
UNSUPERVISED TEXTURE SEGMENTATION USING

DISCRETE WAVELET FRAMES

S. Liapis, N. Alvertos, and G. Tziritas

Institute of Computer Science - FORTH, and,

Department of Computer Science, University of Crete

P.O. Box 1470, Heraklion, Greece

E-mails: fliapis,alvertos,tziritasg@csd.uch.gr

ABSTRACT

Image segmentation could be based on texture features.
In this work, an unsupervised algorithm for texture seg-
mentation is presented. Texture analysis and character-
ization are obtained by appropriate frequency decom-
position based on the Discrete Wavelet Frames (DWF)
analysis. Texture is then characterized by the variance
of the wavelet coe�cients. The unsupervised algorithm
determines the regions to characterize each di�erent tex-
ture content in the image. For applying the algorithm,
it is necessary to know only the number of the di�erent
texture contents of the image. Then, based on a dis-
tance measure, each point of the image is classi�ed to
one of the di�erent contents.

1 INTRODUCTION

Texture information must be often segmented for
recognition purposes in several computer vision tasks,
including multimedia applications (e.g., [9]). Di�erent
statistical methods have been proposed in the past for
texture analysis [2], [4], [6], [11]. Inherent disadvan-
tages with those approaches, such as increased compu-
tational cost and irreversibility, can be eliminated using
the wavelet transform [8], [10].

The problem of texture segmentation is approached
in this paper with algorithms based on the concept of
wavelet frames. The aim of the analysis is to determine
corresponding characteristics for each texture content so
that each is uniquely de�ned. This analysis is performed
in the frequency domain, where the input image is de-
composed to di�erent frequency levels using the Discrete
Wavelet Frames (DWF). Following deduction of these
characteristics, statistical properties are applied to con-
clude those features necessary to describe and classify
the texture content.

The philosophy to this approach has been introduced
in the past [12], however, our scheme di�ers in the statis-
tical methodology for evaluating texture parameters and
in the criterion by which a texture point is assigned to a
particular subregion of the image to be segmented. Also,
in order to evaluate texture parameters, without any
given information about the region of each texture (un-

supervised), an hierarchical clustering algorithm and a
criterion to determine whether a region is homogeneous
(has the same texture content) are proposed. Then, each
point is assigned to one of the di�erent classes in the im-
age to be segmented by applying a distance measure for
each parameter. The number of di�erent texture con-
tents in the image (classes) is provided by the user. The
supervised version of this algorithm has been proposed
in a previous work [7].

2 TEXTURE CHARACTERIZATION

To decompose the frequency domain of the input signal,
a lowpass �lter H(z) and its complementary highpass
G(z) are used. These �lters generate more �lters by up-
sampling with a factor of 2, so that the whole range of
bands is covered [12]. The following hold true, respec-
tively:

H(z) = z2+4z+6+4z�1+z�2
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G(z) = zH(�z�1)

�
(1)

in the frequency domain. In addition, the generated �l-
ters can form orthogonal wavelet base functions [8], so
the input signal can be decomposed into discrete wavelet
frame coe�cients, each corresponding to a di�erent fre-
quency band. The previous decomposition can be ex-
tended to 2-D signals (images), by formingwavelet bases
which result from the cross product of separable bases
in each direction. These (four) base functions deduce
the following decomposition algorithm:

d1;i+1(k; l) = [h]2i(k) � [g]2i(l) � si(k; l)
d2;i+1(k; l) = [g]2i(k) � [h]2i(l) � si(k; l)
d3;i+1(k; l) = [g]2i(k) � [g]2i(l) � si(k; l)
si+1(k; l) = [h]2i(k) � [h]2i(l) � si(k; l)
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where (k; l) is an image point, [ ]m is upsampling by a
factor of m, d1;i+1; d2;i+1; d3;i+1 are the details of the
i+ 1 layer and si+1 the approximation of the decompo-
sition.

The previous analysis can be applied to texture im-
ages, yielding the following representative vector:

y(k; l) =< y1(k; l); : : : ; yN�1(k; l); yN (k; l) > (3)



where each element of y(k; l) has been determined ac-
cording to the analysis in (2) and the dimension of the
vector is N = 3I + 1, composed of N � 1 detail compo-
nents and the approximation at level I component. The
texture content is then characterized by the �2i variances
of the N�1 detail components of the representative vec-
tor (i = 1; : : : ; N �1). This characterization is based on
the fact that the mean value of the details, as well as
the correlation between di�erent components, could be
assumed to be zero.

3 TEXTURE SEGMENTATION

If the characteristic (variance vector) of a texture is
known, then an image point can be assigned to this tex-
ture according to the following distance measure :

dj(y(k; l)) =
N�1X
i=1

 
y2i (k; l)

�2i;j
+ log�2i;j

!
(4)

where y(k; l) is the representative vector for the point
(k; l), �2i;j is the i component of variance vector of the
texture j. This distance is depicted from the Bayesian
classi�er, assuming Gaussian class conditional probabil-
ity density function:

dj(y) = (y � �j)
T��1j (y � �j) + log(det(�j)) (5)

This measure takes the form of (4) observing that the
mean value of the features (�j) for each �ltered image
is zero, since �lters are zero mean (G(1) = 0), and prac-
tically the non diagonal elements of the covariance ma-
trix (�j) are also zero due to the minimal correlation
between the detail components, as mentioned earlier.

Thus, the problem of segmentation is reduced to esti-
mating the texture parameters (variance vectors) of the
di�erent texture contents of the image to be segmented.
Fig.1 illustrates the whole procedure of unsupervised
segmentation.

3.1 Rejection of Blocks that are Heterogeneous

This algorithmassumes that the number of di�erent tex-
ture contents in the image to be segmented is known.
The aim of this procedure is to �nd the regions of the
images which yield the best representative texture char-
acteristics (variance vector). For this purpose, the image
is divided into blocks of 32�32 pixels. It is evident that
the blocks which contain two or more di�erent textures
(not homogeneous) are not the ideal ones to estimate
the characteristics of a texture. In order to determine
whether a block is not homogeneous the following crite-
rion was formed :

Hb =
1

#pixels

X
p2block

N�1X
i=1

(y2p;i � �2b;i)
2

�2b;i
(6)

where b is the examined block, p each pixel that be-
longs to block b, N is the number of the representa-
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Figure 1: Unsupervised texture segmentation algorithm

tive vector components, �2b;i is the variance of the i fre-
quency component of the b block, yp is the represen-
tative vector of a point p in block b. This criterion is
based on the idea that, if a block contains di�erent tex-
tures, then the mean di�erence of y2i from the variance
�2i is greater than the mean di�erence in a block that
is homogeneous. This di�erence at the criterion is valid
because the mean value of the details component is zero
(G(1) = H(�1) = 0; �2 = Efy2g). The division with
�2b;i is performed for normalization purposes. To con-
clude that a block is not homogeneous, experimentally
is deduced that the sum of Hb1 and Hb2 must be less
than Hb, where b1; b; b2 are neighbouring blocks in the
x-axis or y-axis direction.

3.2 Clustering Phase for Estimating Variance

Vectors

With the procedure described in the previous section, all
blocks that are not homogeneous are rejected. Then, to
obtain the best representative blocks from the remaining
homogeneous ones, the K nearest neighbouring blocks
are selected, where K is one fourth of the total number
of blocks in the image. This value of K has been deter-
mined empirically. The distance measure between two



blocks is described by the following equation :

db1;b2 =
N�1X
i=1

j�21;i� �22;ij

�21;i + �22;i
(7)

where N is the number of the representative vector com-
ponents and �21; �

2
2 are the variance vectors of b1; b2, re-

spectively. The division in the distance is performed, as
previously, for normalization purposes.

Then, from the K pairs, K variance vectors are es-
timated for each block pair. In order to estimate the
variance vectors of the di�erent textures in the image, a
hierarchical clustering algorithm [5] is applied to the K
variance vectors. This algorithm, in each step, merges
the two nearest variance vectors by estimating the new
variance vector from the corresponding blocks. Thus,
at each step, the number of vectors is reduced by one.
The procedure terminates when the number of vectors
becomes equal to the number of the di�erent textures
in the image to be segmented. The texture parameters
are estimated at the end of this procedure.

Figure 2: Left: Initial synthetic image from D19, D9,
D3, D5 of the Brodatz album. Right: Labeling with
distances only.

Figure 3: Left: Assignments after smoothing with me-
dian �lter. Right: Final segmented image after the ap-
plying ICM algorithm.

3.3 Pixel Labeling

Having estimated the parameters of each di�erent tex-
ture in the image, each pixel in the image is assigned to
one texture-class by using the distance measure given by

(4). Following these assignments, due to statistical er-
rors on the distance measure, a median �lter of a 15�15
pixel window is applied to each distance array of pixels
from each texture-class (variance vector). This yields
smoothed distance arrays, thus compensating for the
statistical errors. After the procedure, some very small
regions remain in the labeled image which are removed
by applying an iterative algorithm (ICM) [1] for label-
ing noisy images, where for each pixel assignment the
assignments of the neighbouring pixels are considered,
according to a Markov random �eld.

D19 D9 D3 D5
5.96 2.03 2.94 0.95
0.08 0.37 0.96 0.12
0.03 0.06 0.07 0.05
0.89 3.42 6.00 2.29
0.61 1.86 1.98 0.39
0.03 0.05 0.05 0.02
1.24 3.62 7.70 4.62
1.46 3.12 7.60 1.62
0.06 0.19 0.17 0.10
2.61 2.24 12.43 8.47
1.78 2.33 3.30 2.68
0.07 0.19 0.44 0.22

Table 1: Variance vectors for each di�erent texture con-
tent for supervised segmentation

D19 D9 D3 D5
6.13 1.75 2.92 0.90
0.08 0.41 0.41 0.14
0.02 0.05 0.06 0.04
0.91 3.42 5.84 2.23
0.61 1.77 1.76 0.34
0.02 0.05 0.04 0.01
1.32 3.42 8.19 4.30
1.47 3.26 7.31 1.26
0.06 0.20 0.16 0.10
3.13 2.01 13.48 9.20
1.76 2.42 2.61 2.67
0.07 0.19 0.42 0.23

Table 2: Variance vectors for each di�erent texture con-
tent for unsupervised segmentation

4 EXPERIMENTAL RESULTS

The above algorithm was applied to a synthetic im-
age containing four di�erent textures (Fig.2-left) derived
from the Brodatz Album [3]. Fig.2-right illustrates the
segmented image with assignments to labels deduced us-
ing only the distance measure in eq.4. In Fig.3 (left) the



label assignments resulting from distance smoothing us-
ing the median �lter are shown. The �nal segmented
image after applying the ICM algorithm is presented in
Fig.3-right. The initial image was analyzed to 4 fre-
quency levels yielding 12 detail coe�cients. In the fol-
lowing tables, the variance vectors of each texture con-
tent are presented, both for the supervised (Table 1)
and unsupervised (Table 2) procedures. An additional
example was considered, where the segmentation algo-
rithm was applied to the image illustrated in Fig.4-left
which contains �ve di�erent texture types. As in the
previous example, the label assignments based on the
distance measure are shown in Fig.4-right, the result
after smooothing of the distance values is presented in
Fig.5-left and the result following application of the ICM
algorithm is illustrated in Fig.5-right. The decomposed
frequency layers in this example were 3, thus producing
9 detail coe�cients.

5 CONCLUSION

In this work an e�cient method for segmenting im-
ages based on the di�erent texture content is presented.
Texture is characterized by the variances of the details
which are depicted from the Discrete Wavelet Frames
analysis. The bene�t in using DWF is the improved
texture characterization, since it remains invariant un-
der translation and preserves its localization properties.
A new unsupervised segmentation algorithm is proposed
based on the previous analysis. This algorithm e�-
ciently rejects the heterogeneous blocks of the image, in
terms of texture content. The di�erent texture parame-
ters are estimated after applying a hierarchical cluster-
ing procedure in the remaining blocks. The described
scheme assumes that only the number of di�erent tex-
ture types is known.

Figure 4: Left: Initial synthetic image from D77, D55,
D84, D17 and D24 of the Brodatz album. Right: La-
beling with distances only.
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