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Abstract

In this paper, we present a new and more general version of polygonal approximation
problem (GPA). Given an N−vertex polygonal curve P in the n-dimensional space
<n, we approximate P by finding another M−vertex polygonal curve Ṗ , such that
the vertices of Ṗ are an ordered subsequence of the curve points along P . The
definition of the classical polygonal approximation problem (PA) demands the Ṗ
vertices to be a subset of P vertices. Therefore, the solutions of GPA problem
approximates better the polygonal curve P than the solutions of PA problem. The
optimal or a suboptimal solution of GPA is achieved when the approximation errors
per line segment are equal. Our method is very flexible on changes of error criteria
and on curve dimension yielding an alternative and in many cases better solution
than the optimal PA methods with about the same computation cost.

1 Introduction

The polygonal approximation is an important topic in the area of pattern recognition, com-

puter graphics and computer vision. A huge number of applications like object recognition,

computational cartography, signal summarization and compression are based on polygo-

nal approximation. The polygonal approximation process saves memory space, reduces the

rendering time on graphics applications and gives a more compact representation of P .

Given an N−vertex polygonal curve P in the n-dimensional space, the curve approxima-

tion of P is to compute another M−vertex polygonal curve in the n-dimensional space

that approximates the original curve, according to a predefined error criterion. Let P =

{p1, p2, · · · , pN} and Ṗ = {ṗ1, ṗ2, · · · , ṗM} be the set of the vertex points of the given

polygonal curve and its approximation, respectively. According to the general polygonal

approximation problem (GPA), the vertices of Ṗ are an ordered subsequence of the curve
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Fig. 1. Polygonal approximations (red polygon) with six segments of the same given curve (blue
polygon). (a) A general polygonal approximation and (b) a classical polygonal approximation of
the given curve.

points along P (Fig. 1(a)), for which it is not required to be a subset of P vertices as the

the classical polygonal approximation (PA) demands (Fig. 1(b)). In addition, it holds that

ṗ1 = p1 and ṗM = pN .

Different error criteria have been proposed for polygonal approximation problems. One of

the most used is the tolerance zone criterion [1], [2]. Let ṗkṗk+1, k ∈ {1, 2, · · · ,M − 1} be

a segment of Ṗ and S = [ṗk, pm, pm+1, · · · , pm+s, ṗk+1] be the corresponding subcurve of P .

Under this criterion, the error between the segment ṗkṗk+1 and S is defined as the maximum

distance in an Lh (h ∈ {1, 2,∞}) metric between ṗkṗk+1 and each point on the subcurve

S. Another frequently used error criterion is the local integral square error (LISE) [3], [4].

Under this criterion, the error between the segment ṗkṗk+1 and S is defined as the sum of

squared Euclidean distances from each vertex point of subcurve S. Finally, according to

these error criteria the approximation error between Ṗ and P is defined as the maximum

error between the segments of Ṗ and their corresponding subcurves of P .

The polygonal approximation problem can be formulated in two ways.

• The problem of minimum error (min − ε), where the approximation error is minimized

given the number of segments M .

• The problem of minimum number of segments (min−#), where the approximation error

is known (ε) and the goal is to find the minimum number of segments (M) that gives

error lower than the given error.
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1.1 Related Work

The problem of approximating a polygonal curve P (PA) has been studied extensively dur-

ing the last two decades [5], [6], [7]. The methods, that have been developed, solve the

problem by approximating the original polygonal curve P by another polygonal curve Ṗ

under the constraint that the Ṗ vertex sequence is an ordered subsequence of the vertices

along P . There are two well-known approaches for solving this problem: graph-theoretical

and dynamic programming. Graph-theoretical methods generate directed acyclic graph on

the vertices of P , and then compute the shortest path in the graph [1], [8], [9]. Dynamic

programming generates the solution for the problem using results of the smaller problem

instances [10], [11]. Concerning the 2-D min −# problem and the min − ε problem under

the tolerance zone criterion, the lowest computation cost method [8] has cost O(N2) and

O(N2logN), respectively. The memory requirements can be reduced to O(N) [2]. The 3-D,

4-D polygonal approximation problem require near-quadratic time and sub-cubic time, re-

spectively [12]. When the L1 or L∞ metrics are used, the time requirements for min − #

problem and the min − ε problem are reduced to O(N2) and O(N2logN) in any dimen-

sional space [12], respectively. A 2-D monotone polygonal curve can be approximated by an

O(N
4
3
+δ) time and space algorithm [13], where δ > 0 is an arbitrarily small constant. Under

the LISE criterion, the 3-D min−# problem and the min− ε problem can be solved [4] in

O(N2) and O(N2logN), respectively.

These approaches require high execution time and memory when the given polygon size is

getting high. Thus in a lot of applications, the main objective is not to compute the optimal

solution, but to find low computation cost algorithms that will give a sub-optimal solution

[14], [15], [16]. One of the most widely used high-quality curve simplification algorithms is

the heuristic method commonly called the Douglas-Peucker approximate algorithm [17], [18].

These approaches have time complexities ranging from O(N) and O(N2). However, their

quality remains less than 80% in comparison to that of the optimal solution [19]. The

performance of polygonal approximation algorithms can be measured under variations in

scale parameters and data [19].

The rest of the paper is organized as follows: Section 2 presents the proposed general polyg-

onal approximation algorithm. The experimental results and comparisons with the existed

classical PA methods are given in Section 3. Finally, conclusions and discussion are provided

in Section 4.

3



Symbols Definitions

P = {p1, p2, · · · , pN} The given N−vertex polygonal curve, A = p1, B = pN

Ṗ = {ṗ1, ṗ2, · · · , ṗM} The M−vertex approximating polygonal curve, ṗ1 = p1, ṗM = pN

dist(p, uv) The distance between point p and line uv, u, v ∈ P

D(u, v) The approx. error between uv and the corresponding subcurve of P

C(t), t ∈ [0, 1] The polygonal curve P , C(tk) = pk, tk = k−1
N−1

, k ∈ {1, 2, · · · , N}
d(x, y) The approx. error between C(x)C(y) and the corr. subcurve of P

Table 1
Symbol table of GPA problem.

2 General Polygonal Approximation Algorithm

2.1 Problem Definition

The general polygonal approximation problem is defined as follows: Given an N−vertex

polygonal curve P in the n-dimensional space <n, we approximate P by finding another

M−vertex polygonal curve Ṗ in the n-dimensional space <n according to a predefined error

criterion, such that the Ṗ vertices are an ordered subsequence of the curve points along P .

The goal is to solve the min − ε problem and the min −# problem under any predefined

error criterion. Some useful symbols are defined on Table 1. Let u, v be points of polygonal

curve P . Let dist(p, uv) be the distance between point p and line uv. Let D(u, v) be the

approximation error between the segment uv and the corresponding subcurve of P under

a predefined criterion. We consider that the approximation error (Error(P, Ṗ )) between Ṗ

and P is defined as the maximun error between the segments of Ṗ and their corresponding

subcurves of P (Equation (1)).

Error(P, Ṗ ) = maxk∈{1,2,··· ,M−1}D(ṗk, ṗk+1) (1)

The PA problem can be solved by polynomial algorithms. However, the solutions of GPA

problem approximate better the polygonal curve P than the solutions of PA problem. We

are going to present an algorithm that in a lot of cases gives better results than the optimal

solutions of PA problem with about the same computation cost.
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Fig. 2. The maximun of errors e1(t), e2(t) give the error of this approximation.

2.2 Reduction to Equipartition Problem

The optimal or a suboptimal solution of GPA is achieved when the approximation errors

per line segment are equal, as the error is shared between all the segments (Equation (3)).

ε = D(ṗ1, ṗ2) = D(ṗ2, ṗ3) = · · · = D(ṗM−1, ṗM) (2)

Let {t1 = 0 > t2 > · · · > tN−1 > tN = 1} : C(tk) = pk, k ∈ {1, 2, · · · , N} where C(t), t ∈
[0, 1] denotes the polygonal curve P . Let {ṫ1 = 0 > ṫ2 > · · · > ṫM−1 > ṫM = 1} : Ċ(ṫk) =

ṗk, k ∈ {1, 2, · · · ,M} where Ċ(t), t ∈ [0, 1] denotes the polygonal curve Ṗ . Then the distance

function d(x, y) can be defined by the following equation.

d(x, y) = D(C(x), C(y))x, y ∈ [0, 1] (3)

The equation (3) can be rewritten as:

ε = d(ṫ1, ṫ2) = d(ṫ2, ṫ3) = · · · = d(ṫM−1, ṫM) (4)

The approximation error ε will be minimum or close to minimum. This is the equal errors

(EE) criterion. We are going to study the case where M = 3 under the tolerance zone

criterion. Let C(t), t ∈ [t1, tN ] denote a point of polygon P (see Fig. 2). Let e1(t) and e2(t) be

the distances d(t1, t), d(t, tN) under the tolerance zone criterion with L2 metric, respectively.

The maximum of these errors e(t) = max(e1(t), e2(t)) is the error of the {C(t1), C(t), C(tN)}
approximation. It holds that e1(t1) = e2(tN) = 0, e1(tN) = e2(t1). If the functions e1(t), e2(t)

are monotone, which is true for high values of M (small segments Fig. 3(a)) or smooth given

polygonal curve (Fig. 3(b)), then the maximum of error e(t) appears when e1(t) = e2(t).

Otherwise, when e1(t) = e2(t) the error will be a local minimum and it will be possibly very

close to the global minimum error mint(e(t)) (see Fig. 3(d), 3(e)).

The solution under the EE criterion can be computed approximately using the equipartition

method (EP) [20]. The error of this method is extremely small, it decreases with O(N−2)
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Fig. 3. The polygonal approximations of some given polygonal curves (C(t)) with two segments
using minimun error criterion (red polygon), and the EE criterion (black polygon). (a), (b), (c)
The solutions of the EE criterion and minimun error criterion are the same. (d), (e) The errors
between the corresponding solutions using these criteria are almost the same.

under the assumption that the length of polygonal curve P line segments are almost equal.

Moreover, N should be greater than M , while our experiments show that it should be > 2·M .

The EP method accurancy decreases when M is getting high. This constraint does not affect

our method results, since it is true for the most polygonal curve approximations. The error

between the classical PA method and the optimal solution of GPA problem decreases with

O(N−1) 1 . The EP algorithm computes for a specific M , the M vertices of Ṗ under the EE

criterion (Equation (3)) and a predefined error metric. The input of the EP algorithm is the

M and the matrix d(tk, tl), k, l ∈ {1, 2, · · · , N}. The min− ε problem is solved directly. We

are going to present the constraints that the d(x, y) should satisfy. Under these constraints,

it has been proved that the EP problem has always at least one solution ( [20]).

We can use as d(x, y), x, y ∈ [0, 1] any smooth semimetric distance function. A semimetric

distance function does not satisfy the triangular inequality property. As a smooth semimetric

distance, d(x, y) is characterized by the following properties:

(1) d(x, y) = 0 ⇔ x = y (isolation).

1 This error decreases with the length segments of P , which is proportional to N−1.
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(2) d(x, y) = d(y, x) (symmetry).

(3) d(x, y) inherits continuity from the polygonal curve P .

(4) d(x, y) can be defined in any dimension (P ∈ <n).

The most of the polygonal approximation error criteria (e.g. the LISE or the tolerance zone

criterion) satisfy the above constraints apart from the first one. However, we can define a

new distance function f(x, y) satisfying all of the constraints without accurancy loss. Let

w be a small constant value, e.g. w = 10−4, then f(x, y) can be defined by the following

equation (5). In the next sections, we are going to keep using the symbol d(x, y) instead of

f(x, y).

f(x, y) = w · |x− y| · e1−|x−y| + d(x, y), 0 < w << 1 (5)

It holds that |f(x, y)−d(x, y)| ≤ w. An alternative choice of f(x, y) is given by the equation

(7).

f(x, y) = w · |x− y|+ d(x, y), 0 < w << 1 (6)

2.3 The Proposed Algorithm

In this section, the proposed algorithm is presented. The straightforward implementation of

the EP method solves the min − ε problem. The input of the method is the number of Ṗ

vertices (M). In addition, it needs the values of matrix d(tk, tl), k, l ∈ {1, 2, · · · , N}. This

algorithm is described in [20]. There are two versions of the algorithm. The greedy version

computes the total solutions in O(M · N2) steps. However, at least one solution can be

computed in O(M · N) steps. In these costs, we have not included the cost of the d(tk, tl)

computation. If there are more than one solutions, the solution with the minimum error is

selected. A brief description of the EP algorithm is given next.

The method is inductive. Thus, when it is executed for M segments, it uses the precom-

puted results for M − 1 segments. The major hypothesis of the method is that the function

d(x, y), x, y ∈ [0, 1] can be approximated by a polygonal surface d̂(x, y). Thus, the d̂(x, y) is

determined by d(tk, tl), k, l ∈ {1, 2, · · · , N}. Let

Dij = [xi, xi+1]× [yj, yj+1] ⊂ [0, 1]2
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with xi = yi = ti, i, j ∈ {1, 2, · · · , N}. The segment Dij can be separated into two triangles:

D1
ij where x− xi ≥ y − yj and D2

ij where x− xi < y − yj. Under our major hypothesis, we

have considered that d̂(x, y), x, y ∈ D1
ij or x, y ∈ D2

ij is a part of plane.

In each iteration step l, the algorithm computes the curves Ll so that if the point (u, v) ∈
Ll−1, u > v, then, it holds that (z, u), z > u ∈ Ll ⇔ d(u, v) = d(z, u). These curves consist

of line segments defined on D1
ij, D2

ij, so they can be computed by the line segments end

points. For l = 1, it holds that,

L1 = [(0, 0), (t1, 0)] ∪ [(t1, 0), (t2, 0)] ∪ · · · ∪ [(tN−1, 0), (1, 0)].

Let (x, y) ∈ Ll, x > y. Under the above definition, the equipartition of curve C(t), t ∈ [0, x]

into l segments can be done using the precomputed curves Ll, Ll−1, · · · , L1 (see Fig. 4).

The equipartition of curve C(t), t ∈ [0, 1] into l + 1 segments can be done using the curves

Ll, Ll−1, · · · , L1. Let ql(u, v) = d(u, v)− d(u, 1), (u, v) ∈ Ll, u > v. This function is partially

linear. The roots of this function will give the last two points (ṫl−1, ṫl) of the equipartition.

The other points are estimated using the rule of Fig. 4.

It can be proven that for each step l there is a continuous curve hl ⊂ Ll starting from [0, 0]

and ending on axis x = 1 or y = 1 (see Fig. 4). We can compute at least one solution of the

problem using these curves. The computation cost of hl curves is O(M ·N), because we can

track them starting from their known end point [0, 0].

Figure 5 illustrates the results of this proposed algorithm for different polygonal curves and

values of M . The Ll curves converge to the diagonal (y = x), as l increases. At least solution

belongs on the hl curve. However, in some cases, some solutions appear on other curves.

Figure 5(c) illustrates such an example, where two solutions appear on other curves.

2.4 The min−# problem

The min − # problem can be solved by the EP method under the same time-space re-

quirements as the min − ε problem. The algorithm is presented next: We execute the EP

method computing the function ql(u, v). Let (uk, vk) ∈ Ll, uk > uk with ql(uk, vk) = 0. The

minimum approximation error of l segments is mink(d(uk, vk)), as we have used the EE cri-

terion. Let k0 denote the argmink(d(uk, vk)). The method terminates when d(uk0 , vk0) < ε,

where ε denotes the given approximation error. The (uk0 , vk0) will be the (ṫl−1, ṫl) point of
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Fig. 4. An example of curve equipartition into 4 segments. It is shown the recursive computation
of {ṫ1, ṫ2, ṫ3} and L2, L3 curves.
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Fig. 5. Results of greedy version of the proposed algorithm. The estimated solutions are projected
on d(x, y) (left) with black cycles. The Ll curves are projected on d(x, y), with gray colors, at both
sides of diagonal x = y. On input polygonal curve P (right) is projected the estimated solution
with minimum error (Ṗ ). (c), (d) The input curve P is the Teh and Chin curve [21].
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the approximation.

2.5 Time and Space Requirements

The computation complexity of the greedy version of the EP method is O(M ·N2). However,

we can compute at least one solution in O(M · N) steps using hl curves. An important

algorithm property is that the computation cost is independent of curve dimension n.

Concerning the computation cost of d(pk, pl), it varies on the predefined error criterion and

curve dimension. Under the LISE criterion and in the case of n = 3, the total greedy version

cost is O(M · N2), because the matrix d(pk, pl) can be computed in O(N2) [4]. The worst

case total cost of greedy version is O(n · N3 + M · N2) and O(n ·M · N2) for at least one

solution computation.

The memory requirements of the algorithm are O(M ·N), as we have to store intermediary

results of the EP algorithm (the curves Ll, l < M). The storage of d(pk, pl) matrix is optional

and it needs O(N2) memory.

3 Experimental Results

In this section, the experimental results of the proposed algorithm are presented. The method

has been implemented using Matlab and for our experiments, we have been using a Pentium

4 CPU at 2.8 GHz. In our experiments, the approximation error ε is normalized by the

curve length. Moroever, in some test curves where the lengths of polygonal curve P line

segments differ too much (e.g. Teh and Chin curve), we have added 50% more vertices on

P curve making the lengths of polygonal curve P line segments to be almost equal. As we

have discussed in section 2.2, the error between the proposed method and the solutions of

the EE criterion descreases with O(N−2) under the assumption that the length of P line

segments are almost equal. So, we have developed a preliminary procedure of the proposed

method. The preliminary procedure of adding more vertices on polygonal curve P is executed

stepwise. In each iteration step, the new vertex a is added on P vertices so that a will be the

mean point of the P line segment with the maximum length. The above procedure has cost

O(NlogN) and it does not affect the total algorithm computation cost. The above procedure

is executed when the P line segments differ too much, i.e: their variance is higher than a

predifined threshold.
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Fig. 6. Min − ε results of the proposed algorithm under the tolerance zone criterion for various
curves and different values of M .

We have approximated various 2D polygonal curves under the tolerance zone or the LISE

criterion (see Fig. 6, 7). The L2 metric has been used. Results of the Min− ε problem are

illustrated in Fig. 6, 7. The Ṗ vertices of Fig. 7 are close to P vertices. This can be explained

as under the LISE criterion, the optimal solution of the PA problem is possibly the optimal

solution of the GPA problem.

We compare our method with Douglas-Peuker line simplification algorithm (implementated

by Matlab) and optimal PA method using the Efficiency criterion proposed by Rosin [19].

3.1 Comparison to Other Algorithms

In order to evaluate the quality of the proposed method, we have used the Efficiency crite-

rion (Equation (7)) introduced by Rosin [19]. It measures how compact is the suboptimal

polygonal representation of the curve, relative to the optimal polygon which incurs the same

error.
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Fig. 7. Min − ε results of the proposed algorithm under LISE criterion for various curves and
different values of M .

Efficiency =
Mopt

Mapprox

· 100 (7)

where Mapprox is the number of the approximating polygon vertices produced by the subopti-

mal algorithm and Mopt is the number of vertices that the optimal algorithm would require

to produce the same error as the suboptimal algorithm. In a lot of cases, the proposed

algorithm gives better results than the optimal PA algorithm, so the proposed algorithm

becomes the optimal and its Efficiency is 100%.

We have compared the proposed GPA method with Douglas-Peuker line simplification al-

gorithm and optimal PA method under the tolerance zone criterion with L2 metric. Under

the LISE criterion, the optimal solution of the PA problem is possibly the optimal solution

of the GPA problem. Thus, we have not presented comparisons under this criterion as the

results were almost the same.

The tables 2, 3, 4, 5, 6 and 7 present the Efficiency (E) results of the Douglas-Peucker, the

optimal PA and the GPA algorithm for various curves under the tolerance zone criterion

with L2 metric. The mean value of Efficiency over the six tables is 81.06% for the Douglas-
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Algorithms ε = 0.01 ε = 0.015 ε = 0.02 ε = 0.025 ε = 0.03 ε = 0.05

M E M E M E M E M E M E

Douglas-Peucker 17 88.2 14 78.6 13 76.9 12 75 7 100 6 83.3

Optimal PA 15 100 11 100 11 90.9 9 100 7 100 6 83.3

GPA 16 93.75 11 100 10 100 9 100 9 77.8 5 100

Table 2
Comparison of the Efficiency (E) of the Douglas-Peucker, optimal PA and GPA algorithms for the
Teh and Chin curve [21] (Fig. 8(a)). The mean value of Efficiency is 83.67% for the Douglas-Peucker
algorithm, 95.7% for the optimal PA algorithm and 95.26% for the proposed GPA algorithm.

Peucker algorithm, 95.26% for the optimal PA algorithm and 97.49% for the proposed GPA

algorithm.

Consequently, the proposed GPA algorithm approximates in a lot of cases better the given

curve than the optimal PA algorithm. In addition, the Efficiency of the proposed algorithm

was almost always higher than the Efficiency of the Douglas-Peucker algorithm, which solves

the PA problem suboptimally. The performance of the proposed GPA algorithm depends on

N, M and on the shape of the given curve P . When,

• the Ṗ , derived by the EE criterion, is the optimal solution of the GPA problem

• and the EP method accurancy is high,

then the proposed solution will be better with a great probability than the optimal solution

of the classical PA problem. The first constraint is satisfied for high values of M or low

values of ε or smooth given polygonal curves. When ε is high or M is low, it is possible that

the solution derived by the EE criterion to be a suboptimal solution of the GPA problem.

The second constraint is satisfied for low values of M or smooth given polygonal curves.

Therefore, when the given polygonal curve is smooth, the proposed algorithm yields with

a great probability better results than the optimal PA method (see Table 4, 7). Otherwise,

the result of which algorithm gives better solution is unpredictably changing with M (see

Table 2, 3, 5, 6). Thus, in many cases the huge search space of proposed method and the

high accurancy of the EP method under the EE criterion are sufficient to provide better

solution than the optimal PA method (see Fig. 8). If the results have the same number of

vertices, it does not hold that the solutions will be the same. An example of this situation

is illustrated in Fig. 8(b).
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Algorithms ε = 0.01 ε = 0.015 ε = 0.02 ε = 0.025 ε = 0.03 ε = 0.05

M E M E M E M E M E M E

Douglas-Peucker 14 78.6 11 90.9 10 70 10 60 8 75 5 80

Optimal PA 11 100 10 100 7 100 7 85.7 6 100 4 100

GPA 11 100 10 100 7 100 6 100 6 100 4 100

Table 3
Comparison of the Efficiency (E) of the Douglas-Peucker, optimal PA and GPA algorithms for
the curve of Fig. 8(b). The mean value of Efficiency is 75.75% for the Douglas-Peucker algorithm,
97.62% for the optimal PA algorithm and 100% for the proposed GPA algorithm.

Algorithms ε = 0.01 ε = 0.015 ε = 0.02 ε = 0.025 ε = 0.03 ε = 0.05

M E M E M E M E M E M E

Douglas-Peucker 19 84.2 17 76.5 15 73.3 13 76.9 11 81.8 10 70

Optimal PA 17 94.1 14 92.8 12 91.7 11 90.9 10 90 8 87.5

GPA 16 100 13 100 11 100 10 100 9 100 7 100

Table 4
Comparison of the Efficiency (E) of the Douglas-Peucker, optimal PA and GPA algorithms for
the curve of Fig. 8(c). The mean value of Efficiency is 77.12% for the Douglas-Peucker algorithm,
91.17% for the optimal PA algorithm and 100% for the proposed GPA algorithm.

Algorithms ε = 0.01 ε = 0.015 ε = 0.02 ε = 0.025 ε = 0.03 ε = 0.05

M E M E M E M E M E M E

Douglas-Peucker 18 77.8 14 71.43 9 88.9 8 75 7 85.7 6 83.3

Optimal PA 14 100 10 100 8 100 7 85.7 6 100 5 100

GPA 16 87.5 10 100 8 100 6 100 6 100 5 100

Table 5
Comparison of the Efficiency (E) of the Douglas-Peucker, optimal PA and GPA algorithms for
the curve of Fig. 8(d). The mean value of Efficiency is 80.35% for the Douglas-Peucker algorithm,
97.61% for the optimal PA algorithm and 97.92% for the proposed GPA algorithm.

Algorithms ε = 0.01 ε = 0.015 ε = 0.02 ε = 0.025 ε = 0.03 ε = 0.05

M E M E M E M E M E M E

Douglas-Peucker 21 85.7 14 85.7 13 69.2 9 88.9 6 100 6 100

Optimal PA 18 100 12 100 10 90 8 100 6 100 6 100

GPA 20 90 14 85.7 9 100 8 100 8 75 6 100

Table 6
Comparison of the Efficiency (E) of the Douglas-Peucker, optimal PA and GPA algorithms for
the curve of Fig. 8(e). The mean value of Efficiency is 88.25% for the Douglas-Peucker algorithm,
98.33% for the optimal PA algorithm and 91.78% for the proposed GPA algorithm.

14



0 100 200 300 400 500 600 700
−800

−600

−400

−200

0
Douglas−Peucker algorithm, M = 13,  Error = 0.0172

0 100 200 300 400 500 600 700
−800

−600

−400

−200

0
Optimal PA algorithm, M = 11,  Error = 0.0185

0 100 200 300 400 500 600 700
−800

−600

−400

−200

0
GPA algorithm, M = 10,  Error = 0.0179

(a)

−2 0 2 4 6 8 10 12
−40

−30

−20

−10

0

10
Douglas−Peucker algorithm, M = 10,  Error = 0.0178

−2 0 2 4 6 8 10 12
−40

−30

−20

−10

0

10
Optimal PA algorithm, M = 7,  Error = 0.0195

−2 0 2 4 6 8 10 12
−40

−30

−20

−10

0

10
GPA algorithm, M = 7,  Error = 0.0194

(b)

−3 −2 −1 0 1 2 3
−4

−2

0

2

4
Douglas−Peucker algorithm, M = 15,  Error = 0.0187

−3 −2 −1 0 1 2 3
−4

−2

0

2

4
Optimal PA algorithm, M = 12,  Error = 0.0190

−3 −2 −1 0 1 2 3
−4

−2

0

2

4
GPA algorithm, M = 11,  Error = 0.0191

(c)

0 2 4 6 8 10 12 14
−5

0

5

10

15
Douglas−Peucker algorithm, M = 8,  Error = 0.0225

0 2 4 6 8 10 12 14
−5

0

5

10

15
Optimal PA algorithm, M = 7,  Error = 0.0249

0 2 4 6 8 10 12 14
−5

0

5

10

15
GPA algorithm, M = 6,  Error = 0.0243

(d)

−0.5 0 0.5 1
−0.5

0

0.5

1
Douglas−Peucker algorithm, M = 6,  Error = 0.0294

−0.5 0 0.5 1
−0.5

0

0.5

1
Optimal PA algorithm, M = 6,  Error = 0.0288

−0.5 0 0.5 1
−0.5

0

0.5

1
GPA algorithm, M = 8,  Error = 0.0205

(e)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1
Douglas−Peucker algorithm, M = 11,  Error = 0.0212

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1
Optimal PA algorithm, M = 10,  Error = 0.0213

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1
GPA algorithm, M = 9,  Error = 0.0196

(f)

Fig. 8. Min−# results of the Douglas-Peucker, optimal PA and proposed GPA algorithms under
the tolerance zone criterion for different values of error ε. The curves P , Ṗ are projected with blue
and green colors.
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Algorithms ε = 0.01 ε = 0.015 ε = 0.02 ε = 0.025 ε = 0.03 ε = 0.05

M E M E M E M E M E M E

Douglas-Peucker 18 72.2 14 78.6 12 75 11 81.8 10 80 8 100

Optimal PA 14 77.8 11 100 10 90 10 90 9 88.9 7 100

GPA 13 100 11 100 9 100 9 100 8 100 7 100

Table 7
Comparison of the Efficiency (E) of the Douglas-Peucker, optimal PA and GPA algorithms for
the curve of Fig. 8(f). The mean value of Efficiency is 81.27% for the Douglas-Peucker algorithm,
91.12% for the optimal PA algorithm and 100% for the proposed GPA algorithm.

4 Conclusions

In this paper, we have discussed the general polygonal approximation problem (GPA) in any

dimensional space. We have proposed an algorithm based on the equipartition method. The

solution, when the errors per segment are equal, is the optimal or a suboptimal of the GPA

problem. The search space of PA problem (the vertices of P ) is a subset of GPA problem

search space (the total points of polygonal curve P ). Therefore, the GPA problem solutions

approximates better the given curve than the PA problem solutions.

In a lot of cases the huge search space of the proposed method and the high accurancy of

the EP method under the EE criterion are sufficient to provide better solution than the

optimal PA method with about the same computation cost. As our experiments show, in

mean case, the proposed GPA algorithm Efficiency was 2% higher than the Efficiency of

the optimal PA algorithm. However, there are cases where the best curve approximation is

given by the optimal PA algorithm. It holds that if the Ṗ , derived by the EE criterion, is

the optimal solution of the GPA problem and the EP method accurancy is high, then the

proposed solution will be better with a great probability than the optimal solution of the

PA problem. This is getting true for smooth given polygonal curves. Otherwize, the result

of which algorithm gives better solution is unpredictable.

Furthermore, our method is very flexible on changes of error criteria and given curve di-

mension, in contrast with the most of the proposed algorithms on the literature, which are

strongly associated with a specific error criterion or curve dimension. Moreover, the method

is inductive. Thus, when it is executed for M , it solves the problem for any number of

segments less than M without additional computation cost. The min − ε problem and the

min −# problem are solved with the same computation cost. The method can be used in

cases where it is critical to minimize the approximation error obtaining better results than

the optimal solutions of PA problem. An important feature of the method is that the equal
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approximation error is almost the same per segment, so the Ṗ line segments are equivalent

on the approximation.
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