptions met in the Web of data
calls for ER methods that can cope with not only strongly similar, but also nearly similar enti-
ties. This means that the blocking phase of an ER workflow should not discard comparisons
between descriptions that are nearly similar, as typical blocking methods in databases do,
while the matching phase should take into account not only the content, but also the entity
neighbors of two descriptions, when deciding if they match.

¢ Schema-free. Asthe published Web data use a plethora of vocabularies and schemata [29],
even within the same KB, it becomes clear that an ER method targeting matches in the
Web of data should not rely on a given set of attributes used by all the given entity descrip-
tions®. Thus, no step of the ER workflow should rely on the existence and the knowledge of

8This is not a restriction on the existence or not of a schema; a Web-scale ER method should work well in either case.

1.3. Requirements for a Web-scale Entity Resolution 9

a schema, e.g., blocking cannot operate on the values of a specific attribute only, such as a
ZIP code, assuming that all the descriptions will have a value for this attribute.

¢ No human in the loop. The diversity of the cross-domain and multi-type entity descrip-
tions published on the Web does not leave any ground for ER methods relying on domain-
experts to create correspondence rules or training sets of labeled matches, as they would
on a single domain. Putting humans in the loop of a Web-scale ER is known to pose signifi-
cant challenges [24]. Thus, matching descriptions in the Web of data should rely entirely on
statistics, instead of domain-knowledge, in an unsupervised way.

* Non-iterative. Iterative ER methods target nearly similar descriptions, through similarity
propagation from their neighbors. This process typically terminates when the iterations
converge to a single ER result. However, at the scale of the Web of data, such a process may
need too many iteration to converge, making iterative ER inapplicable to our problem.

¢ Scalable to massive volumes of data. It should be clear at this point that only scalable
ER methods are applicable at the scale of the Web of data. In this context, only massively
parallel implementations of blocking, Meta-blocking and matching can be considered.

To our knowledge, there is no work in ER that satisfies all of these requirements at the same
time. Specifically, link discovery tools suggested for the Semantic Web (e.g., LIMES [77], Silk [52,
99]) focus on domain-specific matching rules between entities of a particular type (e.g., on prod-
ucts [45,87]) to infer owl : sameAs links. The creation of such rules is labor-intensive and difficult to
generalize across domains. On the other hand, learning-based link discovery methods (e.g., [53])
can learn such complex rules, based on a training set, which is often hard to obtain when the
number of KBs becomes big.

Iterative methods such as SiGMa [66], LINDA [16] and RiIMOM [91] rely on domain knowledge
regarding the equivalence of relations between neighboring entities. Initially, they detect strongly
similar entities using reasonable heuristics, such as identical literal values. Then, they use these
resources as seeds for bootstrapping an iterative algorithm that detects new matches based exclu-
sively on similarity propagation from the neighbors. The more neighboring entities are matching,
the stronger is the evidence regarding a candidate entity pair. This process is repeated until con-
verging to a stable solution (i.e., no more matches are identified). Since convergence requires mul-
tiple iterations in the Web of data, the employed algorithms cannot scale well to such voluminous
datasets.

Finally, blocking methods proposed for structured entities in relational databases [20] (e.g,
sorted neighborhood, canopy clustering) rely on blocking keys defined at schema-level. Given
the loose structuring and high heterogeneity of entities in the Web of data, we need schema-free
blocking methods that could efficiently reduce the number of candidate matches without compro-
mising the effectiveness of matching for entities belonging to multiple types. On the other hand,

10 Chapter 1. Introduction

existing blocking [36] and Meta-blocking [82, 83] methods for the Web of data target only candi-
date pairs with strong content similarity. To identify such matches, we need disjunctive blocking
schemes that exploit different sources of matching evidence.

1.4 Contributions and OQutline

To satisfy the requirements of a Web-scale ER, we introduce MinoanER, a parallel ER framework
that is schema-free, non-iterative, fully automated, i.e., without requiring humans in the loop, tar-
geting not only strongly similar, but also nearly similar matches. Overall, we make the following
contributions in this thesis, where each chapter corresponds to one of the ER modules of Fig-
ure 1.3 (for a survey of existing works in each module, please refer to our book [22] and tutori-
als [95,96]):

¢ Blocking. In Chapter 2, we study the problem of blocking in the context of the Web of data,
which enables scaling ER to massive volumes of data in a schema-free way. We make the
following contributions, which have been published in [34, 36]:

— We formalize the notions of atomic blocking, operating on a single type of matching
evidence (e.g., place two descriptions in the same block, if they have a common word
in their values), and composite blocking, operating on multiple types of matching evi-
dence (e.g., place two descriptions in the same block, if they have a common word in
their values, or a common word in their identifiers).

— We present the architecture of a massively parallel implementation of blocking meth-
ods for Web entities. We explain how our algorithmic design and representation of
entity descriptions as (key, value) pairs allows a minimal data exchange between the
computational nodes in our cluster, which is a typical bottleneck of such algorithms.

- We empirically study the behavior of blocking methods for LOD KBs exhibiting dif-
ferent levels of heterogeneity. We are interested in quantifying the factors that make
blocking methods take different decisions on whether two descriptions from real LOD
KBs potentially match or not. We investigate typical cases of missed matches of existing
blocking methods and examine alternative ways for them to be retrieved. Many match-
ing description pairs have matching entity neighbors even if their content similarity is
low. Our analysis shows that a big number of those missed matches could be retrieved
if such information was exploited by blocking.

¢ Meta-blocking. In Chapter 3, we study the problem of Meta-blocking, which allows the
detection of nearly similar matches in a massively parallel way, operating only on the result
of blocking. We make the following contributions, which have been published in [32,33]:

— We extend the distinction of blocking methods into atomic and composite, to Meta-
blocking: extending the blocking graph, which is the main conceptual model of Meta-

1.4. Contributions and Outline 11

blocking used with atomic blocking, we further define the disjunctive blocking graph,
which captures multiple types of matching evidence, allowing the conceptual model-
ing of composite blocking.

— We introduce parallel Meta-blocking using three alternative parallelization strategies,
which provide different advantages when combined with different Meta-blocking edge
weighting and pruning strategies, as they feature different I/O costs, number of data-
exchange steps and size of exchanged data.

— We introduce a novel load balancing algorithm called MaxBlock, in order to avoid
potential bottlenecks associated with the computation-intensive parts of our parallel
Meta-blocking. MaxBlock exploits the highly skewed distribution of block sizes in or-
der to split them in partitions of equivalent computational cost (i.e., total number of
comparisons). We experimentally compare MaxBlock with state-of-the-art methods
and demonstrate that it has significant qualitative and quantitative benefits.

e Matching. In Chapter 4, we present our novel non-iterative and scalable matching method
for the Web of data, which is fully automated (no human in the loop). We make the following
contributions?:

— We define new similarity metrics for comparing the values and the neighbors of entities
without requiring knowledge of schema, the entity types or their correspondences. We
rely on simple statistics over the KBs to recognize the most important entity relations
involved in neighbor similarity or the most distinctive attributes serving as names of
entities. The proposed similarity metrics can be efficiently computed using informa-
tion provided only by blocking.

— We propose a non-iterative matching process that exploits a disjunctive blocking graph
in a massively parallelway. Unlike the data-driven convergence of existing iterative sys-
tems, our matching method involves a specific number of steps that are independent
of data characteristics. Matching entities are found by applying 4 generic heuristics
to the disjunctive blocking graph, instead of the domain-specific similarity-threshold-
based rules employed in state-of-the-art methods. Our experiments show that Mi-
noanER outperforms to a significant extent existing ER tools when matching KBs with
high levels of heterogeneity, while it achieves at least equivalent performance over KBs
with low levels of heterogeneity, even without making any assumption regarding the
alignment of relations in the input.

9This work is under submission.

12

Chapter 2
Blocking

2.1 Introduction

To enhance performance, blocking is typically used as a pre-processing step for ER to reduce the
number of unnecessary comparisons, i.e., comparisons between descriptions that do not match.
After blocking, each description can be compared only to others placed within the same block.
The desiderata of blocking are to place (i) matching descriptions in common blocks (effectiveness),
and (i) minimize the number of suggested comparisons (efficiency). However, efficiency dictates
skipping many comparisons, possibly leading to many missing matches, which in turn implies low
effectiveness. Thus, the main objective of blocking is to achieve a trade-off between minimizing
the number of suggested comparisons, while also minimizing the number of missed matches.

Most blocking methods proposed for structured entities assume both the availability and knowl-
edge of the schema of the input descriptions, i.e., they refer to relational databases. As a typical
example, standard blocking [42] would suggest candidate matches in database records of persons,
only if those records shared the same ZIP code field (e.g., they live in the same address). To ef-
fectively resolve heterogeneous and loosely structured entities across domains, blocking methods
proposed for the Web of Data [78, 80, 81] disregard such strong assumptions about schema knowl-
edge and rely on the content, name or identity of descriptions to decide whether they potentially
match. For example, token blocking [78] considers two entity descriptions worthy to compare,
only if they share at least one common word (token) in their values, regardless of the attribute
names for which those values appear. Yet, the effectiveness and efficiency of such blocking meth-
ods is not thoroughly studied for LOD KBs exhibiting different levels of heterogeneity in terms of
descriptions’ content (e.g., number of tokens or frequency distribution of common tokens) and
semantics (e.g., number and variety of entity types).

Moreover, most schema-free blocking methods proposed for the Web of Data [80, 81], only
take the content of descriptions into account when placing entities in blocks, disregarding any,
potentially useful, matching evidence that may be provided by neighboring descriptions, i.e., en-
tities of different types connected via important relations. For example, if two descriptions of the
same movie are connected via a “directedBy” relation to two matching descriptions of the same
director, then this is an important positive evidence that the movie descriptions also match. We

13

14 Chapter 2. Blocking

examine whether such neighborhood evidence can be taken into consideration to improve the
effectiveness of blocking.

Finally, the process itself of creating the blocks and retrieving the candidate pairs suggested
by blocking could raise significant scalability concerns when applied to large volumes of entity
collections. Thus, we introduce parallel adaptations of existing blocking methods, which enable
blocking in entity collections of massive volumes, without compromising the effectiveness of the
original blocking, while minimizing the data exchange between the map and the reduce phase.

In summary, the main contributions of this chapter, which have been published in [34,36], are:

* We formalize the notions of atomic blocking, operating on a single type of matching evi-
dence (e.g., place two descriptions in the same block, if they have a common word in their
values), and composite blocking, operating on multiple types of matching evidence (e.g.,
place two descriptions in the same block, if they have a common word in their values, or
a common word in their identifiers).

e We present the Hadoop architecture of a massively parallel implementation of blocking
methods for Web entities. We explain how our algorithmic design and representation of
entity descriptions as (key, value) pairs allows a minimal data exchange between the com-
putational nodes in our cluster, which is a typical bottleneck of MapReduce algorithms.

* We empirically study the behavior of blocking methods for LOD KBs exhibiting different
levels of heterogeneity. We are interested in quantifying the factors (e.g., frequency distribu-
tions of common tokens) that make blocking methods take different decisions on whether
two descriptions from real LOD KBs potentially match or not.

¢ We investigate typical cases of missed matches of existing blocking methods and examine al-
ternative ways for them to be retrieved. Many matching description pairs, given by a ground
truth of known matches, have matching entity neighbors even if their content similarity is
low. Our analysis shows that a big number of those missed matches could be retrieved if
such information was exploited by blocking.

The rest of the chapter is organized as follows: Section 2.2 introduces the formal model of
blocking used in this work. Section 2.3 overviews works related to blocking, Section 2.4 presents
our implementation of blocking methods in MapReduce. Section 2.5 benchmarks the content-
based blocking methods for the Web of Data, and, finally, Section 2.6 summarizes this chapter.

2.2 Formal Blocking Model

Blocking methods are in general defined over key values that can be used to decide whether or
not an entity description could be placed in a block using an indexing function. The 'uniqueness’

2.2. Formal Blocking Model 15

of key values determines the number of entity descriptions placed in the same block, i.e., which
are considered as candidate matches. For entities described in relational databases, blocking keys
defined by the value of a specific attribute or combination of attributes, i.e., they are schema-based.
If, for example, the blocking key is defined for the attribute “name”, then entity descriptions with
same names (or an adequate string transformation function over these names) would end up in
the same block. More formally, the building blocks of a blocking method can be defined as [12]:

* An indexing function hyey : & — 28 is a unary function that, applied to an entity description
using a specific blocking key, returns as a value the set of blocks under which the description
will be indexed.

* A co-occurrence function og.y : & x & — {true, false} is a binary function that, applied
to a pair of entity descriptions, returns ‘true’ if the intersection of the sets of blocks pro-
duced by the indexing function on its arguments, is non-empty, and returns ‘false’ other-
WiSe€; Okey(ex, e) = trueiff hiey(ex) N hgey(e)) # @.

It should be stressed that as relational blocking keys have unique values, entity descriptions
are placed in at most one block, i.e., the indexing function returns a singular set of blocks. This is
not the case of blocking methods for Web entities, given that the employed schema-free blocking
keys are typically multi-valued. For example, Web entities are usually indexed using the set of
tokens appearing in all or a subset of attribute-value pairs. Thus, the same entity description may
be placed by the indexing function to several blocks.

The co-occurrence function for every pair of descriptions placed in the same block returns
‘true’, each pair of descriptions whose co-occurrence function returns ‘true’ shares at least one
common block, and the union of the block elements is the input entity collection. Formally:

Definition 2.1 (Atomic Blocking). Given an entity collection &, atomic blocking is defined by an
indexing function hy.y for which the generated blocks Bkey = {bfey yeres b’,jfy } satisfy the following
conditions:

. k k
(i) Yey,e € bl. ey, bi ¢ e Bkey,okey(ek,el) =true,
.. k k
(ii) V(er, e)): Orev(er, e;) = true, b, Y € BkeY e e e b,
k)€l ey\€k i l i

Gi) U bi=6.
bF*Y e Bkey
In general, blocking techniques are characterized by their redundancy attitudeas: (i) partition-
ing, that place each description into a single block, i.e., Ve € &, |htey(e)| = 1, and (ii) overlapping,
that could place a description in multiple blocks, i.e., Ve € &, |hg,y(e)| = 1. When blocking keys
fail to uniquely identify an entity, placing a description to a single block according to partition-
ing approach, would directly result in missed matches, if such matches exist. On the other hand,

placing entity descriptions in multiple blocks, as in overlapping approaches, reduces the chances

16 Chapter 2. Blocking

of missing true matches, but entails a greater number of comparisons. As a matter of fact, the
occurrence of two descriptions in several blocks, provides evidence regarding their similarity [82].
This way, overlapping approaches can be further divided into: (a) overlap-positive, that consider
the number of common blocks between two descriptions proportional to the likelihood that they
are matches, (b) overlap-negative, that consider the number of common blocks between two de-
scriptions inversely proportional to the likelihood that they are matches, and (c) overlap-neutral,
that consider the number of common blocks between two descriptions irrelevant to the likelihood
that they are matches.

Given that using a single key is not enough for building effective and efficient blocking meth-
ods, in practice we need to consider several keys that the indexing function exploits to build
different sets of blocks. Such a composite blocking method is characterized by a composite co-
occurrence function defined as the disjunction or the conjunction of atomic ones. In the sequel,
we are interested in disjunctive blocking methods formally defined as follows:

Definition 2.2 (Composite Blocking). Given an entity collection &, disjunctive (conjunctive) block-

ing is defined by a set of indexing functions H for which the generated blocks B= U B*¢Y satisfy
I/lkey€H

the following conditions:
(i) Ver,eje b:be B,oy(e,e;) = true,
(ii) Y(ey,e;):opler,e;) =true,Abe B, ey, e; € b,
where oy (e, e1) =V (N\) ny, e HOkey €k, €1) in disjunctive (conjunctive) blocking.

Atomic blocking can be seen as a special case of composite blocking, consisting of a singular
set of indexing functions, i.e., H = {hkey}.

Measures. The effectiveness and efficiency of a blocking method can be evaluated using the
measures described in Table 2.1, with respect to a given ground truth, i.e., a set M of known match-
ing pairs of descriptions. Those are the standard measures used to evaluate the quality of the
blocking results [21]. The range of all measures is [0,1], with 1 being the ideal value of a perfect
blocking, fulfilling completely both requirements of Definition 2.2. We define the number of True
Positives (TP), also referred to as true matches, as

TP =|{(ex,eplonlek,ep) = truen (e, ep) € M}, 2.1)

i.e., number of matching pairs that have been placed in a common block, the number of False
Positives (FP) as
FP = |{(ex,e)lon(ek, e)) = truen (ex, ey ¢ M}, (2.2)

i.e., number of non-matching pairs that have been placed in a common block, the number of True
Negatives (TN) as
TN = {(ex, elon (e, e)) = false A (ex, e)) ¢ M}, (2.3)

2.2. Formal Blocking Model 17

Table 2.1: Quality Measures.

’ Name \ Formula \ Description
Measure what fraction of the
TP :
Recall TPLFN known matches are candidate
matches.
Measure what fraction of the
.. TP .
Precision TPLFP candidate matches are known
matches.
F-measure Precision-Recall The harmonic mean of preci-
Precision+Recall sion and recall.
Returns the ratio of reduced
___comparisons with blocking : s s
RR 1 Comparisons without blocking | COTRParisons when blocking is
applied.
3R o RR-Recall The harmonic mean of recall
RR+Recall and reduction ratio.

i.e., number of non-matching pairs that have not been placed in a common block, and the number
of False Negatives (FN), also referred to as missed matches, as

FN = |{(ex,ep)lon(ex, e;)) = falsen (e, e € M}, (2.4)

i.e., number of matching pairs that have not been placed in a common block.

Intuitively, the recall of blocking measures how many of the known matching pairs of descrip-
tions have been placed in at least one common block, i.e., it captures the effectiveness of blocking,
while the precision of blocking measures the fraction of matching pairs being placed in common
blocks divided by the total number of pairs being placed in common blocks. Reduction Ratio (RR)
is the percentage of comparisons that we save if we apply the given blocking method, with respect
to an exhaustive comparison of all possible pairs of descriptions, i.e., it captures the efficiency of
blocking.

In general, a good blocking method should have a low impact on recall, i.e., high effectiveness,
and a great impact on the number of required comparisons, i.e., high efficiency. Typically, this
trade-off is captured by the F-measure, the harmonic mean of recall and precision. However, in
blocking, F-measure is dominated by the values of precision, which are usually many orders of
magnitude lower than those of recall, so F-measure cannot be easily used to express this trade-
off. Moreover, precision is not as important as recall is for blocking, since precision can only be
improved by a non-iterative ER method that follows blocking, whereas the recall of blocking is the
upper threshold of such ER methods. Thus, we define H3R as the harmonic mean of recall and
RR, ameasure which has also been used in [59]. Similar to F-measure, H3R gives high values only
when both recall and RR have high values. Unlike F-measure, H3R manages to capture the trade-
off between effectiveness and efficiency in a more balanced way. Note that H3R evaluates the
actual performance of a blocking method, rather than estimating it, as [80] does. In the sequel, we

18 Chapter 2. Blocking

will explore how different indexing functions are used by various blocking methods to maximize
the effectiveness and efficiency of blocking in different contexts.

2.3 Related Work

In this section, we focus on blocking methods proposed in the literature and analyze their appli-
cability to entities met in the Web of Data. We leave out of this review clustering methods which
have been proposed for blocking (e.g., [47,71]).

2.3.1 Schema-based Blocking

The simplest hash-based blocking method for relational databases, standard blocking [42], uses
a single attribute value as a blocking key and places descriptions in blocks defined for each dis-
tinct blocking key. Since each description is placed in exactly one block, standard blocking is a
partitioning approach, so each distinct pair of descriptions cannot be compared more than once.

Sort-based blocking methods order entity descriptions according to a sorting criterion and
perform blocking based on it. It is expected that matching descriptions will be neighbors after the
sorting, so neighbor descriptions constitute candidate matches. Initially, entity descriptions are
ordered based on their blocking keys [48]. Then, a window, resembling a block, of fixed length
slides over the ordered descriptions, each time comparing only the contents of the window. An
adaptive variation of the sorted neighborhood method is to dynamically decide on the size of the
window [103]. In this case, adjacent blocking keys in the sorted descriptions that are significantly
different from each other, are used as boundary pairs, marking the positions where one window
ends and the next one starts. Hence, this variation creates non-overlapping blocks. In a similar
line of work, the sorted blocks method [28] allows setting the size of the window, as well as the
degree of desired overlap.

Following the intuition of the overlap-positive approaches, g-gram based blocking [46] uses a
list of q-grams to generate blocking keys, where a q-gram is a substring of g characters. For exam-
ple, the string “Eiffel” can be converted to the list of bi-grams [“ei”,“if”, “ff”, “fe”,“el”]. Sub-lists of
this list are generated, by recursively removing one gq-gram each time. For instance, some of the
sub-lists for the string “Eiffel” are [“ei”,“if”,“ft”,“fe”,“el”], [“if”,“ff”,“fe”,“el”], [“ei”, “ff”,“fe”,“el”], and
[“ei”,“ff”,“el”]. Each sub-list is then converted (by concatenation) into a string and used as a block-
ing key. This way, typographical, or spelling errors are excused. For example, descriptions with the
values “Eiffel” and “Eifel”, respectively, will be placed in some common blocks. In a similar way,
suffixes of values, i.e., sub-strings produced by removing some of the first characters of the val-
ues, can be used for blocking [2], ignoring potential errors in the removed characters. Specifically,
each suffix corresponds to a distinct blocking key, and entity descriptions containing this suffix
are inserted into the block corresponding to this suffix. To prevent a large number of descriptions
being placed into the same block, e.g., when using suffixes of small size, two thresholds are set: (i)

2.3. Related Work 19

a threshold reflecting the minimum length of suffix strings that will be generated and (ii) a thresh-
old reflecting the maximum block size, i.e., number of entity descriptions contained in each block.
String-map [57] maps string blocking keys to objects in a d-dimensional Euclidean space. Each
dimension is defined by selecting two objects, called pivots, that are chosen to be as dissimilar as
possible, using a similarity measure. Blocks are then generated by extracting objects in this space
that are close to each other, i.e., within a distance threshold. String-Map is based on FastMap [40],
an algorithm with linear complexity to the number of strings.

Finally, [60] introduces a method for building blocks using Maximal Frequent Itemsets (MFI)
as blocking keys. Abstractly, each MFI (an itemset can be a set of tokens) of a specific attribute
in the schema of a description defines a block, and descriptions containing the tokens of an MFI
for this attribute are placed in a common block. Using frequent itemsets to construct blocks may
significantly reduce the number of candidates for matching pairs. However, since many matching
descriptions share few, or even no common tokens, further requiring that those tokens are parts
of frequent itemsets is too restrictive for those pairs of matching descriptions, resulting in many
missed matches in the Web of data. Moreover, MFI blocking requires a-priori knowledge of the
desired block sizes, and is also based on the notion of a schema, information which is unavailable
at the Web of data.

Although blocking has been extensively studied for tabular data, the proposed approaches
cannot be used for the Web of data, since their blocking keys rely on the existence of a schema, i.e.,
a fixed set of attributes, based on which the descriptions are placed into blocks. However, the high
heterogeneity of entity descriptions in the Web of data makes the use of schema-based blocking
keys inapplicable. In this context, entity descriptions do not follow a fixed schema, and, further-
more, even a single description typically uses attributes defined in multiple LOD vocabularies.

Threshold-based blocking

String-similarity join algorithms (e.g., [9, 18, 102]) construct blocks which are guaranteed to con-
tain all pairs of descriptions whose values’ string similarities for a specific attribute are above a
certain threshold and potentially some pairs whose string values similarities are below that thresh-
old. To achieve that, without computing the similarity of all pairs of descriptions, this family of
algorithms use the tokens of the attribute values of the descriptions as blocking keys. This in-
verted index is created only by the first non-frequent tokens of each description (i.e., the most
discriminating), based on the prefix filtering principle [18]. [9] additionally applies a size filter-
ing [5] on the sets of tokens to disregard some of the candidate pairs, based on the fact that
Jaccard(x,y) = t = t-|x| < |yl. The ppjoin+ algorithm [102] introduces a positional filtering, i.e.,
the position in the ordered set of tokens, in which a token appears, to further reduce the number
of candidate pairs. Specifically, it estimates the maximum possible intersection size of two token
sets x, y by considering that, if the first common token of x and y is the first token in x and the sec-
ond token in y, then the maximum intersection that these sets can have is 1+ min(|x|—1,|y| —2).

20 Chapter 2. Blocking

Tuning the appropriate similarity threshold is non-trivial and it also affects the performance of
the string-similarity join algorithms [56]. Smaller thresholds entail less pruning, and thus, more
time. Furthermore, [73] proves experimentally that algorithms based on prefix filtering are only ef-
fective when the similarity threshold is extremely high. However, this is not the case in the Web of
data, where highly heterogeneous descriptions, yielding very low similarity in their literal values,
can refer to the same entity.

In a similar fashion to string-similarity joins, the key idea of (disjunctive) blocking with Locality-
Sensitive Hashing (LSH) (e.g., [70]) is to hash descriptions multiple times, using a family of in-
dexing functions, in such a way that similar descriptions (e.g., with Jaccard similarity, approxi-
mated by minhasing [17]) are more likely (with probabilistic guarantees) to be placed into the
same bucket than dissimilar ones. Any two descriptions that hash at least once into the same
bucket, for any of the employed indexing functions, are considered to be a candidate pair. This
technique assumes an a-priori knowledge of a minimum similarity threshold between entity de-
scription pairs, above which, such pairs are considered candidate matches. However, as we will
see in our experimental evaluation (see Section 2.5), often, matching descriptions do not share
many common tokens and thus, have very low, even zero, similarity when computed only on the
values of their attributes. Those matches would not be placed in the same bucket and thus, they
would not be considered candidate matches. Effectively choosing a minimum similarity thresh-
old also depends on the KBs. For example, when seeking matches between two homogeneous
KBs, a high similarity threshold can be used, since such KBs have more similar values. Using a
lower threshold in homogeneous KBs would result in many false candidate pairs. Accordingly,
using a high similarity threshold in heterogeneous KBs, in which descriptions have lower similar-
ity values, would yield many missed matches. Consequently, applying LSH across domains is an
open research problem, due to the difficulty in knowing or tuning a similarity threshold that can
be generalized to identify matches across several domains in an effective and efficient way.

2.3.2 Schema-free Blocking

The simplest blocking method for the Web of Data is token blocking [78], which relies on the min-
imal assumption that matching descriptions should at least share a common token. It indexes
descriptions based on the set of all tokens in the values of an entity description. Each distinct to-
ken ¢ in the values of a description, defines a new block b;, essentially building an inverted index
of descriptions. Two descriptions are placed in the same block, if they share a token in their values.

Example 2.1. Given the entity collection of Figure 2.1, Figure 2.2 shows the blocks generated by
token blocking. In the generated blocks, we save the comparisons (ey,es), (e1,e7), (e2,e4), (e3,e4),
(es, e5), (es,ep) and (es, e7), and we successfully place the matches (e, eg) and (e, es) in common
blocks. Still, pairs, such as (e1, e2), (e1,e3), and (es3, eg), lead to unnecessary comparisons. Note also
that the pair (e1, eg) is contained in 4 different blocks, which leads to repeated comparisons.

Next, we present three extensions of token blocking: attribute clustering blocking, in which

2.3. Related Work 21

e1 = {(about, Eiffel Tower), (architect, Sauvestre), (year, 1889), (located, Paris)}

e» = {(about, Statue of Liberty), (architect, Bartholdi Eiffel), (year, 1886), (located, NY)}
es = {(about, Auguste Bartholdi), (born, 1834), (work, Paris)}

e4 = {(about, Joan Tower), (born, 1938)}

es = {(work, Lady Liberty), (artist, Bartholdi), (location, NY)}

es = {(work, Eiffel Tower), (year-constructed, 1889), (location, Paris)}

e7 = {(work, Bartholdi Fountain), (year-constructed, 1876), (location, Washington)}

Figure 2.1: A set of entity description.

Generated blocks

e, €, € €, €,€ €1 €y, &g €1,€3 € €
e, e, e € e; e, e, e,
e, €3 65,€;, € e, e,, e e,

Figure 2.2: Token blocking example. Descriptions having a common token are placed in a
common block.

candidate matches should at least share a common token for similar attributes known globally,
prefix-infix(-suffix) blocking, in which candidate matches should additionally share a common
URI infix, and ppjoin+, in which only a small subset of the tokens in the descriptions’ values are
used as blocking keys.

To tackle the coarse-grained approach of token blocking, attribute clustering blocking [81] fur-
ther requires the common tokens of descriptions that should be considered candidate matches to
appear for semantically similar attributes. This should improve the low precision of token block-
ing, at a, hopefully, low cost in recall. In the previous example, it would not place e; and e; in
the same block, for their common token Paris, because this token appears in the values of two
semantically different attributes (located and work). To achieve this, prior to token blocking, it
clusters attributes based on the similarities of their values over the entire dataset. Each attribute
from one entity collection is connected to its most similar attribute in the other entity collection
and connected attributes, taken by transitive closure, form non-overlapping clusters. Then, each
token ¢ in the values of an attribute, belonging to a cluster c, defines a block b.;. Hence, com-
parisons between descriptions without a common token in a similar attribute, are discarded. Like
token blocking, attribute clustering generates overlapping blocks. Compared to the blocks of to-

ken blocking, it produces a larger number of smaller blocks.

22 Chapter 2. Blocking

D1 D2 year

year-constructed

about <Q ,(work

. about
architect | artist work born
ear)
¥ <\\<.year- architect €2 location
born constructed artist | d
| d) ¢l ocate
ocate D, \Iocatlon c3
(a) (b)
Some of the generated blocks:
€2 €5 €1, €4, €6 €2 €3, €5, € €3 €1, €

()

Figure 2.3: Attribute clustering blocking example. Pairs of most similar attributes are linked
(a). Connected attributes form clusters (b). Descriptions with a common token
in the values of attributes of the same cluster, are placed in a common block (c).

Example 2.2. As an example, consider that the descriptions of Figure 2.1 consist of two clean entity
collections, Dy = {e1, e», e3,e4} and Dy = {es, eg, e7}. Using Jaccard similarity, the attribute work
(with values: {Lady, Liberty, Eiffel, Tower, Bartholdi, Fountain}) of D, is the most similar attribute
to about of Dy. Similarly, the transitive closure of the pairs of most similar attributes between D,
and D, (Figure 2.3(a) depicts such pairs), produce the clusters of attribute names (Figure 2.3(b)). A
subset of the blocks constructed for each cluster is shown in Figure 2.3(c). This way, the comparisons
(e1,e3) and (es, eg) that were suggested by token blocking, due to the common token Paris, are now
discarded, since the token Paris appears in different attribute clusters for es than for e, and eg, as
shown in the bottom blocks of Figure 2.3(c). Again, both unnecessary (e.g., e, and eg are both placed
in block C1.Tower (Figure 2.3(c))), and repeated (e.g., (e1, e3) is still contained in 4 different blocks)
comparisons are generated.

Unlike previous methods analyzing the content of descriptions, prefix-infix(-suffix) blocking
[80] exploits the naming pattern in the descriptions’ URIs. The prefix describes the domain of
the URI, the infix is a local identifier, and the optional suffix contains details about the format,
or a named anchor. For example, the prefix of “http://liris.cnrs.fr/olivier.aubert/foaf.rdf#me” is
“http://liris.cnrs.fr”, the infix is “/olivier.aubert” and the suffix is “/foaf.rdf#me”. Given a set of de-
scriptions, this method generates one block collection using as blocking keys the tokens in the
descriptions literal values and the URI infixes. It is constrained by the extent to which common
naming policies are followed by the KBs. In a favourable scenario, it creates additional blocks
than token blocking for the names of the descriptions, which enables to consider matching de-
scriptions, even with no common tokens in their literal values.

Example 2.3. Figure 2.4(c) shows the blocks produced after applying prefix-infix(-suffix) blocking
to the descriptions of Figure 2.4(a) (the descriptions of Figure 2.1, slightly modified to illustrate the

2.3. Related Work 23

e, = {(about, Eiffel Tower), (architect, Sauvestre), (year, 1889),
(located, Paris)}
e, = {(about, ex:Statue_of_Liberty), (architect, Bartholdi Eiffel),
(year, 1886), (located, geonames:5124330)}
e, = {(about, Auguste Bartholdi), (born, 1834), (work, Paris)} €1 — dbpedia:Eiffel Tower

e, = {(about, Joan Tower), (born, 1938)} e, — geonames:5139572

e5 = {(work, Lady Liberty), (artist, yago:Frederic_Bartholdi), e; — dbpedia:Auguste_Bartholdi
(location, NY)} e, — dbpedia:Joan_Tower

e, = {(work, Eiffel Tower), (year-constructed, 1889), (location, e; - yago:Lady_Liberty
Paris)}

e, — yago:Eiffel Tower
e; = {(work, Bartholdi Fountain), (year-constructed, 1876),

(location, Washington)} e; — yago:Bartholdi_Fountain

©) (b)
Generated blocks:
€,,€, € €,€,€; € e,€; ©€1,€3€; ey e, e,
e, ee;, € e; e; € €, €, ez e & €s
e e; e, e € e, €, e (©)

Figure 2.4: Prefix-infix(-suffix) blocking example. A set of descriptions (a), their subject URIs
(b), and the blocks from their tokens and infixes (c).

characteristics of the method), while Figure 2.4(b) presents the URI identifiers of the descriptions.

Summary of schema-free blocking methods

Overall, Table 2.2 summarizes, simplified, the criteria employed by the aforementioned schema-
free blocking methods to consider two descriptions as candidate matches, i.e., their co-occurrence
functions as defined in Section 2.2. Token blocking makes the simplest assumption about match-
ing pairs of descriptions, i.e., that they share at least one common token in their values, aiming
at the maximum possible recall, even if this entails a low precision, since many pairs that share a
common word are expected to be non-matches. To tackle this coarse-grained approach, attribute
clustering blocking further requires the common tokens of descriptions that should be considered
candidate matches to appear for semantically similar attributes. This should improve the low pre-
cision of token blocking, at a, hopefully, low cost in recall (attribute clustering blocking cannot
have higher recall than token blocking). Finally, as we will see in the next section, it is quite com-
mon for matches in heterogeneous data, to not even share a single token. To cope with such cases,
prefix-infix(-suffix) blocking assumes that those kinds of pairs should at least have similar parts of
their entity identifiers. In the next section we will see if those assumptions are verified or not, for

24 Chapter 2. Blocking

Table 2.2: Co-occurrence functions for considering two descriptions candidate match.

| Method | Criterion ‘

Token blocking The descriptions have a common token in their values.
Attribute cluster- | The descriptions have a common token in the values of at-
ing blocking tributes that have similar values in overall.
Prefix-infix(- The descriptions have a common token in their literal values,
suffix) blocking or a common URI infix.

.. The descriptions have a common infrequent token and a
ppjoin+

close number of tokens overall.

LSH The descriptions hash at least once into the same bucket, for

any of the employed hash functions.

Table 2.3: Blocking methods with respect to the redundancy attitude and algorithmic attitude.

Redundancy attitude | Algorithmic
Overlapping attitude
) g —
g | B g

w215 5 |

£|8|8] 2 2 5

1 1 1 175}

S| & & & 2 3

Bl = | = = < '

=) o o @ +

. < > > > <)

Blocking approach A O | O @) s %)
Standard blocking [42,61] v v
Q-grams [46] Vv v
Suffixes [2] v v

Sorted neighborhood [48, 63] v v

Adaptive sorted neighborhood [103] v v
MFI [60] v v
Token blocking [78] v v
Attribute clustering blocking [81] Vv v
Prefix-infix(-suffix) blocking [80] v v
ppjoin+[98,102] V4 v
LSH blocking [70] v v

different levels of heterogeneity in the input entity collections. Since ppjoin+ and LSH blocking re-
quire a pre-defined similarity threshold for pairs to be considered as candidate matches and there
is no generic or efficient way of setting it, we have not included these methods in our experimental
study.

The categorization of the blocking methods presented in this chapter with respect to the char-
acteristics of the produced blocks (i.e., partitioning vs. overlapping blocks) and the algorithmic
approach (hash-based vs. sort-based) used are presented in Table 2.3. Partitioning approaches

2.4. Scaling Blocking Methods to Very Large Entity Collections 25

are sensitive to typos and erroneous values, since misplaced entity descriptions potentially result
in missed matches. Therefore, due to the varying data quality, they are not suited for ER in the
Web of data. Data heterogeneity makes sort-based approaches not easily applicable as well, since
the missing knowledge of the schema of the data incommodes the sorting process.

2.4 Scaling Blocking Methods to Very Large Entity Collections

Next, we present the MapReduce version of the evaluated methods, designed to cope with Web
data. MapReduce [23] offers a fault-tolerant, optimized execution for applications, distributed
across independent nodes. Its programs consist of two consecutive procedures grouped together
into jobs: Map receives a (key, value) pair and transforms it into one or more new pairs; Reduce re-
ceives a set of pairs that share the same key and are sorted according to their value, and performs
a summary operation on them to produce a new, usually smaller set of pairs. Optionally, a Com-
bine function can be provided, to process the output of each mapper, like a local, mini-reducer,
and decrease the amount of data transferred through the cluster network.

In our implementation, we try to minimize the size of data transferred from mappers to re-
ducers, by using a minimal representation of entity ids as numerical ids, by using a combiner
whenever possible, and by transmitting as little information as necessary for each task. We have
also tried to minimize the number of MapReduce jobs required for each method, since each new
job bears a significant I/O and setup cost.

2.4.1 Token Blocking

Token blocking is essentially an inverted index of descriptions. Each token is a key in this index,
associated with a list of all the descriptions containing it. Our implementation of token blocking
in MapReduce is based on the procedure illustrated in Figure 2.5. In the map phase, one entity
description of the local input split is processed at a time. For each token ¢ in the values of a de-
scription e;, a (¢, e;) pair is emitted by the mapper. In the reduce phase, all descriptions having a
common token will be processed by the same reduce function, i.e., placed in the same block.

2.4.2 Attribute Clustering Blocking

Given two clean entity collections, our implementation of attribute clustering blocking can be
briefly sketched by the following steps, each representing a MapReduce job. Figure 2.6 illustrates
a high-level flow of the process.

Attribute Creation. First, we gather the values of each attribute. In the map phase, we emit
an (attribute, value) pair for each attribute-value pair in a description. We also keep the entity
collection of this attribute in the key. In the reduce phase, all the values of an attribute are grouped
together and their concatenation is emitted as the value of this attribute.

Attribute Similarities. In the second job, we compute the pairwise Jaccard similarities be-

26

Chapter 2. Blocking

el el H Hmu
e2 e2 ¢ mﬂ m
. |+ DoDm o | o
apper E e et oo
S e4 [ea | k1 | es] s Reducer 2
- €6 o i les s] o | um/, Reducer 3
Mapper 2 -
L] ka e3
s« [l

e o ¢ e |13 e, | . p Reducer 4

s |

e Ka

: AatR. SEnonmo

e | Reducer 5

o

Emit attribute-value pairs
from descriptions

Emit attribute-value pairs
from descriptions

Define with which mapper, this
mapper’s attributes will be compared

Mapper 1

Mapper N1

Mapper 1

| —

Locate values of distinct
attributes in collections

Locate values of distinct
+| attributes in collections

Reducer 1

Reducer M1

Compute similarities
between attributes

Reducer 1

Define with which mapper, this

. | mapper’s attributes will be compared

Mapper N2

Ne————7 1

Compute similarities
between attributes

Reducer M2

Locate for each attribute,
the attribute with the
maximum similarity

Associate each attribute with a
cluster and create a block for each
distinct cluster-token pair

Reducer 1

Mapper 1

)

Locate for each attribute,
the attribute with the
maximum similarity

; Associate each attribute with a
cluster and create a block for each
distinct cluster-token pair

Reducer M3

Mapper 1

Job1 Job3

Figure 2.6: Attribute clustering blocking in MapReduce.

tween the trigram sets of all attributes. A mapper outputs each input attribute, as many times, as
the number of total mappers. Each time, a composite key, consisting of the current mapper id
and another mapper id, will determine in which reducer the attribute will be placed, and to which
other attributes it will be compared. For example, assuming 3 mappers in total, the mapper with
id 2, emits for each input attribute, 3 different keys: 1_2, 2_2, and 2_3. The keys 1_2 and 2_3 will
result in comparing the contents of mapper 2 to the contents of mappers 1 and 3, while 2_2 will
result in comparing the contents of mapper 2 to each other. The value of each emitted pair is the
input attribute with its values and the current mapper id. In the reduce phase, we compute simi-
larities of attributes, ensuring that each comparison is performed once. For each pair of attributes,
we emit a (key, value) pair, with one attribute being the key and the second attribute along with
their similarity score being the value.

Best Match. In the third job, we use an identity mapper, which just forwards its input. A com-
biner keeps for each attribute of each entity collection, only the attribute of the other entity collec-
tion with the local highest similarity score. In the reduce phase, we pick for each attribute of each

2.4. Scaling Blocking Methods to Very Large Entity Collections 27

el e2 e3 ed4 e5 e6 e
o8~ - ‘\;\‘;\)
s s Assign descriptions Assign infixes to Assign infixes to Forward infixes to | | Forward infixes to | | | Create a block for each | | Create a block for each
‘o ':m rer URIs to clusters clusters . clusters reducers reducers] token in the literals token in the literals
H : H ! H
Mapper 1 ° Mapper N1 Mapper 1 Mapper N2 Mapper 1A °| Mapper NA : Mapper 1B °| Mapper NB
Find URIs Find URIs : Remove suffixes Remove suffixes : Remove duplicates from Remove duplicates from
infixes . infixes from infixes o|L__from infixes the same block . the same block
Reducer 1 Reducer M1 Reducer 1 Reducer M2 Reducer 1 Reducer M3
Job 1 Job3

Figure 2.7: Prefix-infix(-suffix) blocking in MapReduce.

entity collection, the attribute with the maximum similarity score, in overall, from the other en-
tity collection. Before this job ends, we start the first step of clustering the most similar attributes
together. To accomplish that, we emit for each best-matching attribute pair, two (attribute, clus-
terld) pairs, one for each attribute, with the same clusterId. Ids of clusters with common attributes
are marked, in order to be merged at the next step. This job uses a single reduce task, in which an
iterative (sequential) transitive closure algorithm is run, in order to make sure that the clusters to
be merged will cover the transitive closure of connected attributes (i.e., if the clusters of connected
pairs of attributes are different, those clusters have to be merged into one cluster, iteratively, until

all connected attributes belong to the same cluster).

Final Clustering and Blocking. In the final job, we associate each attribute with a final cluster
id, according to the marks of the previous step. Then, we perform token blocking (Section 2.4.1),
with only difference that in each key emitted from a mapper, there is also a cluster prefix, enabling
distinctions between blocks for the same token. For example, if the same token ¢ appears in a
description e; for attributes in clusters ¢; and ¢y, then the mapper will emit the pairs (c;.t, ;) and

(ck-t, e;), instead of a single (t, e;).

2.4.3 Prefix-Infix(-Suffix) Blocking

Our MapReduce implementation of this method consists of three jobs. The first two are the
MapReduce adaptation of the infix extraction algorithm [80]. The third job reads the descriptions,
as well as the infixes produced by the second job and creates the blocks. A high-level representa-

tion of the process is depicted in Figure 2.7.

Prefix Removal. In the map phase, we output a (key, value) pair for each URI in a description.
The key is the second token of the URI (after “http”) and the value consists of the whole URI and
the identifier of the entity description having this URI. This clusters the URIs according to their
second token, which usually represents the domain (e.g., “dbpedia”), in the reduce phase. For
each URIin a cluster, we find, among all its possible prefixes, the one with the largest set of distinct
(immediately) next tokens. The part of the URI following the prefix is the key of each output pair,

28 Chapter 2. Blocking

with value consisting of the input key, i.e., the second token of the URI, and the entity identifier
having this URL.

Suffix Removal. We apply Prefix Removal, on each reverse URI (without prefix), to remove the
suffix.

Infix&Token Blocking. We create the final blocks, based on the output of Suffix Removal and
the initial entity collection. We use two different mappers, operating in parallel; an identity map-
per, forwarding the output of Suffix Removal and the mapper of token blocking, operating on the
tokens of literal values only of the input descriptions. In the reduce phase, all the descriptions
having a common token or infix in their literals or URIs will be placed in the same block.

Summary of parallel blocking

The parallel adaptation of existing blocking methods in MapReduce, enables scaling them to large
volumes of entity collections. Sequential token blocking does not exploit the fact that practically
all computations can be executed in parallel for different parts of the input, this way reducing the
blocking time significantly. Regarding the other two blocking methods, a sequential clustering of
the attributes and URI prefixes is too resource-intensive to enable scaling them to big entity col-
lections without an expensive high-end server. Our parallel adaptations of those methods enables
a fast and cost-efficient blocking in such entity collections. Finally, we do not claim that our imple-
mentation is optimal; we have not examined a better load balancing than the default hash-based,
and the same parallelization strategy could be easily adapted in other platforms, such as Apache
Spark!, yielding more efficient results for methods that require more than one MapReduce jobs
(i.e., attribute clustering blocking and prefix-infix(-suffix) blocking).

2.5 Benchmarking Content-based Blocking Methods in the Web of Data

In this section, we present the experimental framework we have designed for evaluating existing
blocking methods. We describe the datasets and the measures we employed to study the behavior
of the blocking methods under different characteristics of entity descriptions in the LOD cloud.
We have used a cluster of 15 Ubuntu 12.04.3 LTS servers (1 master, 14 slaves), each with 8 CPUs,
8GB RAM and 60GB of disk, provided by ~okeanos [65]. Each node could run simultaneously 4
map or reduce tasks, each with a heap size of 1250MB, leaving resources required for I/O and
communication with the master. We used Apache Hadoop 1.2.0 and Java version 1.7.0_25 from
OpenJDK. The source code and datasets used in this study are publicly available?.

lhttps ://spark.apache.org/
2¢sd.uoc. gr/~vefthym/minoanER/

2.5. Benchmarking Content-based Blocking Methods in the Web of Data 29

2.5.1 Datasets

Our study relies on real data from the Billion Triples Challenge 2012 dataset® (BTC12), DBpedia,
Kasabi?, the Linked Archives Hub project5, and OAEI benchmarks®. To capture the differences in
the heterogeneity and semantic relationships of descriptions, we distinguish between data origi-
nating from KBs in the center and the periphery of the LOD cloud. In general, central KBs, such
as DBpedia and Freebase, are derived from a common source, Wikipedia, from which they extract
information regarding an entity. Such descriptions often refer to the original wiki page and fea-
ture synonym attributes whose values share a significant number of common tokens. Since they
have been exhaustively studied in the literature, descriptions across central LOD KBs are heav-
ily interlinked using in their majority owl:sameAs links [90], expressing equivalence relations. In
our experiments, we used the DBpedia (BTCI12DBpedia) and Freebase (BTC12Freebase) KBs from
BTC12, and the raw infoboxes from DBpedia 3.5 (Infoboxes), i.e., two different versions of DBpedia.
From the OAEI benchmark datasets, we used the one including the DBLP and Rexa (OAEI 2009) -
describing authors and publications - that has been widely used in the literature (e.g., in [66]). We
also included a movies dataset, used in [81], extracted from DBpedia movies and IMDB, to validate
the correctness of our algorithms.

On the other hand, KBs in the periphery of the LOD cloud are highly heterogeneous and
sparsely interlinked. In our experiments, we considered the BTCI2Rest, the BBCmusic and the
LOCAH KBs. BTCI2Rest originates from BTC12, which consists of multiple KBs, like DBLP, geon-
ames and drugbank. BBCmusic originates from Kasabi and contains descriptions regarding music
bands and artists, extracted from MusicBrainz and Wikipedia. For LOCAH, we used the latest pub-
lished version at Archives hub (March 2014). This, rather small KB links descriptions of people,
from UK archival institutions, with their descriptions in DBpedia.

Table 2.4: KBs characteristics.

entity de- | avg. attribute- entity | attributes/ | duplicates
RDF triples | scriptions | value pairs per | attributes | types entity (within
description types dataset)

BTC12DBpedia 102,306,242 8,945,920 11.44 36,354 258,202 0.14 0
Infoboxes 27,011,880 1,638,149 16.49 31,857 5,535 5.76 0
BTC12Rest 849,656 31,668 26.83 518 33 15.7 863
BTC12Freebase 25,050,970 1,849,180 13.55 8,323 8,232 1.01 12,058
BBCmusic 268,759 25,359 10.60 29 4 7.25 372
LOCAH 12,932 1,233 10.49 14 4 3.5 250
DBpedia;op 180,680 27,615 6.54 5 1 5 0
IMDB 816,012 23,182 35.20 7 1 7 0
DBLP 12,074,269 1,642,945 7.35 30 10 3 0
Rexa 64,787 14,771 4.39 12 3 4 0

Table 2.4 provides statistics about these KBs, for the number of contained triples, descriptions,

3km.aifb.kit.edu/projects/btc-2012/
4archive.org/details/kasabi
5data.archiveshub.ac .uk/

6oaei. ontologymatching.org/

30 Chapter 2. Blocking

attributes, and the average number of attribute-value pairs per description. We have also included
the number of entity types, taken as the distinct values of the property rdf:type, when provided.
Observe that BTC12DBpedia contains more types than attributes. This is due to the fact that DB-
pedia entities may have multiple types from taxonomic ontologies like Yago. IMDB is the KB with
the highest number of attribute-value pairs per description. Finally, we have included in each KB
the number of duplicate descriptions based on our ground truth, i.e., descriptions that have been
reported to be equivalent (via owl:sameAs links) across all KBs of our testbed. Taking into account
the transitivity of equality, those descriptions should be regarded as matches, too.

In this setting, we combine BTCI2DBpedia with each of the KBs of Table 2.4 to produce the
datasets presented in Table 2.5, on which we finally ran our experiments. To combine two KBs,
for the dirty ER setting, we simply concatenate them into a singe file, while for clean-clean ER, we
seek candidate matches between those KBs.

- D1 combines BTCI12DBpedia with Infoboxes. Since it contains two versions of the same KB, it
is considered as a homogeneous dataset. This is the biggest dataset in terms of triples, as well as
attributes.

- D2 combines BTC12DBpedia with BTCI12Rest. Since it is constructed by many different KBs, it
is the most heterogeneous dataset. Note that BTCI2Rest has the highest number of attributes per
entity type.

- D3 combines BTCI12DBpedia with BTC12Freebase. It is the biggest dataset in terms of entity de-
scriptions, matches, entity types and comparisons.

- D4 combines BTCI12DBpedia with BBCmusic. Note that BBCmusic extracts some of its data from
MusicBrainz, which, in turn, extracts data from Wikipedia. Also, BBCmusic is edited and main-
tained by users and BBC staff.

- D5 combines BTCI2DBpedia with LOCAH, the smallest KB, both in terms of triples and entity
descriptions.

- D6 combines DBpedia movies and IMDB, as originally used in [81]. It is the most homogeneous
dataset, it only contains descriptions of movies (i.e., a single entity type) using the smallest num-
ber of attributes among all datasets. However, the significantly greater (even by six orders of
magnitude, compared to the other datasets) ratio of matches to non-matches is not typical of
the datasets we can find in the Web of data.

- D7 combines DBLP and Rexa. Both KBs use the same ontology; Rexa’s attributes are a subset
of those used by DBLP. Also, it is the dataset with the lowest number of attribute-value pairs per
description. Note that this dataset is a typical benchmark used to evaluate instance matching
algorithms.

Following the distinction of our KBs between central and peripheral, we also distinguish our
datasets between central (D1, D3, D6, and D7), composed of central KBs, and peripheral (D2, D4,
and D5), part of which are peripheral KBs. For all the datasets, we consider both their clean-clean
and dirty versions. In practice, for our datasets, the clean-clean and dirty versions of a KB are
the same; their distinction serves only as means for measuring how well a blocking method can

2.5. Benchmarking Content-based Blocking Methods in the Web of Data

31

Table 2.5: Datasets characteristics.
[D2 D3 D4

| D1 D5 | D6 | D7
RDEF triples 129,318,122 | 103,155,898 | 127,357,212 | 102,575,001 | 102,319,174 996,692 12,139,056
entity descriptions 10,584,069 8,977,588 10,795,100 8,971,279 8,947,153 50,797 1,657,716
avg. attribute-value pairs 12.22 11.49 11.80 11.43 11.44 19.62 7.32
per description
attributes 68,211 36,872 44,677 36,383 36,368 12 42
entity types 263,737 258,232 266,434 258,206 258,205 1 10
matches 1,564,311 30,864 1,688,606 23,572 1,087 22,405 1,532
matches (incl. duplicates) 1,564,311 31,727 1,700,664 23,944 1,337 22,405 1,532
matches/non-matches 1.07-10~7 1.09-10~7 1.02-10~7 1.04-10~7 9.85-1078 3.5-107° 6.3-1078
matches/non-matches 2.79-10°8 | 7.87-10710 | 292.107% | 595-10°° | 3.34-1071F | 1.74-107° | 1.1-1079
(dirty)
comparisons (w/o blocking)
clean-clean 1.47-1083 2.83-1011 1.65-1013 2.27-1011 1.1-1010 6.4-108 2.4-10™0
dirty 5.6-1013 4.03-1013 5.83-1013 4.02-103 4-1013 1.29-10Y 1.37-1012

identify links across different KBs and within the same KB.

GroundTruth. Our ground truths were built using a methodology met in the literature (e.g., [80,
81]). For D2-D5, we consider the owl:sameAs links to/from DBpedia 3.7 (the version used in
BTC12). For D1, we consider the subject URIs of Infoboxes that also appear as subjects in BTC12DBpedia.
The ground truth of D6, provided in [81], is made of DBpedia movies connected with IMDB movies
through the imdbld property. The ground truth of D7 is provided by OAEI, since it is a benchmark
dataset, containing equivalence links between authors, as well as publications.

Our pre-processing, implemented in MapReduce, parses RDF triples in order to transform
them into entity descriptions, which are the input of the methods used in our study. It simply
groups the triples by subject, and outputs each group as an entity description, using the subject
as the entity identifier, removing triples containing a blank node. Moreover, we kept only the
entity descriptions for which we know their linked description in BTC12DBpedia and removed the
rest. This way, we know that any suggested comparison between a pair of descriptions outside the
ground-truth is false.

2.5.2 Quality Results

Identified Matches (TPs)

Token blocking: The premise of this algorithm is that matching descriptions should at least share
a common token, disregarding the comparisons between descriptions that do not share common
tokens. Therefore, the higher the number of common tokens, i.e., tokens shared by the KBs com-
posing a dataset, a description has, the higher the chances it will be placed in a block with a
matching description, increasing recall. Figure 2.8 (left) presents the distributions of common
tokens per description, showing that descriptions in central datasets feature many more common

32

Chapter 2. Blocking

Table 2.6: Statistics and evaluation of blocking methods.
[D1 [D2 | D3 | D4] D5 D6 D7

Token blocking statistics:
blocks 1,639,962 122,340 1,019,501 57,085 2,109 40,304 18,553
comparisons (clean-clean) 1.68-1012 | 3.74.1010 | 6.56-1011 | 2.39-1010 | 8.72.108 2.91-108 1.45-10°
RR (clean) 88.51% 86.81% 96.03% 89.48% 92.09% 54.50% 94.04%
comparisons (dirty) 5.56-1012 | 3.68-1012 | 4.27-102 | 4.02-10'2 | 1.01-10'2 2.05-107 2.35-1011
RR (dirty) 90.08% 90.87% 92.67% 90.01% 97.48% —58.85% 82.93%

[common tokens per entity (median) [4 3 4 0 19 12
Attribute clustering blocking statistics:
blocks 5,602,644 150,293 1,673,855 39,587 3,724 43,716 19,148
comparisons 3.22-101T | 4.20-10%9 | 1.84-10T | 1.43-10° 7.13-108 2.13-108 8.38-10°
RR 97.80% 98.52% 98.89% 99.37% 93.54% 66.80% 96.55%
common toker}s m C'Oml’l'lOI’l att. 4 0 4 2 0 19 11
clusters per entity (median)
attribute clusters 16,886 124 2,106 6 8 4 8
at-tnbutes per attribute cluster (me- 9 142 9 4,261 3,946 3 35
dian)
Prefix-Infix(-Suffix) blocking statistics:
blocks 3,266,798 141,517 789,723 45,403 2,098 N/A 18,442
comparisons (clean-clean) 1.10-10% | 1.78-1010 | 2.75-10™ | 2.30-107 4.08-108 N/A 1.28-10°
RR (clean) 92.48% 93.72% 98.34% 98.99% 96.30% N/A 94.72%
comparisons (dirty) 4.39-1012 | 3.45-1012 | 5.34-107% | 3.32:10"% | 1.76-10'2 N/A 2.23-101T
RR (dirty) 92.16% 91.44% 90.84% 91.76% 95.59% N/A 83.78%
Recall:
Token blocking (clean-clean) 98.38% 92.46% 95.52% 87.76% 72.13% 99.92% 99.54%
Token blocking (dirty) 98.38% 89.99% 94.85% 87.95% 77.34% 99.92% 99.54%
Attribute clustering blocking 97.31% 68.42% 92.10% 76.84% 71.11% 99.55% 99.54%
Elr:f;f)'lnﬁx('sumx) blocking (clean- | 0, 91.71% 87.68% 95.44% 68.17% N/A 99.54%
Prefix-Infix(-Suffix) blocking (dirty) 100% 89.25% 87.06% 95.50% 74.12% N/A 99.54%
Precision:
Token blocking (clean-clean) 1.56-107% | 1.00-107% | 2.49.107 | 1.30-107% | 1.13-107° 1.21-107% 1.18-1078
Token blocking (dirty) 3.64-1077 | 5.14-1079 | 3.78-1077 | 1.05-1078 | 1.29-1077 751-107° 6.5-1079
Attribute clustering blocking 851-107° | 5.76-107% | 1.01-10™° | 1.41-107° | 1.35-107° 1.52-107% 1.97-1078
Elr:fr’l‘)'lnﬁx('sufﬁx) blocking (clean- |} o7 15-6 | 219.10-6 | 572106 | 1.01-10°5 | 2.05-10~ N/A 1.19-1076
Prefix-Infix(-Suffix) blocking (dirty) | 6.04-10~7 | 8.21-1077 | 2.77-1077 | 1.23-107% | 6.99.10710 N/A 6.84-1077
F-measure:
Token blocking (clean-clean) 3.13-107% [2.00.107% [9.72.1077 | 2.06-107% | 1.94.1077 242-107% | 235.107°
Token blocking (dirty) 7.28-10~7 | 1.03-107% | 7.55-1077 | 2.10-1078 | 2.59-1077 1.50-107% 1.30-1078
Attribute clustering blocking 1.70-107> | 1.15-107° | 2.02-107° | 2.82-107° | 2.69-107° 3.04-107% 3.94.107%
Elr:fri'lnﬁx('sufﬁx) blocking (clean- | 5 72 14-6 | 438.10°6 | 9.98-10~7 | 2.02-1075 | 4.11.10° N/A 2.38-1076
Prefix-Infix(-Suffix) blocking (dirty) | 1.21-107° | 1.64-107% | 555-10~7 | 2.46-107° | 1.40-107° N/A 1.37-1078
H3R:
Token blocking (clean-clean) 93.18% 89.55% 95.77% 88.61% 80.90% 70.53% 97.04%
Token blocking (dirty) 94.05% 90.43% 93.75% 88.97% 86.25% N/A (RR<0) 90.48%
Attribute clustering blocking 97.55% 80.76% 95.37% 86.66% 80.80% 79.95% 98.16%
i)lr:fr’l‘)'lnﬁx(’sufﬁx) blocking (clean- | ¢ g0, 92.70% 92.70% 97.18% 79.83% N/A 97.07%
Prefix-Infix(-Suffix) blocking (dirty) 95.92% 90.33% 88.91% 93.59% 83.50% N/A 90.98%

tokens than those in peripheral ones’. For example, 41.43% and 44% of descriptions in D1 and

“We take the median values and not the averages, as the latter are highly influenced by extreme values and our

distributions are skewed.

2.5. Benchmarking Content-based Blocking Methods in the Web of Data 33

D3, respectively, have 2-4 common tokens, while for D2, D4 and D5 the corresponding values are
33.26%, 26.03% and 12.97%. We observe a big difference in the distributions of D6 and D7, which
contain many more common tokens per description, to those of the other datasets. Only 23.75%
of the descriptions in D6 and 44% of the descriptions in D7 have 0 - 10 common tokens. Figure 2.8
(left) also shows that a big number of descriptions in peripheral datasets, do not share any com-
mon tokens. Those are hints that the recall of token blocking in central datasets is higher than in

peripheral datasets.

5,000,000
4,500,000
4,000,000

2 3500000
L
B 3000000
3 2500000
Q
T 2,000,000
2 15000
f=4
@ 1,000,000
500,000
0 ot ey —F ¥ rendeiusiesissiusiviunissianiusiusiuniund
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
common tokens
5,000,000
4,500,000
4,000,000
D1
3,500,000 -+-D2
3,000,000 D3
2,500,000 -+-D4

+-D5
D6
»¢D7

2,000,000

entity descriptions

1,500,000

1,000,000 /
500,000 &

o

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

common tokens in common clusters

Figure 2.8: Common tokens (top) and common tokens in common clusters (bottom) per
entity description distributions for D1-D7.

Indeed, D6 is the dataset with the highest recall (99.92%) and the highest number of com-
mon tokens per entity (19), while D5 is the dataset with the lowest recall (72.13%) and number
of common tokens per entity (0). There is a big difference in the number of common tokens in
D6, compared to D1 and D3, which is not reflected by their small difference in recall. Due to the
high ratio of matches to non-matches in D6 (Table 2.5), descriptions in this dataset have many
common tokens and this leads to high recall.

Attribute clustering blocking: The goal of attribute clustering is to improve the precision of token
blocking, while retaining its recall as much as possible (it cannot have higher recall). To do this,
it restricts the number of attributes on which descriptions, featuring a common token, should be
compared. Comparisons between descriptions that do not share a common token in a common
attribute cluster, are discarded. Hence, descriptions with many common tokens in common clus-
ters are more likely to be matched. Figure 2.8 (top) presents the distributions of the number of

34 Chapter 2. Blocking

common tokens in common attribute clusters per entity. It shows a clearer distinction between
central and peripheral datasets than Figure 2.8 (top); the descriptions in central datasets have
many more common tokens in common clusters, while many descriptions in peripheral datasets
do not have any common token in a common cluster. This occurs, because values in the descrip-
tions of peripheral datasets are much less similar than those of central datasets, leading to a bad
clustering of the attributes and, thus, to lower recall. In fact, D6 is the dataset with the highest re-
call (99.55%) and the highest number of common tokens in common attribute clusters per entity
(19). On the other hand, D2 and D5, which have the lowest recall values (68.42% and 71.11%) also
have the lowest number of common token in common attribute clusters per entity (0).

In central datasets (D1, D3, D6, D7), many, small clusters of similar attributes are formed, as
the values of the descriptions are similar. This leads to a minor (or zero, in D7) decrease in re-
call, compared to token blocking, while it significantly improves its precision (even by an order of
magnitude in D3). D1 forms many (16,886), small attribute clusters (of 2 attributes in the median
case), since in most cases there is a 1-1 mapping between the attributes of the KBs that compose
it. These clusters contain the same attribute used by the two versions of DBpedia.

However, this approach has a substantial impact on recall in peripheral datasets (D2, D4, D5),
even if it still improves precision in all datasets (even by an order of magnitude for D4). The de-
scriptions in those datasets have few common tokens, in the first place, which leads to a bad clus-
tering of attributes; few clusters of many attributes, not similar to each other, are formed. Hence,
if we make the blocking criterion of token blocking stricter, by also considering attributes, then
the more distinct attributes used per entity type, the more difficult it is for an entity description,
to be placed in a common block with a matching description. For BTC12Rest (part of D2), the ratio
between attributes and entity types (last row of Table 2.4) is the highest (15.7), leading to a great im-
pact on recall (-24.04%). This dataset has the biggest number of data sources that compose it and
many different attribute names can be used for the same purpose; hence, big attribute clusters are
formed. LOCAH (part of D5) only has 3.5 attributes per entity type. Thus, the recall of attribute
clustering blocking is insignificantly reduced (-1.02%), compared to that of token blocking.
Prefix-Infix(-Suffix) blocking: Prefix-Infix(-Suffix) blocking is built on the premise that many URIs
contain useful information. Its goal is to extend token blocking and improve both its recall, by
also considering the subject URIs of the descriptions, and its precision, by disregarding some un-
needed tokens in the URI values (either in the prefix or suffix). It achieves good recall values in
KBs with similar naming policies in the URIs, as in D4, part of which is BBCmusic, which also has
Wikipedia as a source. However, it misses many matching pairs of descriptions, when the names
of the URIs do not contain useful information, as in D3 that uses random strings as ids, or have
different policies, as in D5, which uses concatenations of tokens, without delimiters, as URIs. The
recall of D1 is 100%, because the dataset is constructed this way; it consists of two versions of
the same KB, DBpedia, and the URIs appearing as subjects in Infoboxes are only those URIs that
also appear as subjects in BTC12DBpedia. PIS is not applicable (marked N/A) to D6, since URIs
have been replaced with numerical ids in the provided dataset. In D7, recall is the same as in

2.5. Benchmarking Content-based Blocking Methods in the Web of Data 35

the other blocking methods, since the matches can be found by tokens in the literal values of the
descriptions.

Missed Matches (FNs)

A non-negligible number of matching pairs of descriptions do not share any common tokens at all.
Such descriptions, constituting the false negatives of token blocking, should not be assumed faulty,
or noisy. We distinguish two different sources of information that can be exploited for successfully
placing descriptions of missed matches in common blocks:

1. The matches of their neighbors: Given that a description can have, as one of its values, an-
other description, neighborhoods of related descriptions are formed, spinning the Web of
data. The knowledge of matches in the neighbors of a description is valuable for correctly
matching this description. For example, if a description e is related to e, ey is related to
e», and we know that e;y and ey9 match, then we can use this knowledge as a hint that e,
and e, could possibly match, too.

2. A third, matching description: In dirty datasets (typically peripheral), which are composed
of KBs that potentially contain duplicate descriptions, a description e; could have more
than one matching description, e.g., both e, and es. Identifying one of these matches, e.g.,
(e1, e3), knowing that (ey, e3) is a match, leads to also identify the missing match (e, e,).

Table 2.7 provides details about the number and the characteristics of false negative pairs of de-
scriptions, and the set of individual descriptions that constitute these pairs®.

We focus first on the neighbors of these descriptions, namely descriptions that appear in their
values. We found that almost all the descriptions in the false negatives have at least one neighbor
(second row of Table 2.7). Looking more thoroughly, we counted the percentage of descriptions
in false negatives that have at least one neighbor belonging to the ground truth (third row of Ta-
ble 2.7). In all cases, this percentage is more than 10% and goes up to 58% for D4. This means
that, not only do these descriptions have neighbors, but many of these neighbors can be matched
to other descriptions in the same entity collection as well. Then, we counted the percentage of
descriptions in false negatives that have neighbors, which have already been matched to another
description (fourth row of Table 2.7). This percentage is over 20% in most datasets, while it reaches
up to 51.84% for D4. Finally, we counted the percentage of false negative pairs, whose descriptions
have neighbors, which match to each other (fifth row of Table 2.7). This percentage is 0 for D1, as
matches in this dataset are defined as descriptions that have the same subject URI. However, in
some peripheral datasets (D2, D4), examining the matches of the neighbors of the descriptions is
meaningful.

86 is excluded, as it does not contain any descriptions with neighbors and D7 is excluded, as it only yields 7 missed
matches.

36 Chapter 2. Blocking

Table 2.7: Characteristics of the missed match of token blocking.

[[D1 [D2 | D3 [D4 | D5 |
FNs 25419 | 3,176 | 87,672 | 2,886 | 303
descriptions in ENs, | g9 6100 | 100% | 99.99%| 100% | 100%
with neighbor(s)

descriptions in FNs,
with neighbor(s) in | 22.60%| 53.94%| 36.43%| 58.36%| 11.57%
ground truth
descriptions in FNs,
with neighbor(s) with | 20.94%| 48.54%| 34.05%| 51.84%| 7.59%
an identified match
FNs with matching
neighbors

FNs with common,
identified matches

0% 24.81%| 0.38% | 37.63%| 0%

0% 25.35%| 10.54%| 0.14% | 8.58%

Another useful piece of information for the missed matches of dirty datasets is whether their
descriptions have been correctly matched to a third description. The last row of Table 2.7 quanti-
fies this statistic, showing that there are datasets, both peripheral (D2, D5) and central (D3), for
which this kind of information could, indeed, be useful.

The information of Table 2.7 is lost when we only consider the tokens in the values of the
descriptions to create the blocks in a single round, but it could be useful to an iterative method.
Iterative blocking [101], based on some initial blocks, aims to identify matches of type (ii), as well
as eliminate redundant comparisons. In our experiments, the recall of iterative blocking, given
the blocks of token blocking from the dirty dataset with the smallest number of comparisons (D6),
was the same as that of token blocking (99.92%), since both of its KBs contain no duplicates (Ta-
bles 2.4, 2.5), but the number of comparisons performed was almost half of those suggested by
token blocking. We also applied iterative blocking to the dirty dataset with the lowest recall (D5),
giving the blocks generated by token blocking as input. The process did not terminate within a
reasonable amount of time, even so, the recall of iterative blocking was 78.09% after a first pass,
whereas the recall of token blocking was 77.34%.

Regarding attribute clustering blocking, it misses the matches that are also missed by token
blocking, plus matches that, even if they share common tokens, those tokens appear in the values
of attributes in different clusters. The matches missed by prefix-infix(-suffix) blocking are those
with no common tokens in their literal values and no common infixes in their URIs.

Non-matches (FPs and TNs)

Next, we examine the ability of blocking methods to identify non-matches, namely their ability to
avoid placing non-matching descriptions in the same block. A key statistic for this, regarding the
datasets, is the ratio of matches to non-matches (Table 2.5). The higher the ratio, the easier it is
for a blocking method to have better precision, as it statistically has better chances of suggesting a
correct comparison. D6 is the dataset with the highest such ratio and precision, while D5 has the
lowest ratio and, in most blocking methods, the lowest precision, too. It is clear from Table 2.6 that

2.5. Benchmarking Content-based Blocking Methods in the Web of Data 37

Table 2.8: Analysis of 1K sampled match and 1K sampled non-match.

[[DI [D2 [D3 | D4 [D5 [D7 |
matches — with | o070 | o556 | 913 | 918 | 859 | 973
neighbors

non-maches 966 | 955 | 912 | 917 | 854 | 973
with neighbors

neighbors of

matches (me- 17 80 100 138 121 1
dian)

neighbors of

non-matches 72 80 105 171 121 1
(median)

matches with

matching neigh- 862 254 7 766 570 966
bors

non-matches

with matching 32 22 0 0 542 590
neighbors

attribute clustering is the most precise method, since, in almost every case, it results in the fewest
wrong suggestions. On the contrary, the least precise method is token blocking, in all cases. The
differences in precision, in some cases even by an order of magnitude, also determine F-measure,
since the differences in recall are not that big. All the evaluated methods have very low precision,
i.e., the vast majority of suggested comparisons correspond to non-matches. This comes naturally
from the fact that matching pairs are only a scintilla of all possible description pairs, as shown in
Table 2.5.

Structural Analysis of Matches and Non-matches

To better understand the characteristics of matches versus those of non-matches in the evaluated
datasets, we have analyzed sample pairs of matching and non-matching descriptions. In partic-
ular, we have taken 1,000 random pairs of matches and non-matches from each dataset and we
have focused on their neighbor pairs of descriptions. The results of this analysis are presented in
Table 2.8.

First, we counted the number of pairs of descriptions that both have neighbors. We found
that those numbers, presented in the first two rows of Table 2.8 for matches and non-matches,
respectively, are almost the same. Practically, almost all the pairs of descriptions are linked to
other pairs of description, in all datasets. Then, we measured the median number of neighbors
(pairs of descriptions) that a match has (Table 2.8, row 3) and the same median number for non-
matches (Table 2.8, row 4). Again, there are no significant differences between those two lines.
Those numbers vary greatly from dataset to dataset, ranging from 1 (for D7) to 171 (for D4). Finally,
we counted the number of pairs, whose neighbor pairs match. For matches (Table 2.8, row 5),
this number is always higher than the corresponding number for non-matches (Table 2.8, row 6).
Intuitively, this means that when a match is found, the chances that there is another match in its
neighbor pairs are increased.

38 Chapter 2. Blocking

2.5.3 Performance Results

Table 2.6 shows that all the evaluated methods manage to greatly reduce the number of compar-
isons that would be required if blocking was not employed, e.g., by one (D1-D4, D7) or two (D5)
orders of magnitude for token blocking. This is reflected by high RR in all cases. An exception
is D6, which is much smaller in terms of descriptions and, consequently, comparisons without
blocking. Moreover, its descriptions contain many more common tokens than the other datasets,
leading to more comparisons per entity. Therefore, token blocking does not save many of the com-
parisons that would be required without blocking and in D6 dirty, it even produces twice as many
comparisons.

With respect to H3R, we notice that, in general, central datasets have higher scores, i.e., they
present a better balance between recall and reduction ratio. This means that in these datasets,
comparisons that are discarded by blocking mostly correspond to non-matches, while many of
the comparisons discarded by blocking in peripheral datasets correspond to matches. Again, D6
has a different behavior, since it initially contains a much smaller number of comparisons and
a high ratio of matches to non-matches, so the reduction ratio for this dataset is limited. These
measures are not applicable to token blocking, when applied to D6 dirty, since in that case the
reduction ratio is negative.

2.5.4 Lessons Learned

We now present the key points of our evaluation. Central datasets are mostly derived from Wikipedia,
from which they extract information regarding an entity. This way, descriptions in such datasets
follow similar naming policies and feature many common tokens (Figure 2.8) in the values of se-
mantically similar, or equivalent attributes (see the small size of clusters in Table 2.6). Those are
exactly the premises on which the evaluated blocking methods are built.

For these reasons, the recall achieved by token blocking in central datasets is very high (ranges
from 99.92% to 94.85%). With the exception of D6 (featuring a higher ratio of matching to non-
matching descriptions), the precision achieved by token blocking in these datasets ranges from
2.49-107%t0 3.64-107". The gains in precision brought by attribute clustering blocking in central
datasets are up to one order of magnitude (for D3), with a minor cost on recall (from 0% to 3.42%).
Prefix-infix(-suffix) blocking can improve both recall and precision of token blocking for central
datasets, as in D1, but, it can also deteriorate these values, as in the dirty case of D3, which uses
random identifiers as URIs, in which recall drops by 7.79% and precision by 26.72%. In a nutshell,
many redundant comparisons are suggested by blocking methods in all datasets (see precision
and F-measure in Table 2.6), due to the small ratio of matches to non-matches in the datasets
(Table 2.5). However, as H3R reveals, the comparisons that are discarded by blocking in central
datasets mostly correspond to non-matches.

On the contrary, descriptions in peripheral datasets are more diverse, following different nam-
ing policies and sharing few common tokens (Figure 2.8), since they stem from various sources.

2.6. Conclusion 39

The lack of similar values in those descriptions leads to a bad clustering of attributes; big clusters
of attributes not similar to each other are formed (Table 2.6).

For these reasons, the recall of token blocking for peripheral datasets drops even to 72.13%,
while precision ranges from 1.3-107% to 1.29-107°. The gains in precision brought by attribute
clustering blocking (up to one order of magnitude) in peripheral datasets, come at the cost of a
drop in recall up to 24.04% (corresponding to 7,421 more missed matches). Prefix-infix(-suffix)
blocking can improve the precision of token blocking in peripheral datasets, even by an order of
magnitude (for D4), or decrease it by an order of magnitude (for D5), while it decreases recall from
0.74% to 3.96%, i.e., more matches are missed. In the case of D4, in which both KBs use Wikipedia
as a source, recall is improved by up to 7.68%. Overall, however, H3R reveals that many of the
comparisons that are discarded by blocking in peripheral datasets correspond to matches.

Nevertheless, information for the missed matches, e.g., from the neighborhoods of their de-
scriptions (Table 2.7), sets the ground for a new generation of ER algorithms, which will exploit
this information to identify more matches, in an iterative fashion. In Table 2.8, we have shown
that even a single match in the neighborhood of a candidate pair is a good match-indication for
that pair, too.

2.6 Conclusion

In this chapter, we have first reviewed a wide spectrum of works focusing on blocking. We have di-
vided those works into schema-based, whose blocking keys rely on the existence of a fixed schema,
and schema-free, which do no make any assumptions about the schema of the entity descriptions
to be matched. Since entity descriptions in the Web of data fall in the latter case, we focus only
on schema-free blocking methods. In detail, we evaluated, for the first time, blocking methods for
highly heterogeneous entity descriptions in the Web of data. To make this evaluation possible for
datasets of large volumes, we have introduced massively parallel adaptations of those methods
in MapReduce. Our experimental evaluation shows that entity descriptions met in central LOD
datasets feature many common tokens in the values of common attributes, while descriptions
met in peripheral datasets have significantly fewer common tokens in attributes that are not nec-
essarily semantically related (see Figure 2.8). Hence, the former can be compared only on their
content, i.e., values, (see Table 2.6), while the latter require new blocking methods which can ex-
ploit contextual information, e.g., the similarity of neighbor descriptions, linked via different types
of relations (see Tables 2.7,2.8).

Moreover, the same candidate matches suggested by blocking, may originate from multiple
blocks of different size. This means that we will have to perform the same comparison multiple
times, or, find a mechanism that can identify repeated comparisons and perform each of them
only once. Even better, this block post-processing mechanism could take advantage of the overlap-
positive characteristic of blocking methods and turn this overlap into an advantage: the more
the common blocks between two entity descriptions and/or the smaller those blocks are (i.e., the

40 Chapter 2. Blocking

less frequent the common tokens between two descriptions are), the higher the chances that they
match. We will explore such mechanism, called meta-blocking, in the next chapter.

The datasets and source code used in this study are publicly available?, facilitating the bench-
marking of blocking methods for entities described in the Web of Data. Existing works in ER bench-
marks [43,51] and evaluation frameworks [47, 64] focus on the similarity of descriptions and how
these similarities affect the matching decision of entity resolution; not on blocking, explicitly. In
all cases, datasets are built from central KBs of a single domain, e.g., only bibliographic. Those
data variations are not adequate to evaluate the blocking algorithms suitable for cross-domain ER
involving a large number of entity types. Finally, many works on ontology and instance matching,
e.g., [66,97], have been using the OAEI benchmarks in their evaluations. Typically, those datasets
are composed of two ontologies with a 1-1 mapping in their attributes, or even a single ontol-
ogy, whose instances, i.e., entity descriptions, have some modifications in their values. We have
included and analyzed one of those benchmarks in this study.

9csd.uoc. gr/~vefthym/minoanER/

Chapter 3
Meta-Blocking

3.1 Introduction

The main characteristic of overlap-positive blocking methods is that they trade a large number of
repeated and unnecessary comparisons between non-matching entities in their effort to achieve
high recall. Meta-blocking [82] is a post processing of a collection of blocks aiming to balance the
tradeoff between the achieved reduction ratio and recall. It essentially discards all repeated com-
parisons from a collection of blocks as well as reduces the number of unnecessary comparisons.

In more detail, the functionality of Meta-blocking consists of two logical steps!. The first one
transforms the input block collection B into the blocking graph G, whose nodes correspond to
the entities grouped in B, and edges connect the co-occurring entities, denoting suggested com-
parisons. Only one edge between two entities is maintained regardless of the number of blocks
they co-occur in, thus eliminating all repeated comparisons. For instance, applying token block-
ing to the entities in Figure 3.1(a), yields the blocks of Figure 3.1(b), in which all matches, e;-e3
and e;-ey, are placed in at least one common block. The blocking graph G extracted from those
blocks is shown in Figure 3.1(c). The repeated comparison e; -es, suggested by blocks b; and b», is
discarded in G, since there is only one edge connecting e; with es.

The second step associates every edge with a weight, proportional to the likelihood that the
adjacent entities are matching, an evidence given by the degree of overlap between the sets of
blocks in which those entities have been placed. Low-weighted edges are less likely to correspond
to matches, so they are pruned. The pruned blocking graph G’ is then transformed into a new
block collection B by creating a new block for every retained edge. For instance, G’ in Figure 3.1(d)
is derived from G in Figure 3.1(c) by discarding the edges with (Jaccard) weight lower than the
average one (1/4). Given that the only matches are e;-e; and e;-es, the blocks bs, bg, b7 and bg
in Figure 3.1(b) contain 8 unnecessary comparisons. In total, the resulting blocks in Figure 3.1(e)
contain 5 comparisons, of which only 3 are unnecessary. Compared to the initial blocks B in
Figure 3.1(b), the comparisons entailed by the final blocks B’ of Figure 3.1(e) were reduced by 62%
without any impact on recall.

1Those steps do not need to be explicitly implemented, as we will explain in the following sections; they only describe
the logic of this process.

41

42 Chapter 3. Meta-Blocking

[FullName : Jack Lloyd Miller
J

name : Erick Green
ob : autoseller p

rofession : vehicle vendor

Work : car vendor - seller car trader

n,

full name : Jack Miller] [Enck Lloyd Green

*(Full name : James Jordan name : Nick Papas b', b',
job : car seller profession : car dealer - m
(a) ny by, | b,
by(Green) X
e, €
b's
by (vendor) (seller) bg (car
b, slcar)]] [es o)
€ e, & e, % 5 5
(d) (e)

Figure 3.1: (a) A set of heterogeneous entity description, (b) the overlap-positive block
collection derived from them using token blocking, (c) the respective block-
ing graph that uses Jaccard similarity for edge weights, (d) one of the possible
pruned blocking graphs, and (e) the restructured block collection after Meta-
blocking.

The time complexity of serialized Meta-blocking is quadratic to the size of the input blocks;
it relies on the number of comparisons suggested by the input block collection, which define the
number of edges that need to be weighted and then pruned in the blocking graph [82]. The reason
is that each edge < v;, v; > is weighted after computing the intersection of the sets of blocks as-
sociated with the descriptions e; and e;, while additional computations (e.g., the total number of
edges, the number of comparisons suggested by the common blocks) may be required by different
weighting schemes, as we will see in the next section. Thus, even as a preprocessing step for ER,
sequential Meta-blocking is a heavy computational task with serious scalability limitations at the
scale of Web data.

To overcome these limitations, we adopt the MapReduce programming model for paralleliz-
ing Meta-blocking and scaling its techniques to voluminous entity collections met in the Web of
data, providing exactly the same qualitative results. The basic idea of parallel Meta-blocking is
that we process each block of the input block collection in parallel, allowing us to incrementally
compute the edge weights, for different node-, or edge-partitions of the blocking graph, depend-
ing on the parallelization strategy. When two large blocks are processed by the same computa-
tional node, the processing of those blocks will probably become the bottleneck of parallel Meta-
blocking. Therefore, we try to distribute the load of each computational node in a balanced way,
optimizing the usage of the available computational resources. Our goal is to minimize the total
execution time of Meta-blocking, making it as close as possible to the time required to process the
largest block (still quadratic with respect to the size of the largest block). In our experiments, we
show how parallel Meta-blocking can reduce the time required to process the blocks and get the
final matching results from 14 days to 95.5 minutes.

3.1. Introduction 43

In summary, the main contributions of this chapter, which have been published in [32,33], are:

¢ We extend the distinction of blocking methods into atomic and composite, to Meta-blocking:
extending the blocking graph, we define the disjunctive blocking graph, which captures mul-
tiple types of matching evidence, allowing the conceptual modeling of composite blocking.

¢ We implement Meta-blocking in MapReduce using 3 alternative parallelization strategies.
The first one explicitly targets the blocking graph, which builds and stores all the edges along
with their weights. This is the most intuitive approach, but it bears a significant I/0 cost
that becomes the bottleneck, when building very large blocking graphs. The second strat-
egy offers a more efficient implementation, by enriching the input block collection with
indexing information used for computing the weights of the edges, without building and
storing any of them explicitly. Still, enriching the block collection with such information
requires an additional MapReduce job, which bears an additional cost. The third strategy
is independent of the blocking graph. For every entity, it aggregates the bag of all entities
that co-occur in at least one block, and then, it derives on the fly the edge weight that corre-
sponds to each neighbor from its frequency in the co-occurrence bag. Since the weights are
computed on the fly, this is the most efficient strategy, when the edge weights do not need
to be re-computed before pruning.

* We introduce a novel load balancing algorithm, called MaxBlock, in order to avoid poten-
tial bottlenecks associated with the computation-intensive parts of our MapReduce func-
tions. MaxBlock exploits the highly skewed distribution of block sizes in overlap-positive
collections in order to split them in partitions of equivalent computational cost (i.e., total
number of comparisons). We experimentally compare MaxBlock with existing approaches,
including a state-of-the-art algorithm that serves a similar purpose, and demonstrate that
our approach has significant qualitative and quantitative benefits.

* We verify the scalability of our techniques through a thorough experimental evaluation over
the four largest, real datasets that have been applied to Meta-blocking. We show that the
speedup of our parallel implementation is close to the ideal, linear case, in which doubling
the available resources results in half the execution time.

The rest of the chapter is organized as follows: In Section 3.2, we introduce the formal model
of Meta-blocking. In Section 3.3, we overview the state-of-the-art works in the field. In Section 3.4,
we provide the overview of our parallelization strategies for Meta-blocking. Section 3.5 introduces
our MaxBlock load balancing algorithm. In Section 3.6, we experimentally evaluate the paralleliza-
tion strategies and MaxBlock, and we conclude the chapter in Section 3.7.

44 Chapter 3. Meta-Blocking

3.2 Formal Meta-blocking Model

The functionality of Meta-blocking consists of two logical steps. The first one transforms the in-
put block collection B into the blocking graph G. The second step associates every edge < v;, vj >
with a weight w; j € R that is proportional to the likelihood that the adjacent entities are match-
ing. Note that this is only the logical representation of Meta-blocking, which does not need to be
implemented as such. Formally:

Definition 3.1 (Blocking Graph). Given a block collection B*®Y, produced by an indexing function
hkey, the blocking graph for an entity collection &, is a graph G = (V, E, w), where there is a node
vi € V for each description e; € &, and an edge < v;,vj >€ E for each pair e;,e; € & for which
Okeylei,ej) = ‘true’. w: E — R is a labeling function applied to the edges of G.

Table 3.1 summarizes the notation used in this chapter. The tokens used in an entity collec-
tion & is given by tokens(&) = Ue,cs tokens(e;), where tokens(e;) is the set of tokens used in
the values of an entity description e; € &. The number of edges |E| of the blocking graph, cor-
responds to the number of unique comparisons suggested by blocking, i.e., at most }.p, g || bill,
where ||bg|| is the number of comparisons suggested by a block by, which is quadratic to the size
of by. When by has been created by token blocking for a token t, |[|by|| = EFg(t) - (EFg(t) —1)/2,
where EFg(t) = |{ejle;j € &,t € tokens(e;)}| is the Entity Frequency of ¢ in an entity collection &.
The use of EF is inspired by the Document Frequency DF, which has been used in Information

Retrieval to define the Inverse Document Frequency (IDF), i.e., the specificity of a term ¢ in a docu-
|D|
DF(7)
the term t. We will refer to the set of blocks hkey(ei) in which e; has been placed as B;, and to the

ment corpus D, as IDF(t, D) =log

[94], where DF(t) is the number of documents containing

common blocks of e; and e; as B; j, for brevity.

Next, we will present alternative ways for weighting (i.e., labeling) the edges of a blocking graph
(i.e., pairs of entity descriptions), which have been introduced in [82, 84]. All of them have the
nice property that they only rely on the input blocks in order to define the weights, without any
additional information.

o Common Blocks Scheme (CBS) captures the fundamental property of overlap-positive block
collections that the more blocks two entities share, the more likely they are matching. The labeling
function used by CBS is:

wcps(ej, ej) =B jl. 3.1

Then, CBS corresponds to the overlap similarity measure between two descriptions e;, e, unnor-
malized as in [102], when token blocking is used:

simcps(e;, ej) = [tokens(e;) N tokens(ej)|.

Intuitively, two descriptions are likely to match, if they share many common tokens.

e Enhanced Common Blocks Scheme (ECBS) improves CBS by discounting the contribution

3.2. Formal Meta-blocking Model 45

Table 3.1: Summary of the notation used in Meta-blocking.

[Name [Symbol |
Set of tokens used in the values of an entity description e; tokens(e;)
Set of tokens used in the values of any description in an entity collection & | tokens(&)
Entity Frequency of a token in an entity collection & EFg(t)
Block collection (a set of blocks) B
Block collection size (number of blocks) |B|
Block collection cardinality (number of comparisons) ||B]]
Blocks containing e; B;
Number of blocks containing e; | B;|
Block with id i b;
Block size (number of entities) |b;|
Block cardinality (number of comparisons) [|b;]
Blocks shared by e; and e; B;
Number of blocks shared by e; and e; |B;,l
Blocking graph G
Node in G corresponding to e; v;
Edgein G <V, V>
Set of edges in G E
Weight of < v;, v; > W, j
Degree of v; (number of adjacent nodes) [vil

of entities participating in many blocks. The labeling function used by ECBS is:

| B| | B
wecss(ei, ej) = weps(e;, ej) -log— -log —. 3.2)
|Bil | Bjl
Again, when token blocking is used, ECBS corresponds to the following similarity measure be-
tween e; and e;:

|tokens(&)| |[tokens(&)|
-log .
[tokens(e;)| |tokens(e;)|

simgcps(e;, ej) = simcps(e;, e;j) 1o

Intuitively, two descriptions are likely to match, if they share many common tokens, and each of
the descriptions doesn’t have too many tokens.

« Aggregate Reciprocal Comparisons Scheme (ARCS) is based on the assumption that the fewer
the comparisons suggested by the common blocks of two entities, the more likely it is that those
entities are matching. The labeling function used by ARCS is:

1

—_— (3.3)
0.3, 1K

warcs(ej,ej) =

In the extreme case in which all the blocks in the input block collection contain two entities only,
i.e., Vby € B,||bkll = 1, then wyrcs yields the same weights as wcps. We can further refine the
contribution of each common block, by introducing a log in the denominator, which makes the

46 Chapter 3. Meta-Blocking

size of each common block less important than in Equation 3.3 and the number of common blocks
more important:

1
warcs(ei,ej)) =) (3.4)

breB; logz(”bk” +1)

Then, ARCS corresponds to the following similarity measure between two descriptions e; and
ej, when token blocking is used:

1
ylog, (EFg(t)- (EFg() - 1)/2+1)

simagcs(e;, ej) =
terokens(e;)Ntokens(e;
This is similar in logic to using the sum of the IDFs of the common tokens between two docu-
ments in a document corpus. Intuitively, two descriptions are likely to match, if they share many,
infrequent tokens.

e Jaccard Scheme (JS) estimates the portion of blocks shared by two entities. The labeling
function used by JS is:
|Bi,jl
|Bil +|Bj| - B |’

wys(ej,ej) = (3.5)

When token blocking is used, JS corresponds to the Jaccard similarity [54] of the token sets of two
entities e;, e;j:
|[tokens(e;) N tokens(e;)|

simjs(ej,ei) = .
JSELE] |[tokens(e;) U tokens(ej)|

Intuitively, two descriptions are likely to match, if most of their individual tokens are common.

o Enhanced Jaccard Scheme (EJS) improves JS by discounting the contribution of entities
involved in too many non-repeated comparisons (i.e., high node degree). The labeling function

used by EJS is:
~ IEl . |E|
wgys(ei, ej) = wys(e;, ej) -log— -log —. (3.6)
[vil lvjl
EJS can be approximated by the following similarity measure between two entities e; and e},
when token blocking is used:

A

simepsteise) = stmysen ep 181 o e &1 B icompte;, B
12 I

where A=} ierokens) EFs(£)-(EFg(1)—1)/2,and comp(e;, &) = {exle, € &, tokens(e))ntokens(ey) #
@} is the subset of descriptions from & having at least one common token with e;. Intuitively, two
descriptions are likely to match, if most of their common tokens are infrequent (low EF), and their
non-common tokens are few and infrequent.

The time efficiency of each labeling function depends on the number and the nature of the
computations that need to be performed in order to evaluate the edge weights. wcps is the easiest
function to evaluate, as it only needs to compute the intersection of two sets (of numerical block

3.2. Formal Meta-blocking Model 47

ids). Additionally, wyjs also computes the union of those sets, while wgcps also needs the total
size of the input block collection. Thus, those three labeling functions are very close in terms of
computational cost. wagcs, needs to compute two things: the intersection of two block sets, as
well as the cardinality of each block belonging to the intersection, so it is heavier computationally
than the previous functions. Finally, wgjs is the heaviest function to evaluate; on top of computing
the intersection and the union of two sets of blocks, it also needs to compute the node cardinality
of the two entities, i.e.,, how many other entities share a common block with the entities to be
compared.

On the other hand, the pruning scheme relies on a pruning criterion which can be either
weight- or cardinality-based; the former specifies the minimum weight of the retained edges (i.e.,
a dynamic similarity threshold) and the latter the maximum number of retained edges (i.e., a top-
K functionality). Both the minimum weight and the number of retained edges are set dynamically,
driven by data statistics. The selected criterion is then combined with a pruning algorithm, which
is either edge-centric (i.e., global) or node-centric (i.e., local); the former iterates over all edges
of the graph to retain the globally best ones and the latter over all edges of the neighborhood to
retain the locally best ones. Overall, the main pruning schemes are the following:

o Weighted Edge Pruning (WEP) combines the edge-centric algorithm with a global weight
threshold that amounts to the average edge weight of the entire blocking graph. That is, it retains
all edges with a weight higher than the overall mean one.

e Cardinality Edge Pruning (CEP) couples the edge-centric algorithm with a global cardinality
threshold equal to: K = LMJ. Thus, it retains the top-K edges of the entire blocking graph.

o Weighted Node Pruning (WNP) combines the node-centric pruning algorithm with a local
weight threshold that amounts to the average edge weight of each neighborhood.

e Cardinality Node Pruning (CNP) combines the node-centric pruning algorithm with a global
cardinality threshold equal to: k = [Y},ep|b;|/|E| —1]. Thus, it retains the top-k edges of each
neighborhood.

The above definitions consider only one type of blocks. However, as we have seen in Chapter 2,
composite blocking schemes may also be constructed on different types of blocks. Thus, edges in
the corresponding blocking graph may be determined according to a composite co-occurrence
conditions while their weights may be extended accordingly.

Definition 3.2 (Disjunctive Blocking Graph). Given a block collection B= |J B*¢Y, produced by
hkgyEH

a set of indexing functions H, the disjunctive blocking graph for an entity collection &, is a graph G =
(V,E, A), where each node v; € V represents a distinct description e; € &, and each edge < v;,vj >€ E
represent a pair e;,ej € & for which F (e;, ej) = ‘true’. F(e;,e;) is a disjunction of the atomic co-
occurrence functions o* defined along with H. A : E — R" is a labeling function assigning a tuple
[w!,..., w"] to each edge € E, where wk k

of H.

is a weight associated with each co-occurrence function o

We will see an example of applying disjunctive Meta-blocking in Chapter 4.

48 Chapter 3. Meta-Blocking

3.3 Related Work

In this section, we first overview works related to block processing, i.e., processing the results
of blocking, before providing the final matches, and then we discuss about how existing works
address the challenge of balancing the load of block processing in a distributed environment.

Block Processing

Numerous studies have focused on the problem of block processing, whose goal is to discard redun-
dant (both unnecessary and repeated) comparisons in order to enhance the precision of blocking
collections. Most of the relevant techniques involve a functionality that operates at the block level,
based on coarse-grained characteristics of the input blocking collection, such as the size of blocks:
Block Purging [78] a-priori discards oversized blocks like bg in Figure 3.1(b), while Block Prun-
ing [78] orders blocks from smallest to largest and terminates their processing as soon as the cost
of identifying new matches exceeds a predefined threshold. Both of these methods are equivalent,
in logic, to discarding stopwords, i.e., very frequent words which do not offer much information
about an entity, such as ‘the’, ‘a‘, ‘to’, etc. Those words would only add a big computational cost,
without offering much in the similarity evidence that two entities match (they have high EF, as
defined in the previous section). [79] proposes a method for discarding all repeated comparisons
from any set of blocks. In essence, when two descriptions are compared in a block, this compari-
son is not performed again in any other block this pair appears.

Such techniques are efficient, but lack in accuracy, as their crude processing cannot control its
impact on recall (in terms of matching comparisons).

Similar to Meta-blocking, Block Filtering [85], drastically reduces the size of the blocking graph
by transforming an overlap-positive block collection B into a new one B’ that involves a lower
number of comparisons. Instead of using a graph, though, it simply removes every entity from the
least important of its blocks. The main assumption is that the larger a block is (i.e., higher [|b;ll),
the less important it is for its entities. In more details, Block Filtering orders the blocks of B in
ascending order of cardinality, i.e., suggested comparisons, and retains every entity e; in the top
N; blocks of B; (i.e., the N; smallest blocks that contain e;). For every entity e;, this threshold is
locally defined as N; = [r x | B;|], where r € [0,1] is the ratio of Block Filtering. In this work, we
employ Block Filtering as an integral part of our parallelized approach, setting r = 0.8. This value
was experimentally verified to increase efficiency to a significant extent, pruning at least 50% of
the blocking graph’s edges, while having a negligible impact on recall [85].

[83] formalizes Meta-blocking as a binary classification task, targeting at identifying edges
that correspond to matches and non-matches between their adjacent entity descriptions. To ex-
tend the simple pruning rules of the form “if weight < threshold then discard edge” for removing
comparisons, [83] works towards assigning representative weights to edges and choosing appro-
priate thresholds for removing edges by learning composite pruning models from the data. Super-
vised Meta-blocking composes information about the co-occurring entities into comprehensive

3.3. Related Work 49

feature vectors. As an example, consider that each edge is associated with a feature vector [a;,
ap], where a; is the number of common blocks shared by the adjacent descriptions, and ay is the
total number of comparisons contained in these blocks. The resulting feature vectors are fed into
a classification algorithm that learns composite rules to effectively distinguish matching and non-
matching edges. In our example, a composite rule could be “if @; <2 and a, > 5 then discard edge”,
capturing the intuition that the more blocks two descriptions share and the smaller these blocks
are, the more likely the descriptions match. Concerning the set of features annotating the edges of
the blocking graph, clearly, using more features may help make the pruning of the non-matching
edges more accurate. However, the computational cost for Meta-blocking gets higher.

Load Balancing

A crucial aspect of MapReduce-based ER methods is the load balancing algorithm that distributes
evenly the overall workload among the available nodes. Several recent works examine this aspect,
with PairRange constituting the best solution so far [62]. In essence, PairRange splits evenly the
comparisons of a block collection into a predefined number of partitions, by assigning every com-
parison to a particular partition id. To this end, it involves a single MapReduce job, whose mapper
associates every entity e; in block by with the output key rid.k.i, where rid denotes the index
of the comparison range, i.e., the partition id. Then, the reducer groups together all entities that
have the same rid and block id k, reproducing the comparisons corresponding to partition rid.
In our experimental evaluation, we compare MaxBlock with PairRange.

Another approach is BlockSplit [62]. As its name suggests, it splits the bigger blocks into
smaller sub-blocks and processes them in parallel, ensuring that every entity is compared to all en-
tities in its sub-block, as well as to the entities of its super-block. BlockSplit has been proven to be
less scalable and less generic than PairRange [62]: it needs to process multiple times the entity de-
scriptions of blocks that are split, creating an additional network and I/O overhead. Additionally,
it may still lead to unbalanced workload, due to sub-blocks of different size.

A similar approach is followed by the dynamic blocking algorithm in [72]. Instead of perfectly
balancing the load, though, its goal is to split large blocks into sub-blocks, “until they are all of
tractable size”. Yet, we already achieve this goal through Block Filtering, which completely re-
moves large blocks (instead of splitting them into sub-blocks), as it considers them to be of lower
importance.

Finally, two more load balancing algorithms were presented in [104]. Both rely on sketches
in order to minimize memory consumption; the one aims to improve the space requirements of
BlockSplit and the other of PairRange. In our case, though, all load balancing algorithms that were
compared in Section 3.6.2 fit easily to the limited memory that is available to a single node. The
reason is the optimized representation model, which represents every entity by an integer that
denotes its id, while every block consists of a list of integers and is itself identified by a unique
integer id.

50 Chapter 3. Meta-Blocking

B —)| Block Filtering Meta-blocking |—> B’

(a)

B —>| Block Filtering |—>| Preprocessing |—>I Meta-blocking |—> B’

(b)

Figure 3.2: (a) The serialized workflow of Meta-blocking, and (b) its parallelized counterpart.

In summary, existing works in block processing suffer from serious accuracy and scalability
issues, or they rely on training data, while little work has been done in balancing the load of pro-
cessing block collections in distributed environments. In this sequel, we will describe a parallel
adaptation of unsupervised Meta-blocking in MapReduce, using a novel load balancing algorithm
with significant benefits over state-of-the-art algorithms.

3.4 Scaling Meta-Blocking to Very Large Entity Collections
3.4.1 Approach Overview

In the following, we elaborate on the adaptation of Meta-blocking to MapReduce. The serialized
workflow we want to parallelize is depicted in Figure 3.2(a) and consists of two consecutive stages:
the first one applies Block Filtering to the input block collection B, while the second one applies
Meta-blocking to yield the final, restructured collection B'. The parallelized counterpart is pre-
sented in Figure 3.2(b) and consists of three stages. Again, the first one applies Block Filtering to
the input block collection and the last one implements Meta-blocking. The only difference is in
the second stage, which preprocesses the blocks in order to transform them into a suitable form
for parallel Meta-blocking.

We analyze every stage of the parallelized workflow separately, proposing at least two differ-
ent approaches in each case. The first one applies a basic strategy that relies on a straightforward
adaptation, but involves more jobs and higher I/O between the nodes. The other approach(es)
correspond(s) to more advanced strategy(ies), reducing the overhead of data exchange through
more elaborate processing. In all cases, we provide the pseudo-code of the strategy’s functional-
ity and, for the most important strategies, we accompany it with an example that facilitates its
understanding.

Section 3.4.2 presents two strategies for the first stage (Block Filtering), while Section 3.4.3 in-
troduces three strategies for the second stage (Preprocessing). The last stage of the parallel work-
flow applies one of the four pruning algorithms to the output of Preprocessing and yields a set of
retained edges; every edge corresponds to a new block that is part of the final, restructured block
collection. We examine one of the four pruning algorithms, in Section 3.4.4, and the other three
can be found in [33]. Given that the functionality and the complexity of their parallelization de-
pend on the preprocessing strategy, we present three adaptations in every section, each of them
corresponding to the output of the previous stage. Finally, that applies to all strategies of the last

3.4. Scaling Meta-Blocking to Very Large Entity Collections 51

| MAP function pseudo-code REDUCE function pseudo-code |

1: Input (Single Reducer)
All pairs < ||b,||, k > sorted in
ascending order of cardinality.
2: Output
The sorted list of block ids, By teq-
3:store Bgoyteq to disk

1: Input
Key: id of block b k
Value: list of entity ids, by = {i,J, ..., m}
2: Output
Key: cardinality of block by, ||b,]|
Value: id of block by, k
3: compute comparisons in by, ||b, ||
a: emit(|||, k);

MAP function pseudo-code REDUCE function pseudo-code

|

JOB 2

1: Input 1: Input

1: Input 1: Input

Key: id of block by k

Value: list of entity ids, by = {i, , ..., m}
2: Output

Key: id of entity e;, i

Value: id of block by, k
3:for each i € by loop

Key: id of entity e;, i

Value: list of associated block ids, B;
2: Output

Key: id of entity e, i

Value: list of top-N blocks in B;, B';
3:load Bgorteq from the disk

Key: id of block b, k

Value: list of entity ids, by, = {i, J, ...,
2: Output

Key: id of entity e,, i

Value: block id and cardinality, k. ||b,||
3: compute comparisons in block, ||b,]|

m}

Key: id of entity e, i

Value: list of pairs < k.||b,|| >, V
2: Output

Key: id of entity e,, i

Value: list of top-N blocks in B;, B';
3: order V in ascending block cardinality

4:B'; = getTopNBlocklds(V)
S:emit(i, B';);

4: for each i € by loop
emit(i, k.||b||);
6: end loop

4: emit(i, k);
5: end loop

4: B'; = getTopNElements(B;, Bsortea) 5:
S:emit(i, B';);

(a) Basic strategy (b) Advanced strategy

Figure 3.3: Pseudo-code interpretation of (a) the basic and (b) the advanced strategy for
Block Filtering. They employ a global and a local ordering of blocks, respectively.

two stages.

Note that in every stage, special care was taken to minimize the I/O between the independent
nodes. Part of this effort focused on optimizing our representation model. Apparently, we could
use the actual blocking keys and URIs to identify the blocks and the entities, respectively. However,
the binary representation of these textual values is much larger than that of numerical identifiers.
For this reason, our model relies exclusively on numbers: we enumerate every block and entity, so
that they are uniquely identified by an integer id, and represent the edges by the concatenation of
the adjacent entity ids. Their weights are naturally represented by real numbers.

3.4.2 Stage 1: Block Filtering

The first stage applies Block Filtering to the input block collection in order to reduce the size of the
blocking graph. Central to this procedure is the sorting of blocks in ascending order of cardinality,
from the smallest to the largest one. Depending on how this sorting is performed, we present two
possible approaches for adapting Block Filtering to MapReduce.

The basic strategy orders once and globally all input blocks, using two MapReduce jobs that
exploit the automatic sorting of the input to the reduce function. The advanced strategy employs
a single MapReduce job that orders locally the blocks associated with every entity at the cost of
repeating some computations across the independent nodes.

For both strategies, every (key, value) pair of the input corresponds to a block by; the key
stands for the id of the block, while the value contains the list of the entity ids placed in by: key=k
and value={i, j,..., m} for by={e;, €j,...rem} The output of both strategies comprises the N most
important blocks associated with the individual entities. Every key denotes the id of an entity e;,
while the corresponding value contains the list of ids of the blocks still containing e;: key=i and
value=B.

52 Chapter 3. Meta-Blocking

Basic Strategy

This strategy employs two MapReduce jobs. The first one sorts all blocks globally in ascending
order of cardinality, producing the sorted list Bs,,s0q. The second job uses By, teq in order to
identify the most important blocks for each entity.

The functionality of the first job is outlined in the upper part of Figure 3.3(a). The map func-
tion receives a block id k along with the entities contained in by. It computes the corresponding
cardinality, ||bg||, and emits a (|| b||, k) pair. All pairs are sorted in descending order of their keys
(i.e., cardinalities), before they are forwarded as input to the single reduce function. The reducer
extracts and stores to the disk the values of the sorted input, i.e., the block ids that form B,y teq-

The pseudo-code interpretation of the second job is presented in the lower part of Figure 3.3(a).
The map function gets the same input as the first job: the id of a block along with the entity ids it
contains. For every entity e; contained in the given block by, it emits as output a pair (i, k). MapRe-
duce groups together all pairs having the same key so that the reduce function receives as input
all block ids assigned to a specific entity e; (i.e., key=i, value=B;). Itloads from the disk the sorted
list of block ids, Bsorreq, and uses it to get the ranking position of every block. The N blocks with
the highest ranking positions form the list of retained block ids B}, which are the emitted as output:
key=i, value=B;.

Advanced Strategy

The rationale behind the advanced strategy is to use a single MapReduce job that provides the
reduce function with the necessary information for sorting the blocks of each entity locally. Its
functionality is outlined in Figure 3.3(b). The map function gets as input the id and the entities
of a block by and computes its cardinality, ||by||. For every entity e; € by, it emits a pair with the
entity id as the key, while the (composite) value concatenates the id and the cardinality of block
by: key=i and value=~k.||bg||. The reduce function gathers all blocks associated with an entity e;
along with their cardinality. It sorts them in ascending number of comparisons and extracts the
top N elements from the resulting list to form B;. Similar to the basic strategy, it then emits a pair
(i,B)).

Example 3.1. Figure 3.4 illustrates the functionality of the advanced strategy of Block Filtering. For
the three entities ey, ex and es of by, we emit in the Map phase a pair with each of them as the key
and b,.3 as value, since there are three comparisons in this block. In the Reduce phase, we gather

all four pairs having e, as key and keep only the top-3 blocks for this entity. Thus, we discard b,
from the blocks of e .

3.4.3 Stage 2: Preprocessing

The second stage of the parallel Meta-blocking workflow prepares the input that will be processed
by the selected pruning algorithm in the third stage. It plays a crucial role, as its output determines

3.4. Scaling Meta-Blocking to Very Large Entity Collections 53

Key Value
e | b3
e | b3
Key Value
b;.3
Key Value es | by e Toy3
by | eveses }.9 e _
o] b3 er|De3 | 1E | Tey Tbubube
b, e |bs6 | |8 .)
4 €1,€3,€4 e | ba3 o
’ 2 (| e |bs10
e, | bs3 o
bg €1,€¢,€7,€9 gL
br | ereseese & b3 | B
7 1,€5,€6,€8,€9 E e b6.6 < || € 1. g_ e, b1
- 5
e | be.6 i
e;| b3 | =
&7 bs ba.3 § €3 | by,b,
& | b6 S gL
e; | bs.10

Figure 3.4: An example of the advanced strategy for Block Filtering.

the complexity of the pruning algorithm: the more computations are performed by Preprocessing
and are integrated into its output, the simpler is the functionality of the pruning algorithms and
vice versa.

This trade-off gives rise to three different strategies for Preprocessing, which share the same
input (i.e., the outcome of Block Filtering), but differ in their output. The edge-based strategy
explicitly creates the blocking graph, performing all weight computations in order to simplify the
functionality of the pruning algorithm. On the flip side, it involves two MapReduce jobs with high
I/0 that store all edges to the disk. The comparison-based strategy defers all weight computations
and simply facilitates them by enriching the input of the pruning algorithms with all the necessary
information. The entity-based strategy facilitates a different approach for weight estimation that
does not require any preprocessing. Thus, it simply receives the output of Block Filtering (i.e., the
block ids retained per entity) and transforms it into a new block collection. Due to their simplicity,
the last two strategies require just one job.

Edge-based Strategy: Explicit Blocking Graph

The pseudo-code interpretation of the edge-based strategy is depicted in Figure 3.5. The first
MapReduce job transforms the output of Block Filtering into a block collection. Its map function
receives as key the id of an entity e; and as value the list of associated blocks, B;. It swaps values
and keys, emitting for every block by € B; a pair (k,1.|B;|), where k and i are the block and the
entity id, respectively, while | B;| denotes the number of blocks containing e; after Block Filtering.
The reason is that | B;| is the cornerstone for most weighting schemes.

The reduce function of the first job groups together all entities contained in a block by and is
able to reproduce all its comparisons.? For every comparison between entities e; and e i (cij), it
emits the concatenation of their ids as key and some local information X lk] as value: key=i.j and

2Note that a block with just one remaining entity contains no comparison and, thus, no processing is performed.

54 Chapter 3. Meta-Blocking

| | REDUCE function pseudo-code |
JjoB1

MAP function pseudo-code

1: Input 1: Input
Key: id of entity e;, i Key: id of block b, k
Value: list of associated block ids, B; Value: list of pairs < i. |B;| >, V
2: Output 2: Output
Key: id of block by k Key: entity ids defining edge <n;n;>, i.j
Value: id of entity e, with number of Value: relevant information, inf
associated blocks, i. | B;| 3: for each ¢;; € by. comparisons() loop
3: for each k € B; loop 4: emit(i-f:in])
4: emit(k,i.|B|); 5: end loop
5: end loop
1082
Identity Mapper. 1: Input

Key: entity ids defining edge <n,np>, i.j
Value: list of pieces of information,
V= [Xku,xli,, o XM
2: Output
Key: entity ids defining edge <n,np>, i.j
Value: total weight of<n,,nj>, wy
3: compute total weight w; from V/
4:emit(i.j, wy)

Figure 3.5: Pseudo-code interpretation of the edge-based Preprocessing strategy, which ex-
plicitly creates the blocking graph.

value=X lkj The information in X lk] is necessary for estimating the corresponding edge weight
and varies, depending on the selected weighting scheme. For ARCS, it comprises the cardi-
nality of block by (i.e., Xl.k].:IIkaI), while for all other schemes it concatenates |B;| and |B;] (i.e.,
Xl.kalBl-l.lle); for CBS, though, it can be empty.

The second job consists of an identity mapper and a reduce function that estimates the weight
for every edge of the blocking graph. The value list of its input, V, clusters together all local infor-
mation pertaining to the edge <v;, v;> that is specified by the input key. Based on them, the
reducer computes the corresponding edge weight w;; from Equations 3.3-3.6. For example, we
simply have w;; = |V| for CBS, as the size of the value list equals the number of common blocks,
IBijl. As output, the reducer emits a pair with the id and the weight of the edge: key=i.j and
value=w;;.

There is an exception to this strategy, as the EJS weighting scheme requires two additional
jobs to be applied to the output of JS. Their goal is to estimate the node degree |v;| of every entity
e;. The first job counts the edges that are adjacent to each entity, while the second one reassembles
all neighboring entities in order to estimate the weight of their adjacent edge according to EJS
formula (Equation 3.6). Their functionality is outlined in Figure 3.6.

The first job continues from the Preprocessing of the JS weighting scheme. Its map function
receives as input an individual edge from the respective blocking graph; the concatenated ids of
the adjacent entities form the key, while the value contains the corresponding edge weight. The
mapper performs no processing, but just emits two pairs: for each of the two entities, it uses its id
as the key and concatenates the id of the other entity with the edge weight to form the value.

In this way, the reduce function gathers all edges that correspond to a specific entity e;. Its in-
put value actually comprises a list with the ids of all neighboring entities appended to the weight
of the respective edge. The size of this list equals the degree |v;| of node v; that corresponds

3.4. Scaling Meta-Blocking to Very Large Entity Collections 55

| REDUCE function pseudo-code

I MAP function pseudo-code |
JOB1

1: Input 1: Input
Key: entity ids defining edge <n;n;>, i.j Key: id of entity e, i
Value: Jaccard sim. edge weight, /S;; Value: list of pairs < j.JS; >, V
2: Output 2: Output
Key: entity id of the one node, i Key: entity ids defining edge <n;n;>, i.j
Value: entity id of the other node with the Value: their Jaccard sim. with the node
Jaccard similarity, j. /S;; degree of n; JS;;. |ny|
3remit(i,j.JS;;); 3: for each j.JS;; € V loop
4:emit(j,]S); 4 emit(i.j, JSy.IV]);
5: end loop
JoB2
Identity Mapper. 1: Input
Key: entity ids defining edge <n,np>, i.j
Value: a pair < JS;;. [ng|, JSij. Ing| >
2: Output
Key: entity ids defining edge <n;,np>, i.j
Value: total weight of<n‘,n‘>, wy
3:w;; = JSyy+ loglVal/ il - loglVsl/ Inyl;
4:emit(i.j, wy);

Figure 3.6: Pseudo-code interpretation of the edge-based Preprocessing strategy for the
EJS weighting scheme.

to e;. The reducer emits this information so that the corresponding EJS weights can be com-
puted in the second job: for each of the neighboring entities e;, it emits a pair with key=i.j and
value=JS§;;j.|vil.

The second job involves an identity mapper so that the reducer gathers both values that per-
tain to an individual edge <v;, vj>, namely JS;;.|lv;| and JS;;.|lv;|. Having this information, the
EJS weight can be derived from the Equation 3.6. This forms the output value, while the ids of the
adjacent entities form the output key.

Comparison-based Strategy: Implicit Blocking Graph

This strategy creates the blocking graph implicitly: it enriches the description of the input block
collection with the information that is required for detecting all edges and estimating their weights
according to the selected scheme. The key to this approach is the idea that every edge <v;, v;> of
the blocking graph G corresponds to a non-repeated comparison ¢;; in the block collection B.

A comparison c¢;j in by is non-repeated only if it satisfies the Least Common Block Index con-
dition (LeCoBI for short). That is, if the id of by equals the least common block id of the entities e;
and ej: k = min(B; N Bj) [79]. To assess the LeCoBI condition for two entities e; and e}, we need
to compare the lists of associated blocks, B; and Bj; for higher efficiency, their elements should be
sorted in ascending order of block ids. The comparison-based strategy integrates this information
to its output, so that the pruning algorithms carry out all edge and weight computations in the
third stage.

This functionality is performed by one MapReduce job, which is outlined in Figure 3.7. The
map function receives as input the outcome of Block Filtering: the id of an entity e; as key and
the associated blocks B; as values. First, it sorts B; in ascending order of block ids. Then, for
every block by € B;, it emits its id as the key, while the value concatenates the id of e; with the

56 Chapter 3. Meta-Blocking

MAP function pseudo-code | | REDUCE function pseudo-code |

1: Input 1: Input

Key: id of entity e, i Key: id of block b, k

Value: list of associated block ids, B; Value: list of pairs <i.B; >, V
2: Output 2: Output

Key: id of block by k Key: input key

Value: id of entity e, and associated Value: input value

block ids, i. B; 3:if(2 < |V])
3: sort B; in ascending order of block ids 4; emit(k,V);
4:for each k € B; loop
5: emit(k,i.B;);
6: end loop

Figure 3.7: Pseudo-code interpretation of the comparison-based Preprocessing strategy,
which creates the blocking graph implicitly, enriching the description of the in-
put block with the necessary information for weight estimation.

Key Value Key Value Key Value
y Valu
by | [e},by,b,,bg] by | [eyby,bybel = lenbybabel,
b, | leybybabgl by |leyby] b, |leybil,
Key Value be | [ey,bybybgl b, |[esby,b,] 3 [e3,by,by],..
€1 | bubybs } by | leybi] g
e,|b; - S || by | [eg,by,bybe] = leybybybel,
o
e; | byb, b, | lesbyb,] S |[s [lexbybil b, [ea,k;,,EA],
& | babs E b, | lesbyb,] = || ba |leabybs] | 18 leqby bs],
b, | [egbsbs] z
by | legbybsl b, | leababy] by | [eqbybsl,
2
be | [ey,bs,bybel b | [eyby by bel,
3

Figure 3.8: An example of the comparison-based strategy for Preprocessing.

entire sorted list B;: key=k, value=i.B;. MapReduce then reassembles all blocks, by grouping
together all pairs with the same key. The reduce function receives as input the entity list of a
specific block along with the blocks that are associated with every individual entity; provided
that there are at least two entities, it emits the same (key, value) pair as output: key=k and
value={i.B;, j.Bj,..., m.Bp}.

Example 3.2. Figure 3.8 provides an example of this functionality. For each block by, by and bg, to
which ey belongs, we emit a pair with their block ids as key and ey, concatenated with by, by, bg as
value in the Map phase. In the Reduce phase, all the entities of by are grouped together (i.e., ey, e,
and e3), each accompanied with the block ids in which it belongs. We just concatenate them and
emit them as the value of the key=b.

There are two exceptions to this functionality, because the weighting schemes ARCS and EJS
need additional information for estimating their edge weights. The former requires the cardinality
of every block contained in B;. This can be easily embedded into the output of the previous stage
(Block Filtering), such that for ARCS, the input is not only a list of associated blocks for each
entity, but also the cardinality of each such block. Then, the rest of the process is the same as in
the other weighting schemes. In contrast, the information required by EJS can only be derived
from an elaborate processing (see [33] for details).

3.4. Scaling Meta-Blocking to Very Large Entity Collections 57

| MAP function pseudo-code | | REDUCE function pseudo-code |
1: Input 1: Input
Key: id of entity e, i Key: id of block b k
Value: list of associated block ids, B; Value: list of entity ids, by = {i,], ..., m}
2: Output 2: Output
Key: id of block by k Key: input key
Value: id of entity e, i Value: input value
3: for each k € B; loop 30 (2 < |bel)
4; emit(k,i); 4; emit(k, by);

5: end loop

Figure 3.9: Pseudo-code interpretation of the entity-based strategy for Preprocessing, which
does not use the blocking graph.

Entity-based Strategy: No Blocking Graph

This strategy is fundamentally different from the others in the sense that it does not require the
blocking graph. Its functionality revolves around the individual entities such that for every entity
e;, it estimates the weights of its co-occurring entities with a single iteration over the contents of
the associated blocks B;. To facilitate this procedure, the Preprocessing stage simply transforms
the output of Block Filtering into a block collection.

This is performed with a single MapReduce job that is presented in Figure 3.9. The map func-
tion receives the id of an entity e; as input key and the associated blocks B; as input value. For
every block by € B;, it simply emits its id k as the key and the id of the entity i as value. Then,
MapReduce groups together all pairs with the same key, thus reassembling all blocks. In more de-
tail, the reduce function receives as input key the id k of a specific block by = {e;, ¢}, ..., en}, while
the input value comprises the ids of the corresponding entities: value={i, j,..., m}. Without any
further processing, it emits the same (key, value) pair as output.

3.4.4 Stage 3: Pruning (WNP)

WNP refines the blocking graph by processing every node neighborhood independently of the
others. For every node, it discards the incident edges that have a weight lower than the average
edge weight of the neighborhood. We propose three parallelization strategies for this algorithm —
one for every Preprocessing strategy. They all require a single MapReduce job. You can refer to [33]
for the rest of the pruning schemes, as well as to [37] for the scalable top-k MapReduce algorithm,
used for the implementation of CEP.

Edge-based Strategy

The functionality of this strategy is outlined in Figure 3.10 — together with the comparison-based
strategy. They share the same reducer, but they differ in the mapper, due to the different input
they receive.

In more detail, Figure 3.10(a) depicts the edge-based map function. It takes as input key the id
of an individual edge <v;, v;> (i.j) and as input value the corresponding weight (w;;). To ensure

58 Chapter 3. Meta-Blocking

MAP function pseudo-code I | REDUCE function pseudo-code |

1: Input 1: Input

Key: entity ids defining edge <n,n>, i.j Key: id of entity e;, i

Value: total weight of <n,n>, wy; Value: list of of pairs < j.w;; >, V
2: Output 2: Output

Key: entity id of the one node, i Key: entity ids of retained edge <n;,n;>, i.j

Value: entity id of the other node with Value: total weight of <n,n>, w;;

the edge weight, j. w;; 3:w; = getMeanWeight(V);
3:emit(i, j.w;); 4:for each j.w,; € V loop
4:emit(j, i.wy); 5: if (w; >w;)

(a) Edge-based strategy 6: emit(i.j, wy);
7: end loop

1: Input

Key: id of block b k

Value: V = {i. B;. X;,j. Bj. X;, .}
2: Output

Key: entity id of the one node, i

Value: j.wy
3: for each c;; € by. comparisons() loop
4: if (isNonRedundant (c;;) = true)
5: compute w;; from B;. X;, B;. X; ;
6: emit(i,j.wv) e:mit(j,i.wH);
8: end loop

(b) Comparison-based strategy

Figure 3.10: Pseudo-code interpretation of (a) the edge-based and (b) the comparison-based
strategy for WNP. They share the same reduce function.

that each reducer gathers all edges adjacent to a specific node, it emits two (key, value) pairs
—one for each of the adjacent entities. In each case, the key contains one of the entity ids (i or j),
while the value concatenates the other entity id with the edge weight (j.w;; or i.w;;).

The reduce function in Figure 3.10 receives as input key the id i of an entity e; that defines
a neighborhood in the blocking graph G. Its input value comprises the adjacent node/entity ids
concatenated with the respective edge weights. From them, it estimates the average weight of the
neighborhood, i0;, in Line 3. Then, in Lines 4-7, it iterates over all adjacent edges and for every
edge <v;, v;> with a weight higher than the average one, it emits a pair (i.j, w;;).

Comparison-based Strategy

The map function of this strategy appears in Figure 3.10(b). It operates on the enriched descrip-
tion of an individual block by: the input key contains its id (k), while the input value is of the form
value ={i.B;.X;, j.Bj.Xj,...}; thatis, it comprises the corresponding entity ids, the blocks ids asso-
ciated with each entity and the local information required by the selected weighting scheme. For
EJS, this information contains the node degree (X;=|v;|), for ARCS it contains the cardinalities of
the blocks in B; (X;={||b;l| : b; € B;}) and for all other weighting schemes it is empty. The mapper
iterates over all comparisons in the given block (Line 3). For every non-repeated comparison, it
computes the corresponding edge weight from the associated block ids and the local information
X; of the weighting scheme (Lines 4-5). Then, it emits two (key, value) pairs, one for each of
the adjacent entities (Line 6) — just like the mapper in Figure 3.10(a).

Example 3.3. Figure 3.11 shows an example that applies this functionality in combination with
the JS weighting scheme to the output of Figure 3.8. In the map function, for the comparison e; -ez,
we emit the pairs (e1,e2.1/3) and (e, e1.1/3). In the reduce function, we group all the pairs with
key=e, and calculate, for this group, a local weight threshold (e.g., 1/3). Then, for the group of ey,

3.4. Scaling Meta-Blocking to Very Large Entity Collections 59

Key Value
Key Value e |e,1/3| _ Key Value
.1/3
e, | e, 1/ e, |e;2/3 E)el,% 2/3
€ erl;:" e, | e,1/4 § - :
e;|e;2/3 —
Key Value e;|e.2/3 e |e/3|[z
[eyby b, bgl, e, |en1/2 | ||a g pyeaes |12
Dl le,|e1/2||§
by | leyby], E e |ea2|||2 °
.| ey . J
[e3,by,b,]] E- y
. N e;|e.2/3 | —
T o |ere;|2/3
ley,by,babel, e, |e,1/4 5| ex1/2||B |
b, | lexbyby], A ks
lesby be] o | eut/t & el E]
- e3 e4'1/3 = ()
e, | e;1/3 | e 1/4 (=
AL et 2 |slese,|1/3
e,|e;1/3 E

Figure 3.11: An example of the comparison-based strategy for WNP, using the JS weighting
scheme.

we emit only the pairs with a weight higher than 1/3, i.e., e1 -es, which has a weight of 2/3.

Entity-based Strategy

The outline of this strategy appears in Figure 3.12. Its map function receives as input key the id k
of block by and as input value the entity ids contained in by. For every entity e; € by, it simply
emits its id as key (i.e., key=i) and the entire block by as value (i.e., value=by). In this way, the
reducer aggregates the co-occurrence bag of entity e;, i.e., the ids of all entities that share at least
one block with e;. The frequency of an entity e; in this bag amounts to |B; j|, the number of blocks
it shares with e;. This is the core information required by all weighting schemes for estimating the
corresponding edge weight w; ;.

Based on this rationale, the reduce function estimates the edge weights using two data struc-
tures, which are initialized in Line 3: the array frequencies, which gathers the number of ap-
pearances of each entity, and the set setOf Neighbors, which aggregates the ids of the distinct
co-occurring entities. For every entity in the co-occurrence bag, the reducer updates its frequency
in the array and adds it to the set of neighbors (Lines 4-7). Subsequently, it estimates the weights of
the edges incident to e; from the distinct neighbors in setO f Neighbors (Lines 9-10). At the same
time, it derives the average weight of the neighborhood, i, with the help of two counters (Lines
8 & 11-14). The final loop in Lines 15-19 repeats the estimation of edge weights and retains those
exceeding w; the ids of their adjacent entities are emitted as keys and their weights as values.

Note that after the loop in Lines 4-7, setOf Neighbor s contains the id of the neighborhood’s
center, e;. Given that e; co-occurs with itself in all blocks, its edge weight would be equal (or
close) to 1 for all weighting schemes. To avoid retaining the meaningless comparison c; ; and to
avoid distorting the weight threshold i, we remove i from setOf Neighbors at the end of the
loop. For ease of presentation, we have excluded this operation from the outline of the reducer in

60 Chapter 3. Meta-Blocking

MAP function pseudo-code | | REDUCE function pseudo-code I
1: Input 1: Input
Key: id of block by k Key: id of entity e;, i
Value: list of entity ids, by, = {i,J, ..., m} Value: co-occurrence bag, f;
2: Output 2: Output
Key: id of entity e;, i Key: entity ids of retained edges <n;,n;>, i.j

Value: total weight of <n,n>, wy
3: frequencies[] < {}; setOfNeighbors & {};
4: for each j € V loop
5: frequencies| j 1++;
6: setOfNeighbors .add(j);
7: end loop
8: totalWeight = 0; totalEdges = 0;
9: for each j € setOfNeighbors loop

Value: input value
3:for each j € by loop
4: emit(j, by);
5: end loop

10: wy= getWeight (i, , frequencies[j]);
11: totalWeight +=w; ;

12: totalEdges ++;

13: end loop

14: w = totalWeight / totalEdges ;

15: for each j € setOfNeighbors loop

16: w;; = getWeight (i, , frequencies(j]);
17: if(w< Wy)

18: emit(i.j,wu)

19: end loop

Figure 3.12: Pseudo-code interpretation of the entity-based strategy for WNP.

Figure 3.12.

For the same reason, we have simplified the use of the function getWeight() in Lines 10 and
16. In practice, its arguments depend on the selected weighting scheme:

« For CBS, it simply needs the array of frequencies as input, since w; j=frequencies[j].

o For ECBS and JS, it additionally requires the number of blocks containing e; and e;. This
information is provided by an array that contains the number of blocks for all input entities. Due
to its small size, this array can be loaded in memory in all available nodes.

e For EJS, getWeight() additionally requires the node degree corresponding to every entity.
This is equal to the number of non-repeated comparisons involving every entity and is computed
through an additional MapReduce job. This job has almost the same functionality as Figure 3.12,
butits reduce function stops at Line 7, only emitting the size of the set of neighbors for each entity
(without counting the frequencies).

e For ARCS, getWeight() requires only the cardinality of the blocks shared by every pair
of entities, and not the frequency of their co-occurrence. Given that the reducer receives a list
of whole blocks in its input value, the cardinality of each such block and the weight of each co-
occurring entity can be directly computed in the first for loop (starting at Line 4). The rest of the

process remains the same.

3.5 Load Balancing

A typical bottleneck in MapReduce algorithms is the unbalanced workload that is assigned to the
map or reduce tasks in each MapReduce job. In practice, data follow a skewed distribution, which
results in groups of data being significantly larger than others. The map or reduce tasks that pro-
cess these larger groups need substantially more time to finish, determining the efficiency of the
whole job. Load balancing, indeed, affects both phases of the MapReduce job, as the reduce phase
cannot start processing the output of the map phase, until all map tasks have finished, and the job

3.5. Load Balancing 61

is not finished unless all reduce tasks are completed.

3.5.1 Default Load Balancing

The default load balancing implementation of Hadoop is a hash-based algorithm, which assigns
each group of data, determined by the output key of the map phase, to a bucket in a hash table.
The buckets correspond to data partitions, each of which is input to a distinct reduce task. Con-
sequently, the number of data partitions is equal to the number of reduce tasks. Notice that a
reduce task can be assigned to more than one keys, since a bucket in a hash table corresponds to
more than one hashed keys. This means that the default hashing-based load balancer of Hadoop,
given a good hash function, can achieve a very good distribution in the number of keys that each
partition (reduce task) will receive. However, in skewed data, this does not guarantee a balanced
workload.

For example, assume that we have p = 10 partitions, i = 100 distinct keys k;, ..., k;, each corre-
sponding to a word, ordered in descending frequency, and each key k; has |k;| values, where the
distribution of | k;| abides by Zipf’s law. Assuming we have 1,000 values in total, i.e., }_ |k;| = 1,000,
then |k;| = 1,000~ﬁ ~ 192, |ko| = |k11/12 =96, ..., |kigol = |k11/100 = 2. The default balancer of
Hadoop would ideally assign i/p = 10 keys per partition. Thus, the partition that will receive the
most frequent key k;, associated with 1/5 of the total values, will also receive 9 more keys, and it is
highly likely that this partition will be one of the slowest to process.

In the case of entity resolution algorithms, the imbalance of the workload is even greater, as
the keys typically correspond to block ids, and the values correspond to entities in those blocks,
which have to be compared. Hence, the workload of each reduce task is quadratic to the number
of input values it receives. In the previous example, the total number of comparisons would be
Y 1kil-(lk;l|—1)/2 = 64,500, while the biggest block k; would yield 18,336 comparisons, i.e., ap-
proximately 1/3 of the total comparisons.

3.5.2 MaxBlock Load Balancing

To address this issue, we developed a specialized algorithm for load balancing, named MaxBlock.
Our goal is to split the input blocks into partitions with a balanced number of comparisons. In
order to ensure better results, the number of partitions is determined dynamically. Intuitively, our
load balancing strategy is to assign the biggest block to a partition of its own and set the number
of comparisons in this partition as the upper threshold of comparisons for every other partition.
Then, we create a new partition and keep adding blocks to this new partition, until this threshold
is reached. When the threshold is reached, we create a new partition, and continue this process
until all blocks have been assigned to a partition.

The functionality of MaxBlock is outlined in Algorithm 1. It sorts the block collection in de-
scending cardinality (Line 1) and removes the first and largest block, by (Line 2). The maximum
computational cost of each partition, maxCost, is set equal to the cardinality of by (Line 3). A par-

62 Chapter 3. Meta-Blocking

Algorithm 1: MaxBlock

Input: B the current block collection

Output: P the set of block partitions

B’ — sort(B); // sort in descending cardinality
by — B'.remove(0); // remove largest block
maxCost — ||bgll; // max comparisons per partition
Py — {by}; // first partition

Q — {Py}; // priority queue, sorting partitions in ascending cost
while B’ # {}do // while not empty

b; — B'.remove(0); // remove first block
Pheaa — Q.poll(); // get lowest cost partition
totalCost — ||b;|| + Ppeqq.currentCost();

if totalCost < maxCost then

| Phead — Pheaa U {bi}; // add to partition
else

© 0 NG kR W N -

_
N = O

P; — {b;}; // create new partition
| Q.add(P;); // add to queue

15 Q.add(Ppeqq); // place back to queue
16 if B = {{then // if all blocks were processed

_-
=W

17 Pjeaa — Q.poll(); // get smallest partition

18 if isRemnantCluster(Pjeq4) = true then

19 B' — B' U Ppega; // re-process its blocks
20 maxCost — maxCost + Pjpqq.currentCost() / |Q|;
21 else

22 L Q.add(Ppeqq);

23 return Q;

tition is created for by (Line 4) and placed in a priority queue Q, keeping partitions in ascending
order of comparisons (Line 5). Subsequently, our algorithm iterates over the remaining blocks and
examines whether the current block fits into the partition at the head of the queue, Pj,.,4 (Lines
6-10); that is, it checks whether their combined cardinality is lower than maxCost. If so, the cur-
rent block is added to Pj.,4 (Line 11); otherwise, it is placed in a new partition that is added to the
queue (Lines 13-14). Then, Pjqq is placed back to Q (Line 15).

Example 3.4. Figure 3.13 abstractly presents the functionality of MaxBlock. After sorting the input
blocks in descending order (Figure 3.13 (a)), we create a new partition and place the largest block
(block 1) in this new partition (Figure 3.13 (b)). The number of comparisons in this partition sets
the threshold for the maximum number of comparisons allowed in the remaining partitions. Then,
moving to the next biggest block (block 2), since it doesn't fit in the existing partition, as it violates
the maximum comparisons threshold (Figure 3.13 (c)), we create again a new partition and place
block 2 in it (Figure 3.13 (d)). The same process continues (Figure 3.13 (e)-Figure 3.13 (i)), until all
the blocks have been placed in a partition. At the end, the number of comparisons per partition is
similar.

3.5. Load Balancing 63

(a) (b) ©
____max comparisons _ 8 maxcomparisons

i E
(45)¢] J, (40s5]6) B, (40506]
@ max comparisons | (¢)__ Emfzsan:aa_ri_f@ns () ___ max comparisons,

E]
L I IInﬂ [1 1 J nm L IDIHE

(g) max comparisons | (h) max comparisons (i) max comparisons
L o S LU L S - Pl Ll
__ _]
Lﬂ—l—l E l_-_.d E e 1]]

[unassigned block
[: block accepted in partition .
Ia: block rejected from partition ~ — I hew partition

Figure 3.13: An example of running MaxBlock for load balancing.

As we demonstrate in the experimental evaluation, all partitions share practically the same
computational cost, except for the smallest one, which merely covers a small fraction of maxCost.
Yet, it contains the vast majority of the blocks, with each one involving a handful of comparisons.
This is called remnant cluster and it corresponds to the tail of the power-law distribution of block
cardinalities. To achieve a perfectly flat distribution of costs, our algorithm distributes the blocks
of the remnant cluster to the other partitions.

This functionality is performed by the second if statement in Algorithm 1. Line 16 checks
whether all blocks have been placed into a partition, thus terminating the first iteration. Lines 17
and 18 examine whether the smallest partition is a remnant cluster, i.e., whether it contains more
than 50% of all blocks and their total computational cost is lower than 90% of maxCost. In case
both conditions are satisfied, the blocks of the remnant cluster are put back into the processing list
(Line 19); in addition, maxCost is updated so that their computational cost is evenly split among
the other partitions (Line 20). In case of a negative check, the smallest partition is placed back into
the priority queue and the process is terminated.

On the whole, the time complexity of MaxBlock is determined by the sorting of blocks and the
use of the priority queue, whose operations cost O(log|B|) per block. Therefore, the overall time
complexity is O(|B|log|B|), which means that MaxBlock scales well to large block collections, in-
volving a negligible overhead, as shown in Section 3.6. For example, the actual cost of sorting the

64 Chapter 3. Meta-Blocking

blocks is the cost for sorting up a few million of integer values, each representing a block cardinal-
ity. This operation does not require more than a few seconds.

MaxBlock Implementation

The results of MaxBlock are fed to the Partitioner class, which is responsible for assigning a reduce
task to each key. We have overridden the default Partitioner to just send each key to the partition
that MaxBlock has defined for this key. This approach is primarily used to balance the functions
with quadratic time or space complexity. The former case involves functions that iterate over all
comparisons in a block. For the edge-based strategy, this is the reduce function in the first job
for Stage 2 - Preprocessing (Figure 3.5). For the comparison-based strategy, this case applies to all
map functions for Stage 3 - Meta-blocking (e.g., Figure 3.10(b)).

Quadratic space complexity appears in the case of the entity-based strategy, where the bot-
tleneck is the I/0 overhead of its map function in Stage 3: the size of its output is quadratic with
respect to number of entities in the input value, since the whole block is emitted for each of the
contained entities. As a result, most mappers have to write only a few intermediate key-value pairs,
while those that deal with the bigger blocks have to emit a much larger bulk of data. To address this
issue, we use MaxBlock to balance the output of entity-based Preprocessing (Figure 3.9). Our goal
is to split the blocks into partitions with equal size of representation in bytes. This can be easily
done by redefining the cost of a block as the number of bytes that are required for the compressed
representation of its entities (i.e., after sorting them in ascending id and replacing every id by its
difference with the previous one).

3.6 Experiments

The goal of our experimental analysis is threefold: (i) to demonstrate that our approaches scale
well to large block collections stemming from Web data, (ii) to compare the relative time efficiency
of the edge-, comparison- and entity-based strategies, and (iii) to assess the relative time efficiency
of the various Meta-blocking configurations.

We begin with the setup of our experimental analysis in Section 3.6.1. In Section 3.6.2, we
present a comparison between the default balancer and MaxBlock. In Section 3.6.3, we show the
time efficiency of all strategies for the four pruning schemes in combination with the five weight-
ing schemes; we also discuss their relative time efficiency in view of a similar comparison in the
case of the serialized workflow. Section 3.6.4 analyzes the scalability of the comparison-based
and entity-based strategies, while Section 3.6.5 elaborates on the qualitative performance of the
Meta-blocking techniques. We conclude with a discussion on the findings of our experiments in
Section 3.6.6.

3.6. Experiments

65

Table 3.2: The datasets employed in our experiments.

Ddbpedia Dfreebase
D, D, D, D,
Entities |&] 1,190,733 2,164,040 || 3,157,726 4,204,942
Triples 1.69-10" 3.50-107 || 1.42-108 3.90-107
Attribute Names | 30,757 52,554 37,825 11,108
Triples per Entity | 14.19 16.18 44.84 9.29
Matches 892,579 1,347,266
BF Comparisons 2.58-1012 1.33-1013

3.6.1 Setup

All approaches were implemented in Java, version 7, using Apache Hadoop® version 1.2.0 on a
cluster* with 15 Ubuntu 12.04.3 LTS servers, one master and 14 slaves, each having 8 AMD 2.1
GHz CPUs and 8 GB of RAM. Each node can run 4 map or reduce tasks simultaneously, assigning
1024 MB to each task. The available disk space amounted to 4 TB and was equally partitioned
among the 15 nodes. For Load Balancing, we employed the default mechanism of Hadoop for the
map and reduce functions that involve a processing of linear complexity. For those involving a
quadratic complexity, we distributed the relevant blocks to the available nodes using MaxBlock,
as explained in Section 3.5.2.

Datasets. To evaluate the performance of our approaches, we employ the largest datasets that
have been applied to Meta-blocking. Their technical characteristics appear in Table 3.2.

D gppedia involves entities stemming from two snapshots of the DBpedia® Infoboxes in English,
which chronologically differ by 2 years — D; corresponds to version 3.0rc and D- to version 3.4. In
total, they comprise 3.3 million entities, of which less than 900,000 are common (i.e., they have
the same URL). This dataset has been previously employed in the literature [78, 80-82,92]. The
second dataset, D f;eepase, CONtains entities from the Billion Triple Challenge 2012%. In this case,
D; encompasses the entities from DBpedia and D, the entities from Freebase’. For both KBs, we
have disregarded all URIs that appear in just one triple so as to avoid noisy entity descriptions. In
total, there are 7.4 million entities, of which 1.3 million are common according to the owl:sameAs
statements.

Given that both datasets comprise two individually clean (i.e., duplicate-free) entity collec-
tions, D; and D», they are inherently suitable for Clean-Clean ER. In our experiments, we use both
datasets for Dirty ER, as well, by merging D; and D, into a single dirty entity collection that con-
tains matches in itself. The ground truth is provided by existing owl:sameAs links between Free-
base and DBpedia for D f,¢epase- Since Dgppedia, involves two different snapshots of DBpedia, we

3They are also compatible with more advanced frameworks, such as Apache Spark and Apache Flink.
4provided by GRNET’s ~okeanos (https://okeanos.grnet.gr)

Shttp://dbpedia.org

6https ://km.aifb.kit.edu/projects/btc-2012

7https ://www. freebase.com

66 Chapter 3. Meta-Blocking

Table 3.3: The block collections that were given as input to Meta-blocking.

Ddbpedia Dfreebase

DB¢ DBp FRc FRp
Task Clean-Clean ER Dirty ER || Clean-Clean ER Dirty ER
|B] 1,239,424 1,499,534 1,309,145 4,522,222
[|B]| 4.23-1010 8.00-1010 1.05-101 2.19-10!
BPE 15.30-16.08 14.79 75.55-4.43 40.12
Recall 0.999 0.999 0.979 0.944
Precision 2.11.107° 1.12:107° 1.26:107° 5.82:1076

consider matching descriptions those having the same subject URI.

We used token blocking [78, 81] in order to derive overlap-positive block collections from the
entity descriptions of the two datasets. We also applied Block Purging [81] to the original blocks in
order to discard the extremely large ones that contain almost half the input entities. The technical
characteristics of the resulting blocks appear in Table 3.3. In total, we have four block collections,
two for each ER task, that vary significantly in their characteristics, for example, in the number of
blocks per entity (BPE).

Measures. To assess the effectiveness and efficiency of the (restructured) block collections, we
employ the same measures as the ones in Chapter 2, i.e., Recall, Precision, RR, and H3R. To assess
the time efficiency of (Meta-)blocking methods, we use the Overhead Time (OTime). This is the
time in minutes that intervenes between receiving an overlap-positive block collection as input
and returning the restructured blocks as output. The lower its value is, the more time-efficient is
the corresponding method.

3.6.2 Load Balancing

In this section, we examine the performance of load balancing with respect to the computationally
most intensive functions of the three strategies for parallel Meta-blocking, i.e., the functions with
quadratic time or space complexity.

Remember that quadratic time complexity appears in the reduce function of the first Prepro-
cessing job for the edge-based strategy (see Figure 3.5) as well as in all map functions of Stage 3
for the comparison-based strategy (see Figure 3.10(b)). All these functions iterate over all compar-
isons in the input blocks in order to estimate the corresponding edge weights. As a result, load
balancing aims to split the original block collection into disjoint partitions with (ideally) the same
partition cardinality, i.e., the same total number of comparisons in the blocks of the partition;
every partition is then assigned to one of the available nodes for its processing.

We compare the performance of MaxBlock with two baseline methods: the default balancer
of Hadoop and PairRange. To compare the two baseline methods with MaxBlock, we consider
the distribution of the partition cardinalities they produce. We actually summarize these distri-
butions through their minimum, maximum, median and mean partition cardinalities. The closer

3.6. Experiments 67

Table 3.4: The distribution of partition cardinalities produced by the default load balancer
of Hadoop, PairRange and MaxBlock.

| Partitions | Min Card. | Max Card. | Median Card. | Average Card. | St. Dev. Card. |

Default 223 4.18-107 8.20-107 5.83-107 5.87-107 7.59-10°
DBc PairRange 442 2.71-107 2.71-107 2.71-107 2.71-107 0.48
MaxBlock 442 2.71-107 2.71-107 2.71-107 2.71-107 0.48
Default 223 7.88-107 1.48-108 9.59-107 9.68-107 9.98-10°
DBp PairRange 378 5.74-10" | 5.74-107 5.74-107 5.74-107 0.19
MaxBlock 378 5.74-107 5.74-107 5.74-107 5.74-107 0.19
Default 1,674 3.21-10% 2.35-108 2.02-107 3.14-107 3.01-107
FRc PairRange 2,042 1.45-107 1.45-107 1.45-107 1.45-107 0.48
MaxBlock 2,042 1.45-107 1.45-107 1.45-107 1.45-107 0.48
Default 1,119 9.81-10° 9.81-107 9.01-107 5.84-107 4.64-107
FRp PairRange 1,735 3.76-107 3.76-107 3.76-107 3.76-107 0.27
MaxBlock 1,735 3.76-107 3.76-107 3.76-107 3.76-107 0.27

these measures are to each other, the more balanced is the workload assigned to each node. We ap-
plied all approaches to the input of Stage 2 of the parallelized workflow, i.e., after applying Block
Filtering to the original block collections (see Figure 3.2(b)). The outcomes of our experiments
appear in Table 3.4.

Note that PairRange receives the number of ranges (partitions) as input from the user. This
requires the user to manually inspect the data at hand, which is cumbersome. In our experiments,
we gave PairRange an unfair advantage by using the same number of ranges as those in MaxBlock.
As a result, we observe that the two algorithms produce identical sets of partitions. Most impor-
tantly, though, their partitions exhibit a practically constant distribution of cardinalities across all
datasets: all four measures have identical values, while the standard deviation of the distribution
is lower than 1. This means that the partitions differ by a handful of comparisons in the worst
case.

In contrast, the default balancer yields distributions with much larger variance. For DB¢ and
DBp, it yields a normal distribution, as the median and the average cardinalities almost coincide,
lying close to the middle of the maximum and the minimum ones. The standard deviation is
an order of magnitude lower than the other measures, thus indicating minor differences in the
computational cost of the various partitions. However, the performance of the default balancer
aggravates in the case of FR¢c and FRp, where the standard deviation is almost equal to the average
cardinality. Another indication is that the difference between the minimum and the maximum
cardinality raises to 4 and 1 orders of magnitude, respectively. Their medians suggest that the
distribution of FR¢ is dominated by partitions smaller than the mean cardinality, and vice versa
for FRp.

These patterns indicate that serious bottlenecks are expected to rise in the case of the default
load balancer of Hadoop. For this reason, we did not measure the actual running time it yields.

68 Chapter 3. Meta-Blocking

Neither do we present the running time of PairRange. The reason is that it is almost identical with
that of MaxBlock, which appears in Section 3.6.3. In fact, PairRange is slower than MaxBlock by a
couple of minutes, due to the higher overhead it involves: to adapt it to the functions of quadratic
time complexity, an additional MapReduce job is required for both the edge- and the comparison-
based strategy.

In more detail, we can integrate PairRange into the edge-based strategy by modifying the first
reduce function of Figure 3.5 so that a global counter estimates the total number of comparisons,
while the input is emitted without any further processing. Thus, the map function of a second, new
job receives as input an individual block and applies the mapper of PairRange to it. The second
reducer receives a balanced comparison range as input and estimates the corresponding edge
weights (i.e., it applies the reduce function of Job 1 in Figure 3.5). Finally, the third job applies Job
2 of Figure 3.5 without any modifications.

For the comparison-based strategy, PairRange needs to extend the reduce function of Prepro-
cessing in Figure 3.7 so that it estimates the total number of comparisons. Then, we need to add a
new MapReduce job to every pruning algorithm; the map function receives individual blocks and
applies the mapper of PairRange to them, while the reduce function receives a balanced com-
parison range as input and applies the functionality of the map functions in Figure 3.10(b),i.e., it
estimates the corresponding edge weights. Finally, a second MapReduce job is required for every
pruning algorithm; it consists of an identity mapper and the reduce functions in Figure 3.10(b).

Regarding the entity-based strategy, the goal of load balancing is to address the quadratic
space complexity that appears in all map functions of Stage 3 (see Figure 3.12).This can be achieved
by balancing the output of Preprocessing in Figure 3.9. Yet, among the three load balancing mech-
anisms, only the default one provided by Hadoop applies to this task without any modifications.
As explained in Section 3.5.2, MaxBlock needs to adopt a new cost function, which expresses the
disk space that is occupied by the compressed representation of the entities contained in every
block.

However, PairRange cannot consider alternate cost functions, as it is inherently crafted for bal-
ancing comparisons. To adapt it to the entity-based strategy, we need to modify its functionality
so that every block is entirely contained in a single comparison range (partition). In other words,
we need to ensure that the comparisons of no block are spread across multiple partitions; other-
wise, we have to alter the functionality of the entity-based mappers of Stage 3, which is out of the
scope of this evaluation. To meet this requirement, the number of comparison ranges should be
equal to or less than those of MaxBlock. We actually consider two configurations: using the same
number of partitions as MaxBlock (PairRangel) and using half the partitions of MaxBlock (Pair-
Rangell). Note that PairRangel does not necessarily produce the same distributions as PairRange
in Table 3.4, because some blocks are larger than the remaining space in their partition, but are
not broken into smaller chunks.

To evaluate the performance of load balancing for the entity-based strategy, we do not con-
sider the distribution of comparisons among partitions. Instead, we are more interested in the

3.6. Experiments 69

Table 3.5: The wall-clock time (in minutes) of Meta-blocking using the default Hadoop bal-
ancer, the two variations of PairRange, and MaxBlock for the entity-based strat-
egy over DB¢, using the CBS weighting scheme across all pruning algorithms.
The overhead of executing each load balancing algorithm, compared to the de-
fault balancing, is common for all pruning algorithms and is included in the wall-

clock times.
| Overhead | CNP [WNP | CEP [WEP |
Default 0 88 73 163 | 147
PairRangel 2 77 68 145 | 130
PairRangell 1 83 74 156 | 139
MaxBlock 3 74 65 145 | 123

compressed representation of blocks in bytes and the corresponding I/0 overhead. We indirectly
evaluate this aspect through the overhead time of all entity-based pruning algorithms. Table 3.5
presents the corresponding performance on top of DB¢, using the CBS weighting scheme for
each algorithm. The rest of the datasets and weighting schemes yield similar results and are omit-
ted for brevity.

We observe that MaxBlock exhibits the highest overhead, compared to the default balancer,
due to its cost function, which compresses the representations of blocks before clustering them
into partitions. PairRangell is faster than PairRangel, due to the lower number of partitions it
involves, while the default balancer has 0 overhead, as it is the baseline of the overhead of the load
balancing algorithms. Regarding the overall time, we observe that MaxBlock consistently provides
the best execution times, with the default balancer being the least efficient one in most cases: it
yields slower times than MaxBlock by 12% (CEP) to 20% (WEP). The two variations of PairRange
fluctuate between these two extremes, with PairRangel being consistently more efficient, because
the larger number of partitions it employs ensures a more balanced I/O overhead across the nodes.
Note that PairRangell appears to be less time-efficient than the default load balancer over WNP,
but their difference should be attributed to its execution overhead.

On the whole, we conclude that MaxBlock consistently outperforms the default mechanism
of Hadoop across all parallelization strategies and pruning algorithms, even if it comes with a
small execution overhead, compared to the default balancer. Moreover, MaxBlock is scalable —
O(|B| -log|BJ) - and terminates within a few minutes for all datasets, as shown in Table 3.5.

Compared to PairRange, MaxBlock has three advantages: (i) It determines the number of parti-
tions automatically, through a data-driven procedure. Instead, PairRange receives this parameter
as input, requiring the user to specify it, after manually inspecting the data at hand. (ii) For the
edge- and comparison-based parallelization strategies, MaxBlock consistently yields lower overall
execution times than PairRange, as it saves a whole MapReduce job. (iii) MaxBlock is more flex-
ible and generic than PairRange. Thus, it can be easily adapted to the entity-based strategy, by
incorporating a cost function that tackles quadratic space complexity. Instead, PairRange is only

70 Chapter 3. Meta-Blocking

Table 3.6: The block collections after Block Filtering.

Ddbpedia Dfreebase
DBc DBp FRc FRp
Blocks |B] 1,239,315 1,499,422 [[1,308,970 4,521,129
Block comparisons ||B|| | 1.20-10° 2.17-10' || 2.96-10'° 6.53-10'°
BPE 12.12-12.68 11.72 57.28-3.86 19.70
Recall 0.998 0.998 0.961 0.907
Precision 7.44:107° 4.11-107° || 4.38-10™°> 1.87-107°

suitable for balancing functions that suffer from quadratic time complexity, due to the number of
comparisons they process.

3.6.3 Time Efficiency

We applied the three parallelization strategies of all Meta-blocking techniques to the four datasets
2 times and measured the corresponding average Overhead Time. The outcomes are presented
in Table 3.7. Note that the edge-based strategy was inapplicable to FR¢c and FRp, as its space
requirements exceeded the available 4 TB of disk space. For the other two datasets, we terminated
prematurely the processes that ran for more than 6,000 minutes (100 hours), all of which were still
far from completion. Below, we analyze the performance of each stage of the parallelized workflow
of Meta-blocking.

Stage 1. The goal of this stage is to apply Block Filtering to the input block collection. In
Table 3.7, we observe that the basic and the advanced strategy exhibit practically equivalent over-
head times. Remember that the former involves two jobs that order once and globally the input
blocks, whereas the advanced strategy entails a single job that sorts repeatedly and locally the in-
put blocks. We can conclude, therefore, that the basic strategy offsets the cost of using two jobs
by avoiding the computations that are repeated by the advanced one. However, the main reason
for the equivalent overhead times is the linear time complexity of Block Filtering and its simple
functionality that processes very large block collections at a negligible cost.

It should be stressed here that the exemplary performance of Block Filtering justifies the lack
of a specialized load balancing algorithm for the functions with linear complexity.

Also worth noting is the qualitative performance of Block Filtering, which is presented in Ta-
ble 3.6. We observe that despite its simple functionality, Block Filtering conveys significant en-
hancements in precision at a minor cost in recall. The total cardinality of all block collections is
reduced by more than 60%, while their recall drops by less than 2%. As a result, the precision raises
by 3 times, on average. The number of blocks remains almost intact, but the average number of
blocks per entity (BPE) is significantly reduced. In this way, the computation of edge weights is
accelerated to a considerable extent.

Stages 2 & 3. To compare the parallelization strategies for Meta-blocking on an equal basis, Ta-
ble 3.7 considers the performance of Stages 2 and 3 as a whole; note that the edge-based strategy

3.6. Experiments 71

Table 3.7: Overhead Time (OTime) in minutes for all Meta-blocking techniques across the
four real datasets.

DBc DBp FR¢ FRp
Block | Basic 2 2 3 6
Filt. Adwv. 2 2 3 6
Edge | Comp. Entity Edge | Comp. Entity || Comp. Entity || Comp. Entity
Based Based Based Based Based Based Based Based Based Based
ARCS 252 89 184 >6,000 135 431 1,319 1,244 3,359 3,065
CBS 222 55 145 250 87 363 781 1,343 2,556 2,842
CEP ECBS 240 78 210 278 110 487 841 1,652 2,663 3,257
JS 223 60 190 279 94 466 777 1,480 2,574 2,832
EJS 1,996 116 | >6,000 >6,000 180 | >6,000 1,166 | >6,000 4,090 | >6,000
ARCS 554 370 73 >6,000 625 191 2,109 605 3,934 970
CBS 491 301 74 559 527 186 1,488 643 2,514 995
CNP ECBS 555 383 76 639 633 197 1,949 665 3,058 1,187
JS 534 363 83 618 620 210 1,637 656 2,546 977
EJS 2,645 430 142 >6,000 733 382 2,319 1,069 5,222 1,993
ARCS 203 65 389 >6,000 99 319 520 1,006 1,802 1,967
CBS 220 50 123 250 76 338 501 1,088 1,414 2,031
WEP | ECBS 219 54 123 254 83 342 555 1,164 1,438 1,945
JS 219 54 132 254 84 340 540 1,097 1,431 2,093
EJS 1,993 81 204 >6,000 124 517 837 1,555 2,419 3,025
ARCS 562 363 63 >6,000 647 185 2,068 685 3,904 977
CBS 498 304 65 569 539 196 1,534 541 2,671 1,313
WNP | ECBS 568 389 73 658 647 193 1,971 588 3,046 1,238
JS 553 373 74 641 644 202 1,636 690 2,790 1,176
EJS 2,626 411 142 >6,000 700 379 2,317 1,041 5,214 2,211

was applied only to DB¢ and DBp, because its space requirements over the two larger datasets
exceeded the available disk space (4 TB). Special care has been taken to highlight the relative ef-
ficiency not only of the three strategies, but also of the pruning and weighting schemes. For this
reason, we examine these aspects separately.

Parallelization Strategies. We observe that when moving from left to right in Table 3.7, i.e.,
from the smallest block collection to the largest one, the Overhead Time increases analogously
for all parallelization strategies. Even for the largest dataset, though, most Meta-blocking meth-
ods require less than 2 days (~3,000 minutes), thus being much faster than the serial processing,
which requires almost 8 days over the high-end server described in Section 3.1. Most importantly,
though, there is a considerable discrepancy among the time-efficiency of the three parallelization
strategies, which designates that the parallelization of Meta-blocking is not a trivial task.

In more detail, the edge-based strategy is consistently slower than the comparison-based one.
Their difference is particularly intense in the case of edge-centric pruning schemes, but is signifi-
cantly reduced for the node-centric ones. There are two exceptions that prove this rule: for CNP
and WNP in combination with JS, the edge-based strategy is faster (by less than 3 minutes) than
the comparison-based one over DBp.

72 Chapter 3. Meta-Blocking

Regarding the entity-based strategy, it is significantly faster than the other strategies in the case
of the node-centric pruning schemes across all datasets. For DBc, for instance, it is 5 times faster
than the comparison-based strategy of WNP in combination with all weighting schemes. Com-
pared to the edge-based strategy, it is 9 times faster, on average, for the same pruning scheme and
dataset. In the case of the edge-centric algorithms, though, the entity-based strategy outperforms
only the edge-based one; compared to the comparison-based strategy, it requires at least twice as
much time.

There are two factors that determine the relative performance of the parallelization strate-
gies. The first one is the number of MapReduce jobs they involve. The larger this number is, the
higher the overhead becomes and the less efficient is the corresponding strategy. This explains
the inferior performance of the edge-based strategy, when compared to the comparison-based
one: its Preprocessing involves one more job in order to calculate the weights of all edges in the
blocking graph. The same holds for the entity-based strategy, when it is combined with the edge-
centric pruning schemes; in this case, the entity-based strategy employs one more job than the
comparison-based one in order to calculate the global pruning criterion in the absence of prepro-
cessing computations in Stage 2.

The second important factor for the time efficiency of the parallelization strategies is the I/O
they involve between the independent nodes of the cluster. The higher the I/0 of a strategy is, the
higher is its overhead and the lower is its time efficiency. Comparing the edge- and comparison-
based strategies in this respect, the former involves a higher I/0, because it materializes an edge
for every comparison in the input blocks — even the repeated ones. In contrast, the comparison-
based approach creates a distinct edge only for the non-repeated comparisons. In our datasets,
the latter approach yields around 30% less comparisons. An even more time-efficient approach is
implemented by the entity-based strategy, which sends no edges through the network. Instead, it
exchanges the nodes of the blocking graph, as their number is typically orders of magnitude lower
than the number of edges. By attaching the necessary information to every graph node, the edges
can be created, weighted, and pruned locally, inside the independent nodes of the cluster.

Overall, we recommend using the entity-based strategy for node-centric pruning algorithms,
and the comparison-based strategy for edge-centric ones.

Pruning Schemes. WEP is the most efficient method for the edge- and comparison-based
strategies across all datasets, because it involves the simplest processing. For these strategies, the
second fastest method is CEP, since it merely adds one job to the functionality of WEP in order to
convert the cardinality pruning criterion into a weight one. For the entity-based strategy, though,
WEP and CEP are the least efficient methods, as they require 1 and 2 additional jobs, respectively,
in order to compute their pruning criteria.

For this strategy, the node-centric pruning schemes, CNP and WNP, are the most efficient
ones, involving a single job. In contrast, they are the most time-consuming schemes for the other
strategies, since they process every edge twice, inside the neighborhoods of both adjacent nodes.

It is interesting to compare these patterns with the relative time efficiency of pruning schemes

3.6. Experiments 73

500

mCEP CNP % WEP = WNP
400 =
7= _
oTime 300 7= — = = =
(min) g0 é = E = %fi
= = = 7= 7=
100 7= I 7= I //:; I 7; I 7=
A EN =000
ARCS cBs ECBS I Els

Figure 3.14: Overhead Time in minutes for all configurations of the serialized workflow over
DBc.

in the case of serial processing. To this end, Figure 3.14 presents the Overhead Time of all seri-
alized workflows over the DB dataset. The measurements were performed using the high-end
server mentioned in Section 3.1. Similar patterns were exhibited for the other datasets and are
omitted for brevity. First of all, we observe that the overhead of serial processing is significantly
higher than that of parallel processing in the vast majority of cases. Second, the pruning schemes
exhibit a similar behavior as in the case of the edge- and comparison-based strategies: the edge-
centric ones, CEP and WEP, are significantly faster than their node-centric counterparts, CNP
and WNP. However, the relations are different between cardinality- and weight-based schemes:
CEP and CNP are faster than WEP and WNP, respectively, because the latter involve an addi-
tional iteration over the edges in order to estimate their pruning criterion. Thus, the most time-
efficient serial algorithm overall is CEP, while WNP remains the most time-consuming one.

Weighting Schemes. For the edge-based strategy, CBS is the fastest weighting scheme, as the
output value of its first reduce function in Stage 2 is empty. ARCS, ECBS, JS add information
to this output value and, thus, require more time and I/0 in order to process it. Given that they
involve the same number of jobs, they exhibit similar overhead times. EJS requires two additional
jobs in order to estimate the degree of every node, thus being the most time-consuming weighting
scheme.

For the comparison-based strategy, we observe slightly different patterns. CBS, ECBS and
JS yield similar overhead times, because they basically perform the same computation: for each
pair of entities, they estimate the intersection of the associated block lists. They are faster than
ARCS and EJS, as they rely exclusively on the information contained in the enriched input (i.e.,
the ids of the blocks associated with every entity). In contrast, EJS requires two additional jobs
and is the most time-consuming weighting scheme in all cases. In most cases, ARCS lies between
these two extremes, as it requires additional information and, thus, involves higher I/O than the
most efficient schemes.

For the entity-based strategy, the differences between the weighting schemes are minor, except
for EJS, which again requires an additional job and is, thus, the most time-consuming scheme.
Among the other schemes, CBS and ARCS are slightly faster, since they do not load in memory

74 Chapter 3. Meta-Blocking

14 - 14
-« linear «++ linear
CBS

—ECBS

CBS

—ECBS
9

—JS

9
—JS

speedup | ARCS speedup | —ARCS

4 EIS

EJS

4

4 9 14 4 9 14
number of nodes number of nodes

(a) (b)

Figure 3.15: Speedup over DB¢ of (a) the comparison-based strategy for WEP, and (b) the
entity-based strategy for CNP.

the array with the number of blocks per entity, unlike JS and ECBS.

In the case of the serialized workflow, Figure 3.14 shows that ARCS is consistently the most
time-consuming weighting scheme, because it produces very low values as edge weights (with
tens of decimal digits). It is followed by EJS, which again involves higher computational cost
in order to estimate the degree of every node. The remaining schemes share almost the same
overhead, as their processing is very similar, computing the intersection of block lists.

3.6.4 Scalability

To assess the scalability of the comparison- and entity-based strategies, we estimate the speedup of
their most time-efficient pruning schemes. That is, we measure the extent to which their overhead
time decreases as we increase the number of available cluster nodes. Specifically, we apply the
comparison-based WEP and the entity-based CNP to DB¢ in combination with all weighting
schemes. We increase the number of slave nodes from 4 to 9 and 14; in every case, there is an
independent master node. The outcomes are presented in Figures 3.15(a) and (b) for WEP and
CNP, respectively. In every figure, there is a dotted diagonal line, which illustrates the ideal case,
where the speedup is linear to the number of nodes.

In Figure 3.15(a), we observe that all the weighting schemes show a speedup close to the ideal,
with the exception of EJS. ARCS seems to be the weighting scheme that best exploits the avail-
able resources, showing a speedup of 12.92 when using 14 nodes. ECBS, CBS and JS have al-
most identical speedup values, ranging from 11.8 to 12.3, when using 14 nodes. This is because
they basically perform the same computations, as explained previously. For EJS, the speedup is
constantly lower than that of the other weighting schemes, because of the quadratic complexity
of its additional jobs.

Regarding CNP, Figure 3.15(b) indicates that the deviation in the speedup of the various weight-
ing schemes is much smaller than for WEP. Indeed, the speedup for 14 nodes fluctuates between
8.8 for ARCS and 9.5 for ECBS. This time EJS does not yield the worst speedup, as its additional

job involves a linear complexity instead of a quadratic one.

3.6. Experiments 75

mCEP CNP =WEP ¥ WNP
1.0 ,
= =7 ., , 1.0 _
0.8 g g g % 08 %} %‘ %
0.6 g % EJ/ %% 0.6 % % =,
Re 5%/ ;E///// i% %/ RR (), = =
-85 HE s B Q) —
0.0 %/ g/ g/ ;_/ 0.0 E/é g& ' %
DBc DBd FRe FRd DBc DBd FRc FRd
(a) (b)
0.04 1.0 :
0.8 =
0.03 - o E é:/% l)
pr 0.02 . |'|3R0.4 = :/%
0.01 = 02 % g g
0.00 o - L l e Il 0.0 = % % ‘
DBc DBd © FRc FRd Bd " FRc FRd

Figure 3.16: Average performance of the four pruning algorithms with respect to (a) Recall,
(b) RR, (c) Precision, and (d) H3R.

In practice, these patterns indicate that the more cluster nodes we used, the faster was the exe-
cution of both strategies. For WEP, the improvement in time was almost as much as the the num-
ber of additional resources (until a certain point), while for CNP, n additional nodes improved
the Overhead Time by 2n/3 times. The reason is that WEP is able to balance the workload of its
nodes right after Preprocessing, i.e., before applying Meta-blocking in Stage 3. In the case of CNP,
though, this is impossible, since the workload of every reduce function in Stage 3 is not known
a-priori.

3.6.5 Qualitative Results

To assess the quality of the restructured blocks produced by Meta-blocking, we consider their per-
formance with respect to the four relevant measures of Section 3.6.1. For every pruning scheme
and dataset, we estimated the average value and the standard deviation of every measure across
the five weighting schemes. The outcomes are presented in Figures 3.16(a) to (d). Remember that
in all diagrams, the higher a bar is, the better is the corresponding performance. We should also
note that all the MapReduce implementations are exact adaptations of their serialized counter-
parts, which means that the qualitative results of the serialized and the parallel implementations
are identical.

Starting with Figure 3.16(a), we observe that the relative recall of the pruning schemes remains
the same across all datasets: the node-centric ones, CNP and WNP, are more robust and de-
tect more matches than their edge-centric counterparts, CEP and WEP. The cardinality-based

76 Chapter 3. Meta-Blocking

schemes, CEP and CNP, consistently achieve lower recall than the weight-based ones, WEP and
WNP, which exceed 0.8 across all datasets. In fact, CEP and CNP they reduce the original recall
by less than 10%, despite the significant enhancements in efficiency they convey.

Indeed, Figure 3.16(b) shows that WEP consistently achieves an RR close to 0.8, thus saving
80% of the original comparisons. The pruning of WNP is more shallow, as it retains at least one
edge per node. Its RR fluctuates between 0.46 and 0.65, thus saving around half the original com-
parisons. For CEP and CNP, RR is consistently higher than 0.99. In fact, they perform such a
deep pruning that they reduce the pairwise comparisons by 2 to 3 orders of magnitude across all
datasets. This explains their poor recall.

Yet, Figure 3.16(c) demonstrates that CEP and CNP achieve significantly higher precision
across all datasets. Compared to the input blocks, the restructured ones, produced by those
schemes, increase precision by 2 to 3 orders of magnitude. For WEP and WNP, the improvement
is slightly higher than an order of magnitude. This pattern actually indicates a clear trade-off be-
tween precision and recall: the higher precision is for a specific method and dataset, the lower is
the corresponding recall and vice versa.

To identify the scheme that achieves the overall best balance between the identified matches
and the executed comparisons, we use H3R, which is presented in Figure 3.16(d). We observe
that the cardinality-based methods, CEP and CNP, exhibit the highest values across all datasets,
fluctuating between 0.97 and 0.67. The difference between the two methods is small, even though
CNP retains twice as many comparisons as CEP, on average. Still, CNP should be preferred, since
it retains the best comparisons per entity and, thus, is more robust to recall.

These patterns are in accordance with earlier findings about the relative performance of the
four pruning schemes [82].

3.6.6 Discussion

The results of our experimental analysis demonstrate that the proposed strategies for parallel
Meta-blocking yield significant improvements in the execution time, thus enabling ER in volu-
minous datasets. However, simple strategies cannot give us the full benefit: we observed that the
edge-based strategy leads to significantly higher space requirements and is consistently slower
than the comparison- and entity-based ones. The experiments also showed that our load bal-
ancing algorithm consistently outperforms the default balancer of Hadoop, assigning an almost
identical workload to all the nodes of the cluster.

Among the four pruning schemes, the overall winner is CNP, as it involves the most time-
efficient functionality (when using the entity-based strategy) and achieves the best balance be-
tween effectiveness and efficiency in terms of H3R (CEP exhibits similar H3R values, but is sig-
nificantly less robust to recall than CNP). The five weighting schemes exhibit similar quality re-
sults and are almost equivalent with respect to time efficiency, with the exception of EJS, which
is much slower and less scalable than the rest.

3.7. Conclusion 77

In summary, the edge-based strategy should not be used in practice. Instead, parallel Meta-
blocking should be applied using the comparison-based and entity-based strategies. The edge-
centric algorithms, CEP and WEP, should always be combined with the comparison-based strategy,
while the node-centric algorithms, CNP and WNP, should always be used with the entity-based
strategy.

To demonstrate in a more intuitive way the actual benefit of Meta-blocking, we have estimated
the times required to get the final matching results with and without Meta-blocking, given a block
collection. In the first case, we sum the times needed for the three stages of Meta-blocking and
the time required to perform the resulting comparisons of Meta-blocking. In the latter case, we
only estimate the time required to perform all the comparisons suggested by the input block col-
lection. To estimate the time required for the comparisons, we performed 1 billion comparisons,
using the Jaccard similarity of the tokens in the values of the DB collection. The average time
required to get the similarity of 1 pair of entity descriptions was 4.9-10~7 minutes. Based on this
number and taking as an example the CBS weighting scheme and the CNP pruning scheme, us-
ing the entity-based strategy, we estimate that the time required to perform Meta-blocking (in-
cluding Block Filtering) and then the comparisons suggested by Meta-blocking is 76 minutes +
3.96-107 comparisons x 4.9 -10~ minutes/comparison = 95.5 minutes. The corresponding time
required to perform the comparisons suggested by blocking, without using Meta-blocking, would
be 4.23-10'° comparisons x 4.9 -10~ minutes/comparison = 20,727 minutes = 345.45 hours = 14
days. The cost of using Meta-blocking, in this case, is a loss of 3.79% in recall.

3.7 Conclusion

In the previous chapter, we saw how blocking can be scaled to Web of data, without any qualita-
tive cost. The scalability of blocking for Web data would be vain, if the processes that follow block-
ing remained non-scalable. In this chapter, we parallelized Meta-blocking using MapReduce and
enhanced dramatically the time efficiency of its serialized implementation. We proposed 3 paral-
lelization strategies: (i) The edge-based one implements a straightforward approach that material-
izes the blocking graph; hence, it involves high I/0 and high space requirements that do not scale
well to large datasets. (ii) The comparison-based strategy offers a more elaborate implementation
that uses the blocking graph implicitly. This way, it reduces the overhead of data exchange and the
number of required MapReduce jobs, leading to significant performance gains, especially for the
edge-centric pruning schemes, CEP and WEP. (iii) The entity-based strategy is completely inde-
pendent of the blocking graph, minimizing the data exchange and the overhead of MapReduce job
chains. This approach offers an optimized implementation for the node-centric pruning schemes,
CNP and WNP. All these strategies do not affect the qualitative results of the Meta-blocking algo-
rithms suggested in [82]. We observe that the cardinality-based methods, CEP and CNP, exhibit
the best qualitative results across all datasets. The difference between the two methods is small,
even though CNP retains twice as many comparisons as CEP, on average. Still, CNP should be

78 Chapter 3. Meta-Blocking

preferred, since it retains the best comparisons per entity and, thus, is more robust to recall, while
it is also the most time-efficient pruning method, when the entity-based strategy is employed.
All these strategies were combined with MaxBlock, a purpose-built load balancing algorithm that
distributes the workload evenly among the cluster nodes. We have thoroughly evaluated our par-
allelization strategies for Meta-blocking using real datasets from the Web of Data. The datasets
and the implementation of our techniques are publicly available®.

Even if the simple Meta-blocking model presented in this chapter can achieve a very efficient
computation of the most promising candidate matches, based on the similarity of their values,
it still fails to identify matching entity descriptions that have low value similarity, but are related
with another pair of similar, or even matching entities. In the next chapter, we will see how the
composite Meta-blocking model that we introduced in Section 3.2 can improve not only the effi-
ciency, but also the effectiveness of atomic blocking, and, consequently, of the whole ER workflow,
by utilizing a disjunctive blocking graph, exploiting multiple matching evidence given from the
input block collections as well as the relatedness of entities in the original entity graph.

8https ://github.com/vefthym/ParallelMetablocking

Chapter 4
Entity Matching

4.1 Introduction

To the best of our knowledge, no existing ER framework simultaneously accomplishes: (a) support
for matching highly heterogeneous entities within or across domains, (b) full automation avoid-
ing any human intervention or presuming domain knowledge, and (c) massive parallelization of
blocking and matching computations.

As we have seen in the previous chapter, similarity evidence for matching entities inside and
across KBs in the Web of data can be obtained only by looking at the bag of literals (mostly strings)
contained in descriptions, regardless of the attributes they appear as values. As the value-based
similarity of a pair of entities may still be weak due to high veracity, we need to consider additional
sources of matching evidence related to the similarity of neighboring entities (i.e., connected via
semantic relations).

The id of an entity description may appear in the values of another entity description, this way
forming an entity graph. Figure 4.1(a) presents parts of the Wikidata (left) and DBpedia (right) KBs,
showing the entity graph that captures connections inside them. For example, Restaurant2 and
Jonny Lake are neighbor entities in this graph, connected via a “headChef” relation. If we compare
John Lake A to Jonny Lake based on their values only, it is easy to infer that those descriptions
are matching; they are strongly similar. However, we cannot be that sure about Restaurantl and
Restaurant2, if we only look at their values. Those descriptions are nearly similar and we have to
look further, at the similarity of their neighbors (e.g, John Lake A and Jonny Lake) in order to verify
that they match.

In state-of-the-art systems, such as SiGMa [66], LINDA [16] and RiMOM [91], this is typically
done through an iterative process that relies on domain knowledge regarding the equivalence of
relations between neighboring entities. Initially, they detect strongly similar entities using reason-
able heuristics, such as identical literal values. Then, they use these resources as seeds for boot-
strapping an iterative algorithm that detects new matches based exclusively on neighbor similarity.
The more neighboring entities are matching, the stronger is the evidence regarding a candidate
entity pair. This process is repeated until converging to a stable solution (i.e., no more matches
are identified) or until no comparison exceeds the minimum similarity threshold. In this chapter,

79

80 Chapter 4. Entity Matching

“United Kingdom of
Great Britain and
Northern Ireland”

official type
name

United
Kingdom

Restaurant Restaurant

“The Fat
Duck”

John Lake (1,0.4,0) Jonny
A Lake

category

(0,0.2,1.6)
Restaurant1 Restaurant2

feldofstudy udied

(0,1.2,0)

inCountry Bray Berkshire

———————————— Restaurant2 (b)

Restaurantl

cuisine
county
(1,0.4,0)

“French
A Lake
distinction (0,0.2,0)

Restaurantl JRNNTORSIIIK Restaurant2
(0,12,0))
Bray Berkshire
(c)

territorial

Berkshire

Michelin

locatedin

Wikidata Berkshire (a) DBpedia

Figure 4.1: (a) Parts of entity graphs, representing the Wikidata (left) and DBpedia (right)
KBs, (b) parts of the corresponding disjunctive blocking graph, and (c) the corre-
sponding graph after pruning.

we argue that to assess the impact of neighbor similarity in a candidate pair, we do not actually
need an iterative process, while an estimation of which entity relations in this neighborhood are
important to consider can be guided by simple statistics over KBs.

This opens new perspectives in reducing the number of required comparisons due the high
volume of entities via blocking and massively parallel computing techniques. Rather than block-
ing entities based on the values of specific attributes (as in SiGMa [66] and RiIMOM [91]), we con-
sider as blocking keys the entities’ tokens [82]. To avoid restricting our candidates for matching
exclusively on strongly similar entities, we consider a composite blocking scheme that allows to as-
sess both value- and neighbor-based similarity of candidate entities in conjunction with evidence
provided by the strong similarity of the entities names (e.g., rdfs: labels). This composite scheme
can be naturally implemented (via hashing) in a Big Data computing platform (e.g., Spark [106]).

Overall, this chapter makes the following contributions':
¢ In Section 4.3, we define new similarity metrics for comparing the values and the neighbors

of entities without requiring knowledge of the entity types or their correspondences. We rely
on simple statistics over the KBs to recognize the most important entity relations involved
in neighbor similarity or the most distinctive attributes serving as names of entities. The
proposed similarity metrics can be efficiently computed using information provided only
by the blocks of entities.

e In Section 4.4, we show how our value and neighbor similarity metrics can be computed
based only on the information provided by token blocking. We combine the matching evi-
dence from the values and the neighbor of entities stemming from token blocking with an

LThis work is under submission.

4.2. Related Work 81

additional blocking on the names of the entities, in a disjunctive blocking graph. We present
an efficient algorithm for weighting and then pruning the edges of this graph, corresponding
to candidate matches.

* In Section 4.5, we propose a non-iterative matching process. Unlike the data-driven con-
vergence of existing systems (e.g., LINDA [16], SiGMa [66] and RiMOM [91]), our matching
method involves a specific number of steps that are independent of data characteristics.
Matching entities are found by applying 4 heuristics to the blocking graph. Initially, we rec-
ognize matching entities based on their name. Then, the value similarity is exploited to find
matching entities with a large number of common and not frequent tokens. When value
similarity is not high, entities are matched based on both value and neighbors’ similarity
using a rank aggregation function. Finally, reciprocal evidence of matching entities is ex-
ploited: only entities that are mutually ranked in the top positions of their unified ranking
lists are considered as matches. MinoanER heuristics can be implemented in a massively
parallel system like Spark.

* In Section 4.6, we experimentally compare the effectiveness of our approach against the
state-of-the-art methods using real datasets from KBs involved in benchmarking efforts in
the field. The main conclusions drawn from our experiments is that MinoanER achieves at
least equivalent performance over KBs with a small number of attributes and entity types
(i.e., low levels of heterogeneity), even without making any assumption regarding the align-
ment of relations in the input. Yet, it outperforms to a significant extent existing ER tools
when matching KBs with a big number of attributes and entity types (i.e., high levels of het-
erogeneity).

We overview the main differences with the state-of-the-art ER methods in Section 4.2 and con-
clude this chapter in Section 4.7.

4.2 Related Work

In this section, we position MinoanER with respect to state-of-the-art techniques proposed for
linked entity descriptions.

Value-based similarities (e.g., Jaccard, Dice) usually assess the similarity of two descriptions
based on the values of specific attributes. Our value similarity is a variation of ARCS (Equation 3.4),
which drops any schema information and considers descriptions as a bag of words. Compared to
ARCS, though, we focus more on the number than the frequency of common tokens between two de-
scriptions. Relational similarity measures additionally consider neighbor similarity by exploiting
the value similarity of all or some of the entities’ neighbors. For example, SiGMa [66] and RIMOM-
IM [91] consider the similarity of “compatible” neighbors, linked with pre-aligned relations, while
LINDA [16] considers only neighbors linked via relations with similar labels (small edit distance).

82 Chapter 4. Entity Matching

MinoanER does not aggregate different similarities in one similarity score; instead, it uses a disjunc-
tion of the different evidence coming from the values, neighbors and names of the descriptions. The
most important neighbors are detected automatically from dataset statistics.

Based on the nature of the matching decision, ER can be characterized as pairwise or collec-
tive. In pairwise ER (e.g., [61]), we only need to know the value similarity of descriptions to de-
cide if they match. Collective ER (e.g., [10]) iteratively updates the matching decision for entities
by dynamically assessing the similarity of their neighbors. The starting point for this similarity
propagation is a set of seed matches identified by a value-based blocking. MinoanER is a static
collective ER approach, in which all sources of similarity are assessed only once per candidate pair.
By considering a composite blocking not only on the value but also the neighbors similarity, we
discover in a non-iterative way most of the matches returned by the data-driven convergence of
existing systems, or even more (see Section 4.6). Next, we explore how recent works in collective
ER dynamically update their similarity assessment based on neighborhood evidence.

To capture this inherently iterative intuition, [10] performs hierarchical agglomerative cluster-
ing, where, at each iteration, the two most similar (according to a relational similarity function)
clusters, i.e., groups of matching descriptions, are merged, until the similarity of the most similar
clusters is below a threshold. When two clusters are merged, the similarities of their related clus-
ters, i.e., the clusters corresponding to descriptions which are related to the descriptions in the
merged cluster, are updated.

SiGMa [66] starts with seed matches having identical entity names. Then, it propagates the
matching decisions on the compatible neighbors of existing matches. Unique Mapping Cluster-
ing is applied for detecting matches. First, it places all pairs into a priority queue, in decreasing
(relational) similarity. At each iteration, the top pair is considered a match, if none of its entities
has been already matched and their similarity exceeds a given threshold ¢. For every new matched
pair, the similarities of the neighbors are recomputed and their position in the priority queue is
updated. The process ends when the top pair has a lower similarity than .

LINDA [16] follows a very similar approach, which differs from SiGMa only in the similarity
functions used and the lack of a manual relation alignment. Instead, LINDA relies on the edit
distance of the relations names used in the two KBs to determine if they are equivalent or not.
This alignment method makes a strong assumption that entity descriptions in KBs use meaningful
names for relations and similar names for equivalent relations, which is rarely true in the Web of
Data. Finally, rather than using a similarity threshold, the resolution process in LINDA terminates
when the priority queue is empty, or after performing a predetermined number of iterations.

RiIMOM-IM [68, 91] initially considers as matches entities placed in blocks of size 2 (this is
more generic than heuristic H1, as it considers all attribute value tokens). It also uses a heuristic
called “one-left object”: if two matched descriptions e, €] are connected via aligned relations r
and r’ and all their entity neighbors via r and 7/, except e, and €, have been matched, then e,
and e’2 are also considered matches. Finally, similar to SiGMa, RIMOM-IM employs a complex

similarity score, which requires the alignment of relations among the KBs.

4.3. Basic Definitions 83

Three are the main differences of MinoanER to SiGMa, LINDA and RiMOM-IM. First, the
matching process iterates over the disjunctive blocking graph, instead of the initial KBs. Second,
MinoanER employs statistics to automatically discover distinctive entity names and important
relations. Third, MinoanER exploits different sources of matching evidence (values, names and
neighbors) to statically identify candidate matches already from the step of blocking.

On another line of research, PARIS [97] uses a probabilistic model to identify matching evi-
dence, based on previous matches and the functional nature of entity relations. Specifically, a
relation is considered to be functional if, for a given source entity, there is only one destination en-
tity (e.g., wasBornIn). The basic matching idea is that if r(x, y) is a function in one KB and r(x, y')
is a function in another KB, then y and y’ are considered to be matches. The functionality, i.e.,
degree by which a relation is close to being a function (considering only its discriminability, not
its support), and the alignment of relations along with previous matching decisions determine
the decisions in subsequent iterations. Specifically, the functionality of each relation is computed
at the beginning of the algorithm and remains unchanged. Then, at the first iteration, instances
with identical values (for all attributes) are considered matches and based on those matches, an
alignment of relations takes place. At the next iteration, instances can be now compared based
on the newly aligned relations, and this process continues until convergence. In the last step, an
alignment of classes (i.e., entity types) also takes place. Unlike MinoanER, PARIS cannot deal with
structural heterogeneity, while it targets both ontology and instance matching.

Finally, [89] parallelizes the collective ER of [10], relying on a black-box matching and exploits
a set of heuristic rules for structured entities. It essentially runs multiple instances of the matching
algorithm in subsets of the input entities (similar to blocks), also keeping information for all the
entity neighbors, needed for similarity propagation. Since some rules may require the results of
multiple blocks, an iterative message-passing framework is employed. Rather than a block-level
synchronization, the MinoanER parallel computations in Spark require synchronization only across
the 4 threshold-free and schema-agnostic matching heuristics (see Section 4.5.1).

Regarding the heuristics, the ones employed by MinoanER based on values and names are
similar to heuristics that have been already employed in the literature individually (e.g., in [66, 68,
91]), while the idea of reciprocity has been applied to enhance the results of Meta-blocking [84],
but was never used in matching. In this work, we use a combination of those heuristics for the
first time, also introducing a novel rank aggregation heuristic to incorporate value and neighbor
matching evidence.

4.3 Basic Definitions

The relations of an entity description e; € &, are defined as relations(e;) = {pl(p, j) € e; nej € &L,
while its neighbors as neighbors(e;) = {ejl(p, j) € e; Aej € &}. In the example of Figure 4.1(a),
relations(Restaurantl) = {hasChef, territorial, inCountry}, and neighbors(Restaurantl) =
{John Lake A, Bray, United Kingdom}.

84 Chapter 4. Entity Matching

In the remaining of this chapter, we will focus only on clean-clean ER, i.e., the sub-problem of
ER in which we only seek for matches among two clean entity collections. We only use two entity
collections for an easier presentation of the problem, but the proposed techniques can be easily
generalized for more than two clean entity collections. This is the problem that is typically met in
the Web of data, as opposed to dirty ER, i.e., seeking for matches within a single entity collection,
which is typically met in data warehouses.

4.3.1 Entity similarity based on values

Traditionally, similarities between entity descriptions are computed based on their values. In our
work, we apply a similarity measure based on the intuition that if two entity descriptions share
many, infrequent tokens, then they have high value similarity (this is an adaptation of ARCS pre-
sented in Equation 3.4 as simagcs, and of Adamic/Adar similarity measure [1])2. Formally:

Definition 4.1 (Value similarity). Let &, &2 be two entity collections. The value similarity of two

entity descriptions e; € &1,e; € & is:

1
logy(EFg, (1)-EFg, () +1)’

valueSim(e;, e;j) =
tetokens(e;)Ntokens(e;)

where EFg(t) = [{e;le; € & A t € tokens(e)}| stands for “Entity Frequency’, which is the number of
entity descriptions in & having token t in their values.

Note that valueSim is not a normalized measure, since it can take any value in [0, +o0), with
0 valueSim denoting the existence of no common tokens in the values of the compared descrip-

tions.

Proposition 4.1. valueSim is a similarity metric, as it satisfies the following properties [19]:

e valueSim(e;,e;) =0, (4.1)
» valueSim(e;,ej) = valueSim(ej,e;), 4.2)
o valueSim(e;,e;) = valueSim(e;,ej), (4.3)
e valueSim(e;,e;) = valueSim(ej,e;) = valueSim(ei,ej)c»ei:ej, (4.4)
e valueSim(e;,e;) +valueSim(ej,e;) < valueSiml(e;, e;) + valueSim(ej, e;j). (4.5)

Property 4.1 states that the self-similarity of any description e; is non-negative. Although it
is not mandatory to set this lower bound at zero (e.g., the similarity measure used in LINDA [16]
can have negative values), this is a common and reasonable choice. Since valueSim is not nor-
malized, the self-similarity of any description is not bound to a specific number; it merely de-
pends on the number and frequency of its tokens. Property 4.2 states that valueSim is symmetric.

2Currently, we handle numbers and dates in the same way as strings, assuming string-dominated entity descriptions.

4.3. Basic Definitions 85

Property 4.3 states that for any description e; the self-similarity is no less than the similarity be-
tween e; and any other description e;. Property 4.4 states that the statements valueSim(e;, e;) =
valueSim(ej,ej) = valueSim(e;, e;) and e; = e; are equivalent. Property 4.5 states that the simi-
larity between e; and e, through e; is no greater than the direct similarity between e; and e, plus
the self-similarity of e;. This property is the equivalent of the triangle inequality in distance met-
rics [19].

Proof. Property 4.1: If tokens(e;) N tokens(e;) = @, then valueSim(e;,e;) = 0. Else, for any
common token t € tokens(e;) N tokens(e;), it holds that EFg (f) = 1, and EFg,(f) = 1 (since
t€ tokens(e;), and t € tokens(ej)). Thus,

1 >0
logs(EFg (1) -EFg, (1) +1)

logs(EFg, (t)-EFg, () +1) = logy(2) = 1=

Since valueSim(e;, ej) is the sum of positive numbers, it is also a positive number.

Property 4.2: tokens(e;) N tokens(e;) = tokens(ej) N tokens(e;). If tokens(e;) ntokens(ej) =
@, then valueSim(e;,e;) = valueSim(ej,e;) = 0. Else, for any common token ¢ € rokens(e;) N

tokens(ej), it holds that EFg, (t) - EFg,(t) = EFg, () - EFg, (1) =

1 _ 1
log,(EFs, (1)-EFg, (D +1) _ logs(EFs, (1)-EFg, (D+1)

= valueSim(e;, ej) = valueSim(ej, e;).

Property 4.3: valueSim(e;, e;) refers to the similarity of two identical entity descriptions in two

. . . 1
entity collections &1,&>. Then, valueSim(e;, e;) = Y ictokens(e;) Toga (BT, (1) EFs, (07D

1
(1)-EFg, (1)+1) =

1 . .
2 retokens(e)ntokens(e;) Tog,(EFz, (0-EFs, 1) valueSim(e;, e;) = valueSim(e;,e;).

By definition, rokens(e;) N tokens(e;) S tokens(e;) = Y icrokens(e;) Tog,(EFs
1

Property 4.4: Proof of “<":

e; = ej => tokens(e;) = tokens(e;) = tokens(e;)ntokens(ej) = tokens(e;) = valueSim(e;, ej) =
1 . .

Y tctokens(e;) Togs (EFs, (0 EFe, (04D — valueSim(e;,e;) = valueSim(ej,e;).

Proof of “=":

valueSim(e;,e;) = valueSim(e;, e;) =

2 . =) . =
tetokens(e;) Tog,(EFg, (D-EFg, (H+1) tetokens(e;)Ntokens(e;) T0g(EFg, (1)-EFg, (N+1)
tokens(e;) = tokens(e;) Ntokens(ej) = rokens(e;) < tokens(ej).

Accordingly, valueSim(ej, e;) = valueSim(e;, ej) = tokens(e;) < tokens(e;).
Since, for the needs of valueSim, we represent an entity description as a set of tokens only, from
the last two equations, it holds that tokens(e;) = rokens(e;) = e; = e;.

Property 4.5: We know that rokens(e;) N tokens(e;) = (tokens(e;) Nntokens(e;) ntokens(e;)) U
((rokens(e;)ntokens(e;))\tokens(e;)). We also know that (rokens(e;)ntokens(ej)ntokens(ez))n
((rokens(e;) ntokens(ej)) \ tokens(e;)) = @. Based on those properties, we have that:

. _ 1

valueSim(e;, €j) = Ztetokens(ei)ﬂtokens(ej)mtokens(ez) log,(EFs, (1) EFs, ()+1) +
1

Zte(tokens(ei)mtokens(ej))\tokens(ez) Tog>(EFs, (1) EFg, ()+1)’

and that:

86 Chapter 4. Entity Matching

. _ 1
valueSzm(ej, e;) = Ztetokens(ei)mtokens(ej)mtokens(ez) Tog>(EFs, (1)-EFg, () +1) +

1
)> te(tokens(ej)ntokens(e;))\tokens(e;) Tog, (EFs, (1-EFs, (D)

Then, valueSim(e;, e;) + valueSim(ej,e;) =

1
Ztetokens(e;)ntokens(ej)ntokens(e;) Tog (EFg, (1)- EFé”z t)+1)

)> te(tokens(e;)ntokens(ej))\tokens(e;) log, (EFg, (t) EFg, (t)+1)

Ztetokens(e i)Ntokens(ej)ntokens(e;) lng(EFgl(t) Eng(t)+1)

Zte(tokens(ej)ntokens(ez))\tokens(e,) Tog, (EFg, ()Eng(t)H)
However, tokens(e;) N tokens(ej) ntokens(e;) < tokens(e;) Nnrokens(e;) =

1 1
Ztetokens(ei)mtokens(ej)mtokens(ez) Tog>(EFs, (1) EFg, ()+1) = Ztetokens(ei)mtokens(ez) Tog,(EFg, (1)-EFg, (D+1)’ and
(((tokens(e;) ntokens(e;)) \ tokens(e;)) U

(tokens(e;) ntokens(ej) Ntokens(ez)) U
((tokens(ej)ntokens(ez)) \ tokens(e;))) < tokens(e;) =

1
Zt(—:(tokens(e,—)mtokens(ej))\tokens(ez) log,(EFs, (1) EFg, ()+1) +

Zt(—:tokens(ei)ﬂtokens(ej)ﬂtokens(ez) Tog:(EFg, (1)-EFg, (D+1) +

1 1 .
Zte(tokens(ej)mtokens(ez))\tokens(ei) Tog,(EFs, (1) EFs, (D+1) = Ztetokens(ej) Tog,(EFs, (1) EFg, (D+1) Thus, it
holds that valueSim(e;, e;) + valueSim(e;, e;) < valueSim(e;, e;) + valueSim(ej, e;).

Note that an interesting property of valueSim is that the maximum contribution of a single
common token between two descriptions is 1, in the case this common token does not appear in
the values of any other entity description, i.e., when EFg, (£)-EFg,(f) = 1. Note also that valueSim
is a schema-free similarity metric, as it completely disregards any schema or domain knowledge.

4.3.2 Entity similarity based on neighbors

In addition to value similarity, we exploit the relations between descriptions to find the matching
entities of the compared KBs. This can be done by aggregating the value similarity of all pairs
of descriptions that are neighbors of the target descriptions. Formally, we define the neighbor
similarity for two descriptions e;, e; € & as follows:

neighborSim(e;,e;) = > valueSim(ne;, ne;).
ne;eneighbors(e;)
nejeneighbors(e;)

Given the potentially high number of neighbors that a description might have, we propose
considering only the most valuable neighbors for computing the neighbor similarity between two
target descriptions. These are neighbors that are connected with the target descriptions via im-
portant relations, i.e., relations that exhibit high support and discriminability. Intuitively, high
support for a particular relation p indicates that p appears in many entity descriptions, while high

4.3. Basic Definitions 87

discriminability for p indicates that it has many distinct values:

Definition 4.2 (Support of relation). The support of a relation p € & in an entity collection & is:

support(p) = W, whereinstances(p) =1{(i, j)le;, e; €&, (p, j) € ei}.

Definition 4.3 (Discriminability of relation). The discriminability of a relation p € &2 in an entity
lobjects(p)|

collection& is: discriminability(p) = linstances(p)l’

whereobjects(p) =1{jl(i, j) einstances(p)}.

Overall, we combine support and discriminability via the F-measure in order to locate the
most important relations.

Definition 4.4 (Importance of relation). The importance of a relation p € &2 in an entity collection
support(p)-discriminability(p)
support(p)+discriminability(p)*

& is:importance(p) =2-

Furthermore, we identify the most valuable relations and neighbors for every single entity de-
scription. We use topNrelations(e;) to denote the N relations in relations(e;) with the maxi-
mum importance scores. Then, the best neighbors for e; are:

topNneighbors(e;) ={ne;l(p,ne;) €ee;,p e topNrelations(e;)}.

Intuitively, strong matching evidence (high valueSim) for the important neighbors leads to
strong matching evidence for the target pair of descriptions. Hence, we define neighbor similarity
as:

Definition 4.5 (Neighbor similarity). Let &), & be two entity collections. The neighbor similarity
of two entity descriptions e; € £1,ej € & is:

neighbor NSim(e;, e;j) = Z valueSim(ne;, nej).
ne;etopNneighbors(e;)
nejetopNneighbors(e;)

Proposition 4.2. neighbor NSim is a similarity metric.

Proof. neighborNSim is the sum of similarity metrics (valueSim), so it is also a similarity met-
ric [19].]

Example 4.1. Continuing our example in Figure 4.1, assume that the best 2 relations for Restaurant1
and Restaurant? are: top2relations(Restaurantl) = {thasChef, territorial} and
top2relations(Restaurant2) = {headChef, county}. Then, top2neighbors(Restaurantl) = {John
Lake A, Bray} and top2neighbors(Restaurant2) = {Jonny Lake, Berkshire}, and
neighbor2Sim(Restaurantl, Restaurant2) = valueSim(Bray, Jonny Lake) +

valueSim(John Lake A,Berkshire) + valueSim(Bray, Berkshire) +

valueSim(John Lake A, Jonny Lake).

88 Chapter 4. Entity Matching

From every entity collection, we derive the k attributes of highest importance, with their values
acting as names for any description e; that contains any of these attributes. Their support is simply
defined as support(p) = |subjects(p)|/|&], where subjects(p) = {il(i, j) € instances(p)} [93].
Based on these statistics, function name(e;) returns the names of e;, and ./ denotes all names in
an entity collection &.

4.4 Blocking
4.4.1 Composite Blocking Scheme

To achieve a good trade-off between effectiveness and efficiency, our schema-free composite block-
ing scheme assesses name- and value-based similarities of the candidate matches in conjunction
with evidence provided by comparing value-wise their neighbors on the most important relations.
We consider the blocks constructed for all entities e; € & using the indexing function #£;(-) both
over entity names (Vn; € names(e;) : hy(n;)) and tokens (V; € tokens(e;) : hr(t;)). The compos-
ite blocking scheme of MinoanER is defined by the following disjunctive co-occurrence condition
of any two entities e;,e; € &:

F(ej,ej) =on(ej,ej) vor(eej)V(V or(e;, €)).
(e;.,e})etopNneighbors(e,') xtopNneighbors(e;)

It is worth noticing that token blocking (i.e., hr) allows for deriving valueSim from the size
of blocks that are shared by two descriptions. As a result, no additional blocks are needed to
assess neighbor similarity of candidate entities: token blocking is sufficient also for estimating
neighbor Nsim according to Definition 4.5.

4.4.2 Disjunctive Blocking Graph

The disjunctive blocking graph G is an abstraction of the disjunctive co-occurrence condition
of candidate matches in blocks. Nodes represent candidates from our input entity descriptions,
while edges represent pairs of candidates for which at least one of the co-occurrence conditions
is ‘true’. Each edge is labeled with three weights, quantifying similarity evidence on names, tokens
and neighbors of candidate entities. Specifically, the disjunctive blocking graph of MinoanER is
a graph G = (V,E, A) (see Definition 3.2), where A assigns to each edge a label (a, 8,y), where a is
‘1" if on(e;, ef) is true and the name block in which e;, e; co-occur is of size 2, and ‘0’ otherwise,
p=valueSim(e;, e;j), and y = neighbor NSim(e;, ej). Definition 3.2 covers the cases of an entity
collection & being composed of one, two, or more KBs. When matching k KBs, assuming that
each is clean, the disjunctive blocking graph is k-partite, with each of the k KBs corresponding to
a different independent set of nodes, i.e., there are only edges between descriptions from different
KBs. The only information needed to match multiple KBs is to which KB each description belongs,
so as to add it to the corresponding independent set.

4.4. Blocking 89

Example 4.2. Consider the graph of Figure 4.1(b), which is part of the disjunctive blocking graph
generated from Figure 4.1(a). John Lake A and Jonny Lake have a common name (“]. Lake”), and
there is no other entity having this name, so there is an edge connecting them with « = T. Bray
and Berkshire have some common, quite infrequent tokens in their values, so their value similarity,
reflected in the 8 score of the edge that connects them, is quite high (1.2). Since Bray is a top neighbor
of Restaurantl in Figure 4.1(a), and Berkshire is a top neighbor of Restaurant 2, there is also an edge
with a non-zero y connecting Restaurantl with Restaurant2. Specifically, the y score of this edge
(1.6) is the sum of the B scores of the edges connecting Bray with Berkshire (1.2), and John Lake A
with Jonny Lake (0.4), the other two neighbors of Restaurantl and Restaurant2.

4.4.3 Graph Weighting and Pruning Algorithms

Each edge in the blocking graph represents a suggested comparison between two descriptions. To
reduce the number of comparisons suggested by the disjunctive blocking graph, we keep for each
node the K edges with the highest § and the K edges with the highest y weights, while pruning
edges with trivial weights (i.e., with ¢=0, =0 and y=0), since they connect descriptions unlikely
to match. Given that nodes v; and v; may have different top K edges based on f or y, we con-
sider each undirected edge in G as two directed ones, with the same initial weights, and perform
pruning on them.

Example 4.3. Figure 4.1(c) shows the pruned version of the graph in Figure 4.1(b). Note that the
blocking graph is only a conceptual model, which we do not actually materialize; instead, we re-
trieve any necessary information from computationally cheap entity indices.

The process of weighting and pruning the edges of the disjunctive blocking graph is described
in Algorithm 2. Initially, the graph contains no edges. We start adding edges by checking the name
blocks (Lines 5-9). For each name block that contains exactly two entities, one from each KB, we
create an edge with a = 1 linking those entities®. Then, we compute the 8 weights (Lines 10-20) by
running a variation of Meta-blocking [82], adapted to our value similarity metric (Definition 4.1).
We keep for each entity, its connected nodes from the K edges with the highest §. In Line 20, we
compute the topNneigbors of each entity, and get their reverse, i.e., for each entity e; we get the
entities inNeighbor s[i] that have e; as one of their topNneighbors. To avoid re-computing the
value similarities that are necessary for the y computations, we exploit the already computed Ss.
Thus, we assign to each pair of inNeighbors (in the entity graph) in;,in; of the entities e;, e;
connected with an edge with § > 0, a partial y equal to this § (Lines 20-26). After summing the
partial ys computed for each pair of entities (in;, in;) from all its out-neighbor pairs (e;, e;) in the
entity graph, we get the correct y = neighbor Nsim(in;, in;) (Definition 4.5).

The time complexity of Algorithm 2 is dominated by the processing of value evidence, which
iterates twice over all comparisons in the token blocks B7. In the worst-case, this results in one

3When we add a new edge, we initially set its weight to (a = 0, § =0, Y = 0) and update its a, § or y weight next. Also,
bfc, l € {1,2}, denotes the sub-block of by that contains all entities from &}, i.e., b;c céy.

90

Chapter 4. Entity Matching

Algorithm 2: Disjunctive Blocking Graph Construction.

Input: &1, 8>, set of blocks from name and token blocking, By and Br, resp.
Output: A disjunctive blocking graph G.

1 procedure CompositeBGraph(&,82, By, BT)

2 V— ébl Uéaz;

3 E—g;

4 W—g@g; // init. to (0,0,0)
// Name Evidence

5 for by € By do

6 iflbllcl . lbil =1then // only one comparison in by

7 e; «—bllc.get(O), ej — bi.get(O); // get entity descriptions in block

8 E<—EU{<v,~,vj>};

9 W — W.set(a,< Vi, Vj >, 7);
// Value Evidence

10 fore; € &) do

11 Bll—a; // value weights wrt all ej€ & init. to O

12 for b e By Abgne; # @ do

13 fore; € b do // ej €&

14 | BL =B+ 1/10ga(1by] - 1bE1+1) ; // valueSim

15 ValueCandidates — getTopCandidates(B[], K);

16 forej e ValueCandidates do

17 E«—EU{<U,~,VJ~>};

18 L W — W.set(B,< Vi, Vj >, BLjD);

19 fore;eérdo...; // ...do the same for &>
// Neighbor Evidence

20 inNeighbors[] — getTopInNeighbors(&1,62);

21 ylll —@; // neighbor weights wrt all ej,ej € V init. to ®

22 for e; € & do

23 fore; e &, s.t. W.get(p,<v;,vj>)>0do

24 for inj e inNeighbors[j] do

25 forin; e inNeighbors[i] do // neighborNSim

26 L | ylinlling] —ylinglinj]l+ W.ger(B,< nj,nj >);

27 fore;eér do...; // ...do the same for &

28 fore; € &) do

29 NeighborCandidates — getTopCandidates(y[i], K);

30 for e; € NeighborCandidates do

31 E<—Eu{<vl-,vj>};

32 L W.set(y,<vj, vj >,y[vi][vj]);

33 fore;eérdo...; // ...do the same for &>

34 return G = (V,E,W);

35 procedure getTopInNeighbors(&y,82)

36 topNeighbors(l — @ ; // one list for each entity

37 r1Sorted — sort &1’s relations by importance;

38 r2Sorted — sort &»’s relations by importance;

39 forec &) do

10 sortedRel(e) — relations(e).sortBy(r1Sorted);

41 topNrelations(e) — sortedRel(e).topN;

42 for (p, 0) € e, where p € PQ do

13 L topNeighbors(el.add(o);

44 fore;eérdo...; // ...do the same for &»

45 topInNeighbors(] — @ ; // the reverse of topNeighbors

16 foree & U&» do

47 for nec topNeighbors(e] do

48 L topInNeighbors(nel.add(e);

49 return topInNeighbors;

4.5. Non-Iterative Matching 91

computation for every pair of entities, i.e., O(|&1|-|6>|). In practice, though, we bound the number
of computations by removing excessively large blocks that correspond to highly frequent tokens
(e.g., stop-words). Following [82], this is carried out by Block Purging, which ensures that the re-
sulting blocks involve two orders of magnitude fewer comparisons than the brute-force approach,
without any significant impact on recall. This complexity is higher than that of name and neighbor
evidence, which are both linearly dependent on the number of input entities. The former involves
a single iteration over the name blocks By, which amount to |.#] n.A5|, as there is one block for ev-
ery name shared by &) and &». For neighbor evidence, Algorithm 2 checks all pairs of N neighbors
between every entity e; and its K most value-similar descriptions, performing K - N2 (&1 + &)
operations; the cost of estimating the top in-neighbors for each entity is dominated by the order-
ing of all relations in &) and &, (i.e., [Rpmax! - l0g|Rmax|), where |Ry,4x| stands for the maximum
number of relations in one of the KBs.

4.5 Non-Iterative Matching

Our matching method receives as input the disjunctive blocking graph G and performs four steps —
unlike most existing works, which involve a data-driven iterative process. In every step, a heuristic
is applied with the goal of extracting new matches from the edges of G by analyzing their weights.
The functionality of our algorithm is outlined in Algorithm 3. Next, we describe its heuristics in
the order they are applied:

Name Heuristic (H1). The matching evidence of H1 comes from the entity names. It assumes
that rwo candidate entities match, if they, and only they, have the same name. Thus, H1 traverses
G and for every edge < v;, v; > with @ = T1, it updates the set of matches M with the correspond-
ing descriptions (Lines 2-4). All candidates matched by H1 are not examined by the remaining
heuristics.

Value Heuristic (H2). It presumes that two entities match, if they, and only they, share a common
token, or, if they share many infrequent tokens. Based on Definition 4.1, H2 identifies pairs of
descriptions with high value similarity (Lines 5-9). To this end, it goes through every node v; of G
and checks whether the corresponding description stems from the smaller in size KB, for efficiency
reasons, e.g., &1, but has not been matched yet. In this case, it locates the adjacent node v; with
the maximum S weight (Line 7). If § = 1, H2 considers the pair (e;, e i) to be a match. Matches
identified by H2 will not be considered in the sequel.

Rank Aggregation Heuristic (H3). This heuristic identifies further matches for candidates whose
value similarity is low (8 < 1), yet their neighbor similarity (y) could be high. In this respect, the
order of candidates rather than their similarity values are used. Its functionality appears in Lines
10-23 of Algorithm 3. In essence, H3 traverses all nodes of G that correspond to a description that
has not been matched yet. For every such node v;, it retrieves two lists: the first one contains
adjacent edges with a non-zero f weight, sorted in descending order (Line 13), while the second
one includes the adjacent edges sorted in decreasing non-zero y weights (Line 18). Then, H3

92 Chapter 4. Entity Matching

Algorithm 3: Evidence-based Matching.

Input: &1, &>, Disjunctive Blocking Graph G.
Output: A set of matches M.
1 M—g; // The set of matches

// Name Heuristic (H1)
2 for <v;, vj>€ G.Edo
3 if GW.get(a,<v;, vj >) = T then
a | M<—Mule;,ep);
// Value Heuristic (H2)
5 forv; € G.V do
6 if e; € 61\ M then

7 vj—argmaxy.ec.vGW.get(p,<v;,vg>); // top candidate
8 if GW.get(B,<v;, vj >) =1 then
9 | M—Mule,ep);

// Rank Aggregation Heuristic (H3)
10 forv; € G.V do

11 ife; € 61 U2\ M then

12 aggll — o; // Aggregate candidate scores, init. zeros
13 valCands — G.valCand(e;) ; // nodes linked to e; in decr. f
14 rank — |valCands|;

15 for ej€ valCands do

16 agg[ei].update(ej,e-rank/lualCandsl);

17 L rank — rank-1;

18 ngbCands — G.ngbCand(e;) ; // nodes linked to e; in decr. vy
19 rank — |ngbCandsl;

20 foreje ngbCandsdo

21 aggle;l.update(ej,(1-0)-rank/IngbCands);

22 L rank — rank-1;

28 | M<—Mul(ej,getTopCandidate(aggle;l);

// Reciprocity Heuristic (H4)

24 for (e;,ej)e M do

25 if<v;,v;>¢G.EV<vj,v; >¢ G.E then
26 t M — M\ (ej,e});

27 return M;

aggregates the two lists by considering the normalized ranks of their elements: assuming the size
ofalistis K, the first candidate gets the score K/ K, the second one (K—1)/K, while the lastone 1/K.
Overall, each adjacent node of v; takes a score equal to the weighted summation of its normalized
ranks in the two lists, as determined through the trade-off parameter 8 € (0, 1) (Lines 16 & 21): the
scores of the f§ list are weighted with 8 and those of the y list with 1-6. At the end, we keep for v;,
its top-1 candidate match v;, i.e., the one with the highest aggregate score (Line 23). Intuitively,
H3 matches e; with e i, when, based on all available evidence, there is no better candidate for e;

thane;.

4.5. Non-Iterative Matching 93

Reciprocity Heuristic (H4). It aims to clean the matches identified by H1, H2 and H3 by exploiting
the reciprocal edges of G. Given that G becomes a directed graph after pruning, a pair of nodes v;
and v; are reciprocally connected when there are two edges between them, i.e., an edge from v;
to vj and an edge from v; to v;. Hence, H4 aims to improve the precision of our algorithm based
on the rationale that two entities are unlikely to match, when one of them does not even consider
the other to be a candidate for matching. Intuitively, fwo entity descriptions match, only if both of
them ‘agree” that they are likely to match. H4 essentially iterates over all matches detected by the
above heuristics and discards those missing any of the two directed edges (Lines 24-26).

Given a pruned disjunctive blocking graph, every heuristic can be formalized as a function
that receives a pair of entities and returns true (7) if the entities match according to the heuristic’s
rationale, or false (F) otherwise, i.e., : Hn: &) x & — {T, F}. In this context, we formally define the
MinoanER matching process as follows:

Definition 4.6. The non-iterative matching of two KBs &), &2, denoted by the Boolean matrix
M(&1,82), is defined as a filtering problem of the pruned disjunctive blocking graph G: M(e;, e;) =
(H1(ei,ej) \Y; H2(ei,ej) v H3(e;, ej)) A HA4(e;, ej).

The time complexity of Algorithm 3 is dominated by the size of the pruned blocking graph G it
receives as input, since H1, H2 and H3 essentially go through all directed edges in G (in practice,
though, H1 reduces the edges considered by H2 and H3, and so does H2 for H3). In the worst case,
G contains 2K directed edges for every description in & U &», i.e., |V]nax=2K - (1&1] + |&2]). Thus,
the overall complexity is linear with respect to the number of input descriptions, i.e., O(|&1]+1821),
which indicates high scalability.

Example 4.4. To illustrate our matching algorithm, consider the pruned disjunctive blocking graph
of Figure 4.2 (a, left), in which nodes el — e3 represent three entity descriptions from a collection &1,
and nodes e4d— e9 represent 6 entity descriptions from another collection &,. Assuming that we want
to keep the top-2 candidates per node based on the 3 and y weights, the corresponding candidate
lists per entity are shown in Figure 4.2 (a, right), along with the pruned candidates. First, we treat
the edges with a = 1 as matches and remove them from the graph, along with the nodes they connect
(H1). This would return (el, e7) as a match and remove el and e7 from the remaining lists of can-
didates. Next, we consider the edges with = 1 as matches (H2) and update the graph accordingly,
as shown in Figure 4.2 (b). This would return (e2,e6) as a match and remove e2 and e6 from the
remaining lists of candidates. For each remaining node of &1, we take an aggregate score from its
edges and return the adjacent node with the maximum score as a match (H3). At this point, only
e3 has been left in &1, with its only candidates being e8 and e9, as shown in Figure 4.2 (c). To illus-
trate the aggregation points for each element of the candidate list, we have marked the first-ranked
candidate of each list in Figure 4.2 (c, right) with value 1 and each second-ranked candidate with
value 1/2 (since element lists are of maximum size 2 in this example). Assuming an equally weighted
aggregation for the sake of simplicity here, we see that the aggregate score of the comparison (e3, e8)

94 Chapter 4. Entity Matching

is 2 (1 from e3’s candidates list from B, plus 1 from e3’s candidates list fromy, in both of which e8
is the top candidate), while the aggregate score of the comparison (e3,€9) is 1.5 (0.5 from e3’s can-
didates list from B, in which e9 is the second candidate, plus 1 from e9’s candidates list from vy, in
which e3 is the top candidate). This means that the rank aggregation heuristic would return e3 — e8
as a match. Finally, from the discovered matches, we keep only those with reciprocal edges (H4).
This constraint filters out (e3, e8), since there is an edge from e3 to e8, but no edge from e8 back to
e3. As aresult, the final matches would be (el, e7) and (e2, e6).

4.5.1 Implementation in Spark

Figure 4.3 shows the architecture of MinoanER’s implementation in Spark. Each process is exe-
cuted in parallel for different chunks of input, in different Spark workers. Each dashed edge rep-
resents a synchronization point, at which the process has to wait for results produced by different
data chunks (and different Spark workers). As discussed in Section 4.4, our framework employs a
composite blocking scheme that is based on two types of blocks: (a) Name blocking applies the
name indexing function &y to place into the same block all entities that have identical names;
blocks with exactly 1 entity from each KB produce an edge with a = 1. (b) Token blocking applies
the token indexing function hr to place into the same block all entities with a common token in
their values; after processing these blocks, all value similarities, i.e., the § weights of the edges,
have been computed.

In more detail, we apply name blocking, while running token blocking and the extraction of
top neighbors per entity. Then, we synchronize the results of the last two processes: we combine
the value similarities computed by token blocking (the weights) with the top neighbors per entity
to estimate the neighbor similarities (the y weights) for all entity pairs with neighbors co-occurring
in at least one block. To minimize the overall run-time, H1 starts right after name blocking, H2
after H1 and token blocking, H3 after H2 and the computation of neighbor similarities, while
H4 runs last, providing the final, filtered set of matches. During the execution of every heuristic,
each Spark worker contains only the partial information of the disjunctive blocking graph that is
necessary to find the match of a specific node (i.e., the corresponding lists of candidates based on

names, values, or neighbors).

4.6 Experimental Evaluation

In this section, we compare the effectiveness of MinoanER with state-of-the-art tools and a cus-
tom, heavily fine-tuned baseline method.

Experimental Setup. All experiments were performed with Apache Spark v2.1.0 and Java 8,
on a cluster of 4 Ubuntu 16.04.2 LTS servers. Each server has 236GB RAM and 36 Intel(R) Xeon(R)
E5-2630 v4 @2.20GHz CPU cores. Preliminary experiments have indicated that the following pa-
rameter configuration yields the best results for MinoanER across all datasets: K=15 (candidate

4.6. Experimental Evaluation

95

List of candidates by B:

el: e4, e5, et e8,¢e6

List of candidates by y:
el:e5, e7, e8,e6

e2: eb, e8, e# e2:e6, e8

e3: e8,e9, e6 e3: e, eb

ed: el ed: -

e5: el e5:el
e6:e2,el,e3 eb:e2, e3, el
e7:el,e2 e7:el
e8:e2,el, e3 e8:e2,el, e3
e9: e3 e9: -

List of candidates by B:

List of candidates by y:

el oo elrot o
e2: eb, e8 e2: eb, e8
e3:e8, e9 e3:e8, eb
ed: el e5:el
e5: el e6:e2,e3
eb:e2, et efel
eloeld e8:e2, el
e8.e2,el

e9: e3

List of candidates by B:

List of candidates by y:

cZ:g — elreb-e8
e3:[e8||e9 e3:|e8)le6
ctied 2bred-e3
e8:le2 e8:le2
e9:le3 L]
Il ot
11/2 1 1/2

Figure 4.2: An example of running our heuristics on a pruned disjunctive blocking graph.

matches per entity from values and neighbors), N=3 (most important relations per entity), k=2
(most important attributes per KB, whose values act as names), and 6=0.6 (trade-off between
value-based over neighbor-based candidates). Regarding the number of most important relations

and names, we interpret that those small numbers work well, because there are only few charac-

96 Chapter 4. Entity Matching

get candidates by entity
e:{e, e ...} H1 %__5 Legend:
(Part) [1 :proadcast data chunk

group by
blocking key from

b: {e,e;...} a HA1 . gmatches _
Entity (part) 1%
AA 2
collection H2
(par) from Ll (part) [
Entity 0 B H2 SYNC ==+ >
collection : (part) %
art M : Ve
2 -) i H3
Ently Bt R SO
ol i) o broadcast |
(part) X value sims; } :-I::lrt) % ER
E Top neighbors | Neighbor B o results
(part) | sims (part) | /from | H4 i}
'| Top neighbors | —{| Neighbor A =)
| (part) sims (part) H4 Jﬁ
(part)

Figure 4.3: The architecture of MinoanER in Spark.

teristics of an entity that make it unique (e.g., its name, and its relation to very few unique other
entities, e.g., parents, director). We are currently considering setting those parameters dynami-
cally, based on the local similarity distributions of each node’s candidates.

Datasets. In our experiments, we use 4 benchmark datasets with real data commonly used in
the literature. Table 4.1 presents their technical characteristics. All KBs contain relations between
the described entities.

Restaurant* contains descriptions of restaurants and their addresses from two different KBs.
The ground truth contains matches only between restaurants, with 23 out of the 112 matches in
the original ground truth referring to missing entities; as a result, we consider only 89 verified
matches. This is the dataset with the highest value and neighbor similarity between matches (Fig-
ure 1.4). It is also the smallest dataset in terms of the number of entities, triples, entity types®, as
well as the one using the smallest number of vocabularies. Hence, it involves the easiest pair of
KBs to resolve.

Rexa-DBLP® contains descriptions of publications and their authors. The ground truth con-
tains matches between both publications and authors. This dataset contains strongly similar
matches in terms of values and neighbors (Figure 1.4). Although it is relatively easy to resolve,
Table 4.1 shows that it exhibits the greatest difference with respect to the size of the KBs to be
matched (DBLP is 2 orders of magnitude bigger than Rexa in terms of descriptions, and 3 orders
of magnitude in terms of triples). We do not distinguish relations to those between entities with
global URIs and those between entities with local URIs (i.e., blank nodes), hence, the big number

4http://oaei.ontologymatching.org/2010/im/
SExtracted using the values of the attribute w3.0rg/1999/02/22-rdf- syntax-ns\#type.
Shttp://oaei.ontologymatching.org/2009/instances/

4.6. Experimental Evaluation 97

Table 4.1: KB statistics.

Restau- Rexa- | BBCmusic- YAGO-

rant DBLP DBpedia IMDb

&1 entities 339 18,492 58,793 5,208,100
&> entities 2,256 2,650,832 256,602 5,328,774
&1 triples 1,130 87,519 456,304 | 27,547,595
& triples 7,519 | 14,936,373 8,044,247 | 47,843,680
&1 av. tokens 20.44 40.71 81.19 15.56
&» av. tokens 20.61 59.24 324.75 12.49
&1 | & attributes 717 114 / 145 27 /10,953 65 /29
&1 1 &> relations 2/2 103/ 123 9/953 4/13
&1 1 &> types 3/3 4/11 4/59,801 | 11,767 /15
&1 1 & vocab. 2/2 4/4 4/6 3/1
Matches 89 1,309 22,770 56,683

of relations in this dataset.

BBCmusic-DBpedia [34] containsdescriptions of musicians, bands and their birthplaces, from
BBCmusic and the BTC2012 version of DBpedia’. In our experiments, we consider only entities
appearing in the ground truth, as well as their immediate in- and out-neighbors. The most chal-
lenging characteristic of this dataset is the high heterogeneity between its two KBs in terms of
both schema and values: DBpedia contains ~11,000 different attributes, ~60,000 entity types, 953
relations, the highest number of different vocabularies (6), while using on average 4 times more
tokens to describe an entity than the average entity described in BBCmusic.

Based only on the latter feature, all normalized, set-based similarity measures like Jaccard fail
to identify such matches, since a big difference in the token set sizes yields low similarity values
(Figure 1.4). We have previously shown in Section 2.5.2 that in the median case, an entity descrip-
tion in this dataset contains only 2 words in its values that are used by both KBs.

YAGO-IMDb [97] contains descriptions of movie-related entities (e.g., actors, directors, movies)
from YAGO and IMDb®. Figure 1.4 shows that a large number of matches in this dataset has low
value similarity, while a significant number of them has high neighbor similarity. Moreover, this is
the biggest dataset in terms of entities and triples, challenging the scalability of ER tools, while it
is the most balanced pair of KBs with respect to their relative size.

Baselines. In our experiments, we compare MinoanER against four state-of-the-art methods:
SiGMa, PARIS, LINDA and RiMOM. We also consider a custom baseline method, called BSL. This
method receives as input the disjunctive blocking graph G, before its pruning, and compares ev-
ery pair of descriptions that are connected by an edge in G. The resulting similarities are then
processed by Unique Mapping Clustering. Unlike our approach, though, BSL disregards all ev-
idence from neighboring descriptions. Instead, it relies exclusively on value similarity, but opti-
mizes its performance through a series of well-established string matching methods that undergo
extensive fine-tuning on the basis of the ground-truth.

7datahub. io/dataset/bbc-music, km.aifb.kit.edu/projects/btc-2012/
8http://www.yago-knowledge.org/, http://www.imdb.com/

98

Chapter 4. Entity Matching

Table 4.2: Block statistics.

Restaurant Rexa- | BBCmusic- YAGO-

DBLP DBpedia IMDb

Byl 83 15,912 28,844 580,518
Byl 625 22,297 54,380 495,973
1Byl 83 6.71-107 1.25-107 6.59-108
[|Brll 1.80-103 6.54-108 1.73-108 2.28-1010
1&11- 185 7.65-10° 4.90-1010 1.51-1010 2.78-1013
Pr/Re 4.95/100 | 1.81.107%/99.77 | 0.01/99.83 | 2.46:107%/99.35
F1 9.43 3.62-107% 0.02 4.92-107%

Table 4.3: Evaluation of MinoanER compared to existing methods.

Restau- Rexa- BBCmusic- YAGO-

rant DBLP DBpedia IMDb

. Pr/Re 99 /94 97 /90 -/ - 98 /85
SIGMa [66] 57 97 94 - 91
Pr/Re 95/ 88 93.95/ 89 19.40/0.29 94 /90

PARIS [97] F1 91 91.41 0.51 92
Pr/Re 100/ 63 -/ - -/ - -/ -

LINDA [16] il > - - -
. Pr/Re 86 /77 80/72 -/ - -/ -
RiMOM [68] il 8l -6 - -
BSL Pr/Re 100/ 100 | 96.57/83.96 | 85.20/ 36.09 11.68 / 4.87
F1 100 89.82 50.70 6.88

MinoanER Pr/Re 100/ 100 | 96.74/95.34 | 91.44/88.55 | 91.02/90.57
F1 100 96.04 89.97 90.79

In more detail, we examine the performance of BSL using a large number of parameter con-
figurations to detect the best performing one. Four parameters are fine-tuned to maximize its
F-measure: (i) The schema-free representation of the values in every entity. BSL uses token n-
grams for this purpose, with n € {1,2,3}, thus representing every resource by the token uni-/bi-
/tri-grams that appear in its values. (ii) The weighting scheme that assesses the importance of
every token. We consider TF and TF-IDF weights. (iii) The similarity measure, for which we con-
sider the following well-established similarities: Cosine, Jaccard, Generalized Jaccard and SiGMa.
All measures are normalized to [0, 1] and SiGMa similarity applies exclusively to TF-IDF weights,
by definition [66]. (iv) The similarity threshold that prunes the entity pairs processed by Unique
Mapping Clustering. We use all thresholds in [0, 1) with a step of 0.05. In total, we consider 420
different configurations for BSL, reporting the one with the highest F-Measure.

4.6.1 Effectiveness Evaluation

Table 4.2 reports the performance of the blocks used by BSL and MinoanER. The number of
comparisons in token blocks (||Br||) is at least 1 order of magnitude larger than those of name

4.6. Experimental Evaluation 99

blocks (||Byll), even if the latter may involve more blocks (|By|>|Br| over YAGO-IMDDb). In fact,
the comparisons suggested by names seem to depend linearly on the number of input descrip-
tions, whereas the comparisons suggested by tokens seem to depend quadratically on that num-
ber. Nevertheless, the overall comparisons in By U Byy are at least 2 orders of magnitude lower than
the Cartesian product |E;| - |E»|, even though recall (Re) is consistently higher than 99%. Yet, both
precision (Pr) and F-Measure (F1) remain rather low.

Table 4.3 reports the performance of MinoanER and the baselines. For every method, we re-
port its Pr, Re and F1 with respect to the descriptions in the first KB appearing in the ground truth.
Since PARIS [97] is openly available, we were able to run it on Rexa-DBLP and BBCmusic-DBpedia.
For the rest of the tools, we report their performance from the original publications®.

Table 4.3 shows that MinoanER offers competitive performance when matching KBs with few
attributes and entity types, even if it requires no domain-specific input, while significantly outper-
forming state-of-the-art ER methods for highly heterogeneous KBs. Specifically, it achieves 100%
F1 in Restaurant, which is 3% higher than SiGMa, 9% higher than PARIS, and ~20% higher than
LINDA and RiMOM. Note that BLS also achieves perfect F1, due to the strongly similar matching
entities (Figure 1.4). In Rexa-DBLP, MinoanER also outperforms all existing ER methods. It is 2%
better than SiGMa in F1, 4.6% better than PARIS, 20% better than RiMOM, and 6% better than BSL.
As explained previously, BBCmusic and DBpedia are, by far, the most heterogeneous KBs. For this
reason, PARIS struggles to identify the matches, with BLS performing significantly better, but still
very poorly in absolute numbers. In contrast, MinoanER succeeds in identifying 89% of matches
with 91% precision, achieving a 90% F1. In YAGO-IMDb, MinoanER achieves similar performance
with SiGMa (91% F1), with more identified matches (91% vs 85%), but lower precision (91% vs
98%). Compared to PARIS, its F1 is 1% lower, due to 3% lower precision, even if our recall is better
by 1%. Finally, BSL exhibits the worst performance by far, due to the very low value similarity
between matching entities in this KB (Figure 1.4).

Comparing the performance of MinoanER (Table 4.3) to that of its input blocks (Table 4.2),
precision raises by several orders of magnitude at the cost of slightly lower recall. The lower recall
is caused by missed matches close to the lower left corner of Figure 1.4, i.e., with very low value
and neighbor similarities. This explains why the impact on recall is larger for BBCmusic-DBpedia
and YAGO-IMDb.

Evaluation of Heuristics

Table 4.4 summarizes the individual contribution of each heuristic in Algorithm 3, when executed
alone, as well as the overall contribution of neighbor similarity evidence in the matching results.
Name Heuristic (H1). This heuristic achieves both high precision (> 97% in all cases) and a
decent recall (> 66% in all cases). Hence, given no other matching evidence, H1 alone yields good
matching results, emphasizing on precision, with only an insignificant number of its suggested

9IRIMOM-IM [91] is also openly available, but without execution instructions.

100 Chapter 4. Entity Matching

matches being false positives. To illustrate the importance of this similarity evidence in real KBs,
we have marked the matches with identical names in Figure 1.4 as bordered points. Thus, we
observe that matches may agree on their names, regardless of their value and neighbor similarity

evidence.

Value Heuristic (H2). This heuristic is also very precise (> 90% in all cases), but exhibits a
lower recall (> 30%). Nevertheless, even this low recall is not negligible, especially when it com-
plements the matches found from H1. In the case of strongly similar entity descriptions as in the
Restaurant dataset, this heuristic alone can identify all the matches with perfect precision.

Rank Aggregation Heuristic (H3). This heuristic is the only one that exploits neighbor simi-
larity evidence and its contribution in terms of matches is not the same in all KBs. For KBs with
low value similarity (left part of Figure 1.4), this heuristic is the only solution for finding matches
having no/different names. In BBCmusic-DBpedia and YAGO-IMDDb, it has the highest contribu-
tion in recall and F1 among all other heuristics, with the results for YAGO-IMDb being almost
equivalent to those of Table 4.3 (YAGO-IMDDb features the lowest value similarities in Figure 1.4).
For KBs with medium value similarity (middle part of Figure 1.4), but not sufficient enough to find
matches with H2, aggregating neighbor with value similarity is very effective. In Rexa-DBLP, H3
yields almost perfect results. Overall, H3 is the heuristic with the greatest F1 in 3 out of 4 datasets.

Reciprocity Heuristic (H4). Since this is a filtering heuristic, i.e., it does not add new re-
sults, we measure its contribution by running the full workflow without it. Thus, the results of this
heuristic in Table 4.4 should be compared to the results in Table 4.3. This comparison shows that
this heuristic increases the precision of MinoanER, with a small, or no impact on recall. Specif-
ically, it increases the precision of BBCmusic-DBpedia by 1.51%, while its recall is decreased by
1.38%, and in the case of YAGO-IMDYb, it improves precision by 0.44% with no negative impact
on recall. This results in an increase of 0.04% and 0.21% in F1 for BBCmusic-DBpedia and YAGO-
IMDb, respectively. Overall this heuristic is the weakest one, yielding only a minor improvement
in the results of MinoanER.

Contribution of neighbors. To evaluate the contribution of neighbor evidence in the match-
ing results, we have repeated Algorithm 3, without heuristic H3. Note that this experiment is
not the same as our baseline; here, we use all the other heuristics, also operating on the pruned
disjunctive blocking graph, while the baseline does not use our heuristics and operates on the
unpruned graph. The results show that neighbor evidence play a minor or even no role in KBs
with strongly similar entities, such as Restaurant and Rexa-DBLP, while having a bigger impact in
KBs with nearly similar matches, such as in BBCmusic-DBpedia and YAGO-IMDD (see Figure 1.4).
Specifically, compared to the results of Table 4.3, the use of neighbor evidence improves precision
by 2.22% and recall by 3.19% in BBCmusic-DBpedia, while, in YAGO-IMDB, precision is improved
by 2.97% and recall by 3.15%.

4.6. Experimental Evaluation

101

Table 4.4: Evaluation of heuristics.
Restau- Rexa- BBCmusic- YAGO-
rant DBLP DBpedia IMDb
HI Pr/Re 100/68.54 | 97.36/87.47 | 99.85/66.11 | 97.55/66.53
F1 81.33 92.15 79.55 79.11
H2 Pr/Re 100/ 100 | 96.15/30.56 | 90.73/37.01 | 98.02/69.14
F1 100 46.38 52.66 81.08
H3 Pr/Re | 98.88/98.88 | 94.73/94.73 | 81.49/81.49 | 90.51/90.50
F1 98.88 94.73 81.49 90.50
—H4 Pr/Re 100/ 100 | 96.03/96.03 | 89.93/89.93 | 90.58 / 90.57
F1 100 96.03 89.93 90.58
No Nei- | Pr/Re 100/ 100 | 96.59/95.26 | 89.22/85.36 | 88.05/87.42
ghbors F1 100 95.92 87.25 87.73

4.6.2 Efficiency Evaluation

To evaluate the scalability of matching in MinoanER!?, we present in Figure 4.4 the running times
and speedup of matching for each dataset, as we change the number of available processors in our
cluster, i.e., the number of tasks that can run at the same time. In each diagram, the left vertical
axis shows the running time and the right vertical axis shows the speedup, as we increase the num-
ber of available processors (from 1 to 72) shown in the horizontal axis!!. Across all experiments,
we have kept the same total number of tasks, which was defined as the number of all cores in the
cluster multiplied by a parallelism factor of 3, i.e., 3 tasks are assigned to each core, when all cores
are available. This was to ensure that each task would require the same amount of resources (e.g.,
memory and disk), regardless of the number of available cores. We observe that the running times
decrease as more processors become available, and this decrease is steeper when using a small
number of processors. For example, the matching of Rexa-DBLP with 6 cores is 6 times faster
than with 1 core, while it is 10 times faster with 12 cores than with 1 core (top-right of Figure 4.4).
Overall, we observe a sub-linear speedup in all cases, which is expected when synchronization is
required for different steps (see Section 4.5.1), while bigger datasets have a speedup closer to lin-
ear than smaller tasks, since the overhead of Spark is smaller with respect to the processing times
in such cases.

It is not possible to directly compare the efficiency of MinoanER with the competitive tools
of Table 4.3; most of them are not publicly available, while the available ones do not support par-
allel execution using Spark. Note that scalability, i.e., a massively parallel architecture, is one of
the Web-scale ER requirements that we have set in Section 1.3. Additionally, the running times
reported in the original works are about sequential algorithms executed in machines with a dif-
ferent setting than ours. However, we can safely argue that our fixed-step process, as opposed to

10The scalability of blocking and Meta-blocking have been already evaluated [33,36].

Hwe could not run MinoanER on the YAGO-IMDb dataset with only 1 processor, due to limited space in a single
machine, so we report its running time starting with a minimum of 4 processors. This means that the linear speedup
for 72 tasks would not be 72, but 18 (72/4).

102 Chapter 4. Entity Matching

Restaurant Rexa-DBLP

70 4 1600 16
60 /‘ 1400 ﬁ /A 14
50 x 3 1200 /‘/ 12
T 40 @=time 2 g 1000 10 a
< T »n @=time 3
o “rspeedup 2 g, 800 3 9
£ 30 o -@speedup o
£ / \ & E 600 6 &
* h *
L ¢ —~—~—— 400 4
10 200 / 2
£ ———
0 0 0 0
1 6 12 36 72 1 6 12 36 72
#tasks tttasks
BBCmusic-DBpedia YAGO-IMDb
350 12 1800 7

300 . 10 1600 L6
\ 1400 .
8 1200 / |

250
T o
$ 200 /A/ 2 & 1000 \ a3
GE’ 150 \ Pl @=time 6 §_; 300 @=time 3 8
= Y «Aespeedup 4 @ g 600 «rspeedup 2

=
o
o

N\

wv
o

o

2
‘ 400
/ —~— & 200 | & e—0
1 6

12 36 72 4

72
#tasks

12 #tasks 36

Figure 4.4: Scalability of matching in MinoanER w.r.t. running time (left vertical axis) and
speedup (right vertical axis) as more cores are involved.

the data-iterative processes of existing works, boosts the efficiency of MinoanER at no cost in (or,
in most cases, with even better) effectiveness. Indicatively, the running time of our framework for
Rexa-DBLP was 3.5 minutes (it took PARIS 11 minutes on one of our cluster nodes for the same
dataset), for BBCmusic-DBpedia it was 69 seconds (it took PARIS 3.5 minutes on one of our clus-
ter nodes), while the running time for YAGO-IMDb was 28 minutes (SiGMa reports 70 minutes,
and PARIS reports 51 hours). In small datasets like Restaurant, our framework can be slower than
other tools, as Spark has a setup overhead, which is significant for such cases (it took MinoanER
27 seconds to run this dataset, while PARIS needed 6 seconds).

4.7 Conclusion

In this chapter, we have presented MinoanER, a fully automated, schema-free and massively par-
allel framework for ER in the Web of data. To resolve highly heterogeneous entities met in this
context, we define schema-free similarity metrics that consider both the content and the neigh-
bors of entities. We exploit these metrics in a composite blocking scheme and conceptually build
a disjunctive blocking graph, a novel graph-based abstraction of the similarity evidence obtained

4.7. Conclusion 103

by blocking. This graph of candidate matches is processed by a non-iterative matching method
with linear cost to the number of entity descriptions. This means that we can now identify the
matches with low similarity (left part of the diagram in Figures 1.4, 4.5) based on their neighbors
and names, even from the step of blocking, without any iteration over previously found matches.

The results show that neighbor evidence plays a minor role in KBs with strongly similar enti-
ties, such as Restaurant and Rexa-DBLP, while having a bigger impact in KBs with nearly similar
entities, such as in BBCmusic-DBpedia and YAGO-IMDb. MinoanER achieves at least equivalent
performance with state-of-the-art ER tools over homogeneous KBs, even without requiring any
domain-specific knowledge, e.g., regarding the alignment of relations in the input, or training data.
Yet, it outperforms to a significant extent existing ER tools when matching highly heterogeneous
KBs, while its parallel implementation in Spark allows it to easily scale to voluminous datasets, as
the ones met in the Web of data. The employed heuristics manage to cover a wide area of matches
in the diagram of Figure 1.4, as abstractly annotated in Figure 4.5 (H1 covers a big part of the whole
diagram, H2 focuses on the right part, and H3 targets the middle-top part), but still some areas of
the diagram are not covered sufficiently (e.g., the bottom-left part), or the covered areas are not
handled in a perfect manner, since the recall of blocking is still better than that of matching. The
difficulty in identifying those matches is also reflected by the overlap of the heuristics in this figure.
If for example, a match is missed from H1 in the top-right area, this match has two more chances
to be identified (by H2 or H3), so it is easier to identify such matches. If, on the other hand, H1

0.9

neighborSim
o o o o
& o 3 o

o
»

o
w

o
N

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
valueSim
A BBCmusic-DBpedia YAGO-IMDb © Rexa-DBLP ®m Restaurant

Figure 4.5: The area of matches from Figure 1.4 targeted by each of the employed heuristics.

104 Chapter 4. Entity Matching

misses one match in the bottom-left corner of Figure 4.5, then this match will not be identified
by any other heuristic. This means that there is still some room for improvement in the heuristics
used, that could increase the number of cases covered.

Furthermore, we are currently working on dynamically setting the three parameters that we
have discussed in Section 4.6 (number of candidate matches per entity, most important relations
per entity, and most important properties per KB acting as names), based on the local similarity
distributions of each node’s candidates will further increase the flexibility and effectiveness of our
framework. For example, when many of the candidate matches have a high value similarity, we ex-
pect that increasing the number of candidate matches kept per entity will yield better recall results,
while, when the neighbor similarity of candidate matches is low, reducing the number of most im-
portant relations should improve precision. The datasets and source code used in MinoanER are
publicly available!?.

12http ://csd.uoc.gr/~vefthym/minoanER/datasets.html

Chapter 5
Conclusion and Future Work

5.1 Synopsis of Contributions

Although Entity Resolution (ER) has been studied for more than three decades in different com-
puter science communities, it still remains an active area of research. In particular, the scale, diver-
sity, and graph structuring of entity descriptions published according to the Linked Data paradigm
challenge the core ER tasks, namely, (i) how resolution algorithms can efficiently filter the candi-
date description pairs that need to be compared and (ii) how descriptions can be effectively com-
pared for similarity. In this thesis, we introduce the MinoanER framework, which deals with these
challenging ER tasks in the Web of data in the following ways.

Regarding the first task, ER in the Web of data involves a large number of KBs (in the or-
der of hundreds) and even a larger number of entity types in different domains (in the order of
thousands) whose published descriptions could be potentially resolved (Chapter 1). Aiming at
efficiency, MinoanER employs blocking (Chapter 2) and Meta-blocking (Chapter 3) to reduce the
number of required comparisons. The indexing functions of blocking are schema-free, based on
the tokens and the names of the entity descriptions, disregarding any assumptions regarding the
way entities are described in various KBs. Meta-blocking relies on a novel disjunctive blocking
graph capturing similarity evidence provided by several atomic blocking methods (i.e., on the con-
tent, name and neighbors of descriptions) that can be then efficiently built and pruned, using only
on the blocking results. Both blocking and Meta-blocking have been implemented in a massively
parallel architecture, to allow scaling to the volumes of KBs met in the Web of data. The experi-
mental results show that our composite blocking and Meta-blocking techniques achieve for both
strongly and nearly similar entities a good tradeoff between the efficiency and the effectiveness of
the ER process, by reducing the number of suggested comparisons by more than 90%, while also
suggesting the comparisons between more than 90% of the actual matches.

Regarding the second task, MinoanER relies on new similarity metrics, that can effectively com-
pare descriptions of different entity types using simple statistics on terms, attributes or relations
employed to describe entities even in different domains without involving domain experts (Chap-
ter 4). The similarity evidence provided by these metrics and captured by the disjunctive blocking
graph, are exploited by generic heuristics in a non-iterative matching. The matching heuristics

105

106 Chapter 5. Conclusion and Future Work

are also implemented in a massively parallel architecture, enabling MinoanER to handle ER at
the scale of the Web of data. The experimental results show that our non-iterative matching can
successfully identify not only strongly similar, but also nearly similar matches met in highly het-
erogeneous Web KBs.

To our knowledge, MinoanER is the first ER framework that can identify nearly similar matches
in a schema-free, fully automated, non-iterative and massively parallel way. The main contribu-
tion of this framework to the field, is that it achieves at least equivalent results over homogeneous
KBs (stemming from common data sources, thus exhibiting strongly similar matches), and signif-
icantly better results over heterogeneous KBs (stemming from different sources, thus exhibiting
many nearly similar matches), to state-of-the-art ER tools, without requiring any domain-specific
knowledge, e.g., regarding the schema or the alignment of relations in the input, or training data,
in a non-iterative and highly efficient way.

5.2 Short-term Improvements

The following improvements could potentially enhance flexibility and performance of MinoanER:

¢ Dynamically setting the fixed parameters of the matching phase (i.e., number of candidates
kept per node after pruning the blocking graph, number of most important relations per
entity, and most important properties per KB acting as names) based on the local similarity
distribution of each node would strengthen the flexibility of our matching to better adapt
to each unique case of matching. This extension aims to achieve the maximum possible
recall for matching, which is the recall of blocking. This is similar in logic to the global
vs. local pruning of the blocking graph edges: in our current design, we are using only a
global strategy, however, considering a local one, we can set different parameter values per
entity. Our intuition is that when many of the candidate matches have a high value similarity,
increasing the number of candidate matches kept per entity will result in higher recall, while,
when the neighbor similarity of candidate matches is low, reducing the number of most
important relations should improve precision. Also, when many candidates are tied at the
candidate lists, increasing the number of important relations would help breaking those ties,
with respect to the neighbor evidence, and increasing the number of important attributes

used as entity names could also help in this direction.

¢ Optimizing the parallel algorithms employed for blocking, Meta-blocking and matching, tai-
loring them to the specific parallelization environment used is an unexplored field in this
work. In our preliminary examples, we have seen a drastic reduce in the running times of
our algorithms when moving from MapReduce to Spark. In one setting of Meta-blocking, in
which multiple MapReduce jobs were employed, the transition from MapReduce to Spark
reduced the running time from 70 minutes to only 10, without any advanced tuning. At the
moment, we have only implemented in Spark the Meta-blocking methods that were utilized

5.3. Directions for Future Research 107

by MinoanER. We believe that further tuning our algorithms for Spark, and proving that their
parallelization is optimal, would yield significant efficiency benefits.

» Extending the matching evidence to indirect neighbors. In this work, we consider only the
similarity of direct (hop-1) neighbors to influence the matching decision for a candidate pair.
Extending the radius of important neighbors (e.g., to hop-2) may improve the effectiveness
of a matching method, probably bringing an overhead in efficiency. Specifically, [67] studies
this problem for matching anonymous entity descriptions (blank nodes) with a varying ra-
dius, using a textual signature of the entity description and its neighbors (the signature is a
string concatenation of all the RDF triples in which the identifier of an entity description par-
ticipates). It shows that extending the similarity evidence to indirect neighbors can yield bet-
ter qualitative results, while the signature-based algorithm allows an efficient search even
when the radius is greater than 1. As noted in [67], a parallel version of this algorithm is
worth noticing, and we believe that a signature-based extension of our work for indirect
neighbors could improve the effectiveness of MinoanER, with a small efficiency overhead.

¢ Support of numerical comparisons, hierarchical data, and stemming. In some cases, treat-
ing all values as tokens may have disadvantages. Those are domain-specific problems, such
as matching geographical data, which contain many numeric values (e.g., co-ordinates, poly-
gons) and an exact match of values or even tokens of those values may be ineffective. In
such cases, we may want to compare values and suggest candidate matches based, not only
on the exact match of tokens, but instead, on the proximity of the numeric values (e.g.,
co-ordinates very close to each other), a containment measure (for polygons describing
locations), or a hierarchical comparison (e.g., the facts “bornln Manhattan” and “bornin
NewYork” should not be considered dissimilar). This could easily integrated to our frame-
work as an additional indexing function (i.e., type of blocking) and the inclusion of the gen-
erated blocks in our disjunctive co-occurrence function. Another improvement on the com-
parison of values could be to employ stemming before blocking, this way handling typos in
a better way. The way this additional evidence could be exploited in blocking is also inter-
esting; for this reason, a domain-specific heuristic could be employed.

5.3 Directions for Future Research

There are several aspects that are worth further work and research. Here, we discuss our ongoing
and future work regarding Web table annotation, streaming ER, and the benefit of ER.

Web table annotation. In this thesis, we have studied the problem of resolving entities whose
descriptions are published in one or two RDF KBs. An interesting research question is how can we
resolve entities when one of the KBs is published in a different format, such as in the form of Web
tables? Could we exploit some of MinoanER’s components to this respect? In our ongoing work,

108 Chapter 5. Conclusion and Future Work

we are trying to provide answers to these questions for the problem of annotating the contents of
Web tables with matching descriptions contained in a target RDF KB. The main difference with
what we have seen in this thesis is that a typical Web table contains entity descriptions of a single
domain with a fixed schema, while the target KB does not. We only consider horizontal tables, in
which each row describes a different entity and each column corresponds to a specific attribute,
which can also be a relation, or the attribute corresponding to the entity name. We make the as-
sumption that all the entities described in the same column are of the same type and that column
headers, typically existing in the first row of a horizontal Web table, do not contain meaningful
names which we could exploit for matching them to properties in a KB, as this is an assumption
holding for the majority of Web tables [6].

We are currently evaluating different approaches to this problem, whose contextual informa-
tion vary from poor (in Web tables) to rich (in KBs). First, we examine a lookup-based method,
which exploits the columns of the Web tables recognized as entity names. It essentially detects
correspondences using the minimal contextual information available in Web tables, which is then
refined (based on frequently occurring terms in entity descriptions) or enriched (by exploiting re-
lationships with other entities) with respect to the context of entities available in the KB. To do
that, it creates an index for the target KB, using token blocking, and then searches this index for
the tokens contained in the name column, to create candidate matches. The final matches are
then selected using similar heuristics to the ones we used in Chapter 4. In the opposite direc-
tion, the embeddings-based method exploits a vectorial representation of the rich entity context
in a KB (using word2vec [74] algorithm) to identify the most relevant subset of entities in the Web
table. Again, blocking is utilized to quickly store and retrieve the names of the entities, which is
required to generate candidate matches. The candidate matches are stored as nodes in a graph,
in which the cosine similarity of their vectors are used to weight the edges connecting them. The
most coherent result-set, which is the set of most visited nodes found by several iterations of a
weighted PageRank algorithm [107], is the final annotation result. Our experiments show that the
best results are acquired by a combination of these two methods [30, 31].

Progressive ER. Works in progressive ER [3,4,86,100] focus on maximizing the reported matches,
given a limited computational budget, by potentially exploiting the partial matching results ob-
tained so far in an iterative ER process. Essentially, they extend the typical ER workflow with
a scheduling phase, which is responsible for selecting which candidate matches, suggested by
blocking, will be compared in the matching phase and in what order. The goal of this new phase is
to favor more promising comparisons, i.e., those that are more likely to result in matches. This
way, those comparisons are executed before less promising ones and thus, more matches are
identified early on in the process. The partial results of matches are then propagated such that a
new scheduling phase will promote the comparison of pairs that were influenced by the previous
matches. This iterative process continues until the pre-defined computing budget is consumed.

We believe that the quality of the resulting entity graph after merging the matches, rather

5.3. Directions for Future Research 109

than the number of matches, should determine the benefit of the ER process under resource con-
straints. In this respect, we are interested in measuring the complementary knowledge (similar to
the notion of diversity used in information retrieval) that an ER process could achieve in the re-
sulting entity graph. Our intuition is that merges resulting from nearly similar entity descriptions
are more beneficial in this respect compared to merges from strongly similar descriptions (i.e., du-
plicates). Thus, given a constraint in the number of possible merges, we would like to perform
those that contribute most in diversifying the knowledge encoded in the resulting entity graph.
Complementary knowledge can be measured by the degree of a merged node in an entity graph,
excluding overlapping edges. Intuitively, each edge represents a fact or relationship, which we use
as a unit of knowledge increase. When two edges overlap, they represent the same knowledge unit,
so we do not gain anything by knowing both of them, whereas, when two edges represent two dif-
ferent knowledge units, then they are both useful. Thus, when we merge two matching entities,
we want to count only the number of unique knowledge units that the merging brought to our
graph. In that sense, nearly similar descriptions provide complementary knowledge units about
the entity that they describe and thus maximize the benefit of progressive ER, whereas merging
strongly similar descriptions comes with a zero benefit. Thus, we would need to reconsider the or-
der of applying our heuristics during the matching phase, placing the rank aggregation heuristic
(H3), targeting nearly similar matches, before the value heuristic (H2), targeting strongly similar
matches, or combining the name (H1) and value (H2) heuristics, such that we return first the
matches with identical names (i.e., a subset of those returned by H1) that are not strongly similar

(i.e., they are not returned by H2).

Streaming ER. We are finally interested in a streaming version of MinoanER, in which we are
not asked to find all the matching descriptions between two entity collections, but the matches of
descriptions arriving in a streaming fashion against a stored collection of entities (e.g., [3,44,100]).
For example, consider an application resolving the entities described across news feeds. A jour-
nalist using this application could be provided with several facts regarding a breaking news story,
as they get published by different agencies or witnesses, enabling him/her to form a complete pic-
ture of the events as they occur, in real-time. This would require storing only some parts of the
blocking graph, and discarding the rest, as more descriptions are fed to the system. To evaluate
which parts of the graphs are more useful to keep, we can design different strategies. For example,
we may want to keep the latest nodes of the graph, since new input entities are more likely to be
connected to them, and thus, their resolution is more likely to be helped by those latest nodes. An-
other strategy would be to keep the nodes with the highest in-degrees, since they are more likely to
influence the matching decision of their in-neighbors and new entities appearing are more likely
to be connected to those nodes.

The MinoanER framework already considers local matching decisions taken for each node,
using only its name, tokens and most important direct neighbors. Hence, the matching of a sin-
gle node does not require the identification of all existing matches. Also, the indexing functions

110 Chapter 5. Conclusion and Future Work

used by our blocking method are schema-free and non-iterative, which means that entities can
be placed in blocks as they come, regardless of the set of attributes that they use. Moreover, the
most effective heuristic in terms of matching cases, the name heuristic (H1), can be run immedi-
ately with a close-to-zero cost. The value heuristic (H2) could also run at real-time considering
the number and size of common token blocks between two descriptions, which, together with H1,
would result in a decent streaming ER framework. The biggest challenge for a streaming version
of MinoanER would be the incorporation of the rank aggregation heuristic (H3), which requires
matching evidence from the neighbors. Streaming ER would probably imply the withdrawal of the
reciprocity heuristic (H4), sacrificing a small fraction of precision for the sake of faster process-
ing. Finally, scalability still demands a parallel architecture, since the search space of candidate
matches would incrementally increase. Such a streaming version of ER could be supported by
distributed stream-processing frameworks such as Spark streaming' and Apache Flink?.

Uhttps://spark.apache.org/streaming/
2https://flink.apache.org/

Bibliography

(1]

(2]

(3]

(4]

)

(6]

(7]

(8]

(9]

(10]

(11]

(12]

Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Social Networks,
25(3):211-230, 2003.

Akiko N. Aizawa and Keizo Oyama. A fast linkage detection scheme for multi-source infor-
mation integration. In WIRI, pages 30-39, 2005.

Yasser Altowim, Dmitri V. Kalashnikov, and Sharad Mehrotra. Progressive approach to rela-
tional entity resolution. PVLDB, 7(11):999-1010, 2014.

Yasser Altowim and Sharad Mehrotra. Parallel progressive approach to entity resolution
using mapreduce. In ICDE, pages 909-920, 2017.

Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity joins. In
VLDB, 2006.

Sreeram Balakrishnan, Alon Y. Halevy, Boulos Harb, Hongrae Lee, Jayant Madhavan, Afshin
Rostamizadeh, Warren Shen, Kenneth Wilder, Fei Wu, and Cong Yu. Applying WebTables in
Practice. In CIDR, 2015.

Krisztian Balog, Marc Bron, and Maarten de Rijke. Category-based query modeling for entity
search. In ECIR, pages 319-331, 2010.

Krisztian Balog, Edgar Meij, and Maarten de Rijke. Entity search: Building bridges between
two worlds. In SEMSEARCH, 2010.

Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similarity
search. In WWW, 2007.

Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational data. TKDD,
1(1), 2007.

Bin Bi, Hao Ma, Bo-June Paul Hsu, Wei Chu, Kuansan Wang, and Junghoo Cho. Learning to
recommend related entities to search users. In WSDM, pages 139-148, 2015.

Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. Adaptive blocking: Learning to
scale up record linkage. In ICDM, 2006.

111

112

Bibliography

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

Christian Bizer, Jens Lehmann, Georgi Kobilarov, S6ren Auer, Christian Becker, Richard Cy-
ganiak, and Sebastian Hellmann. Dbpedia - A crystallization point for the web of data. J.
Web Sem., 7(3):154-165, 2009.

Roi Blanco, Berkant Barla Cambazoglu, Peter Mika, and Nicolas Torzec. Entity recommen-
dations in web search. In ISWC, pages 33-48, 2013.

Roi Blanco, Peter Mika, and Sebastiano Vigna. Effective and efficient entity search in RDF
data. In ISWC, pages 83-97, 2011.

Christoph Bohm, Gerard de Melo, Felix Naumann, and Gerhard Weikum. LINDA: dis-
tributed web-of-data-scale entity matching. In CIKM, pages 2104-2108, 2012.

Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise
independent permutations. J. Comput. Syst. Sci., 60(3):630-659, 2000.

Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator for similarity
joins in data cleaning. In ICDE, page 5, 2006.

Shihyen Chen, Bin Ma, and Kaizhong Zhang. On the similarity metric and the distance
metric. Theor. Comput. Sci., 410(24-25):2365-2376, 2009.

Peter Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity Resolu-
tion, and Duplicate Detection. Data-Centric Systems and Applications. Springer, 2012.

Peter Christen. A survey of indexing techniques for scalable record linkage and deduplica-
tion. IEEE Trans. Knowl. Data Eng., 24(9):1537-1555, 2012.

Vassilis Christophides, Vasilis Efthymiou, and Kostas Stefanidis. Entity Resolution in the
Web of Data. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan &
Claypool Publishers, 2015.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clus-
ters. Commun. ACM, 51(1):107-113, 2008.

AnHai Doan, Adel Ardalan, Jeffrey R. Ballard, Sanjib Das, Yash Govind, Pradap Konda, Han
Li, Sidharth Mudgal, Erik Paulson, Paul Suganthan G. C., and Haojun Zhang. Human-in-the-
loop challenges for entity matching: A midterm report. In HILDA, pages 12:1-12:6, 2017.

AnHai Doan, Jeffrey E Naughton, Raghu Ramakrishnan, Akanksha Baid, Xiaoyong Chai, Fei
Chen, Ting Chen, Eric Chu, Pedro DeRose, Byron Gao, Chaitanya Gokhale, Jiansheng Huang,
Warren Shen, and Ba-Quy Vuong. Information extraction challenges in managing unstruc-
tured data. SIGMOD Rec., 37(4):14-20, March 2009.

Bibliography 113

(26]

(27]

(28]

(29]

(30]

(31]

[32]

(33]

(34]

(35]

(36]

(37]

(38]

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: a web-scale approach to prob-
abilistic knowledge fusion. In SIGKDD, pages 601-610, 2014.

Xin Luna Dong and Divesh Srivastava. Big Data Integration. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2015.

Uwe Draisbach and Felix Naumann. A generalization of blocking and windowing algorithms
for duplicate detection. In ICDKE, pages 18-24, 2011.

Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea. Apples
and oranges: a comparison of RDF benchmarks and real RDF datasets. In SIGMOD, pages
145-156, 2011.

Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis
Christophides. Matching web tables with knowledge base entities: From entity lookups to
entity embeddings. In ISWC (to appear), 2017.

Vasilis Efthymiou, Oktie Hassanzadeh, Mohammad Sadoghi, and Mariano Rodriguez-Muro.
Annotating web tables through ontology matching. In OM, pages 229-230, 2016.

Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis, and Themis
Palpanas. Parallel meta-blocking: Realizing scalable entity resolution over large, heteroge-
neous data. In IEEE Big Data, pages 411-420, 2015.

Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis, and Themis
Palpanas. Parallel meta-blocking for scaling entity resolution over big heterogeneous data.
Inf. Syst., 65:137-157, 2017.

Vasilis Efthymiou, Kostas Stefanidis, and Vassilis Christophides. Big data entity resolution:
From highly to somehow similar entity descriptions in the web. In IEEE Big Data, 2015.

Vasilis Efthymiou, Kostas Stefanidis, and Vassilis Christophides. Minoan ER: progressive
entity resolution in the web of data. In EDBT, pages 670-671, 2016.

Vasilis Efthymiou, Kostas Stefanidis, and Vassilis Christophides. Benchmarking blocking
algorithms for web entities. IEEE Transactions on Big Data, (to appear), 2017.

Vasilis Efthymiou, Kostas Stefanidis, and Eirini Ntoutsi. Top-k computations in MapReduce:
A case study on recommendations. In IEEE Big Data, pages 2820-2822, 2015.

Oren Etzioni, Michael J. Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen
Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised named-entity extraction
from the web: An experimental study. Artif. Intell., 165(1):91-134, 2005.

114

Bibliography

(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

[50]

(51]

[52]

Pavlos Fafalios, Manolis Baritakis, and Yannis Tzitzikas. Exploiting linked data for open and
configurable named entity extraction. International Journal on Artificial Intelligence Tools,
24(2), 2015.

Christos Faloutsos and King-Ip Lin. Fastmap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. In SIGMOD, pages 163-174, 1995.

Lujun Fang, Anish Das Sarma, Cong Yu, and Philip Bohannon. REX: explaining relationships
between entity pairs. PVLDB, 5(3):241-252, 2011.

L. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical
Association, 64:1183-1210, 1969.

Alfio Ferrara, Stefano Montanelli, Jan Noessner, and Heiner Stuckenschmidt. Benchmarking
matching applications on the semantic web. In ESWC, 2011.

Donatella Firmani, Barna Saha, and Divesh Srivastava. Online entity resolution using an
oracle. PVLDB, 9(5):384-395, 2016.

Vishrawas Gopalakrishnan, Suresh Parthasarathy Iyengar, Amit Madaan, Rajeev Rastogi,
and Srinivasan H. Sengamedu. Matching product titles using web-based enrichment. In
CIKM, 2012.

Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and
Divesh Srivastava. Approximate string joins in a database (almost) for free. In VLDB, pages
491-500, 2001.

Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. Framework for evaluat-
ing clustering algorithms in duplicate detection. PVLDB, 2(1):1282-1293, 2009.

Mauricio A. Hernandez and Salvatore J. Stolfo. The merge/purge problem for large
databases. In SIGMOD, pages 127-138, 1995.

Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2: A
spatially and temporally enhanced knowledge base from wikipedia. Artif. Intell., 194:28-61,
2013.

Eduard H. Hovy, Roberto Navigli, and Simone Paolo Ponzetto. Collaboratively built semi-
structured content and artificial intelligence: The story so far. Artif. Intell., 194:2-27, 2013.

Ekaterini Ioannou, Nataliya Rassadko, and Yannis Velegrakis. On generating benchmark
data for entity matching. J. Data Semantics, 2(1):37-56, 2013.

Robert Isele and Christian Bizer. Learning expressive linkage rules using genetic program-
ming. PVLDB, 5(11):1638-1649, 2012.

Bibliography 115

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

[62]

(63]

(64]

(65]

(66]

(67]

Robert Isele and Christian Bizer. Active learning of expressive linkage rules using genetic
programming. J. Web Sem., 23:2-15, 2013.

Paul Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans quelques
régions voisines. Bull. Soc. Vaud. Sci. Nat., 37:241-272, 1901.

Bernard J. Jansen and Amanda Spink. How are we searching the world wide web? A compar-
ison of nine search engine transaction logs. Inf. Process. Manage., 42(1):248-263, 2006.

Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String similarity joins: An experimen-
tal evaluation. PVLDB, 7(8):625-636, 2014.

Liang Jin, Chen Li, and Sharad Mehrotra. Efficient record linkage in large data sets. In
DASFAA, pages 137-146, 2003.

Yuzhe Jin, Emre Kiciman, Kuansan Wang, and Ricky Loynd. Entity linking at the tail: sparse
signals, unknown entities, and phrase models. In WSDM, pages 453-462, 2014.

Mayank Kejriwal and Daniel P. Miranker. An unsupervised algorithm for learning blocking
schemes. In ICDM, 2013.

Batya Kenig and Avigdor Gal. MFIBlocks: An effective blocking algorithm for entity resolu-
tion. Inf. Syst., 38(6):908-926, 2013.

Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient deduplication with hadoop.
PVLDB, 5(12):1878-1881, 2012.

Lars Kolb, Andreas Thor, and Erhard Rahm. Load balancing for mapreduce-based entity
resolution. In ICDE, pages 618-629, 2012.

Lars Kolb, Andreas Thor, and Erhard Rahm. Multi-pass sorted neighborhood blocking with
mapreduce. Computer Science - R&D, 27(1):45-63, 2012.

Hanna K6pcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution approaches
on real-world match problems. PVLDB, 3(1):484-493, 2010.

Vangelis Koukis, Constantinos Venetsanopoulos, and Nectarios Koziris. ~okeanos: Building
a cloud, cluster by cluster. IEEE Internet Computing, 17(3):67-71, 2013.

Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Graepel, and
Zoubin Ghahramani. Sigma: simple greedy matching for aligning large knowledge bases. In
KDD, 2013.

Christina Lantzaki, Panagiotis Papadakos, Anastasia Analyti, and Yannis Tzitzikas. Radius-
aware approximate blank node matching using signatures. Knowl. Inf. Syst., 50(2):505-542,
2017.

116

Bibliography

(68]

(69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. Rimom: A dynamic multistrategy ontology align-
ment framework. IEEE Trans. Knowl. Data Eng., 21(8):1218-1232, 2009.

Thomas Lin, Patrick Pantel, Michael Gamon, Anitha Kannan, and Ariel Fuxman. Active
objects: actions for entity-centric search. In WWW, pages 589-598, 2012.

Pankaj Malhotra, Puneet Agarwal, and Gautam Shroff. Graph-parallel entity resolution us-
ing LSH & IMM. In EDBT/ICDT Workshops, 2014.

Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In SIGKDD, pages 169-178,
2000.

W.P. McNeill, Hakan Kardes, and Andrew Borthwick. Dynamic record blocking: efficient
linking of massive databases in mapreduce. In QDB, 2012.

Ahmed Metwally and Christos Faloutsos. V-smart-join: A scalable mapreduce framework
for all-pair similarity joins of multisets and vectors. PVLDB, 5(8):704-715, 2012.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781, 2013.

Iris Miliaraki, Roi Blanco, and Mounia Lalmas. From "selena gomez" to "marlon brando":
Understanding explorative entity search. In WWW, pages 765-775, 2015.

Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detection. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2010.

Axel-Cyrille Ngonga Ngomo and Soren Auer. LIMES - A time-efficient approach for large-
scale link discovery on the web of data. In IJCAI 2011.

George Papadakis, Ekaterini Ioannou, Claudia Niederée, and Peter Fankhauser. Efficient
entity resolution for large heterogeneous information spaces. In WSDM, pages 535-544,
2011.

George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Palpanas, and Wolfgang
Nejdl. Eliminating the redundancy in blocking-based entity resolution methods. In JCDL,
pages 85-94, 2011.

George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Palpanas, and Wolfgang
Nejdl. Beyond 100 million entities: large-scale blocking-based resolution for heterogeneous
data. In WSDM, pages 53-62, 2012.

Bibliography 117

(81]

[82]

(83]

(84]

[85]

(86]

(87]

(88]

(89]

(90]

(91]

[92]

(93]

George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niederée, and Wolfgang
Nejdl. A blocking framework for entity resolution in highly heterogeneous information
spaces. IEEE Trans. Knowl. Data Eng., 25(12):2665-2682, 2013.

George Papadakis, Georgia Koutrika, Themis Palpanas, and Wolfgang Nejdl. Meta-blocking:
Taking entity resolutionto the next level. IEEE Trans. Knowl. Data Eng., 26(8):1946-1960,
2014.

George Papadakis, George Papastefanatos, and Georgia Koutrika. Supervised meta-
blocking. PVLDB, 7(14):1929-1940, 2014.

George Papadakis, George Papastefanatos, Themis Palpanas, and Manolis Koubarakis.
Boosting the efficiency of large-scale entity resolution with enhanced meta-blocking. Big
Data Research, 6:43-63, 2016.

George Papadakis, George Papastefanatos, Themis Palpanas, and Manolis Koubarakis. Scal-
ing entity resolution to large, heterogeneous data with enhanced meta-blocking. In EDBT,
pages 221-232, 2016.

Thorsten Papenbrock, Arvid Heise, and Felix Naumann. Progressive duplicate detection.
IEEE Trans. Knowl. Data Eng., 27(5):1316-1329, 2015.

Petar Petrovski, Volha Bryl, and Christian Bizer. Integrating product data from websites
offering microdata markup. In WWW, 2014.

Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge Uni-
versity Press, New York, NY, USA, 2011.

Vibhor Rastogi, Nilesh N. Dalvi, and Minos N. Garofalakis. Large-scale collective entity
matching. PVLDB, 4(4):208-218, 2011.

Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption of the linked data
best practices in different topical domains. In ISWC, pages 245-260, 2014.

Chao Shao, Linmei Hu, Juan-Zi Li, Zhichun Wang, Tong Lee Chung, and Jun-Bo Xia. Rimom-
im: A novel iterative framework for instance matching. J. Comput. Sci. Technol., 31(1):185-
197, 2016.

Giovanni Simonini, Sonia Bergamaschi, and H. V. Jagadish. BLAST: a loosely schema-aware
meta-blocking approach for entity resolution. PVLDB, 9(12):1173-1184, 2016.

Dezhao Song and Jeff Heflin. Automatically generating data linkages using a domain-
independent candidate selection approach. In ISWC, 2011.

118

Bibliography

(94]

[95]

[96]

[97]

(98]

(99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Karen Spirck Jones. A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation, 28(1):11-21, 1972.

Kostas Stefanidis, Vassilis Christophides, and Vasilis Efthymiou. Web-scale blocking, itera-
tive and progressive entity resolution. In ICDE, pages 1459-1462, 2017.

Kostas Stefanidis, Vasilis Efthymiou, Melanie Herschel, and Vassilis Christophides. Entity
resolution in the web of data. In WWW Companion Volume, pages 203-204, 2014.

Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS: probabilistic alignment
of relations, instances, and schema. PVLDB, 5(3):157-168, 2011.

Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins using
mapreduce. In SIGMOD, pages 495-506, 2010.

Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk - A link discovery
framework for the web of data. In LDOW, 2009.

Steven Euijong Whang, David Marmaros, and Hector Garcia-Molina. Pay-as-you-go entity
resolution. IEEE Trans. Knowl. Data Eng., 25(5):1111-1124, 2013.

Steven Euijong Whang, David Menestrina, Georgia Koutrika, Martin Theobald, and Hector
Garcia-Molina. Entity resolution with iterative blocking. In SIGMOD, pages 219-232, 2009.

Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins for near
duplicate detection. In WWW, pages 131-140, 2008.

Su Yan, Dongwon Lee, Min-Yen Kan, and C. Lee Giles. Adaptive sorted neighborhood meth-
ods for efficient record linkage. In JCDL, pages 185-194, 2007.

Wei Yan, Yuan Xue, and Bradley Malin. Scalable load balancing for mapreduce-based record
linkage. In IPCCC, pages 1-10, 2013.

Xiao Yu, Hao Ma, Bo-June Paul Hsu, and Jiawei Han. On building entity recommender sys-
tems using user click log and freebase knowledge. In WSDM, pages 263-272, 2014.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In HotCloud, 2010.

Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. DoSeR - A Knowledge-Base-
Agnostic Framework for Entity Disambiguation Using Semantic Embeddings. In ESWC,
pages 182-198, 2016.

Glossary

block (symb. b) a subset of entity descriptions from an entity collection (typically created using
an indexing function). 6, 10, 11, 13-22, 24, 25, 27, 28, 31, 34-36, 39, 41-77, 80, 82, 88, 89, 91,
94, 98, 99

blocking graph (symb. G) a graph whose nodes represent entity descriptions and edges con-
nect descriptions that share a common block, denoting the candidate matches suggested
by blocking. 6, 10, 11, 41-44, 47-49, 51, 53-55, 57, 72, 81, 83, 88, 89, 91, 93, 94, 97, 100, 105,
106, 109

dataset a set of entity collections, whose entity descriptions can be matched (usually referring to
a benchmark dataset). 7, 9, 21, 28-31, 33-40, 43, 65, 66, 69-72, 75-78, 96, 97, 100, 101, 103

entity collection (symb. &) a set of entity descriptions, either from a single source (e.g., a single
KB or database), or from multiple sources. 5, 6, 14-16, 20-22, 24-28, 35, 42, 44, 45, 47, 65, 84,
87, 88, 109

entity description (symb. e) (or simply “description”, when clear from the context) an identifiable
set of attribute-value pairs, used to describe a real-world entity, including physical (e.g., a
book) and non-physical (e.g., a character in a book) objects. 1-4, 6-10, 13-15, 18-20, 25, 27,
28, 30, 31, 34, 39, 40, 44, 48, 49, 65, 66, 77, 79, 81-87, 93, 100, 105, 107, 108

ER (Entity Resolution) the problem of identifying entity descriptions that refer to the same real-
world entity. 1, 4, 5, 7-11, 13, 17, 25, 30, 39, 40, 49, 66, 76, 79, 81, 82, 84, 97, 99, 101, 105, 106,
108-110

ground truth a set entity description pairs which are known to refer to the same real-world entity
(i.e., a given set of matches), used for the evaluation of an ER task. 14, 16, 30, 31, 35, 36, 65,
96, 97, 99

KB (Knowledge Base) a single data source, containing descriptions of real-world entities (the
main difference to a database, is that a KB does not necessarily follow a specific schema).
1-5, 7-11, 13, 14, 20, 22, 29-31, 34-36, 39, 40, 65, 79-82, 86, 88, 89, 91, 96, 97, 100, 103, 105—
108

119

120 Glossary

match (noun) a pair of entity descriptions that refer to the same real-world entity; (verb) refer
to the same real-world entity. 1, 5-10, 13-21, 23-25, 30, 31, 33, 35-39, 41, 48, 65, 75, 76, 79,
81-84, 88, 91-97, 99, 100, 106, 108, 109

