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Abstract— We propose a generic, unsupervised feature clas-
sification and image segmentation framework, where only the
number of classes is assumed as known. Image segmentation
is treated as an optimization problem. The framework involves
block-based unsupervised clustering usingk-means, followed by
region growing in spatial domain. High confidence statistical
criteria are used to compute a map of initial labelled pixels.
A new region growing algorithm is introduced, which is named
Independent Flooding Algorithm and computes a height per label
for each one of the unlabeled pixels, using Bayesian dissimilarity
criteria. Finally, a MRF model is used to incorporate the local
pixel interactions of label heights and a graph cuts algorithm
performs the final labelling by minimizing the underlying energy.
Segmentation results using texture, intensity and color features
are presented.

I. I NTRODUCTION

Image segmentation is a key step in many computer vi-
sion analysis and interpretation tasks. Segmentation of color
textured images has eventually become a necessity for many
multimedia applications, such as content based image retrieval
(CBIR) and object recognition purposes, especially after the
development of international standard MPEG-7 [1].

Despite the plethora of methodologies for image segmen-
tation we note the lack of a single, generic paradigm that
addresses the whole range of segmentation problems and
applications. This is due to the frequent complexity and ill-
posedness of segmentation problems and the absence of an
unambiguous ground truth. In light of these considerations,
interactive segmentation techniques are also frequently em-
ployed [2].

Considering image segmentation as an optimization problem
we should introduce four kinds of constraints: boundary,
shape, region and topology. In edge detection [3] only bound-
ary constraints are taken into account, while such constraints
can be integrated in region growing techniques [4]. The last
category of techniques incorporates soft topology constraints.
Boundary constraints combined with geometric shape con-
straints lead to geodesic active contours [5], where a global
optimization method is applied. This approach is generalized
in [6] giving a powerful method because it introduces and
deals with boundary, shape and region constraints. The natural
counter part of topology flexibility is the difficult incorpora-
tion of topological constraints. However, topology constraints
could guide the segmentation process and this is the case in our

work. Nevertheless, we focus on automatically determining
topological constraints based on accurate region features.

We now consider the different cues for image segmentation.
Multi-channel filtering approaches for texture analysis have
been proposed, using filter-banks of Gabor filters [7], [8] or
wavelet packet frame decomposition [9]. In [10], many differ-
ent multi-channel filtering approaches have been compared.
Among the best filters were the Discrete Wavelet Frames
(DWF) filter bank [11], which is used for texture modelling in
our work. Wavelet frames representation decomposes the im-
age into orthogonal texture components in different scalesand
orientations and it is translation invariant, a necessary property,
when quite precise boundary localization is required. Methods
that combine texture and color information for segmentation
have also been proposed in the literature [12].

In the proposedunsupervisedpattern classification and
segmentation framework, only the numberL of classes is
assumed to be known. The proposed framework may be
roughly separated in two main components, namely,feature
extraction and classification in the feature space, which is
constructed by image data information andenergy minimiza-
tion in spatial domain based on the computed features of
classes. Referring to Fig. 1 and given as input a) the number
of classes, b) the selection of segmentation features and c)
the input image, the derived pixel features of chromaticity,
texture and intensity are computed, if they have been selected
as segmentation features. The next step consists of the block-
based classification of features. The feature description of
(possibly overlapping) blocks is derived, followed by the
optional rejection of heterogeneous blocks, as it is described in
detail in [13], to exclude from clustering the blocks which are
not similar to their neighboring ones. Homogeneous blocks are
given as input to ak-meansinitialization algorithm proposed
by Kauffman and Rousseeuw [14], which successively selects
a prototype block for each one of the clusters. Clustering
of homogeneous blocks is then performed byk-meansin
order to extract a feature vector per class. Among several
known distance measures between probability distributions,
the Bhattacharyya distance is used herein to measure the
distance between block instances as well as between a block
and a class ink-means. Then, probabilistic distances are used
to determine and label pixels that belong to one of the classes
with high confidence. Having available the data modelling
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Fig. 1. Flowchart of the proposed segmentation framework.

and the initial map of correctly labelled pixels, we propose
a newRegion Growing(RG) algorithm in order to compute
a topographic surface per label by assigning a height to each
unlabeled pixel, using Bayesian dissimilarity criteria. Finally,
the local pixel interactions of label heights are modeled bya
Markov random field (MRF)model and the underlying energy
is minimized by a novelprimal-dual algorithm.

II. FLOODING PROCESS FORLABEL PROPAGATION

A. A min-max criterion for labelling

In what follows, it is assumed that a method such as that of
Subsection II-B, which assigns pixel regions to classes with
high confidence has been performed. LetS =

⋃L−1
l=0 Sl be

the set of those initially labelled pixels. For any unlabeled
pixel s we can consider all the paths linking it to a labelled
set or region. A pathCl(s) is a sequence of adjacent pixels
{s0, . . . , sn}, wheresn = s, while all pixels of the sequence
are unlabeled, excepts0 which has labell. The cost of a
particular path is defined as being equal to the maximum cost
of a pixel classification according to the Bayesian rule and
along the path

max
i=1,...,n

dB
l (si),

with

dB
l (s) = − ln Pr{l|ξ(s)} = − ln

Plpl(ξ(s))
∑L−1

k=0 Pkpk(ξ(s))
,

wherePk is thea priori probability of classk.
Therefore, for eachl a topographic surface on a discrete

grid is defined, considering 4-connected pixels. The initially
labelled pixels are defined to be at the zero level, while the
height of the unlabeled pixels is given by the Bayesian rule.
Indeed,dB

l (s) are always non-negative.
Finally the labelling problem becomes equivalent to search

for the shortest path under the above cost, as we can define
the distance of any unlabeled pixel from the different classes
as being the lowest height to climb for reaching sites,

δl(s) = min
Cl(s)

max
si∈Cl(s)

dB
l (si). (1)

Therefore the decisions are topology constrained.
If we consider the graph of unlabeled sites with 4-

connections and the labelled connected components, we can
define an edge weight as follows

w(si−1, si) = max(dB
l (si−1), d

B
l (si)).

The weight thus defined is an ultra-metric distance measure.
Paths considered previously belong to theminimum spanning
tree of this graph. Therefore the computation ofδl(s) neces-
sitates the construction of theminimum spanning tree. Prim’s
algorithm could be used adequately.

On the other hand, it is very interesting to remark that the
labelling problem, as posed here, consists of constructinga
topographic surface, as that for finding watershed lines [15].
Hence, we can use a region growing procedure, like the immer-
sion (flooding) algorithm [16] for computing the above defined
heights and distances and for classifying pixels, taking into
account region features and topology constraints. We present
now a new label initialization method which is followed by
a novel flooding algorithm in order to determine the optimal
label for each initially unlabeled site.

B. Label Initialization

The output of label initialization is a set of spatially
connected regions of pixels, which are classified to classl

with high confidence, using statistical tests. For each pixel s

and classl , the distances in a windowΠW of dimension
(2W + 1)2 are averaged, resulting to the metric:

dSB
l (s) =

∑

z∈ΠW

dB
l (s + z).

Then, image pixels are sorted in ascending order according
to that metric and a user-given percentage of the sites with
minimum average distance are retained and get labeled.

This method may also be considered as an algorithm to
determine initial regions of high confidence for the construc-
tion of minimum spanning tree, for each label of the image.
Indeed, metricdSB

l (s) could be interpreted as the weight of
the spanning sub-tree which is constructed using all the pixels
of window ΠW . The pixelss of minimumdSB

l (s) are placed
on topographic valleys of minimum height, thus constituting
the better initialization option for label flooding.

C. Flooding or Region Growing Algorithm

The Independent Label Flooding Algorithm (ILFA)
determines the optimum label as that minimizingδl(s). L

independent flooding procedures are needed and the best label
is selected. The algorithm follows the principle ofRegion
Growing [4], [17]. In RG, the initially labelled pixels, com-
posing spatially connected regions, are grown by iteratively
considering neighboring pixels. For ILFA the main objective



of the growing procedure is to compute the distances, and not
to directly label pixels. Among all neighboring pixels to the set
Sl, that are unlabeled and of unknown distance from labell,
the nearest pixel is found, according to Equation (1). Growing
proceeds until no more pixels can be added to the expanding
regions, because their propagating contour reaches only pixels
with different initial labels.

III. MRF-BASED M INIMIZATION

Given the region growing measurements derived in Equa-
tion (1), we then propose to optimize a discreteMRF in order
to decide what the final labels should be. In this manner,
we aim at capturing the local interactions between pixels,
which will help us to refine and correct the labels that were
assigned during the previous stage of our algorithm. In general,
the problem of optimizing a 1st-order discrete MRF can be
formulated as follows: we are given a weighted graphG (with
nodesV , edgesE and weightswsz), and we seek to assign a
label ls (from a discrete set of labelsL) to each nodes ∈ V ,
so that the following cost is minimized:

∑

s∈V
c(ls) +

∑

(s,z)∈E
wszd

P (ls, lz). (2)

Here,c(·), dP (·, ·) determine the singleton and pairwise MRF
potential functions respectively.

In our case, the singleton potentials will be set according
to the region growing measurements derived in Equation (1),
i.e. c(ls) = δls(s), while the pairwise potentials will be set
according to the Potts function, i.e.:

dP (ls, lz) =

{

1, ls 6= lz

0, ls = lz
(3)

Furthermore, all weightswsz will be set equal to a user-
specified constant.

For minimizing the MRF energy in (2), we will make
use of the recently proposedprimal-dual method in [18],
which casts the MRF optimization problem as an integer
program and then makes use of the duality theory of linear
programming in order to derive solutions that are provably
almost optimal. Furthermore, that algorithm proves to be faster
than α-expansion and also applies to a much wider class of
MRFs.

IV. EXPERIMENTAL RESULTS

We give experimental results to evaluate the performance of
our method. Texture analysis is based on a Discrete Wavelet
Frames (DWF) filter bank [11], resulting in a set ofn = 3K+1
components for each pixels, ζ(s) = {ζi(s), 1 ≤ i ≤ n},
where K is the number of analysis scales. The first3K

descriptors are the details in orientation for each scale, while
the n-th component is the approximation. Alternatively, the
intensityI(s) of each pixel may be used instead of the approx-
imation as then-th component or this component may not be
used at all. The chromaticity coordinatesc(s) = (a(s), b(s))
of theLab color space are used for color representation, when
color information is taken under consideration. Texture details

Fig. 4. Segmentation results for two images of theBerkley Segmentation
Dataset.

of each classl, 0 ≤ l < L, are assumed to be zero-mean,
Gaussian distributed and uncorrelated and they are represented
by the variance of the texture components of pixels belonging
to labell, while approximation/intensity and color of the class
are represented by 1D and 2D histograms of intensity and
chromaticity of classes pixels, respectively.

An illustrative example of the method is given using the
original four regionsimage of Fig. 2(a). Histogram of intensity
values has been used together with high frequency texture
analysis in this experiment. After the extraction and block-
based clustering of features byk-means, the initial labelled
regions of high confidence are depicted in the map of Fig. 2(b).
In Fig. 2(c) we see what would be the result if ILFA was used
as labelling algorithm, while in Fig. 2(d) the result of the
minimization of the metric computed by ILFA (Eq. (1)), is
depicted. Finally, in Fig. 2(e) we see the0.45% erroneously
labelled pixels of the optimization process.

In [19] are reported results of texture classification on nine
synthetic texture mosaics using various techniques mainly
based on frame representations. Our results are summarizedin
Table I and compared to those of [13] only for thefive regions
images of [19], due to limited space. The original images and
the corresponding segmentation results are given in Figure3.

We also present results for images of theBerkley Segmen-
tation Dataset. Although these images are mainly used as
benchmark for gradient-based segmentation algorithms, the
combination of high frequency texture components, intensity
and Lab chromaticity as segmentation features under our
general Bayesian framework, leads to very good segmentation
results, as it is shown in Fig. 4.

V. CONCLUSION

A generic, unsupervised feature classification and image
segmentation framework, has been proposed. Image segmen-
tation has been treated as an optimization problem. The
framework involves block-based unsupervised clustering,fol-
lowed by a new region growing algorithm which is named
Independent Flooding Algorithmand computes a topographic
surface per label, using Bayesian dissimilarity criteria.Finally,
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Fig. 2. Texture segmentation for thefour regionsimage.

Image (a) (b) (c) (d) (e) Mean
Error of method 2.3% 3.72% 3.74% 2.50% 3.94% 3.24%

Error (SMLFM) 5.8% 5.4% 8.8% 8.3% 4.9% 6.64%

TABLE I

ERROR PERCENTAGE RESULTS ON IMAGES FROM[10] (P. 300)

(a) (b) (c) (d) (e)

Fig. 3. Texture segmentation for 5 natural textures.

a MRF model is used to incorporate the local pixel interactions
of label surface heights and a graph cuts algorithm gives the
final labelling by minimizing the underlying energy.
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