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Abstract

We present a shape based method for automatic people detection and counting
without any assumption or knowledge of camera motion. The proposed method is
applied to athletic videos in order to classify them to videos of individual and team
sports. Moreover, in the case of team (multi-agent) sport, we propose a shape defor-
mations based method for running/hurdling discrimination (activity recognition).
Robust, adaptive and independent from the camera motion, the proposed features
are combined within the Transferable Belief Model (TBM) framework providing a
two level (frames and shot) video categorization. The TBM allows to take into ac-
count imprecision, uncertainty and conflict inherent to the features into the fusion
process. We have tested the proposed scheme into a big variety of athletic videos like
pole vault, high jump, triple jump, hurdling, running, etc. The experimental results
of 97% individual/team sport categorization accuracy, using a dataset of 252 real
videos of athletic meetings acquired by moving cameras under varying view angles,
indicate the stability and the good performance of the proposed scheme.

Key words: people detection, people counting, Video analysis, Transferable Belief
Model, team (multi-agent) activity recognition

1 Introduction

Video indexing is required to cope with the increasing number of videos in databases. Low

level indexing (e.g. from dominant color) is not very useful nor relevant for the end-user
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Fig. 1. (a), (b) Original image and the silhouette estimated by the method of [15] under stable
camera. The silhouette quality is high since accuracy of human boundary is high and the number
of wrong classified pixels is low. (c), (e) Original images of an individual sport (long jump)
and a team sport (100 m running) and (d), (f) the corresponding silhouettes estimated by the
method of [16] under moving camera. The silhouettes quality is low since the silhouette could be
partitioned to several segments, several objects or wrong classified pixels could appear, and the
estimated human boundary accuracy is low.

who prefers high level indicators such as “TV news”, “cars pursuit” or “goals in soccer

matches” [1].

Indexing based on human action and activity is of key of importance because can be ap-

plied in many areas such as database management [2], surveillance [3] or human-computer

interface [4]. In previous work, a novel architecture utterly based on the Transferable Belief

Model [5], an interpretation of Shafer’s theory of evidence [6, 7], was proposed [8–11] for

human action and activity recognition in athletic sports videos. As for the proposed paper,

the goal is to recognize high level actions and activities based on low level shape-motion

understandable features [11–13]. The database used for testing is made of real videos ac-

quired by a moving camera under varying view angles and can concern indoor or outdoor

meetings. Videos mainly comes from broadcast TV and are compressed. As for most of

the methods proposed in the literature [14], the main assumption of the system is that

only one main athlete is moving (little other moving objects are managed). In this paper,

a solution is proposed to relieve the system and alleviate this hypothesis. Figure 1 depicts

the case of one athlete and several athletes as well as the low quality of the obtained binary

silhouettes.

The goal of the proposed method is to classify a video into individual (e.g. a high jump,

a pole vault) or team (e.g. 100m running, 110 hurdling). As well, the system detects and

counts the number of people in videos. A reliability factor is computed at each frame in

order to quantify the quality of the classification and the quality is taken into account

for decision concerning the number of people. A procedure is also proposed to distinguish
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Fig. 2. Schema of the proposed system architecture.

between running and hurdling (activity recognition). In the system, no initialization step

is required and no assumption or knowledge is assumed about the number of people and

their motion in the scene.

The proposed system can be decomposed into several main modules illustrated in Figure 2:

(1) Silhouettes are computed using a camera motion estimation method [16], where an

affine model is used to describe the camera motion. Such a model is generally sufficient

for most of real video sequences. The above method that we use, was implemented

by the Vista Team of IRISA and has the advantage to take into account the global

variation of illumination thus it is adapted for real videos.

(2) A silhouette noise reduction procedure is executed using a short time window.

(3) People detection and counting is performed using shape features per blob (object).

(4) Finally, the video categorization procedure based on a TBM fusion process is executed

taking into account the whole history of the number of the estimating people per frame

and the estimated quality frame factor in order to decide between individual sport and

team sport video. In the case of team sport, we propose a method for running/hurdling

discrimination.

The system relies on three shape based features (concerning human): eccentricity, major

axis angle and normalized area. These features are robust, adaptive and independent from

the camera motion. They are estimated from binary silhouettes obtained by a robust cam-

era motion estimation and object localization techniques (Fig. 1). Binary silhouette are

analyzed by the algorithm in order to detect noise objects, groups people and individual as

depicted in Figure 3. Figure 1 depicts some results. The features are combined within the

Tranferable Belief Model (TBM) framework [5] in order to perform the video categorization.

The TBM is an alternative to probability theory for knowledge modelling and the main
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(a)

– What is an individual?

– What is a group?

– How to count the people in groups?

– What is the noise?

(b)

Fig. 3. (a) Original image of a team sport (100 m running) and (b) the corresponding silhouette
estimated by the method of [16] under moving camera. The red arrows show the correspondence
between the questions on the middle and the estimated blobs.

advantage and power of the TBM is to explicitly model doubt and conflict. Both theories,

TBM and probability, are complementary: the TBM is well suited to encode and combine

the available information (like ignorance and conflict) while probability is preferred for

decision [17].

The rest of the paper is organized as follow. Section 2 present related works. Section 3

presents the silhouette estimation technique, the noise reduction procedure and the pro-

posed features. The people detection and counting method is presented in Section 4. Section

5 describes the video categorization scheme. A running/hurdling discrimination is described

in Section 6. Experimental results are given in Section 7. Finally, conclusions and discussion

are provided in Section 8.

2 Related Work

Human motion analysis consists in [18] detection, tracking and recognition. Group detection

and/or counting is generally embedded in the detection and tracking processes.

Object detection and tracking in complicated environments is still the key problem of the

visual surveillance and it is becoming an important issue in several applications such as

camera based surveillance and human machine interaction. The detection and tracking

algorithms are challenged by occluding and fast/complicated moving objects, as well as

illumination changes. Concerning the 2-D approaches, Wang et al. [19] propose a method

to recognize and track a walker using 2D human model and both static and dynamic cues

of body biometrics. Moreover, many systems use Shape-From-Silhouette methods to detect
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and track the human in 2D [12] or 3D space [20]. The silhouettes are easy to extract pro-

viding valuable information about the position and shape of the person. When the camera

is static, background subtraction techniques can give high accuracy measures of human

silhouettes by modeling and updating the background image [21]. The temporal differ-

ence based methods [22] detect the moving objects using a temporal difference between

successive frames [23], while the probabilistic based approaches [24, 25] use statistical and

probability models getting high accuracy results, but they suffer from high computational

cost. Otherwise, when the camera is moving, camera motion estimation methods [16, 26]

can locate the independently moving objects. The system called W4 [15] is based on a

statistical-background model to locate people and their parts (head, hands, feet, torso, etc.)

using stable cameras and allowing multiple person groups. McKenna et al. [27] describe a

computer vision system (using background substraction) for tracking multiple people from

a stable camera, which is based on color information to disambiguate occlusion. Figueroa

et al. [28] propose a system of tracking soccer players using multiple stable cameras. The

occlusions have been treated by splitting segmented blobs based on morphological opera-

tors and a backward and forward graph representation based on human shape, motion and

color features. However, in a real soccer game, there are crowd situations, where the people

should be manually tracked. The M2-tracker, presented in [29], uses multiple static cameras

assigning the pixels in each camera views to a particular person using color histograms.

Rabaud and Belongie [30] present a method for counting moving objects without tracking

them based on a highly parallelized version of the KLT tracker. It is performed in crowding

situations where the tracking does not make sense to perform. Reliable counts can be pro-

duced under the constraints of stable camera and walking people based on template-based

tracker [31]. Sacchi et al. [32] propose a scheme based on blod detection for people count-

ing in a constrained environment. Rad and Jamzad [33] present a system for road traffic

monitoring (vehicle classification and vehicle counting) using morphological operations for

vehicle detection Kalman filtering and background differencing techniques under stable

camera getting 96% accuracy. Cheng and Chen [34] propose a method for detecting and

tracking multiple moving objects based on discrete wavelet transform and identifying the

moving objects by their color and spatial information using a stable camera. The human

detection is done using the low band of the wavelet transform of the image due to the

fact that most of the fake motions in the background can be decomposed into the high
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Fig. 4. (a) Original image. (b) Schema of the noise reduction procedure. In the output image,
the heavy gray objects and light gray pixels correspond to detected noise.

frequency wavelet sub-band.

3 Silhouette Estimation

We have used the algorithm presented in [16] in order to extract the camera motion and

the binary silhouettes. This method consists of an iterative and robust multi-resolution

estimation of parametric motion models between two successive frames taking into account

the global variation of illumination. A gray level image is also generated by the algorithm

whose pixel value gives a piece of information on their belonging to the dominant camera

motion, generally the motion of the background. Using thresholding and morphological

operations a binary silhouette is estimated, which is the output of the silhouette estimation

procedure. Next, a noise reduction reduction method is performed in order to remove the

noise blobs. Shape features are computed, which are used to detect humans, groups and

to count the people in groups. At the end of this section, we describe the shape features

conversion into beliefs (symbolic representation).

3.1 Noise reduction

Figure 4 illustrates the schema of the noise reduction procedure. The binary silhouettes,

estimated by the camera motion estimation method, probably contain objects that do not

follow the athletes motion (see Fig. 3(b)), e.g. fake objects in the background. Moreover,

sometimes, fake objects appear because of instant failure of camera motion estimation

method. We assume that the camera tries to track the athletes (this is a tenable assumption,
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since the athlete is the object of interest), so the athletes are about in the same position in

a short time window. If we suppose that the noise is appearing in random positions (white

noise) over the time, then a lowpass time filter can remove the noise.

We use a short time window of size 2 · W + 1 (e.g. W = 3) centered at the current frame

t, (time window: {t − W, t − W + 1, · · · , t, · · · , t + W}). The probability of a pixel (x, y),

at frame t, to belong to a human (Pr((x, y) ∈ H)) is calculated by getting the number of

times that (x, y) belongs to the foreground over the time window divided by the window

size. Then, the probability of an object i at frame t, Oi
t, to be a human (Pr(O

i
t ∈ H)) is

calculated by getting the mean value of probabilities Pr((x, y) ∈ H), where (x, y) denotes

a pixel of object Oi
t:

Pr((x, y) ∈ H) =
1

2 · W + 1
×

k=t+W∑
k=t−W

Ik(x, y)

Pr(O
i
t ∈ H) =

1

|Oi
t|
× ∑

(x,y)∈Oi
t

Pr((x, y) ∈ H)

(1)

with Ik is binary image of frame k estimated by the camera motion estimation method and

|Oi
t| is the number of pixels of object Oi

t. We have used a threshold of 0.5 in order to decide

if an object corresponds to a human. If an object is detected as human (Pr(O
i
t ∈ H) > 0.5),

then we could use the same threshold in order to erase some noisy pixels (x, y) from the

human object Oi
t i.e. Pr((x, y) ∈ H) ≤ 0.5 (see light gray pixels of Fig. 4(b)). Using

this second thresholding, groups of people are possibly separated, facilitating the people

counting procedure (see Fig. 4(b)).

3.2 Features Extraction

Shape features are computed in order to detect humans, groups and to count the people

in groups. We compute for each object Oi
t, its major axis angle θi, its eccentricity εi and

its normalized area si.
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3.2.1 Major axis angle θi

The mass center point (xc, yc) of the object is first computed. This point is defined as the

mass center of the object pixels, xc = 1
|Oi

t|
∑

(x,y)∈Oi
t
x, yc = 1

|Oi
t|

∑
(x,y)∈Oi

t
y. Next, the object

major axis is computed. It is defined as the main axis of the best fitting ellipse. This axis

passes from the mass center point, that already has been estimated, so we have to compute

just the axis orientation. The angle of the object Oi
t major axis θi is defined by the three

second order moments μ1,1, μ2,0 and μ0,2:

θi = arctan(
2 · μ1,1

μ2,0 − μ0,2
), θi ∈ [0, 180] (2)

with

μp,q =
∑

(x,y)∈Oi
t

(x − xc)
p(y − yc)

q (3)

This angle shows the main orientation of the object. In the whole paper, angles are measured

in degrees. The robustness of θi estimation is determined by the object’s eccentricity.

3.2.2 Eccentricity εi

The eccentricity (εi ≥ 1) is defined by the ratio between the two principal axes of the best

fitting ellipse, measuring how thin and long a region is. If εi is close to one, then θi will be

unspecified. The eccentricity can be defined by the three second order moments μ1,1, μ2,0

and μ0,2:

εi =

√√√√√
μ2,0 + μ0,2 +

√
(μ2,0 − μ0,2)2 + 4 · μ2

1,1

μ2,0 + μ0,2 −
√

(μ2,0 − μ0,2)2 + 4 · μ2
1,1

(4)

3.2.3 Area si

The area feature si should be normalized in order to be independent from both image size

and distance of the object from the camera. However, there is not any knowledge available

concerning the distances and the sizes (in pixels) of the projected athletes in the image

plane. Generally, it holds that the area of interest concerns the athletes, that are tracked

by the camera. These athletes normally have similar distances from the camera. Therefore,
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Fig. 5. From numerical features to belief. (a) Angle, (b) Eccentricity, (c) Area.

si is defined as ratio between an object area (|Oi
t|) and the mean object area

∑
k
|Ok

t |
Nt

:

si =
|Oi

t| · Nt∑
k |Ok

t |
(5)

where Nt (see Section 5.1) denotes the estimated number of people at frame t.

These features are uncorrelated, independent from camera view, and their values can be

estimated robustly under low quality silhouettes. The proposed features are independent

from camera view under the assumption that the angle between the image plane and ground

is almost stable. This assumption is generally true in sport videos since the camera tracks

the athletes (by zooms, translations, rotations) without changing its elevation.

3.3 Numeric-to-symbolic conversion

The used features (area, angle and eccentricity) are simple and well understandable. Thus,

they can be converted easily into beliefs (symbolic representation). Using symbolic repre-

sentation, the people detection and counting can be performed based on appropriate table

rules. We have proposed the numeric-to-symbolic conversion presented in Fig. 5, where L

is used for low value, M for medium values and H for high values.

Fig. 5(a) presents the angle Θi numeric-to-symbolic conversion, with Θi = min(θi, 180−θi),

Θi ∈ [0, 90]. When Θi is close to 90 degrees the object major axis direction is vertical,

otherwise when Θi is close to 0, the object major axis direction is horizontal. There are

two beliefs for angle feature: low angle (LΘ), which is true when Θi ≤ 25, and high angle

(HΘ), which is true when Θi ≥ 65. The red and blue curves correspond to the probability

of LΘ and HΘ symbols respectively.
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Fig. 5(b) presents the numeric-to-symbolic conversion of eccentricity. There are three beliefs

for eccentricity feature: low eccentricity (LE), which is true for εi ≤ 1.3 indicating to

the unspecified direction, medium eccentricity (ME), which is true for 2 ≤ εi ≤ 4, and

high eccentricity (HE), which is true for εi ≥ 6. An individual eccentricity is normally

medium. The red, blue and green curves correspond to the probability of LE, ME and

HE respectively.

Fig. 5(c) presents the numeric-to-symbolic conversion of area feature si. Two beliefs are

concerned: low area (LS), which is true for si ≤ 0.25 · R 1 indicating a little area objects

(possibly noise), and high area (HS), which is true for si ≥ 0.6 · R, indicating an ob-

ject of normal area (possibly humans). The red, blue and green curves correspond to the

probability of LE, ME and HE respectively.

4 People Detection and Counting

4.1 People detection

The noise reduction procedure removes the most of noise objects of the image (white

noise). However, it is possible that some objects appear in the scene although they are

not humans. These objects can be detected using their shape features. The goal of the

proposed procedure is to remove such objects. We have used the rules of Table 6(a) in

order to detect and remove such objects, combining the symbolic beliefs. This table can

be estimated by a learning stage using an EM procedure for instance. The problem is to

obtain references which require to manually annotate each frame of the videos. In the case

that there are more symbols per cell, then the value behind each symbol is analog to the

symbol’s probability (after normalization, the sum of symbol values on each cell will be

one). In the case that there is just one symbol per cell, then its probability is one. Using

this table, the probability of human Pr(O
i
t is H) can be estimated by the cells where the

1 R is an adaptive factor, denoting the probability of an object, which has si > 0.05, to be a
human object. It is robustly estimated using previous results of the people detection procedure.
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Fig. 6. The table rules for (a) human/noise detection, N , H denote noise, humans, respectively,
and (b) people counting.

probability of H is positive:

Pr(O
i
t is H) = 0.15 · MEi · LSi · HΘi + 0.8 · LEi · HSi · LΘi + MEi · HSi

+ HEi · HSi · LΘi + 0.95 · HEi · HSi · HΘi

(6)

An object Oi
t will be detected as human if Pr(O

i
t is H) > 0.5 (it holds that Pr(O

i
t is N) +

Pr(O
i
t is H) = 1). Otherwise, it will be detected as noise.

4.2 People counting

The people counting procedure is executed for each human detected object. The people

counting is based on the assumption that each human major axis (in the most time) is

mainly vertical, which is true during running and hurdling and most of the time true

in jumping and falling. Thus, an individual object probably has high angle and medium

eccentricity. Otherwise, the object is probably a group of people containing two, three or
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Fig. 7. Group model of length L, height H and human length Lh.

(a) (b) (c)

Fig. 8. (a), (b) The little black boxes corresponds to the mass centers of the detected humans.
(a) Four individual and one group of four people are detected. The original image is shown in
Fig. 4(a). (b) An individual and a group of two people are detected. (c) The original image of
(b) is shown.

more people. Using the rules of Table 6(b), where the proposed features are combined, the

number of people per object can be estimated. K denotes the number of people (real value)

in groups estimated by the algorithm described hereafter.

The number of people Ki (real value) of a horizontally directed object Oi
t is estimated by

using its eccentricity (εi) and its area (|Oi
t|). Fig. 7 illustrates the used group model.

• Let L, H and Lh be the mean group length (major axis), height, and human length. The

object is horizontally directed, therefore L can be computed directly using |Oi
t|, εi, since

|Oi
t| = L · H , εi = L

H
. Therefore, it holds that, L =

√
|Oi

t| · εi.

• Next, we set Ki = si, getting an eccentricity per human eh = H
Lh

, where H =
|Oi

t|
L

and

Lh = L
Ki

.

• Finally, if eh is higher than four, which is the maximum individual eccentricity, the

number of humans will be recomputed by enforcing the eccentricity per human to be

four. Thus, it holds that, Lh = H
4

and Ki = L
Lh

.

Fig. 8 illustrates the results of people detection and counting algorithm.
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4.3 Quality factor estimation

A measurement of frame quality (reliability) factor Qt can be estimated using the proba-

bility of the decisions (human/noise decision and counting decision) results. If the decisions

are taken with low probabilities then the Qt should be low, otherwise the Qt should be

high. Let P HN
r (Oi

t) denotes the decision probability of the object Oi
t to be human or noise.

Let P NP
r (Oi

t) be the decision probability concerning the number of people in the object

Oi
t. In both of the cases, they are computed by getting the maximum of the correspond-

ing probabilities. Qt ∈ [0, 1] is estimated by the product of the expected values (Ei) of

P HN
r (Oi

t), P NP
r (Oi

t) over the objects:

Qt = Ei(P
HN
r (Oi

t)) · Ei(
P NP

r (Oi
t)√

max(Ki, 1)
) (7)

P NP
r (Oi

t) is divided with the square root of the number of detected people
√

max(Ki, 1) in

object Oi
t, because the accuracy of people counting procedure decreases, as the number of

people increases (occlusions are appeared). The use of
√

max(Ki, 1) improves slightly the

categorization accuracy (see Section 7). Qt will be used on video categorization scheme.

Fig. 9(b) presents Qt numeric-to-symbolic conversion. There are three beliefs for quality

factor: bad quality (Bad), unknown quality (Bad ∪ Good) and high quality (Good).

5 Video Categorization Scheme

The results of people counting procedure and the frame quality factor are fused using TBM

framework in order to discriminate the video of individual sport (I) and team sport (T ).

We have used the TBM framework, since it is more general than probabilities and explicitly

defines the conflict and doubt. In this work, we exploit conflict to improve the modelling

of the trapezes of the numeric to symbolic conversion, so that the fusion minimizes the

conflict. Doubt is used for “hesitation modelling”: when we are not sure about the answer,

we hesitate, waiting for a “clear signal”. Finally, the videos are classified by fusing the

whole information during the analysis stage.
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5.1 Background on belief mass

This section only provides required tools for TBM fusion. For more details, the reader can

refer to [5, 35–38].

The classification concerns two classes: video of individual sport (I) and team sport (T ).

Therefore, Ω = {I, T} is the frame of discernment of the classification. A basic belief

assignment (BBA) mΩ
t at frame t is defined on the set of propositions 2Ω = {∅, I, T, I∪T},

where ∅ and I ∪ T correspond to the conflict and doubt respectively. mΩ
t : 2Ω → [0, 1],

X → mΩ
t (X) and by construction it holds that mΩ

t (∅) = 0, and
∑

X ⊆ Ω mΩ
t (X) = 1.

A value mΩ
t (X) is a basic belief mass which expresses a confidence proposition X ⊆ Ω

according to a given feature but does not imply any additional claims regarding subsets of

X [39]. It is the fundamental difference with probability theory. The previously described

fuzzy-set inspired method is used to convert each numerical feature into sources of belief.

5.2 Number of people estimation

The number of people Nt (real value) at frame t is robustly estimated using quality factor,

Nt = (1 − Qt) · Nt−1 + Qt · TPt (8)

where TPt (integer value) denotes the number of the detected people at frame t. The

estimation of number of people by Nt is more robust than by TPt since it takes into

account the quality factor.

Fig. 9(a) presents Nt numeric-to-symbolic conversion. There are three beliefs for Nt: low

number of people (I), which is true when Nt ≤ 1, middle number of people (I ∪M), which

is true when 1.5 ≤ Nt ≤ 2.5 and high number of people (M), which is true for Nt ≥ 5. We

have used the rules of Table 9(c) in order to compute the BBA in each frame.
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Fig. 9. From numerical features to belief. (a) Number of people, (b) Quality factor. (c) The table
rules for individuals/groups detection.

5.3 Short Time Decision

The short time decision concerns a local decision that can be taken at frame t. The con-

junctive rule of combination [40] is applied to obtain the belief taking all features into

account. The fusion process is performed frame by frame for each proposition X yielding

a new local mass m̂Ω
t (X):

m̂Ω
t (X) = m̂Ω

t−1 ∩©mΩ
t (X) =

∑
C∩D=X

m̂Ω
t−1(C) · mΩ

t (D) (9)

Using the aforementioned fusion process, the mass of the empty set (conflict) is going to

increase to one while the masses of the other propositions are going to decrease to zero. This

effect is due to the fact that the empty set is aborptive by the ∩©-rule. When the conflict

is high, the trapezes used in the numeric to symbolic conversion are modified manually in

order to decrease the conflict (by adding doubt for instance). When the conflict is not too

high, we have used the Dubois & Prade’s conflict redistribution rule [41] (adaptive rule) in

order to manage the conflict yielding to m̂Ω
t (∅) = 0:

m̂Ω
t (C ∪ D) =

∑
C∩D=∅

m̂Ω
t−1(C) · mΩ

t (D) (10)
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In the general case of this kind of combination, we have a proposition A on which the

partial conflicting masses are assigned.

5.4 Final Decision

The final decision concerning the whole video sequence is taken by “equivalent” fusion of

the beliefs at each frame. Therefore, at frame t, the mean mass m̄Ω
t (X) of the proposition

X is computed by getting the mean of the local decision mass m̂Ω
k (X) over the frames

{1, 2, · · · , t}:
m̄Ω

t (X) =
1

t
·

t∑
k=1

m̂Ω
k (X) (11)

Finally, the decision is taken using the pignistic probability (BetP) proposed by Ph. Smets

[42]. BetP is is a probability measure used for decision. BetP (I), BetP (T ) are given as

follows:

BetP (I) =
1

1 − m̄Ω
t (∅)(m̄

Ω
t (I) +

m̄Ω
t (I ∪ T )

2
)

BetP (T ) =
1

1 − m̄Ω
t (∅)(m̄

Ω
t (T ) +

m̄Ω
t (I ∪ T )

2
)

(12)

The above decision rule is equivalent with the selection of the proposition X with the high-

est mean mass m̄Ω
t (X). Concerning the conflict, it holds that m̄Ω

t (∅) = 0, since m̂Ω
k (∅) = 0.

If m̄Ω
t (I ∪T ) is the highest, this means that we can not decide (doubt is the answer). How-

ever, if we want to decide in any case, then I will be selected, if m̄Ω
t (I) > m̄Ω

t (T ), otherwise

T will be selected. Using the aforementioned scheme, the value of the selected mean mass

provides a final decision confidence value. This value corresponds to the probability of the

final decision.

Let X = argmax(BetP (I), BetP (T )), then BetP (X) corresponds to a confidence value

of the final the decision. Fig. 10 illustrates the histograms of BetP (I) on individual sport

videos and BetP (T ) on team sport videos. The mean confidence value for team sport videos

is higher than for individual sport videos. This is an expected result, since team videos are

more easily detected because of multiple people, while on individual sport videos other

people can be appeared confusing the whole process.
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Fig. 10. Histograms of (a) BetP (I) on individual sport videos and (b) BetP (T ) on team sport
videos.
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Fig. 11. From numerical features to belief. (a) Extremum reliability factor W (τk), (b) Jumping
period (TJ). (c) Variance of humans’ area (V A).

6 Running/Hurdling Discrimination

In the case of a team sport detection, running and hurdling classification can be performed.

Running and hurdling can be discriminated using shape deformations and mass center

trajectory (vertical variation of mass center) during the jumping stage of the hurdling. The

mass center trajectory is not a robust feature because it depends on the camera motion.

Moreover, it varies slightly during the jumping stage, so it is very sensitive on noise under

low quality silhouettes. Concerning eccentricity, it is a robust feature that can be used

in discrimination. It decreases during the jumping stage independently from camera view

because the human silhouette is deformed to a circular-like shape. This deformation is

easier to be recognized at the start of the hurdling sequence, because the athletes are

synchronized. We have used the TBM framework on this classification similarly with the

individual/team sport categorization scheme.
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Fig. 12. (a) Plot of function g(x) = x2 · e1−x2
. (b) Plot of function w(dp, dn).

6.1 Feature extraction

We have used a global eccentricity Et for a frame t, since we do not perform human tracking

in order to measure and track eccentricities per human object. Et is estimated by the mean

of human eccentricities. Median and low pass filtering are performed on Et reducing the

noise level. As experiments show, in a hurdling sequence, Et is decreasing at least 30%

during the jumping stage, while it remains almost unchange during running stage (see Fig.

15). In order to measure this property, we detect the times of jumping and the jumping

period during the sequences based on eccentricity variations. We have used a modified

version of an extremum analysis method, proposed in [13], where was applied to measure

the gait period.

First, we estimate the times (τk, k ∈ {1, · · · , K}) of the local maximum and minimum of

Et. These times are estimated in a short time window (red points on Fig. 15 (xvii)). Their

minimum values correspond to jumping times on hurdling videos. If τk is a valid extremum

(not noise), then the quantities defined as:

dpk = 5 · |Eτk
− Eτk−1

Eτk
+ Eτk−1

|, dnk = 5 · |Eτk
− Eτk+1

Eτk
+ Eτk+1

|

should be at least one. Thus, we introduce the reliability factor of the extremum, τk:

W (τk) = w(dpk, dnk) = dp2
k · dn2

k · e2−dn2
k
−dp2

k

getting values between one and zero. It is close to one when (dpk, dnk) are close to one (see

Fig. 12). In the case of dpk > 1 or dnk > 1 we use in the formula one instead of dpk or
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dnk. If W (τk) is close to one, then the measurement τk is probably valid, so there is a true

detection (in hurdling case).

The jumping period can be estimated as follows. Let Tk = 2 · (τk − τk−1) be a measurement

of the jumping period using the τk, τk−1. The jumping period (TJ) is determined by the

weighted mean of Tk, TJ = 1∑K−1

k=1
W (τk)

∑N−1
k=1 W (τk) · Tk. It holds that the jumping period

on hurdling sequences is normally less than 30 frames.

Because of low quality silhouettes, eccentricity is possible to change in running videos.

However, in many cases this phenomenon occurs since the humans’ area evolves at the

same time. It holds that the humans area remains almost unchanged during jumping stage

in hurdling videos and eccentricity varies because of shape deformation. Therefore, we

measure the variance (V A) of detected human objects during the recognized jumping period

increasing the accuracy of discrimination.

6.2 Numeric-to-symbolic conversion

Next, numeric-to-symbolic conversion is performed. Fig. 11(a) presents W (τk) numeric-to-

symbolic conversion. There are three beliefs for W (τk): LW (low) for an invalid extremum,

LW ∪ HW for an unspecified extremum and HW (high) for a valid extremum. Fig.

11(b) presents TJ numeric-to-symbolic conversion. There are three beliefs for TJ : LTJ

(low) for an normal jumping period, LTJ ∪ HTJ for an unspecified jumping period and

HTJ (high) for an invalid jumping period. Fig. 11(c) presents V A numeric-to-symbolic

conversion. There are three beliefs for V A: LV A (low) for an normal hurdling sequence,

LV A∪HV A for an unspecified hurdling sequence and HV A (high) for an invalid hurdling

sequence. The values for the trapezoids have been estimated by statistical analysis of the

dataset.

6.3 Extremum mass

Based on W (τk), an extremum τk can be classified into valid and invalid categories using

TBM framework. A valid and invalid extremum correspond to hurdling (H) and running
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(R) propositions respectively. Therefore, the mass m̂ΩB
k (Y ), ΩB = {R, H}, Y ⊆ ΩB

is estimated using W (τk), where the propositions R, R ∪ H and H correspond to LW ,

LW ∪ HW and HW respectively. Fig. 15 (xvii) illustrates an example of m̂ΩB
k (Y ) esti-

mation in a hurdling sequence.

6.4 Final decision

The final decision, concerning the whole video sequence, is taken by “equivalent” fusion of

beliefs at each frame similarly with the Section 5.4. Therefore, at extremum k, the mean

mass m̄ΩB
k (Y ) of the proposition Y is computed. Finally, the decision is taken using the

pignistic probability (BetP). Results using just eccentricity feature are illustrated on fourth

line of Table 2.

Because of low quality silhouettes, eccentricity is possible to change on running videos.

Better results can be achieved by fusion the whole estimated features Et, TJ and V A (see

Table 2). Based on properties of TJ described in Section 6.2, the mass of TJ , m̄ΩB
TJ (Y ),

Y ∈ {R, R∪H, H} is estimated using the beliefs of TJ . H , R∪H and R correspond to LTJ ,

LTJ ∪ HTJ and HTJ , respectively. Similarly, the mass of V A, m̄ΩB
V A(Y ), Y ∈ {R, R∪H, H}

is estimated using the beliefs of V A. H , R∪H and R correspond to LV A, LV A ∪ HV A

and HV A, respectively. We suppose that the above variables are independent. Therefore

the pignistic probability of H (BetP (H)) is given by:

BetP (H) = (m̄ΩB
k (H)+

m̄ΩB
k (R ∪ H)

2
)·(m̄ΩB

TJ (H)+
m̄ΩB

TJ (R ∪ H)

2
)·(m̄ΩB

V A(H)+
m̄ΩB

V A(R ∪ H)

2
)

The above decision rule is equivalent with the selection of proposition H , if BetP (H) > 0.5,

otherwise R is selected, since BetP (R) + BetP (H) = 1. The value of the selected BetP

provides a confidence value concerning the final decision.

7 Experimental Results

The method has been implemented using C and Matlab. For experiments, we have been

using a Pentium 4 CPU at 2.8 GHz. A typical processing time for the execution of the
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Methods Ind. Sports Team Sports

Proposed Scheme 96.9 96.7

Without Quality factor 93.8 97.8

Without
√

max(Ki, 1) on (Eq. 8) 95.6 97.8

Without TBM (Thr = 2) 88.8 97.8

Without TBM (Thr = 2.35) 96.9 94.5

Without TBM (Thr = 2.5) 98.1 92.3

Table 1
Accuracy results for team sports and individual sports discrimination under several methods.

proposed scheme is about 8 frames per second.

We have tested the proposed algorithm on a data set containing 252 athletic videos: 161

video sequences from individual sports like pole vault, high jump, triple jump, long jump,

shot, javelin and 91 video sequences from team sports like running and hurdling. The

database is characterized by its heterogeneity with a panel of view angles as well as un-

constrained indoor or outdoor environments (other moving people can be appeared), and

athletes (male, female with different skills, skin colors). The most of the videos are in low

quality (having resolution 352 x 288) captured from broadcast TV. The number of frames

per shots are varied mainly between 100 and 600.

Using the proposed scheme, the accuracy of the team sports detection was 96.9% (156/161)

and the accuracy of the individual sports was 96.7% (88/91). In Fig. 10, the bad classi-

fied results have BetP (I) < 0.5 on individual sport videos or BetP (T ) < 0.5 on team

sport videos. We have performed several tests in order to make comparisons between the

proposed scheme versus several variations of this scheme (see Table 1). First, we tested

the proposed scheme without using quality criterion (setting quality factor equal to one),

getting 93.79% for individual sports and 97.8% for team sports. Next, we tested the pro-

posed scheme without using the
√

max(Ki, 1) on Eq. 8, getting similar results. Next, we

tested the proposed scheme without using TBM framework, deciding using a threshold

(Thr) on the mean of Nt over the frames, getting about 3% less performance. Conclusively,

the aforementioned comparisons show the importance of using quality Qt, TBM framework

and the robustness of the proposed features under several decisions rules.
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Figs. 13, 14 show frames from the original sequences and the corresponding results of the

proposed scheme. The small black boxes correspond to the mass center detected humans.

The people in group are connected with straight lines. In Fig. 13, two athletes are initially

appearing in the scene making the method confusing to decide (at first frames). Finally,

the camera tracks one of them and the system responds that it was an individual sport

video. The belief mass m̂Ω
t (X) gives an instant decision for a current frame. According to

the m̂Ω
t (X) until the frame 35 multiple people are appearing in the scene, which is very

close to the ground truth. The global decision for a period can be taken using m̄Ω
t (X).

According to this mass, after the 70th frame, the video is classified as an individual sport,

since it contains more frames of single athlete rather than multiple athletes. The value of

quality feature is very close to what a human expert will decide for a quality function, since

it is maximized when one athlete is appearing without noise (middle frames of the video).

During these frames, the system is able to decide. While it is minimized at the end of the

video, where a lot of noise objects are appearing and the human silhouette is segmented

into more objects.

Fig. 14 illustrates a 100 m running video. First, the athletes are separated providing high

accuracy results to the people counting procedure and high values on Qt. After the middle

of the sequence, a lot of occlusions and bad quality silhouettes are appearing. The occluded

athletes correspond to one or two groups of people, and at the same time Qt has low values.

This example shows the accuracy of people counting procedure under several conditions

and the usefulness of Qt in order to be able to give a confidence value about the people

counting at each frame. The video is correctly classified into team sports, since at least two

people are detected at each frame of the video.

7.1 Running/Hurdling discrimination

The proposed method has been tested on a data set containing 88 athletic videos: 71

videos of running and 17 videos of hurdling. Using the proposed scheme, the accuracy

of running detection was 90.2% and the accuracy of hurdling was 82.4%, getting a mean

accuracy of 86.3%. The method fails on hurdling detection when the athletes are very

far from the camera. On these cases, they appear as small objects in the image plane.
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Methods Running Hurdling

Proposed Scheme 90.2 82.4

Using Eccentricity, Area 77.5 88.2

Using Eccentricity, Period 73.3 88.2

Using Eccentricity 59.2 88.2

Table 2
Accuracy results for running and hurdling discrimination under several features.

Thus, the eccentricity variations are very sensitive to silhouette noise and they can not

be detected. We have performed several tests in order to make comparisons between the

proposed scheme versus several variations of this scheme (see Table 2) and to see the

usefulness of the proposed features. According to this table, the feature order concerning

their contribution on discrimination, starting from the most important one, is eccentricity,

V A and TJ .

Fig. 15 illustrates a hurdling video. At the start of this video, the athletes are synchronized,

so the jumping times are easily detected by the variations of Et. At the end of this video,

the athletes are running, without jumping, or jumping without synchronization. Therefore,

a short time decision (at these frames) can not be taken using m̂ΩB
k (Y ). Finally, on this

example, H is selected by the method, since BetP (H) is 96.1%.

8 Conclusion and future work

We have proposed a shape based method for unsupervised-automatic people detection and

counting applied to athletic videos in order to classify them to videos of individual sports

and team sports. Robust, adaptive, independent from the camera motion and well under-

standable by humans features, are estimated using silhouettes. Finally, the features are

combined within the Transferable Belief Model (TBM) framework for video categorization

yielding at the same time confidence values about the final decision.

The main contribution of this work concerns the definition of appropriate robust features

and the TBM based fusion of them, using a quality function, yielding high performance

results without any given feature or initialization under low quality - real conditions videos.
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Fig. 13. (i), · · · , (viii) The triple jump original sequence which contains 126 frames. (ix), · · · ,
(xvi) The results of the people detection and counting procedure. The small black boxes corre-
sponds to the mass center detected humans. (xvii) Nt, Qt. (xviii) The belief masses m̂Ω

t (X),
m̄Ω

t (X).

An instant decision for a current frame can be provided by the mass m̂Ω
t (X), while the

mean mass m̄Ω
t (X) can be used for the global decision for the whole sequence. Apart from

the human detection, this work focuses on activity recognition, analyzing big databases of

videos from real and dynamic environments with unconstrained moving camera and one or

multiple people under fast and complicated athlete motions.

The proposed scheme has been tested into a big variety of athletic videos like pole vault,

high jump, triple jump, long jump, shot, javelin, hurdling and running. The accuracy of

individual/team sports categorization was 97% under low quality videos, real unconstrained

conditions/environments and the fast/complicated athlete motions. Thus, the used dataset

of over than 250 real videos of athletic meetings, under a lot of variations in camera views,

sports and motions indicate the stability and the good performance of the proposed scheme.

In the context of video indexing, the proposed method can be improved in order to apply
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Fig. 14. (i), · · · , (viii) The original running sequence which contains 243 frames. (ix), · · · , (xvi)
The results of the people detection and counting procedure. The small black boxes corresponds
to the mass center detected humans. A group of people is detected, when the boxes are connected
with a line. (xvii) Nt, Qt. (xviii) The belief masses m̂Ω

t (X), m̄Ω
t (X).
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Fig. 15. (i), · · · , (viii) The original running sequence which contains 300 frames. (ix), · · · , (xvi)
The results of the people detection and counting procedure. The small black boxes corresponds
to the mass center detected humans. A group of people is detected, when the boxes are connected
with a line. (xvii) Et (the times τk are shown with red cicles), W (tk) and the belief mass m̂ΩB

k (Y ).
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it on other types of videos. In particular, the trapezes as well as tables of rules should be

estimated and even adapted according to the type of videos.
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