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Abstract—We propose a generic, unsupervised feature clas- work. Nevertheless, we focus on automatically determining
sification and image segmentation framework, where only the topological constraints based on accurate region features
number of classes is assumed as known. Image segmentation \ye now consider the different cues for image segmentation.

is treated as an optimization problem. The framework invohes Multi-ch | filteri hes for text vsiveh
block-based unsupervised clustering usind-means, followed by VU't-channel fiitering approaches Tor texiure analysivena

region growing in spatial domain. High confidence statistiel been proposed, using filter-banks of Gabor filters [7], [8] or
criteria are used to compute a map of initial labelled pixels wavelet packet frame decomposition [9]. In [10], many diffe

A new region growing algorithm is introduced, which is named ent multi-channel filtering approaches have been compared.
Independent Flooding Algorithm and computes a height per label  Among the best filters were the Discrete Wavelet Frames
for each one of the unlabeled pixels, using Bayesian dissilaiity . L .
criteria. Finally, a MRF model is used to incorporate the local (DWF) filter bank [11], which is used fgr texture modelling 'n_
pixel interactions of label heights and a graph cuts algorhm our work. Wavelet frames representation decomposes the im-
performs the final labelling by minimizing the underlying energy.  age into orthogonal texture components in different scateb
Segmentation results using texture, intensity and color f#tures  orientations and it is translation invariant, a necessaoperty,

are presented. when quite precise boundary localization is required. Mdgh

that combine texture and color information for segmentatio
have also been proposed in the literature [12].

Image segmentation is a key step in many computer vi-In the proposedunsupervisedpattern classification and
sion analysis and interpretation tasks. Segmentation loir cosegmentation framework, only the numbgrof classes is
textured images has eventually become a necessity for maggumed to be known. The proposed framework may be
multimedia applications, such as content based imagevatri roughly separated in two main components, namfggfure
(CBIR) and object recognition purposes, especially after textraction and classificationin the feature space, which is
development of international standard MPEG-7 [1]. constructed by image data information agglergy minimiza-

Despite the plethora of methodologies for image segmetion in spatial domain based on the computed features of
tation we note the lack of a single, generic paradigm thekasses. Referring to Fig. 1 and given as input a) the number
addresses the whole range of segmentation problems afictlasses, b) the selection of segmentation features and c)
applications. This is due to the frequent complexity and ilthe input image, the derived pixel features of chromaticity
posedness of segmentation problems and the absence ofeature and intensity are computed, if they have been sslect
unambiguous ground truth. In light of these consideratiorss segmentation features. The next step consists of thk-bloc
interactive segmentation techniques are also frequemily ebased classification of features. The feature description o
ployed [2]. (possibly overlapping) blocks is derived, followed by the

Considering image segmentation as an optimization problemtional rejection of heterogeneous blocks, as it is deedrin
we should introduce four kinds of constraints: boundargetail in [13], to exclude from clustering the blocks whiate a
shape, region and topology. In edge detection [3] only beundot similar to their neighboring ones. Homogeneous blocks a
ary constraints are taken into account, while such comtgaigiven as input to &-meandnitialization algorithm proposed
can be integrated in region growing techniques [4]. The lasy Kauffman and Rousseeuw [14], which successively selects
category of techniques incorporates soft topology coimdta a prototype block for each one of the clusters. Clustering
Boundary constraints combined with geometric shape coof homogeneous blocks is then performed kyneansin
straints lead to geodesic active contours [5], where a ¢lolmader to extract a feature vector per class. Among several
optimization method is applied. This approach is genegdlizknown distance measures between probability distribation
in [6] giving a powerful method because it introduces antthe Bhattacharyya distance is used herein to measure the
deals with boundary, shape and region constraints. Thealatulistance between block instances as well as between a block
counter part of topology flexibility is the difficult incorpa and a class ikk-meansThen, probabilistic distances are used
tion of topological constraints. However, topology coasits to determine and label pixels that belong to one of the ctasse
could guide the segmentation process and this is the case inwith high confidence. Having available the data modelling
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Fig. 1. Flowchart of the proposed segmentation framework.

and the initial map of correctly labelled pixels, we propos€he weight thus defined is an ultra-metric distance measure.

a newRegion Growing(RG) algorithm in order to compute Paths considered previously belong to thenimum spanning

a topographic surface per label by assigning a height to eaude of this graph. Therefore the computation &fs) neces-

unlabeled pixel, using Bayesian dissimilarity criterigndfly, sitates the construction of threinimum spanning treéPrim’s

the local pixel interactions of label heights are modeledabyalgorithm could be used adequately.

Markov random field (MRFjnodel and the underlying energy On the other hand, it is very interesting to remark that the

is minimized by a noveprimal-dual algorithm. labelling problem, as posed here, consists of construaing

topographic surface, as that for finding watershed line$. [15

_ o ] Hence, we can use a region growing procedure, like the immer-

A. A min-max criterion for labelling sion (flooding) algorithm [16] for computing the above define
In what follows, it is assumed that a method such as that leéights and distances and for classifying pixels, takirtg in

Subsection 1I-B, which assigns pixel regions to classe$ wiaccount region features and topology constraints. We ptese

high confidence has been performed. |%t= lL:’Ol S; be now a new label initialization method which is followed by

the set of those initially labelled pixels. For any unlaloelea novel flooding algorithm in order to determine the optimal

pixel s we can consider all the paths linking it to a labelletabel for each initially unlabeled site.

set or region. A patlC;(s) is a sequence of adjacent piersB' Label Initialization

{s0,.-.,8n}, wheres,, = s, while all pixels of the sequence

are unlabeled, except; which has labell. The cost of a The output of label initialization is a set of spatially

particular path is defined as being equal to the maximum c&&hnected regions of pixels, which are classified to class

of a pixel classification according to the Bayesian rule aith high confidence, using statistical tests. For eachlpixe

II. FLOODING PROCESS FOR_ABEL PROPAGATION

along the path and classl , the distances in a window v of. dimension
max dP (sy), (2W + 1)? are averaged, resulting to the metric:
with dP(s)= > dP(s+2).
z€llw
P, S
dP(s) = —InPr{l[£(s)} = —In L,llp]lj(g( ) ; Then, image pixels are sorted in ascending order according
k=0 Lrpr(€(s)) to that metric and a user-given percentage of the sites with
where Py, is thea priori probability of classk. minimum average distance are retained and get labeled.

Therefore, for eacli a topographic surface on a discrete This method may also be considered as an algorithm to
grid is defined, considering 4-connected pixels. The iliytia determine initial regions of high confidence for the constru
labelled pixels are defined to be at the zero level, while thidn of minimum spanning tree, for each label of the image.
height of the unlabeled pixels is given by the Bayesian rulthdeed, metriCdlSB(s) could be interpreted as the weight of
Indeed,d? (s) are always non-negative. the spanning sub-tree which is constructed using all thelgix

Finally the labelling problem becomes equivalent to searelf window I1y,. The pixelss of minimum dyZ(s) are placed
for the shortest path under the above cost, as we can defyretopographic valleys of minimum height, thus constitgtin
the distance of any unlabeled pixel from the different dassthe better initialization option for label flooding.

as being the lowest height to climb for reaching site i ) , i
C. Flooding or Region Growing Algorithm

a(s) TS sieeits) di’(s1). @ The Independent Label Flooding Algorithm (ILFA)
determines the optimum label as that minimizidgs). L
independent flooding procedures are needed and the bekt labe
is selected. The algorithm follows the principle Blegion
&Bwing [4], [17]. In RG, the initially labelled pixels, com-
posing spatially connected regions, are grown by iterbtive
w(s;_1,5;) = max(d? (s;_1),dP (s;)). considering neighboring pixels. For ILFA the main objeetiv

Therefore the decisions are topology constrained.

If we consider the graph of unlabeled sites with
connections and the labelled connected components, we
define an edge weight as follows



of the growing procedure is to compute the distances, and not
to directly label pixels. Among all neighboring pixels tethet

S;, that are unlabeled and of unknown distance from ldbel
the nearest pixel is found, according to Equation (1). Gngwi
proceeds until no more pixels can be added to the expandinc
regions, because their propagating contour reaches oxdyspi
with different initial labels.

IIl. MRF-BASED MINIMIZATION

Given the region growing measurements derived in Equa-
tion (1), we then propose to optimize a discrptBF in order
to decide what the final labels should be. In this manner,
we aim at capturing the local interactions between pixels,
which will help us to refine and correct the labels that wergg. 4.  Segmentation resuits for two images of Berkley Segmentation
assigned during the previous stage of our algorithm. In ggne Dataset
the problem of optimizing asi-order discrete MRF can be
formulated as follows: we are given a weighted grgptwith

nodesV, edgesS and weightsw,.), and we seek to assign a°f €ach clasd, 0 < I < L, are assumed to be zero-mean,
label I, (from a discrete set of label§) to each node € V), Gaussian distributed and uncorrelated and they are rapegse
so that the following cost is minimized: by the variance of the texture components of pixels belanpgin

to labell, while approximation/intensity and color of the class
ZSGV c(ls) + Z(S e w-d" (15, 1.). (2) are represented by 1D and 2D histograms of intensity and
’ chromaticity of classes pixels, respectively.
Here,c(-), d”(-,-) determine the singleton and pairwise MRF An illustrative example of the method is given using the
potential functions respectively. originalfour regionsimage of Fig. 2(a). Histogram of intensity
In our case, the singleton potentials will be set accordingilues has been used together with high frequency texture
to the region growing measurements derived in Equation (Bhalysis in this experiment. After the extraction and block
i.e. ¢(ls) = d;,(s), while the pairwise potentials will be setbased clustering of features tymeans the initial labelled

according to the Potts function, i.e.: regions of high confidence are depicted in the map of Fig..2(b)
In Fig. 2(c) we see what would be the result if ILFA was used

df(l,,1.) = {1’ ls # 1 (3) as labelling algorithm, while in Fig. 2(d) the result of the

0, Is=1: minimization of the metric computed by ILFA (Eq. (1)), is

depicted. Finally, in Fig. 2(e) we see tlet5% erroneously
labelled pixels of the optimization process.
In [19] are reported results of texture classification orenin
synthetic texture mosaics using various techniques mainly
sed on frame representations. Our results are summarized

Furthermore, all weightsv,, will be set equal to a user-
specified constant.

For minimizing the MRF energy in (2), we will make
use of the recently proposegrimal-dual method in [18],

which casts the MRF optimization problem as an integ - )
program and then makes use of the duality theory of line&RP!€ | and compared to those of [13] only for tinee regions

programming in order to derive solutions that are provabl|{@9es of [19], due to limited space. The original images and
almost optimal. Furthermore, that algorithm proves to Isefia 1€ COIresponding segmentation results are given in Figure

than a-expansion and also applies to a much wider class of e also present results for images of Berkley Segmen-
MRFs. tation Dataset Although these images are mainly used as

benchmark for gradient-based segmentation algorithmres, th
IV. EXPERIMENTAL RESULTS combination of high frequency texture components, intgnsi

We give experimental results to evaluate the performance®td Lab chromaticity as segmentation features under our
our method. Texture analysis is based on a Discrete Wavekéferal Bayesian framework, leads to very good segmentatio
Frames (DWF) filter bank [11], resulting in a setof= 3K +1 results, as it is shown in Fig. 4.
components for each pixel, {(s) = {¢(s),1 < i < n},
where K is the number of analysis scales. The fifgk
descriptors are the details in orientation for each scalélew A generic, unsupervised feature classification and image
the n-th component is the approximation. Alternatively, theegmentation framework, has been proposed. Image segmen-
intensityZ(s) of each pixel may be used instead of the approxation has been treated as an optimization problem. The
imation as then-th component or this component may not béramework involves block-based unsupervised clusterfol,
used at all. The chromaticity coordinate&) = (a(s),b(s)) lowed by a new region growing algorithm which is named
of the Lab color space are used for color representation, whémdependent Flooding Algorithrand computes a topographic
color information is taken under consideration. Texturiatie surface per label, using Bayesian dissimilarity criteFiaally,

V. CONCLUSION



(d) (€)

Fig. 2. Texture segmentation for thieur regionsimage.

Image [E)) (b) (c) (d) (e) Mean
Error of method || 2.3% | 3.72% | 3.74% | 2.50% | 3.94% | 3.24%
Error (SMLFM) || 5.8% | 5.4% 8.8% 8.3% 4.9% | 6.64%

TABLE |

ERROR PERCENTAGE RESULTS ON IMAGES FRO{AL0] (P. 300)

Fig. 3. Texture segmentation for 5 natural textures.

aMRF model is used to incorporate the local pixel interactiorjso] T. Randen and J. H. Husoy, “Filtering for texture cléisation: A
of label surface heights and a graph cuts algorithm gives the comparative study,JEEE Trans. Pattern Anal. Machine Intelivol. 21,
final labelling by minimizing the underlying energy.
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