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Abstract

Content-based indexing methods are of great interest for image and video retrieval
in audio-visual archives, such as in the Esprit project DiVAN that we are currently
developing. Detecting and recognizing human faces automatically in video data pro-
vide users with powerful tools for performing queries. In this article, a new scheme
for face recognition using a wavelet packet decomposition is presented. Each face is
described by a subset of band �ltered images containing wavelet coe�cients. These
coe�cients characterize the face texture and a set of simple statistical measures
allows us to form compact and meaningful feature vectors. Then, an e�cient and
reliable probabilistic metric derived from the Bhattacharrya distance is used in order
to classify the face feature vectors into person classes.
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1 Introduction

Face recognition is becoming a very promising tool for automatic multimedia
content analysis and for content-based indexing video retrieval system. Such
a system is currently developed within the Esprit project DiVAN ([1]) which
aims at building and evaluating a distributed audio-visual archives network
providing a community of users with facilities to store video raw material, and
access it in a coherent way, on top of high-speed wide area communication
networks. The video raw data is �rst automatically segmented into shots and
from the content-related image segments, salient features such as region shape,
intensity, color, texture and motion descriptors are extracted and used for
indexing and retrieving information.

In order to allow queries at a higher semantic level, some particular pictorial
objects have to be detected and exploited for indexing. We focus on human
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faces detection and recognition, given that such data are of great interest for
users queries.

In recent years, considerable progress has been made on the problem of face
detection and face recognition, especially under stable conditions such as small
variations in lighting, facial expression and pose. A good survey may be found
in [2]. These methods can be roughly divided into two di�erent groups: ge-
ometrical features matching and template matching. In the �rst case, some
geometrical measures about distinctive facial features such as eyes, mouth,
nose and chin are extracted ([3,4]). In the second case, the face image, rep-
resented as a two-dimensional array of intensity values, is compared to a sin-
gle or several templates representing a whole face. The earliest methods for
template matching are correlation-based, thus computationally very expen-
sive and require great amount of storage and since a few years, the Principal
Components Analysis (PCA) method also known as Karhunen-Loeve method,
is successfully used in order to perform dimensionality reduction ([5{9]). We
may cite other methods using neural network classi�cation ([10,11]), using al-
gebraic moments [12], using isodensity lines [13], or using a deformable model
of templates ([14,15]).

In this paper, we propose a new method for recognition of frontal views of faces
under roughly constant illumination. Our scheme is based on a wavelet packet
decomposition of the face images. Each face image is described by a subset
of band �ltered images containing wavelet coe�cients. From these wavelet
coe�cients which characterize the face texture, we form compact and mean-
ingful feature vectors, using simple statistical measures. Then, we show how
an e�cient and reliable probabilistic metric derived from the Bhattacharrya
distance can be used in order to classify the face feature vectors into person
classes. Experimental results are presented using images from the FERET and
the FACES databases. The e�ciency of our approach is analyzed according
to the FERET evaluation procedure and by comparing our results with those
obtained using the well-known Eigenfaces method.

2 The proposed approach

In the last decade, wavelets have become very popular, and new interest is
rising on this topic. The main reason is that a complete framework has been
recently built ([16,17]) in particular for what concerns the construction of
wavelet bases and e�cient algorithms for its computation.

We based our approach on the wavelet decomposition of faces images for the
reasons that we explain hereafter.
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The main characteristic of wavelets (if compared to other transformations) is
the possibility to provide a multiresolution analysis of the image in the form
of coe�cient matrices. Strong arguments for the use of multiresolution de-
composition can be found in psychovisual research, which o�ers evidence that
the human visual system processes the images in a multiscale way. Moreover,
wavelets provide a spatial and a frequential decomposition of a the image at
the same time.

Wavelets are also very 
exible: several bases exist, and one can choose the
basis which is more suitable for a given application. We think that this is still
an open problem, and up to now only experimental considerations rule the
choice of a wavelet form. However, the choice of an appropriate basis can be
very helpful.

Computational complexity of wavelets is linear with the number (N) of com-
puted coe�cients (O(N)) while other transformations, also in their fast imple-
mentation, lead to N � log2(N) complexity. Thus, wavelets are adapted also
for dedicated hardware design (Discrete wavelet Transform). If the recognition
task has real time computation needs, the possibility of embedding part of the
process in Hardware is very interesting, like in compression tasks ([18]).

2.1 Wavelet packet decomposition of face images

The (continuous) wavelet transform of a 1-D signal f (x) is de�ned as:

(Waf) (b) =
Z
f (x) a;b (x) dx with  a;b (x) =

1p
a
 

 
x� b

a

!
(1)

The mother wavelet  has to satisfy the admissibility criterion to ensure that
it is a localized zero-mean function. Equation (1) can be discretized by re-
straining a and b to a discrete lattice (a = 2n; b 2 Z). Typically, some more
constraints are imposed on  to ensure that the transform is non-redundant,
complete and constitutes a multiresolution representation of the original sig-
nal. This leads to an e�cient real-space implementation of the transform using
quadrature mirror �lters. The extension to the 2-D case is usually performed
by applying a separable �lter bank to the image. Typically, a low �lter and a
bandpass �lter (H and G respectively) are used. The convolution with the low
pass �lter results in a so-called approximation image and the convolution with
the bandpass �lter in a speci�c direction results in so-called details image.

In classical wavelet decomposition, the image is split into an approximation
and details images. The approximation is then split itself into a second-level
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approximation and details. For a n-level decomposition, the signal is decom-
posed in the following way:

An =
h
Hx � [Hy � An�1]#2;1

i
#1;2

(2)

Dn1 =
h
Hx � [Gy � An�1]#2;1

i
#1;2

(3)

Dn2 =
h
Gx � [Hy � An�1]#2;1

i
#1;2

(4)

Dn3 =
h
Gx � [Gy � An�1]#2;1

i
#1;2

(5)

where � denotes the convolution operator, # 2; 1 (# 1; 2) sub-sampling along the
rows (columns) and A0 = I (x; y) is the original image. An is obtained by low
pass �ltering and is the approximation image at scale n. The details imagesDni

are obtained by bandpass �ltering in a speci�c direction (i = 1; 2; 3 for vertical,
horizontal and diagonal directions respectively) and thus contain directional
detail information at scale n. The original image I is thus represented by a
set of subimages at several scales: fAn; Dnig.

The wavelet packet decomposition, that we perform in our approach, is a gen-
eralization of the classical wavelet decomposition that o�ers a richer signal
analysis (discontinuity in higher derivatives, self-similarity,...). In that case,
the details as well as the approximations can be split. This results in a wavelet
decomposition tree. Figure 1 shows the H and G �lters that have been applied.
These �lters have been selected based on trials during our experimentation.

Figure 1. H (solid line) and G (dashed line) �lters

Usually, an entropy-based criterion is used to select the deepest level of the
tree, while keeping the meaningful information.

In our experiments, a two levels wavelet packet decomposition is performed,
as shown in �gure 2. There is no need to perform a deeper decomposition be-
cause, after the second level, the size of images is becoming too small and no
more valuable information is obtained. At the second level of decomposition,
we obtain one image of approximation (low-resolution image) and 15 images
of details which are displayed in �gure 3.

Figure 2. A wavelet packet tree

Figure 3. Level 2 of the wavelet packet tree

Therefore, the face image is described by 16 wavelet coe�cient matrices, which
represent quite a huge amount of information (equal to the size of the input im-
age). It is well-known that, as the complexity of a classi�er grows rapidly with
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the number of dimensions of the pattern space, it is important to take deci-
sions only on the most essential, so-called discriminatory information, which is
conveyed by the extracted features. Thus, we are faced with the need of dimen-
sionality reduction. Each of the 16 coe�cient matrices contains information
about the texture of the face. An e�cient way of reducing dimensionality and
characterizing textural information is to compute, for each matrix of wavelet
coe�cients, a set of statistical features (moments) and in order to build face
features vectors as explained in the next section.

2.2 Facial features localization

Before proceeding with wavelet packet analysis and feature extraction, we
aim at locating di�erent speci�c areas of the face from which the wavelet
coe�cients will be analyzed and our measurements will be extracted. We have
chosen to locate the face bounding box and then to divide this face bounding
box into two areas, the top part and the bottom part, where the frontier
between these two areas is the nose baseline. In order to perform this task, we
search for the left and right borders of the face and for facial features, using a
set of constraints like bilateral symmetry of the face, the presence of two eyes,
one nose and one mouth, as well as anthropometric measures and horizontal
alignment constraints for the eyes in the case of frontal views.

Lots of algorithms have been proposed to solve the problem of facial features
extraction, mainly based on template matching as described in [3]. Templates
are built for each of the facial parts like the eyes, the mouth and the nose. In-
tensity normalization is required as well as a set of di�erent sizes templates to
scope with scale variations. Then, correlation is used to locate these templates
in the face image, which is a computationally expensive technique. Addition-
ally, facial features of di�erent people can be quite di�erent.

For fast computation needs, our goal is to roughly locate the facial features
by using simple image processing techniques. The useful technique of inte-
gral projection for the extraction of facial features has been proposed �rst by
Kanade in [20]. For an image I (x; y), the horizontal and vertical projection,
respectively H (y) and V (x) over the image area A = [x1; y1] � [x2; y2] are
de�ned as:

8 fx; yg 2 A; H (y) =
x2X

x=x1

I (x; y) and V (x) =
y2X

y=y1

I (x; y) (6)

The integral projection results are then analyzed to locate facial features. In
the work of Kanade ([20]), integral projections are performed on a binary
picture, obtained after applying a Laplacian operator and thresholding the
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result. In the work of Brunelli and Poggio ([3]), the Laplacian operator is used
as well as the edge map which is then segmented according to edge directions
(gradient direction). Horizontal gradients are then used to detect the left and
right boundaries of the face and vertical gradients are used to detect the head
top, eyes, nose and mouth baselines. Integral projections are used to check the
results of a costly template matching stage.

In our approach, we take advantage of the band �ltered images obtained after
wavelet packet decomposition. More precisely, we perform an integral vertical
projection on the vertical details image of level 1 (�ltering in the horizontal
direction). From the resulting projection vector V (x), we search for the two
extreme local maxima (peaks) corresponding to the left and the right bor-
ders of the face. These two positions de�ne a vertical band we call bounding
band, in which the face is contained. Then, we search for speci�c facial fea-
tures inside this bounding band. We consider the horizontal details image of
level 1 (�ltering in the vertical direction) for each face image. There are high
coe�cients values in the area of the eyes, the nose and the mouth. We use
as well the constraints of horizontal alignment of these features, in the case
of frontal views (up to an inclination angle of 15o). We perform a horizontal
integral projection of the wavelet coe�cients, inside the bounding band. Then,
we search for local maxima in the resulting projection vector H (y), using a
priori knowledge about the facial features disposition. More precisely, we look
for three local maxima (peaks) having a known relative vertical disposition:
the baseline of the eyes, the baseline of the nose and the baseline of the mouth.
Then, vertical integral projections are performed on the horizontal details im-
age in a horizontal band around each baseline in order to check the results. In
the case of the eyes, two salient peaks have to be obtained, while in the case
of the nose and the mouth a large peak has to be found at the mid-point of
the peaks corresponding to the two eyes positions.

In �gure 4, we present the results for di�erent faces extracted from the FERET
database. For each face, the �rst image is the level 1 horizontal details image
containing the wavelet coe�cients. The central image displays the vector of
horizontal projection and the right image corresponds to the three peaks we
selected, overlaid on the original face image with white lines.

Figure 4. Three faces and the selected facial features baselines

Finally, we de�ne the bounding box of the face, by closing the bounding band.
It is quite di�cult to precisely �nd the top and the bottom baselines of the
face, because of the presence of hair, beard and cloths which provide a lot of
high wavelet coe�cients in most of the directions. To overcome this problem,
we choose the top and bottom lines of the bounding box by using knowledge
about human faces shape. We consider that the height of the bounding box
should be approximately 1.5 times larger than its width. By this way, we place
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the top and bottom lines at equal distance from the nose baseline and with
a distance of 1.5 times the width of the bounding box from one to the other.
In �gure 5, we show the di�erent areas that we select for a given face. Then,
we may divide the face in two di�erent areas, using the nose baseline, as a
frontier.

Figure 5. Bounding box, top and bottom areas

2.3 Feature vectors extraction

First, we extract 6 statistical measures from the level 2 approximation image
in three di�erent areas as shown in �gure 5. From the bounding box, we
extract two areas : a border area (referred as out) whose width is a percentage
of the bounding box width, typically 15% and the interior area which is the
remaining part of the bounding box area (referred as in) with less including
hair or background. The border area of the bounding box will give information
about the face shape and the interior area will provide information about the
face texture and the skin-tone. The two others areas are the top part and
the bottom part of the face, included in the in area and separated by the
nose baseline. From the border area and the top and bottom areas, we extract
the mean values �out, �top, �bottom and the corresponding variances �2out, �

2
top,

�2bottom of the wavelet coe�cients contained in the approximation image.

From the other 15 detail images, we extract the means �i and variances �i
(i=3,..,17) from the whole bounding box area. In fact, the mean values �i of
the details images are null, due to the design of the bank �lters that we apply.
Thus, the feature vectors contain a maximum of 21 components (3 means
and 3 variances for the approximation image and 15 variances for the details
images) and are described as follows:

V =
17[
i=0

n
�i; �

2
i

o
(7)

where 8i � 3; �i = 0, and indices i = 0; 1; 2 stand respectively for the out, top
and bottom means and variances.

In fact, after the extraction of all the vectors of the training set, we keep the
most meaningful components by checking the mean value of each of them for
all the feature vectors. Only the vector components with a mean value above
a prede�ned threshold are included in the feature vector. Typically, feature
vectors of size 11 are built for a threshold value of 0.9.
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2.4 Feature vectors classi�cation

When solving a pattern recognition problem, the ultimate objective is to de-
sign a recognition system which will classify unknown patterns with the lowest
possible probability of misrecognition. In the feature space de�ned by a set of
features X = [x1; :::::; xn] which may belong to one of the possible m pattern
classes !i; i = 1; ::; m, an error probability can be de�ned but can not be eas-
ily evaluated ([21]). Thus, a number of alternative feature evaluation criteria
have been suggested in the literature [21]. One of these criteria is based on
probabilistic distance measures.

It is easy to show that, in the two-classes case, the error probability e can be
written:

e =
1

2

�
1�

Z
jp (Xj!1)P (!1)� p (Xj!2)P (!2)j dX

�
(8)

According to equation (8), the error will be maximum when the integrand is
zero, that is, when density functions are completely overlapping, and it will
be zero when they don't overlap. The integral in (8) can be considered as the
probabilistic distance between the two density functions.

In our approach, the Bhattacharyya distance B is chosen as a probabilistic
distance:

B (X) = � ln
Z
[p (Xj!1) p (Xj!2)]

1

2 dX (9)

In the multi-classes case and in order to solve our problem, we make the
assumption that the class-conditional probability distributions are Gaussian,
that is, when the density functions are de�ned as:

p (Xj!i) = [(2�)n j�ij]�
1

2 � exp f� 1

2
(X��i)

T��1
i

(X��i)g (10)

where �i and �i are the mean vector and covariance matrix of the ith class
distribution respectively. The multivariate integrals in the measure can be
evaluated, which leads to:

B =
1

4
(�2 � �1)

T [�1 + �2]
�1 (�2 � �1) +

1

2
ln

2
4 j12 (�1 + �2) jq

j�1jj�2j

3
5 (11)

We consider that each component pair f�i; �2i g is independent from the other
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component pairs of the feature vector V . Thus, the distance between to feature
vectors Vk and V l is computed on a component-pair basis, that is, the distance
is considered as a sum of distances relative to each of these component pairs.
Using the Bhattacharrya distance, the distance Di between the component
pairs i of the two feature vectors Vk and V l is:

Di (Vk;V l) =
1

4

(�ik � �il)
2

(�2ik + �2il)
+

1

2
ln

2
4 1

2
(�2ik + �2il)q
�2ik �

2
il

3
5 (12)

As a consequence, the resulting distance D between two feature vectors Vk

and V l can be chosen as:

D (Vk;V l) =
nX
i=1

Di (Vk; Vl) (13)

where n is the number of component-pairs in each feature vector.

3 Experimental Results

In order to test the e�ciency of the algorithm presented above, we performed
a series of experiments following the FERET evaluation procedure presented
by P.J. Phillips et al. in [22]. We evaluate our algorithm using sets of images
extracted from two databases of faces. The �rst set is extracted from the
FACES database of the MIT Media Lab used in the Photobook project ([7]),
and contains 600 images of 200 individuals (3 images per person). The second
set is extracted from the FERET database. This is a collection of 310 images
of 155 individuals (2 images per person). In these databases, the images that
belong to the same person (same class) usually present variations in expression
and illumination. In addition, they are not well-framed (variations in position)
in the FERET database.

Sample images from the two sets are displayed in �gures 6 and 7.

Figure 6. Sample images from the FACES database

Figure 7. Sample images from the FERET database

The FERET procedure tests evaluate the ability of the algorithm to recognize
faces from a set of known individuals (referred as the gallery; an image of
an unknown face presented to the algorithm is a probe, and the collection of
probes is called then probes set).
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3.1 Experiment 1

In this �rst experiment, we aims at studying how the size of the gallery a�ects
the recognition performances. To do so, we iteratively test our program using
fractions of the available images in the whole database. At each iteration, the
gallery is increased by a set of new faces.

We extract the feature vectors of all the images in the gallery and then form
the mean vectors of each class c (namely Vmean

c ), that is, we use an intra-
class information. Then, we verify that each image k in the probe set (equal
to the gallery) is classi�ed into the correct class, looking for the minimum
D (Vk;Vmean

c ) distance, for each class c. More precisely, image k belongs to
class c if D (Vk;Vmean

c ) is minimum among all classes c. The results of these
experiments are displayed in table 1 and table 2.

Table 1. Results of Experiment 1 on the FACES database

Table 2. Results of Experiment 1 on the FERET database

From these results, it can be seen that the recognition rates vary from 100:0%
to 96:12%, with scores of 97:00% and 96:12% for the whole set of images in
FACES and FERET respectively. These results are good if we consider the
quite signi�cant number of faces to be classi�ed. In the FACES database,
perfect classi�cation is obtained if we use up to 120 images. Above all, these
results are very similar for both databases which may mean that the proposed
method is stable and tolerant to changes in facial expression as well as changes
in position.

3.2 Experiment 2

This experiment was performed using the images of the FACES database.
Since 3 images of each individual are available, the �rst two are used to build
the gallery (as training data in order to compute the mean vector) and the
third image is added to the probes set. Then, our algorithm runs over the
probes set. The results are displayed in table 3. It can be seen that the recog-
nition rate for the whole dataset decreases from 97:00% to 90:83%, which
means that only two available images of each class seem not to be enough to
estimate a good mean class vector, according to the face variations. Therefore,
using the mean class vector seems to improve the classi�cation results.

Table 3. Results of Experiment 2 on the FACES database
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3.3 Experiment 3

As explained in [22], the closed-universe model that we are using (every probe
has a at least one correspondent in the gallery), allows us to ask how good
the algorithm is at identifying a probe image; the question is not always 'is
the top match correct?' but 'is the correct answer in the top n matches?'.
This let us know how many images have to be examined to obtain a desired
level of performance. The performance statistics are reported on cumulative
match scores respectively for the FACES (Fig. 8) and the FERET (Fig. 9)
databases. The horizontal axis gives the rank, and the vertical axis is the
percentage correct. The computation of the score is quite simple. Let P be
the number of probes to be scored, and Rk the number of these probes in the
subset that are in the top k. The fraction reported correctly is Rk=P .

In order to check the discriminatory properties of our scheme, we perform the
features vector classi�cation as in experiment 2, but without using any class
information, that is, without computing the class mean vectors. More precisely,
image k (in the probes set) belongs to class c if D (Vk;V l) is minimum and
image l (in the gallery, i.e., l 6= k) belongs to class c.

In the FACES database case, the gallery image includes one image for each
person (200 images) and the probes set includes the two others images of this
person (400 images). In Fig. 8, one can see that the correct answer is rank 1 for
81:9% of the probes scored, and the correct answer was in the top 10 for 97:9%
of the probes scored. If we consider until rank 35, 100% correct classi�cation is
obtained. In the FERET database case, the gallery image includes one image
for each person (155 images) and the probes set includes of the other image
of this person (155 images). In Fig. 9, one can see that the correct answer is
rank 1 for 80:5% of the probes scored, and the correct answer was in the top
10 for 94:9% of the probes scored. If we consider until rank 70, 100% correct
classi�cation is obtained.

Figure 8. Cumulative match score for the FACES database

Figure 9. Cumulative match score for the FERET database

3.4 Comparison with the Eigenfaces method and discussion

In the Eigenfaces approach, each image is treated as a high dimensional feature
vector by concatenating the rows of the image together, using each pixel as
a single feature. Thus, each image is considered as a sample point in a high-
dimensional space. The dimension of the feature vector is usually very large,
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on the order of several thousands for even small image sizes (in our case, the
image size is 128 � 128 = 1024). The Eigenfaces method which uses PCA is
based on linearly projecting the image space to a lower dimensional space,
and maximizing the total scatter across all classes, i.e, across all images of all
classes ([6,7]). The orthonormal basis vector of this resulting low dimensional
space are referred as eigenfaces and are stored. Each face to recognize is then
projected onto each of these eigenfaces, giving each of the component of the
resulting feature vector. Then, Euclidian distance is used in order to classify
the features vector. In �gure 10, the �rst 6 computed eigenfaces of the FACES
and FERET databases respectively are displayed.

Figure 10. The �rst 6 eigenfaces of the FACES and FERET databases

We applied the Eigenfaces method on both databases. We obtain very good
results on the FACES database images which is actually not surprising. Indeed,
in that case, the images have been normalized (well-framed) especially for the
PCA method. We obtain a result of 98:17% good classi�cation (11 errors
for 600 images) using 180 eigenfaces compared to 97:0% using our approach.
But, one drawback of this method is that these eigenfaces (the number of
eigenfaces has to be approximately one third of the total number of images)
have to be stored, which supposes an amount of extraspace in the database.
A second disadvantage is that images have to be normalized. In the FERET
database case, the images are not normalized as in the FACES case, and the
remaining error is 92 (i.e 70:32% good) even if more than 150 eigenfaces are
used. Without any normalization needs and above all without any eigenface
computation and storage, the results obtained by our approach are evidently
much better that those obtained by applying PCA in the FERET database
case.

Another key point of our scheme, compared to the Eigenfaces method, is
the compact size of the feature vectors that represent the faces and above
all, the very high matching speed that we provide. Indeed, the time required
to perform the wavelet packet analysis of a test image and to extract the
feature vectors is of approximately 0.05 s. on a SUN-Ultra 1 workstation,
while the time for comparing a test image to the whole database (600 images)
is 0.082 s. The PCA method requires quite a long time of training in order
to compute the eigenfaces and the recognition process is as well expensive
because it is correlation-based: the test image has to be correlated with each
of the eigenfaces.
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4 Conclusion

Our experiments show that a small transform of the face, including transla-
tion, small rotation and illumination changes, leave the face recognition per-
formance relatively una�ected. For both databases, good recognition rates of
97:00% and 96:12% are obtained. Thus, the wavelet transform proved to pro-
vide an excellent image decomposition and texture description. In addition
to this, very fast implementations of wavelet decomposition are available in
hardware form. We show that even very simple statistical features such as
means and variances provide an excellent basis for face classi�cation, if an
appropriate distance is used. The Bhattacharyya distance proved to be very
e�cient for this purpose. As an extension of this work, we believe that it would
be interesting to directly extract the statistical features from the wavelet de-
composition of the facial features such as eyes, mouth and nose, especially to
tackle the probal of non-frontal views recognition. That will not increase much
the size of the feature vector but we will have previously to detect more pre-
cisely the features location in order to extract the values. However, detecting
precisely facial features is by itself a di�cult and time consuming process so
this strategy will increase the time that actually will be needed for recognition.
Therefore, we will focus on a fast and e�cient algorithm for precise features
detection.
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Fig. 1. H (solid line) and G (dashed line) �lters



I

A
level 1

level 2

D11 D12 D131

Fig. 2. A wavelet packet tree



Fig. 3. Level 2 of the wavelet packet tree



Fig. 4. Three faces and the selected facial features baselines
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Fig. 6. Sample images from the FACES database

Fig. 7. Sample images from the FERET database
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Fig. 8. Cumulative match score for the FACES database
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Fig. 9. Cumulative match score for the FERET database



Fig. 10. The �rst 6 eigenfaces of the FACES database (�rst line) and the FERET
database (second line)



Table 1
Results of Experiment 1 on the FACES database

A = Number of images, B = False alarm, C = Recognition rate

A B C

60 0 100.00%

90 0 100.00%

150 2 98.66%

180 3 98.33%

240 4 98.33%

270 7 97.40%

330 9 97.27%

360 10 97.22%

420 10 97.61%

450 11 97.55%

480 12 97.50%

510 15 97.05%

540 15 97.22%

570 15 97.36%

600 18 97.00%
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Table 2
Results of Experiment 1 on the FERET database

A = Number of images, B = False alarm, C = Recognition rate

A B C

60 0 100%

80 0 100%

100 0 100%

120 1 99.16%

140 1 99.28%

160 1 99.37%

180 1 99.44%

200 8 96.00%

220 8 96.36%

240 10 95.83%

260 10 96.15%

280 11 96.07%

300 12 96.00%

310 12 96.12%
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Table 3
Results of Experiment 2 on the FACES database

A = Number of images, B = False alarm, C = Recognition rate

A B C

60 1 98.33%

90 2 97.77%

150 7 95.33%

180 12 93.33%

240 15 93.75%

270 19 92.96%

330 28 91.51%

360 30 91.66%

420 36 91.42%

450 39 91.33%

480 42 91.25%

510 45 91.17%

540 50 90.74%

570 51 91.05%

600 55 90.83%
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