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Fast Marching Techniques for
Image Segmentation

Eftychis Sifakis, Georgios Tziritas

ABSTRACT A new region growing method is proposed for segmenting
images. The region boundaries are formulated as level sets and the pixel
labeling process is implemented using a new multi-label fast marching al-
gorithm. The region contours are propagated with a velocity proportional
to the a posteriori probability of the respective label. Statistical tests are
performed to generate the initially labeled sets. Any image feature, given
it is semantically relevant, can be considered for the segmentation process.
Illustrations are given for combined luminance, chrominance and texture
classi�cation and segmentation in natural scenes. Moving object extrac-
tion based on change detection is also considered, which is performed as a
two-label classi�cation.

1 Introduction

Image segmentation is a vital component in any system involving image
content analysis and computer vision. In the MPEG-4 standard, segmenta-
tion plays an important role in coding performance and object manipula-
tion [27]. In the MPEG-7 standard a spatio-temporal locator is needed for
the description of visual content [18]. A continuous e�ort has been made by
the research community to solve the segmentation problem. The numerous
existing approaches may be classi�ed into two main categories: boundary-
based and region-based.
Edge detection is the earliest of the boundary-based methods, based on

local gradients [4]. Active contours [3], based on local gradients as well,
have been introduced for tracking deformable moving objects [10], by min-
imizing a functional whose local maximum lies on the object boundary.
Nevertheless, active contours are relatively noise sensitive. Moreover, their
result depends on the initialization and they are not suÆciently topologi-
cally adaptive. Some progress has been made with the balloon model [7],
where the external force applied to the curve is modi�ed in order to make
the active contour less sensitive to weak edges and spurious isolated edge
points.
In the region-based approaches, techniques such as seeded region grow-

ing [1] or split-and-merge [17] were introduced. The labeling problem can
also be globally formulated using Markov random �eld modeling. The �nal
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solution is obtained by minimizing an energy function, where stochastic
relaxation [9] may be used, but deterministic relaxation [2, 6] is often pre-
ferred, being less computationally expensive.
E�orts have also been made towards the uni�cation of the contour- and

the region-based approaches. Zhu and Yuille [32] proposed a region compe-
tition method which combines the geometrical features of snakes/balloon
models and the statistical techniques of region growing. Paragios and De-
riche [16] introduced the concept of geodesic active regions. The active
contour evolves under the in
uence of two forces: a boundary force, which
also contains curvature constraints and a region force, which aims to move
the curve in the direction that maximizes the a posteriori segmentation
probability.
Level set theories have been used in the formulation of several region-

or boundary-based approaches for image segmentation. The mapping of
active contours to the level set formulation [13, 15] has lifted many of
the inconveniences of active contours, while the fast marching algorithm
[20, 22] provides a computationally eÆcient method for tracking an evolving
contour. The introduction of the geodesic active contours [29] has allowed
the uni�cation of the classical active contour based on energy minimization
and the geometric active contours based on the theory of curve evolution.
In this last approach, the algorithm initialization and termination problems
are solved and more stable boundaries are obtained, by computing a level
set solution using a geometric 
ow. In [5, 30] level set formulations are
used for the maximization of a segment uniformity criterion, de�ned over
a given classi�cation, in conjunction with smoothness constraints over the
boundaries of the resulting segments. Furthermore, in [19] the segmentation
of an arbitrary number of classes is addressed leading to the combined
evolution of several level set modeled contours. The last approach is based
on the minimization of a functional that enforces region uniformity, contour
smoothing, and classi�cation coherence.
In [23] a new region-based methodology for image segmentation has been

introduced, where statistical approaches for modeling the di�erent region
features are applied and labeling is achieved through a novel algorithm
based on level sets and the monotonical evolution of region boundaries. As
multiple simultaneously propagating contours are considered, we propose
an extension of the level set approach to a multi-label framework, while
allowing the propagation speed to depend on the respective region label.
The segmentation performance strongly depends on the description of the
label content and on the capability of incorporating the label description
into the propagation velocity. For that purpose, we propose to de�ne the
propagation speed as the a posteriori probability of the respective label. A
statistical approach, where the number of labels is assumed to be known, is
therefore adopted, which requires adequate models. Pattern analysis tech-
niques are used for the identi�cation of the corresponding models.
The rest of this chapter is organized as follows. In Section 2, we review
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the fast marching algorithm and we describe how we extend it to the multi-
label case for classi�cation purposes. In Section 3, we consider the case of
combined colour and texture segmentation, where the intensity and chro-
maticity features are mainly captured by the histogram distribution, while
Gaussian assumptions are possible too. The Discrete Wavelet Analysis is
performed for the description of the texture content. The very important
problem of automatic feature extraction for the description of label content
is also considered, as well as the initialization of the level sets. In Section
4 we consider the moving object localization problem based on intensity
change detection. Finally, conclusions are drawn in Section 5.

2 The Multi-Label Fast Marching algorithm

2.1 The stationary level set equation

Level set theory provides a framework for tracking the evolution of any
curve in the plane given the velocity of the curve along its normal direction.
In the pioneering work by Osher and Sethian [15] the various instances of
the evolving contour are embedded as level sets of a function of higher
dimensionality. In this framework the velocity function is free to include
terms dependent on the geometrical characteristics of the evolving contour,
such as the curvature or the outward normal to the moving contour.
Given the limitation of a constantly positive (or constantly negative) ve-

locity function, leading to a monotonical motion of the propagating front,
an arrival time function T (s) corresponding to the time point when the
moving contour crosses over the point s is well de�ned. Under this formu-
lation the arrival time function T satis�es the stationary level set equation

F jrT j = 1; (1.1)

which simply states that the gradient of the arrival time function is in-
versely proportional to the velocity F of the contour at any given point.
The preceding formulation allows for the constructive calculation of the
arrival time function T without resorting to iterative methods. The trade-
o� for the computational eÆciency is an inherent diÆculty in integrating
local properties of the evolving contour, such as curvature, in the velocity
function F . Under those limitations the well-known Fast Marching level
set algorithm [20], constructs a solution to Equation (1.1) from initial data
with an execution cost of n logn.

2.2 Multiple interface extensions and Fast Marching

algorithm

The original formulation of the level set technique, as given in [15], applies
speci�cally where there exists a clear distinction between an `outside' and



4 Eftychis Sifakis, Georgios Tziritas

an `inside' region, separated by the evolving contour. Nevertheless, several
applications, including multiple object segmentation and clustering require
the consideration of more than two regions. In the simplest of cases where
the distinct regions exhibit a smooth behavior and no triple points appear
as the result of interface evolution, boundaries between di�erent regions
could be formulated as di�erent level sets of the same function. Moreover,
a technique for the proper handling of triple points and other singularities
induced by multi-interface propagation can be found in [21]. These methods
apply to the time-dependent level set formulation.
The work presented herein is motivated by the large number of applica-

tions that could be addressed by the tracking of the monotonical evolution
of distinct regions into a special blank or unlabeled region and observing
the �nal result of the initial regions' convergence over each other. The in-
put to this approach would consist of an initialization for the expanding
regions and a rule for their expansion into the blank region, in terms of
their propagation velocity. Since the proposed framework includes strictly
monotonical (expanding) motion of the considered regions, the stationary
level set formulation would be best suited and the utilization of the Fast
Marching algorithm would yield a favorable algorithmic complexity.
In the original two-region context, most shape modeling, feature extrac-

tion or segmentation applications of the Fast Marching level set algorithm
involve initializing the arrival time map with seed regions, calculating ar-
rival times for the rest of the spatial domain considered and either explicitly
selecting a proper level set or utilizing an adequate criterion for picking the
most appropriate propagation instance as the segmentation result. In the
proposed framework the initialization consists of high con�dence represen-
tatives of the regions in question, namely the outside and inside of the
object(s) to be extracted. A third region corresponding to yet undecided
sites of the segmentation domain is considered and velocities for the propa-
gation of either region into the undecided one are supplied. The boundaries
of both propagating regions are prescribed to freeze on contact, yielding the
�nal segmentation solution, while eliminating the need for explicit selection
of a propagation instance.
A trivial way of achieving the described functionality is to use the ini-

tialization of every region as the zero level set of an independent propaga-
tion, using the Fast Marching algorithm. Upon completion of all distinct
propagations the �rst region managing to arrive at each site would be se-
lected to specify its label and arrival time. This approach allows for the
independent de�nition of propagation velocity for each expanding region,
a property greatly exploited in the range of applications presented herein.
Nevertheless, the execution cost for this algorithm scales with the num-
ber of independent regions and it can be shown that it is also subject to
morphological instability, e.g. two regions that are separable with a single
curve upon initialization are not bound to converge onto a single interface.
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2.3 Fast Marching algorithm and labeling

The new Multi-Label Fast Marching algorithm presented in this chapter
is an extension of the well-known Fast Marching algorithm introduced by
Sethian [20], capable of manipulating multiple propagating contours, cor-
responding to the boundaries of competitively expanding regions. The low
computational cost of the classical Fast Marching algorithm is maintained,
since it is e�ectively made independent of the number of distinct regions
present in the initialization. The new algorithm targets applications requir-
ing static segmentation as well as labeling and clustering problems.
The Multi-Label Fast Marching algorithm computes a constructive so-

lution to the stationary level set Equation (1.1) given initial conditions
in terms of the zero level set of the arrival time function T (s). Initializa-
tions may be provided for multiple non-intersecting regions for which the
propagation velocity is allowed to follow an independent de�nition. All dis-
tinct regions (or labels) are propagated simultaneously according to their
respective velocity de�nitions with the constraint that one region may not
in�ltrate a region that has been swept by another. The propagating regions
evolve in a competitive fashion, with the algorithm reaching a deterministic
halt once all sites of the considered domain have been labeled.
For the purposes of this text we shall limit the description of the new

algorithm to the case of a two-dimensional image, although the algorithm
can be trivially extended to three or more dimensions. All image pixels are
either idle or carry a number of candidacies for di�erent labels. Candidacies
can be either trial, alive or �nalized. Trial candidacies for a certain label
are introduced to a speci�c pixel lacking a �nalized candidacy when a
neighboring pixel acquires a �nalized candidacy for the same label. Trial
candidacies carry an arrival time estimate which is subject to adjustment
according to the process of its neighboring candidacies for the same label.
Alive candidacies are selected from the set of trial candidacies according
to a minimum arrival time criterion and have their arrival time estimate
�xated. The �rst trial candidacy to be turned alive per pixel is considered
a �nalized candidacy and is used in specifying the pixel label and arrival
time in the �nal propagation result.
A symbolic description of the Multi-Label Fast Marching algorithm is as

follows
InitTValueMap()
InitTrialLists()
while (ExistTrialPixels()) f

pxl = FindLeastTValue()
MarkPixelAlive(pxl)
UpdateLabelMap(pxl)
AddNeighboursToTrialLists(pxl)
UpdateNeighbourTValues(pxl)

g
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The algorithm is supplied with a label map partially �lled with classi-
�cation decisions. The arrival time for the initially labeled pixels is set to
zero, while for all others it is set to a special value, e.g. in�nity. A map of
pointers to linked lists of candidacies is also maintained. Candidacy lists are
initially empty, with the exception of unlabeled pixels that are neighbors
to initial decisions, for which a trial candidacy is introduced carrying the
label of the neighboring decision and an arrival time estimate is allocated.
All trial candidacies are contained in a common priority queue.
If the candidacy queue is not empty, the trial candidacy with the smallest

arrival time is selected and marked alive. If no other alive candidacies exist
for this pixel, the candidacy is considered �nalized and copied to the �nal
label map. For all neighbors of this pixel lacking an alive candidacy, a trial
candidacy for the same label is introduced. Finally, all neighboring trial
candidates update their arrival times according to the revised condition.
The re-estimation of the arrival times is performed with the utilization of
the stationary level set Equation (1.1). Under a common gradient approx-
imation robust in the presence of shocks, the equation is written

1=F 2
ij = max(max(D�x

ij T; 0);�min(D+x
ij T; 0))2 +

max(max(D�y
ij T; 0);�min(D+y

ij T; 0))2: (1.2)

Equation (1.2) is solved for the value of the function T at the speci�ed
pixel. If the quadratic equation yields more than one solution, the greatest
is used.
Although it seems possible that candidacies for all available labels may

occur in a single site, it should be noted that a trial candidacy is only in-
troduced by a neighboring candidacy being �nalized, limiting the number
of possible candidacies per pixel to a maximum of four. In practice, trial
pixels of di�erent labels coexist only in region boundaries, giving an av-
erage of at most two label candidacies per pixel. Even in the worst case,
though, it is evident that the time and space complexity of the algorithm is
independent of the number of di�erent labels. Experiments have illustrated
a running time no more than twice the time required by the single contour
fast marching algorithm.

2.4 Label propagation

The multi-label fast marching level set algorithm, presented in the previous
subsection, is applied to all sets of points initially labeled. The contour
of each region propagates according to a velocity �eld which depends on
the label and on the distance of the considered point from the candidate
class. The label-dependent propagation speed is de�ned according to the
a posteriori probability. The candidate label is ideally propagated with a
speed in the interval (0, 1], which is equal to the a posteriori probability of
the candidate label at the considered point. Let us de�ne at a site s, for a
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candidate label l(s) and for a data vector x(s) the propagation speed as

Fl(s) = Prfl(s)jx(s)g:

Then we can write

Fl(s) =
p(x(s)jl(s))Prfl(s)gP
k p(x(s)jk(s))Prfk(s)g

=
1

1 +
P

k 6=l
p(x(s)jk(s))
p(x(s)jl(s))

Prfk(s)g
Prfl(s)g

(1.3)

Therefore the propagation speed depends on the likelihood ratios and on
the a priori probabilities. The likelihood ratios can be evaluated according
to the assumptions on the data, and the a priori probabilities could be
estimated or assumed all equal.
Under several commonly adopted models the probability density function

is an exponential function of a distance measure of the data

p(x(s)jl(s)) = e�dl(x(s))

If we assume that the a priori probabilities are all equal, we obtain

Fl(s) =
1

1 +
P

k 6=l e
dl(x(s))�dk(x(s))

: (1.4)

This expression of the propagation speed illustrates that when the propa-
gated label is the correct one, all the exponents in the sum are negative and
the speed is therefore close to unity. On the other hand, when the propa-
gated label is incorrect, at least one exponent is positive, and therefore the
speed is biased towards zero.
In order to compare the two speeds, let us now consider the case of two

equiprobable labels. The mean time for advancing one unit length, if the
curve evolves with a force corresponding to the region properties (without
loss of generality, assume with label 0), is

EfjrT (s)j; 0g = 1 +

Z
p(xj1)

p(xj0)
p(xj0)dx = 2:

If the curve evolves in the opposite labeled region, we have

EfjrT (s)j; 1g = 1 +

Z
p(xj1)

p(xj0)
p(xj1)dx > 2 +

Z
p(xj1) ln

p(xj1)

p(xj0)
dx:

The right-hand term is the Kullback distance D between the two distribu-
tions, and it is always positive. Therefore the ratio of the two mean times
is

EfjrT (s)j; 1g

EfjrT (s)j; 0g
= 1 +

D(p(xj1); p(xj0))

2
> 1: (1.5)

The more discriminating the two probability distributions are, the more
important the ratio of the two propagation speeds is, making more con�dent
that the evolving curves are trapped by the boundary.
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To illustrate the above using an example, let us suppose that the data is
scalar distributed according to the Gauss law, with identical variance and
two di�erent mean values (�0 and �1). It is straightforward to show that

D(p(xj1); p(xj0)) = exp

�
(�1 � �0)

2

�2

�
: (1.6)

Clearly, the evolution of the curve in a region which is di�erently labeled
is decelerated, and the amount of deceleration depends in general on the
signal-to-noise ratio. In practice a SNR equal to 10 is suÆcient for stopping
the evolution.
In this work, several features are assumed to follow the generalized zero-

mean Gaussian distribution

p(x) =
c

2� �( 1
c
)
e�(

jxj
� )

c

; (1.7)

where the parameter � is the standard deviation and c re
ects the sharpness
of the probability density function. For c = 2, we obtain the Gaussian
distribution and for c = 1, the Laplacian distribution. Then we obtain

D(p(xj1); p(xj0)) =
1

c

�
ln

�c0
�c1

+
�c1
�c0

� 1

�
(1.8)

We use the fast marching algorithm for advancing the contours towards
the unlabeled space. The dependence of the propagation speed only on the
pixel properties, and not on contour curvature measures, is not a disad-
vantage here, because the propagation speed takes into account the region
properties.

3 Colour and texture segmentation

Luminance, colour and/or texture features may be used, either alone or
in combination, for segmentation. In our approach luminance and colour
classes are described using the corresponding empirical probability distribu-
tions. For texture analysis and characterisation a multichannel scale/orienta-
tion decomposition is performed using Wavelet Frame Analysis [11, 12].

3.1 Texture and colour description

The features for texture segmentation are derived from the discrete wavelet
frames analysis [28] using a pair of translation-invariant linear �lters. The
image is decomposed into components corresponding to di�erent scales
and orientations. The application of the separable 2-D �lter bank on a
given image yields three high-frequency detail components for each analysis
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level plus a low-frequency approximation component at the last level. All
components are shown [12] to be uncorrelated in the case of ideal �lters.
The feature vectors for the texture content considered are the variances

of the N � 1 = 3L high frequency components, for L levels of analysis,
calculated over the distinct texture classes present in the image. The low
frequency approximation is not used. If the luminance is suÆciently dis-
criminating, it is also used as an additional feature described by its empir-
ical probability distribution.
Lab colour space, designed to be perceptually uniform, was used here for

colour feature extraction. Because the luminance, or intensity, component
is used separately, only the chromaticity components (a; b) are used. In
our work the local 2-D histograms of the (a; b) components were used as
features. When some model of the distribution of the (a; b) histograms is
�t (e.g., Gaussian or Laplacian), the parameters of the model are used
as the features. Often no such modeling is feasible, in which case local
histogram estimation is required, making the procedure time consuming.
The histograms are smoothed with a Gauss kernel to improve statistical
robustness.

3.2 Automatic feature extraction

An essential step of the whole framework consists of estimating the features
associated to the di�erent labels. The only assumption we make is that the
number of labels is known.
If the adoption of a model is reliable and, in particular, if this model

is tractable, the mixture analysis is preferred. Nevertheless, the use of an
a priori model might be diÆcult, if not arbitrary. After the multi-channel
wavelet analysis, the generalized Gaussian model is plausible, but it is dif-
�cult to obtain accurate parameters using a mixture analysis, because the
distributions are all zero-mean. Additionally, in some cases, luminance or
chromaticity only may be suÆcient for the segmentation, but no general
model is applicable. Therefore, when the model estimation is practically
impossible using mixture analysis or when the adoption of a model is not
plausible, a clustering technique could lead to the discrimination of the la-
bels and to the estimation of their description. For that purpose, we use a
hierarchical clustering method [8]. Any other clustering algorithm may be
used as well. The clustering is applied on blocks resulting from a system-
atic division of the image. The blocks are hierarchically clustered using the
Bhattacharya distance as a dissimilarity measure.
For continuous variables this measure is de�ned as

dB = � ln

�Z
x

p
p1(x)p2(x)dx

�
; (1.9)

where p1 and p2 are probability density functions of a feature vector x of
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any dimension. The discrete version of the Bhattacharya distance is

dB = � ln

 X
i

p
p1(i)p2(i)

!
; (1.10)

where pj(i) is the probability of the ith value of class j. The Bhattacharya
distance is strongly linked to the minimum classi�cation error for the two-
classes case. In addition, it is a special case of the Cherno� bound of clas-
si�cation error probability [31].
If a model of the distribution is known, a simpler expression of the Bhat-

tacharya distance can be deduced. The extracted features may often be as-
sumed uncorrelated. The simpli�ed expression assuming generalized Gaus-
sian distribution (Equation (1.7)) and uncorrelated features is

dB =
1

c

N�1X
i=1

ln
�ci;1 + �ci;2
2
p
�ci;1�

c
i;2

; (1.11)

where �i;n corresponds to the standard deviation of the ith feature of class
n. When the clustering is complete, the description of the labels is deter-
mined. If a parametric model is used, then the parameters are estimated.
In the absence of a parametric model, Equation (1.10) is used for comput-
ing distances. In both cases the estimation is performed on the clustered
blocks.
In order to estimate the feature vectors of the various classes present in

the image, a hierarchical clustering algorithm [8] is applied to the blocks.
All blocks in the image are used as the initial clusters. Each step of the al-
gorithm merges the pair of clusters having the most similar feature vectors
and the features of the new cluster are updated accordingly. The proce-
dure terminates when the number of clusters is reduced to the number of
di�erent classes the image to be segmented is known to contain.

3.3 Initial level sets

The next step consists of determining the initial seed regions. An initial
map of labeled sites is obtained using statistical tests which classify points
with high con�dence. The probability of classi�cation error is set to a small
value. At �rst, all pixels are classi�ed according to their distance from
the di�erent labels. The distribution of the data in a window centered
at each site is approximated. Then, the Bhattacharya distances from this
distribution to the features of each label are computed and assigned to the
site. The distances at each site are subsequently averaged in a series of
windows Bw of dimension (2w + 1) � (2w + 1),(w = 1; : : : ; P ). The mean
distance in each window is used for classifying the central site to one of the
possible labels. The candidate label k(s) of site s is selected by �nding the



1. Fast Marching Techniques for Image Segmentation 11

label which minimizes the sum of its distances from the neighbor sites p in
window Bw,

k(s) = argmin
l

X
p2Bw

dBl (s+ p): (1.12)

The con�dence criterion for classi�cation of site s into the candidate
label k(s) results from comparing the distance of the considered site from
the candidate label against the distance from the nearest label among all
the others, as described in the following expression,

Vk(s) =
X
p2Bw

�
min
l6=k(s)

dBl (k(s) + k(p))� dBk(s)(s+ p)

�
: (1.13)

Sites are then sorted according to their con�dence measure and a spe-
ci�c percentage of the sites with highest con�dence are retained and sub-
sequently labeled. A small percentage is generally suÆcient. Sites which
are retained for each of these P window sizes are considered as forming
the initial sets of labeled points. Parameter P ranges from 3 to 6 in most
applications.

3.4 Label propagation

The labels of the initial level sets are then propagated according to the
principle presented in Section 2.4. Assuming that the probability density
function of the texture images is Gaussian, and given that the high fre-
quency components are zero-mean, the distance of a site s represented by
the vector x(s) from a texture class j with variances �2i;j is

dj(x(s)) =
1

2

N�1X
i=1

 
x2i (s)

�2i;j
+ log�2i;j

!
; (1.14)

where N � 1 is the number of high frequency components.
If the probability density functions of the intensity and colour features

are also Gaussian, the three corresponding components are added in Equa-
tion (1.14). Otherwise, the empirical probability distribution is used for the
colour and intensity features,

dj(yC(s)) = � ln pj(yC(s)); (1.15)

dj(y(s)) = � ln pj(y(s)); (1.16)

where yC(s) is the vector of (a; b) colour components and y(s) is the in-
tensity.
The multi-label fast marching level set algorithm is then applied to all

sets of points initially labeled. The contour of each region propagates ac-
cording to a velocity �eld which depends on the label and on the distance
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of the considered point from the candidate label. The exact propagation
velocity for a given label is

Fl(s) =
Pr(l)P

k 6=l Pr(k)e
dl(x(s))�dk(x(s))

; (1.17)

where the a priori probabilities Pr(k) are estimated from the classi�cation
of the sites against the prototype feature classes according to the Bhat-
tacharya distance. The distance of each site from the prototype feature
classes is computed using Equations (1.14){(1.16) with the variances for a
considered site being calculated in a window centered at it.
Figure 1 presents results on the SeaStones image in which three classes

are distinguished. Two of the classes contain similar colour distributions
in the Lab space, while two classes contain similar textures. As a result
the classi�cation is diÆcult with a signi�cant error probability. In Fig. 1(c)
the classi�cation result according to the Bhattacharya distance is shown.
In Fig. 1(e) the pointwise classi�cation result according to the maximum

likelihood criterion is shown. In Fig. 1(b) the initial labeled map with 20%
of the image points labeled according to the technique of Section 3.3 is
shown. In Fig. 1(d) an intermediate instance of the propagation process
where 60% of the image points are labeled is shown. The �nal segmentation
result is considered very satisfactory and is shown in Fig. 1(f).

4 Change detection

Change detection in a video sequence is an important issue in object track-
ing, video-conferencing and traÆc-monitoring among others. The change
detection problem consists of labeling each pixel s of one frame t of a video
sequence as static (�(s) = static) or moving (�(s) = mobile).

4.1 Inter-frame di�erence modeling

In our approach [24, 25, 26], the simple inter-frame grey level di�erence
x(s) is considered:

x(s) = I(s; t+ 1)� I(s; t) (1.18)

Therefore, a pixel is an unchanged pixel if the observed di�erence x(s)
supports the hypothesis for static pixel, and a changed pixel, if the ob-
served di�erence supports the alternative hypothesis, for mobile pixel. Let
p0(xjstatic) (resp. p1(xjmobile)) be the probability density function of
the observed inter-frame di�erence under the respective hypothesis. These
probability density functions are assumed to be homogeneous, i.e., inde-
pendent of the pixel location, and usually they are under Laplacian or
Gaussian law. A zero-mean Laplacian distribution function is used here
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to describe the statistical behavior of the pixels under both hypotheses.
Thus the conditional probability density function of the observed temporal
di�erence values is given by

p(x(s)j�(s) = l) =
�l
2

e��ljx(s)j: (1.19)

If Pstatic (resp. Pmobile) be the two a priori probabilities, the probability
density function of the di�erence is given by

pX(x) = Pstatic p0 (xjstatic) + Pmobile p1(xjmobile): (1.20)

In this mixture distribution fPl; �l : l 2 fstatic;mobilegg are the unknown
parameters. Mixture analysis aims at determining the a priori probabilities
of the labels, Pl, and the parameters, �l, of the probability density functions
of the data given the labels. The most frequently used method for parameter
estimation uses the Maximum Likelihood principle, which results in an
iterative algorithm [8, 14].

4.2 Level set-based labeling

An initial map of labeled sites is obtained using statistical tests. The ini-
tialization process is di�erent from that described in Section 3.3, because
changed sites should be detected in a point-wise way in order to avoid false
alarms which could be propagated, while block-wise decisions are preferable
for the unchanged initial labels. The �rst test detects changed sites with
high con�dence. The false alarm probability is set to a small value, say
PFA. For the Laplace distribution used here, the corresponding threshold
is

T1 =
1

�0
ln

1

PFA
: (1.21)

Subsequently a series of tests is used for �nding unchanged sites with
high con�dence, that is with small probability of non-detection. For these
tests, a series of six windows of dimension (2w + 1)2; (w = 2; : : : ; 7), are
considered and the corresponding thresholds are pre-set as a function of
�1. Finally the union of the so de�ned sets determines the initial set of
\unchanged" pixels.
The multi-label fast marching level set algorithm is then applied for

all sets of points initially labeled. The contour of each region propagates
according to a motion �eld, which depends on the label and on the absolute
inter-frame di�erence.
In the case of a decision between the \changed" and the \unchanged" la-

bels, according to the assumption of Laplacian distributions, the likelihood
ratios are exponential functions of the absolute value of the inter-frame dif-
ference. At a pixel level, the decision process is highly noisy, and could be
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made more robust by taking into account the known labels in the neighbor-
hood of the considered pixel. This means that the a priori probabilities in
Equation (1.3) are locally adapted. Finally, the exact propagation velocity
for the \unchanged" label is

F0(s) =
1

1 + e�0(jx(s)j�n�+�0)
(1.22)

and for the \changed" label

F1(s) =
1

1 + e�1(�1�jx(s)j�(n+�)�)
; (1.23)

where n is the number of the neighboring pixels already labeled with the
same candidate label, and � takes a positive value if the pixel at the same
site of the previous label map is an interior point of a \changed" region,
else it takes a zero value. The parameters �0; �1; �0; �1 and � are adapted
according to the initial label map and the features characterizing the data
(Pl; �l). In the current implementation the parameters are set as follows:

� = 0:1T1; �0 = 4�; �1 = 3:5

�
� +

1

�0

�
; and �1 = 1:

The value of parameter �0 must take into account the initial label map. If
the percentage of the pixels labeled \unchanged" is less than the estimated
probability of this label, parameter �0 is given a value less than 1, because
this means that the thresholds used were probably relatively low. Otherwise
the value given is greater than 1. In Figure 2 the two speeds are mapped as
functions of the absolute inter-frame di�erence for typical parameter values
near the boundary.
Figure 3 shows two di�erent initial labeled maps and the corresponding

�nal labeled images based on the interframe di�erence between the two
�rst frames of the Erik sequence. The background is shown in black, the
foreground in white and unlabeled points in gray. We observe that quite
di�erent initializations lead to very similar �nal segmentations because of
the label propagation velocity. More results are given in our Web page:

http://www.csd.uoc.gr/~tziritas/cost.html

5 Conclusion

A new level set-based framework for image segmentation was presented.
The Multi-Label Fast Marching algorithm has been introduced for the prop-
agation of high-con�dence classi�cation decisions in accordance with the a
posteriori probability of the competing classes. Two speci�c segmentation
applications are addressed in order to illustrate the usability of this new
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algorithm as a fast, precise and generic technique for unsupervised pixel
labeling.
This approach's objective of maximizing the a posteriori probability is

shared by other techniques, such as stochastic or deterministic relaxation.
Such approaches utilize an objective function whose global minimum yields
the optimal segmentation map. Concerning the algorithm presented here,
the absence of a global objective function can be considered as a weakness,
yet the dependence of the propagation velocities on the a posteriori prob-
abilities of the competing classes clearly leads the segmentation process
toward the same goal, while allowing an extremely eÆcient noniterative
implementation.
In comparison with existing level set implementations of active contours,

the Multilabel Fast Marching algorithm, as presented here, clearly lacks
the capability of incorporating a smoothness constraint into the propaga-
tion process, thus sometimes resulting in noisy expansion of the moving
contours. Nevertheless the competition of the expanding regions and their
convergence over each other signi�cantly reduce the amount of noise in the
�nal region boundaries, while retaining a high level of localization precision.
In addition, our algorithm can handle multiple segmentation classes with
a complexity that outperforms most existing multiclass level set methods.
Inherent limitations and shortcomings of the proposed framework in-

clude the strong dependence of the segmentation quality on the extracted
features, which must be both suÆcient and discriminant. Additionally, the
initial high-con�dence classi�cation decisions impose strict constraints on
the morphology of the �nal regions. Subsequently, narrow or small and
isolated parts of a given class exhibit an inherent diÆculty of detection.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 1. The segmentation result on the SeaStones image (a).
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FIGURE 2. The propagation speeds of the two labels.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3. The segmentation result on the Erik sequence: (a) the �rst frame
of the sequence, (b) the maximum a posteriori probability classi�cation, (c) ini-
tialization of a large number of sites, (d) the corresponding segmentation, (e)
initialization of a small number of sites, and (f) the corresponding segmentation.


