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Abstract

In this paper we address two important problems in motion analysis: the detection of moving objects

and their localization. A statistical approach is adopted in order to formulate these problems. For

the �rst, the inter-frame di�erence is modelized by a mixture of two zero-mean generalized Gaussian

distributions, and a Gibbs random �eld is used for describing the label set. A new method to determine

the regularization parameter is proposed, based on a voting technique. This method is also modelized

using a statistical framework. The solution of the second problem is based on the observation of only

two successive frames. Using the results of change detection an adaptive statistical model for the couple

of image intensities is identi�ed. For each problem two di�erent multiscale algorithms are evaluated,

and the labeling problem is solved using either ICM (Iterated Conditional Modes) or HCF (Highest

Con�dence First) algorithms. For illustrating the e�ciency of the proposed approach, experimental

results are provided using synthetic and real video sequences.

1 Introduction

Detection and localization of moving objects in an image sequence is a crucial issue of moving video [30],

as well as for a variety applications of Computer Vision, including object tracking [7], �xation and 2-D/3-

D motion estimation. In the case of a static camera, detection is often based only on the inter-frame

di�erence. Detection can be obtained by thresholding, or using more sophisticated methods taking into

account the neighborhood of a point in a local or global decision criterion. In many real world cases, this

hypothesis is not valid because of the existence of ego-motion (i.e., visual motion due to the movement of

the camera). This problem can be avoided by computing the camera motion, and creating a compensated

sequence.

This paper deals with two related problems, change detection and moving object localization. Indeed,

complete motion detection is not equivalent to temporal change detection. Presence of motion usually

causes three kinds of \change regions" to appear. They correspond to (1) the uncoverd static background,

(2) the covered background, and (3) the overlap of two successive object projections. Note also that regions

of third class are di�cult to recover by a temporal change detector, when the object surface intensity is

rather uniform. This implies that a complementary computation must be performed after temporal change

detection, to extract speci�c information about the exact location of moving objects.

Simple approaches to motion detection consider thresholding techniques pixel by pixel [13], or block-

wise di�erence to improve robustness to noise [32]. More sophisticated modelings have been considered
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within a statistical framework, where the inter-frame di�erence is modeled as a mixture of Gaussian or

Laplacian distributions [31]. The use of Kalman �ltering for certain reference frames in order to adapt

to changing image characteristics has been also investigated [22]. The use of �rst order Markov chains

[9] along rows and of two-dimensional causal Markov �elds [15], to modelize the problem has also been

proposed for the motion detection problem.

Spatial Markov Random Fields (MRFs), through Gibbs distribution have been widely used for mod-

elizing the change detection problem [1], [2], [6], [22], [25] and [28]. These approaches are based on the

construction of a global cost function, where (possibly nonlinear) interactions are speci�ed between di�er-

ent image features (e.g., luminance, region labels). Besides, multiscale approaches have been investigated

in order to reduce the computational complexity of the deterministic cost minimization algorithms [25],

and to get estimates of improved quality. Finally, in the presence of ego-motion, this motion is estimated,

before the change detection problem solved [25].

The related with the localization problem existing work is limited. A similar approach with the one

adopted in this paper appears in [23], where an adaptive statistical model using Gaussian distributions is

used to create a term which relates the observation set (luminances) with the label set. A more complicate

solution exists in [8]. In this last approach, three successive images at instants t1, t2, t3 are considered to

recover the moving object location at time t2.

We propose here a motion detection method based on a MRF model, where two zero-mean generalized

Gaussian distributions are used to model the inter-frame di�erence. For the localization problem, Gaussian

distribution functions are used to model the couple of the intensities at the same site in two successive

frames. In each problem, a cost function is constructed based on the above distributions along with a

regularization of the label map. The associated MaximumA Posteriori (MAP) estimator is determined by

using multiscale techniques, in order to decrease the large computational cost. Two deterministic relaxation

algorithms, ICM and HCF, are used for the minimization of the cost function at each level. The proposed

approach can be extended to motion detection problems in the case of a mobile camera.

A new vote technique to dynamically determine the regularization parameter(s) in the cost function of

the motion detection problem, is proposed. The estimation of the detection map and the estimation of the

optimal regularization parameter(s) are alternated. The current solution to the one leads to a more robust

estimation for the other. Thus the current detection map is used to provide an update of parameters'

value, while these values hopefully lead to better detection maps at the next step. The criterion used is

also modelized in a statistical framework.

In order to check the e�ciency and the robustness of the proposed method, experimental results

are presented both on synthetic and real image sequences. Sequences with stationary camera, as well

as sequences with moving camera and independent moving objects, are used to test the method. The

remainder of this paper is organized as follows. In Section 2 we make a brief introduction to MRFs,

which are used to modelise the examined problems. Also this section contains the multiscale techniques

and the deterministic relaxation algorithms. Motion detection problem and the regularization parameter

estimation problem are examined in Section 3, while the moving object localization problem appears in

Section 4. Finally, Section 5 contains comments concerning the comparison of the di�erent techniques and

algorithms used, as well as conclusions of our work.
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2 The Label Field Model and its Estimation

2.1 Introduction to MRFs

Many problems in image analysis can be formulated as a scene labeling with contextual information. In

such a statistical framework, there are

� a set of sites S = fs1; s2; :::; sng;

� a set of possible labels for each site 
i � 
 = fl1; l2; :::; lqg, i = s1; s2; :::; sn;

� a set of observations D = fd1; d2; :::; dng, accosiated with S.

� a neighborhood relation, G, over the sites, which de�nes a graph where the vertices represent sites,

and the edges represent the constraints on the label assignment of the neighboring sites (weighted

edges).

The problem is to assign a label to each site in such a way that the solution is consistent with the

constraints, and the available observations set.

Figure 1: Second order neighborhood: a possible choice of e�ective cliques

Let c denote a clique of the graph G, and let Cs = fcjs 2 cg be the set of cliques containing the site s
(Figure 1). A global discrete labeling ! assigns one label !i 2 
i. An MRF [18], is de�ned by the so-called

clique potentials Vc(!), for every possible c and every possible labeling. Following the Hamersley-Cli�ord

theorem and the equivalence between MRFs and Gibbs distributions, the propability of a labeling ! is

given by the following formula

P (!)
4
=

1

Z
e�

1
T
U(!) (1)

where T is a regularizing constant, and

U(!)
4
=
X
c2C

Vc(!); Z =
X
!

e�
1
T
U(!) (2)

In the above formula C denotes the set of totally connected cliques with respect to the neighborhood

de�nition G, and Z is also a normalizing constant, called partition function. In statistical terms, U

is the energy (cost) function of the system, while Vc() is called potential function, and corresponds to

the contribution of the local interactions to the global energy. A very crucial issue in this process is to

incorporate the prior knowledge with the available observations, in order to create a new form for energy

function. This form is a combination between the expected spatial properties (homogeneity) of the label

�eld and adequacy between observations and labeling decisions. Under this hypothesis the energy function

is given by

U(!; d)
4
=

1

T

X
c2C

Vc(!) +
X
s2S

�(!s; ds)
4
= U1(!) + U2(!; d) (3)
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where the term �() express this adequacy demand.

A very common technique in such problems is to consider the MaximumA Posteriori (MAP) criterion,

i.e. the maximization of the a posteriori distribution of the labels given the observations, which is equivalent

to the minimization of the cost function. This minimization may be performed using either stochastic

relaxation algorithms [18], or deterministic relaxation algorithms [10], [5].

2.2 Multiscale Techniques

De�ning global energy (cost) functions is a powerfull tool for specifying non-linear interactions betweem

observed and hidden variables in image restoration problems, where the restoration is provided by the

minimization of these functions. The main drawback of this process is usualy the huge solution space

(sometimes in�nite in terms of computations), thus even the most simplest restoration schemes demands

considerable ammount of computations. In the same time, the cost function usually prohibit many local

minima, and a very common result is that the �nal restoration corresponds to one of these minima.

On the other hand it has been shown that the multiscale techniques reduce in a signi�cant ratio

the required computational cost of the restoration operation [29], and perform a smooth operation in the

observed cost functions, which eliminates a large percentage of local minima. These techniques have been

widely used in image analysis problems with a positive inuence in the restoration process, as well as in

the computation complexity.

The main idea is to solve the restoration problem in many di�erent label spaces, which are subsets

of the original one and the label decision corresponds to a set of pixels in the original space. A label

process in many di�erent leves is evaluated, and using a coarse to �ne pyramid, an extrapolation of the

label decisions from levels with low resolution to levels with �ner label con�gurations takes place. This

extrapolation scheme is used as initial labeling and a new relaxation process is performed.

Thus the necessity of real time implementation in our cases leads to multiscale techniques. Two

di�erent types of multiscale models are proposed (Figure 2). In the �rst one, a Gaussian pyramid of

images is built upon the full resolution image and similar cost functions to be minimized are de�ned

through the di�erent levels [31]. This multiresolution structure is then utilized according to a coarse-to-

�ne strategy (a). Another more sophisticated approach consists in de�ning a consistent multigrid label

model by using detection maps which are constrained to be piecewise constant over smaller and smaller

pixel subsets [20]. The cost function which is considered at each level is then automatically derived from

the original �nest scale energy function. Also full observation space is used at each label level and there is

no necessity of constructing a multiresolution pyramid of the data (b).

2.3 Relaxation Algorithms

The modelisation of restoration problems by the use of MRFs, leads to a minimization operation process.

This process even in the case of multiscale techniques must be performed separately in each level. During

the last decade two di�erent types of minimization schemes have been proposed. The stochastic relaxation

algorithms [18] demand a considerable ammount of computations, but converge under conditions in the

optimal solution. On the other hand it has been shown that the use of deterministic relaxation algorithms

([10] and [5]) could perform a restoration very close to the optimal one, with much less cost in comparison

with the stochastic relaxation algorithms.

In this paper the minimization operations are performed by the use of two well known and slightly
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Figure 2: Multiscale Techniques: (a) Multiresolution, (b) Multigrid

modi�ed deterministic relaxation algorithms. The Iterated Conditional Modes (ICM) and Highest Con-

�dence First (HCF), which are both iterative deterministic relaxation techiques. These algorithms are

suboptimal, thus they might converge to a local minimum, but they induce drastically less computational

cost and time than a stochastic relaxation scheme (i.e., simulated annealing [18]).

In the ICM algorithm [5], as we used it, an initial estimation of labels is provided by the Maximum

Likelihood (ML) criterion, and then the labels are computed iterativelly and in parallel for the whole frame.

The ICM algorithm is slightly modi�ed here, since we also use an Undecision label, and in consequence

a threshold on the decision function is used to discriminate the case where a decision seems to be almost

sure from the case where a decision is somehow ambiguous. Then, in case of decision, a plausible choice

is the label which has maximum conditional probability given the observations and the current labels in

the neighborhood of each pixel. In order to avoid redundant computations, the label process is performed

only in the pixels where a change in the label of one of their neighbours occurs in the previous iteration.

In HCF algorithm [10], the minimization is performed as follows. At each site, a label is selected if it

provides the greatest local decrease of the energy function. Computational cost can drastically be reduced,

if the visit stragegy (for image sites) is optimized. Thus, according to the HCF algorithm the sites are

not visited in turn, and we are able to constantly focus on illabeled sites, by introducing an \instability"

measure according to which sites are ordered in a stack. Because we are dealing here with only two (in the

case of change detection problem), or four (in the case of moving object localization problem) labels, this

\instability" measure can be easily computed. The site to be visited is the one at the top of the stack. On

the other hand supplementary computations are required to construct and to maintain the stack. Thus,

due to the initialization step, all sites are pushed to the stack according to the energy term U2(!; d) and

the \instability" measure. Convergence is reached, when the stack is empty.

3 Detection of moving objects

3.1 Dominant motion estimation

A very common hypothesis in the change detection problem is the static camera, which holds in a large

number of the proposed solutions. An expected result is that these solutions cannot be used when they deal
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with a mobile camera. This constraint is raised, computing the dominant motion, using a gradient-based

robust estimation method ([21], [11] and [25]), in order to create a compensated sequence in which only

the motion of independent moving objects is still valid. An a�ne motion-model is considered de�ned by: 
u(i; j)

v(i; j)

!
=

 
a1;0 + a1;1i+ a1;2j

a2;0 + a2;1i+ a2;2j

!
(4)

The use of 2-D parametric models to describe the dominant motion is not proper for any case of

3-D motion. Thus the a�ne model can be used for motions with only translational components, where

the overall depth of the scene is much greater than the variation of the depth within the scene, which is

equivalent with parallel projection. In addition this model is proper for rotational motion only in Z-axis

( rotation), and for 2-D scaling too.

(a) (b)

Figure 3: Dominant motion estimation for Interview Sequence (a) Interframe Di�erence, (b) Displaced

Interframe Di�erence (after dominant motion compensation)

The estimation of the set of unknown parameters � = faij ; i = 1; 2; and j = 0; 1; 2g between frames

at time instant t and t + 1 is extracted as follows

�̂ = min

8<
:X
(i;j)

�2�

�
r(i; j)

�

� 9=
; (5)

where r(i; j) is the displaced frame di�erence,

r(i; j) = I(i+ u(i; j); j+ v(i; j); t+ 1)� I(i; j; t) (6)

and �() is given by

�(x) =

(
x2; áí jxj < 1

1; áí jxj � 1
(7)

The parameters estimation is done in an incremental method using a Gaussian pyramid according to

the Equation (5). As it concerns the parameter �, it is also an unknown variable and can be estimated

iteratively, according to current parameters estimation by the following formula:

�̂ =

P
jr(i;j)j<� jr(i; j)jP

jr(i;j)j<� 1
(8)

The minimization is performed using a simple method, Iteratively Reweighted Least Squares (as proposed

in [25]), with a binary weight, determined by the above mentioned threshold. This estimator allows getting
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a good estimation of the dominant motion (i.e., background apparent motion), if the a�ne motion model

is su�ciently accurate, and the percentage of outliers, that is the area of the independently moving object,

is relatively small. The resulting motion �eld is used to compute a compensated image sequence, in which

the background then appears as static.

In Figure 3 are given results of applying the above method to the Interview sequence, where camera's

motion is only translational. The inter-frame di�erence after camera's motion compensation indicates the

presence of independent motion.

3.2 Change Detection Model

Let D = fds; s 2 Sg denote the gray level di�erence image with

ds = Is(t+ 1)� Is(t) (9)

The change detection problem consists of a \binary" label �s for each pixel on the image grid. We

associate the random �led �s with two possible events, �s = static (static: background pixel), if the

observed di�erence ds supports the hypothesis for static pixel (H0), and �s = mobile (mobile: moving

pixel), if the observed di�erence supports the alternative hypothesis H1, for mobile pixel. Under these

assumptions, for each pixel it can be written

H0 : �s = static

H1 : �s = mobile
(10)

Let pDjstatic(djstatic) (resp. pDjmobile(djmobile)) be the probability density function of the observed inter-

frame di�erence under the H0 (resp. H1) hypothesis. These probability density functions are supposed

homogeneous, i.e. independent of the pixel location, and usually they are under Laplacian or Gaussian low.

We use here a zero-mean generalized Gaussian distribution function to describe the statistical behavior of

the pixels for both hypotheses, thus the conditional probability density function of the observed di�erence

values is given by

p(dsj�s = l) =
cl

2�l �
�
1
cl

� e
�

�
jdsj
�l

�cl
(11)

Let Pstatic (resp. Pmobile) be the a priori probability of hypothesis H0. Observed di�erence values are

assumed to be obtained by selecting a label l 2 fstatic;mobileg with probability Pl and then selecting a d

according to the probability low p(djl). Thus the probability density function is given by

pD(d) = Pstatic pDjstatic (djstatic) + Pmobile pDjmobile(djmobile) (12)

In this mixture distribution fPl; �l; cl; l 2 fstatic;mobilegg are unknown parameters. The principle of

Maximum Likelihood is used to obtain an estimation of these parameters ([16] and [24]). The unknown

parameters are iteratively estimated using the observed distribution of gray level inter-frame di�erences. An

initial estimation is calculated using �rst, second and third order moments of the variable considered. As it

concerns the values of c parameter, they come from a discrete set: f0.5, 1.0(:Laplace), 1.5, 2.0(:Gauss)g.
In Figure 4 is given the histogram and the approximated probability density function (dashed line) for a

test sequence, where the Laplacian case is �nally selected.

The Static-Mobile decision �eld as it appears in our approach is modeled as a MRF with a 8-pixel

neighborhood (Figure 1). In a second step, a MRF model where only two-pixel cliques are considered in
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Figure 4: Mixture decomposition for inter-frame di�erence for Trevor White

order to reduce the number of necessary parameters and the computational cost, is built to incorporate a

smoothing prior about the detection map, and a temporal coherence with the �nal map estimate in the

previous frame. A Gibbs posterior distribution p(!jd; ~!) results with the following energy:

U(!; d; ~!)
4
= U1(!) + U2(!; d) + U3(!; ~!) (13)

where ~! denotes the detection map estimated at time t� 1, and:

� U1(!) is the prior term which accounts for the expected spatial properties (homogeneity) of the label

�eld:

U1(!)
4
=

X
fs;ug2C

Vs;u(!s; !u) (14)

where C is the set of two pixel cliques for the second order neighborhood system, and clique potentials

are given by:

Vs;u(!s; !u)
4
=

8>><
>>:
��s if !s = !u = static

��m if !s = !u =mobile

�diff if !s 6= !u

(15)

�diff > 0 is the cost to pay to get neighbors with di�erent labels, while �s > 0 and �m > 0 balances

the relative proportions of the two labels.

� U2(!; d) expresses the adequacy between observed temporal variations and current labels according

to p(dsj!s) likelihoods:
U2(!; d)

4
=
X
s2S

� ln[p(dsj!s)]| {z }
4
=�(!s;ds)

(16)

� Finally U3(!; ~!) has a conservative role and expresses a temporal coherence with respect to the

labeling at time t � 1:

U3(!; ~!)
4
=
X
s2S

�(!s; ~!s) (17)

where

�(!s; ~!s)
4
=

(
�� if !s = ~!s

0 if !s 6= ~!s
(18)
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We consider the Maximum A Posteriori (MAP) estimation problem, i.e. the maximization of the a poste-

riori distribution of the labels given the observations, which is equivalent to the minimization of the energy

function U(!; d; ~!),

U(!; d; ~!) =
X
c2Cs

Vc(!) +
X
s2S

(�(!s; ~!s)� ln[p(dsj!s)]) (19)

3.3 Regularization Parameter Estimation

In this subsection we consider a simpler model, with the smoothing prior U1 only depending on a single

regularization parameter � (�s = �m = �diff = �), and without temporal coherence term U3. The aim is

to determine the value of the potential �.

During the last decade, many researchers have investigated the problem of regularization parameter

determination, often for problems of image restoration [4]. A common conclusion is that � may have

signi�cant inuence on the MAP estimate of the label �eld [14]. Simple approaches for � estimation use

statistical analysis, where the optimal solution is derived through a pseudo-likelihood criterion [12]. Cross-

validation methods have been investigated [27] as well. Finally an error analysis based on an objective

mean square error criterion have also been used to motivate the regularization [17]. In [17] two methods

for choosing the regularization parameter are proposed, based on the absence or not of knowledge for the

noise model. All the above methods attempt to solve the label �eld estimation simultaneously with the

regularization parameter estimation. Their main drawback is their large computational cost. Another

signi�cant drawback is that, in some cases, a prior knowledge of the noise model is required. In this paper,

a di�erent method for the regularization parameter estimation is proposed. The general idea is to use

the detection map computed for a given parameter value, together with the observations set, in order to

extract, with a voting technique, a new � value which increases the \optimality" of the current map, which,

in turn, is re-estimated.

Let Ul(!s; !gs; ds) be the local energy for label !s in the pixel location s, given labels in its neighbor-

hood gs and the data ds associated with this location:

Ul(!s; !gs; ds; �) = �(!s; ds) +
X
u2gs

Vs;u(!s; !u)
4
= �(!s; ds) + ��(!s; !gs) (20)

where

Vs;u(!s; !u) =

(
��; if !s = !u

+�; if !s 6= !u
(21)

The current label �eld estimate ! is a sitewise local minimum of the global energy function with the

previous value of regularization parameter. We look at � values for which this still holds, i.e.:

Ul(!s; !gs; ds; �)� Ul(!s; !gs; ds; �) � 0 (22)

where !s is the opposite label to !s. Let Ns be the number of neighbors of s, and let ns(!s) be the number

of those neighbors with the same label !s as s. Using the above notation, the local energy is:

Ul(!s; !gs; ds; �) = �(!s; ds) + �[Ns � 2ns(!s)] (23)

Since ns(!s) = Ns � ns(!s), constraint (22) becomes:

�(!s; ds)� �(ws; ds) + 2�[Ns � 2ns(!s)] � 0 (24)
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Optimal Value

Figure 5: Voting diagram for � determination

From the above relation we can extract some restrictions about admissible �. In addition there are values

of � for which the current map ! is a \better" energy minimum, i.e., the above local energies di�erences

are larger in average than those with the previous parameter value. To determine the new �, a weighted

vote technique is adopted in order to take into account this fact. First, the computational cost of the

vote technique is reduced by quantizing the parameter search space. Then, according to the above relation

at each site, a vote is given to each admissible value of the �nite search space. The votes are weighted,

according to their contribution in minimizing local energies, i.e. in maximizing di�erences in left-hand

side of (24). Also, in order to avoid over-smoothing that too large � values would favor, a method for

balancing the two terms of the energy function is required. For this purpose, the spatial mean value (E(.))

and variance (var(.)) of the energy term �(!s; ds), s 2 S, are used, in the vote weighting. For each s 2 S,

each admissible � value receives a vote weighted according to:

�(!s; ds)� �(!s; ds)� 2�[Ns � 2ns(!s)]

var(�(!; d)) +
hP

u2gs Vs;u(!s; !u) + E(�(!; d))
i2 (25)

where the mean value and the variance of �(w; d) are computed on the image grid, according to the current

detection map. The value with larger votes sum, is taken to be the center of the new reduced search

space with �ner quantization. This hierarchical quantization search procedure allows to get fast a robust

estimate of �.

This method can easily be extended to problems with a number of states greater than two. This

method can also be used for regularization models with more than one potential value parameter. In such

cases the candidates are vectors. In order to avoid the large computational cost, the quantization in each

parameter could be done di�erently, according to its importance. Thus for parameters of vital importance,

one can use a �ner step quantization, and a coarser one for parameters of less relevance.

An example of this approach is given in Figure 5, and concerns the motion detection for Trevor White

sequence. A detection map arises at the coarsest level using the ML estimator, and the proposed method

is applied, and an optimal regularization value arises. This value is used and a new detection map is

determined. The method for � determination is applied again, and the results with the current detection

map, are used as initial values at the next level.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Detection of Moving Objects: Static Camera: (a), (b), (d), (e), (f); Mobile Camera: (c) Multi-

grid approach: (b) Trevor White, ICM; (d) Sphere, HCF. Multiresolution approach: (a) Highway,

ICM; (c) Interview, HCF; (e) Kollnig, HCF; (f) Van, ICM. Automatic � determination: a (1.0125), c

(0.8125), e (0.8625) and f (0.9875).
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The proposed approach could be modelized and exploited in a global statistical criterion. Let X and

Y to be random variables, which denote the di�erence in the image grid, between the values of energy

terms for the observed label and the opposite label, thus

Y (us; ugs) = �(us)� �(us)

X(us; ds) = �(us; ds)� �(us; ds)

(26)

The � parameter is determined by maximizing the mean distance between the energies for the two opposite

labels. At the same time the mean of the energy for the observed label should be minimized, thus minimizing

the energy variance and balancing the two terms of the energy. The proposed global statistical criterion is

the following

f(�) =
(E (X + �Y ))2

E (� + ��)2
(27)

If we consider the current detection map, the only unknown variable in this function, which has to

be maximized is �, and f(�) is linear according to this parameter. Thus we search for the � value which

gives the maximum value for f(�). A possible drawback of this approach is that, pixels with positive

contribution of the cost function (increase) are taken also into account. For the optimal � the following

equation holds
d

d�
f(�) = 0 (28)

and since according to the previous form, a second degree equation results, where only two roots exist

(a positive and a negative), it is easy to select the proper one (positive). This method can be easily and

directly extented for cases with more than two possible label events.

In Figure 6 are given results obtained by the use of the vote technique, for the change detection

problem. As it concerns the comparison between the vote approach and the method based on the statistical

criterion of the Equation (27), both methods give very satisfactory similar results. The main advantage

of the vote approach is that only sites providing con�rmation of the decision map are used, while in the

global statistical criterion opposite decisions are also taken into consideration. On the other hand the vote

technique requires a very larger ammount of computations.

4 Moving Object Localization

The modelization of moving object localization problem is similar with the one we adopted in change

detection. The labeling problem in this case is more complicated because the goal is to characterize the

situation that holds in both frames, for each pixel in the image grid. Any pixel in any frame either belongs

to the background pixel, or it belongs to some moving object. Let U = fB;Og be the set of the two

possible labels, where B means \background" and O means \object". In the moving object localization

problem a couple of labels should be estimated (�s(t);�s(t + 1)) 2 U � U . This notation is equivalent

with given label �s(t) (resp. �s(t+1)) for the situation that holds on frame at time instant t (resp. t+1)

at pixel loaction s. We have four possible label events,

H00 : (�s(t);�s(t+ 1)) = (B;B)

H01 : (�s(t);�s(t+ 1)) = (B;O)

H10 : (�s(t);�s(t+ 1)) = (O;B)

H11 : (�s(t);�s(t+ 1)) = (O;O)

(29)
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The available observation set is composed of the change detection map, and the gray level values for both

frames. The �rst problem we deal with is the computation of the conditional probability density functions

(pdf). Let

p(x0; x1j(�s(t);�s(t+ 1)) = (�; �))

be the conditional pdf for the couple of the intensity values (Is(t); Is(t+1)) at pixel s, where (�; �) 2 U�U .
In case of � 6= � the problem is easier, since the two events are independent, thus

p(x0; x1j�; �) = p(x0j�)p(x1j�) (30)

Under the above hypothesis we are not obliged to calculate the two-dimensional probability density func-

tions for cases (B;O) and (O;B), because their values can be extracted by the use of one-dimensional

pdfs.

Using the change detection map, from pixels labeled as unchanged, we are able to evaluate the his-

togram for the gray level values of the background, as well as for the mobile part. The only di�erence is

that pixels labeled as changed, and presenting an important inter-frame di�erence, are excluded from the

Object as considered to belong to the occluding regions. The evaluation of the histograms for both cases

is performed only on the �rst frame, because we assume the temporal stationarity of the corresponding

random variables. These histograms are used for the estimation of the unknown conditional probability

density functions. The main drawback of this approach is that the static part of the change detection map

might have much bigger area than the mobile part, which causes problems in the statistical representation

of the covered and uncovered areas, as well as in mobile area. Also in cases with more than one moving

object the evaluated histograms are not valid and reliable for each object. To avoid these problems, these

histograms are evaluated for each object in a rectangular area around the object, where the two cases,

changed and unchanged, have approximatelly the same area. This process demands a connected component

labeling operation in the change detection map, before the examination of the localization problem.

According to the observed histograms, the static, as well as the mobile, part of the change detec-

tion map may be composed of many di�erent populations according to their gray level values, and the

decomposition of these maps is the key problem.

4.1 Piecewise uniform probability density function

The simplest method to determine the values of the energy term U2 (Equation (3)) is the quantization of all

variables, obtaining thus a piecewise uniform model for the probability density functions. This technique

demands a reasonable ammount of computations.

The general idea is to divide the set of possible gray level values in non-overlapping intervals, in

such a way that the four probability density functions could use the same orthogonal division of the two-

dimensional space of possible values for the couple of intensities on the two frames, and for all possible labels

of this couple. As the division should be orthogonal for covering the two cases of independent distribution

of the two variables, quantization can be simply one-dimensional. The change detection being available,

and the necessity to have a good representation of both background and mobile part, independently of

their relative size, leads to the construction of two di�erent quantizers, one for each population. The two

quantizers are then uni�ed to one having as set of decision levels the union of the two sets of decision levels.

A key problem with quantizers is the determination of the number of decision levels. This problem is

solved using the observed histograms and a criterion on the mean squared quantization error. So at the
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(a) (b)

Figure 7: Approach with piecewise uniform distributions: Trevor White Sequence - (a) Static part , (b)

Mobile part

beginning, a number of prevailing values is selected according to the observed histogram, and it composes

the set of initial quantization levels. Then the Lloyd-Max algorithm [19] is performed until the convergence

is reached. If the global mean square error is above the given threshold, the level with biggest mean square

error is subdivided and a new pass of Lloyd-Max algorithm is performed. This operation holds until the

global mean square error is above the given threshold. Then, according to the �nal set of decision levels and

the observed histograms, the probability for each level for both cases (Static, Mobile) is evaluated. Such

a result on Trevor White sequence is given in Figure 7. The two-dimensional observed histograms for the

couple of pixels with identical labels (both Static or both Mobile) is used on the orthogonally divided set

of values to obtain the two-dimensional distribution of the respective couple of variables, again piecewise

uniform.

4.2 Gaussian mixture decomposition of the probability density function

A more complicate model to approximate the observed histograms is the mixture of Gaussian distributions.

Under this hypothesis the density function of the gray level value, for both object (� = O) and background

(� = B), may be decomposed in a mixture of Gaussians,

p(xj�) =
c�X
i=1

P�i

��i
p
2�

e
�

(x���i)
2

2�2
�i (31)

The problem is to estimate the parameters of the mixture decomposition. An additional problem is

that the number of populations, c�, is unknown. The number of populations is extracted empirically using

the observed histogram. To avoid the inuence of noise, �rstly a smoothing operation is performed on

the observed histogram, and then its local maxima are searched; that is, we are seeking for the modes of

this distribution. Then using the ML estimator for mixture decomposition, we can compute the unknown

parameters (P�i; ��i; ��i) for each population. Results of this approach are given in Fig. 8. The problem

remains with cases (B;B) and (O;O), for which two solutions are proposed. The simplest one is the use of

a global correlation coe�cient ��, for both cases. Then using this coe�cient and assuming that it is valid

separately for the populations composing the distribution of the gray levels, we can write

p(x0; x1j�; �) =
c�X
i=1

P�ipG2(x0; x1;��i; ��i; ��) (32)
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(a) (b)

Figure 8: Approach with mixture of Gaussian distributions: Trevor White Sequence - (a) Static part, (b)

Mobile part

where pG2(x0; x1;��i; ��i; ��) is a two-dimensional Gaussian probability density with parameters

(��i; ��i; ��i; ��i; ��).

A more robust and reliable approach is the estimation of two-dimensional normal density functions.

Using as initial guess all the possible combinations between the observed populations of Background and

Object hypotheses and their parameters, and the proposed ML estimator for mixture decomposition, we

can compute the unknown parameters of this model. During processing, some classes could be rejected,

because their probability is very small (almost zero). This approach demands a considerable amount of

computations, but it has a signi�cant bene�cial infuence on the extracted results.

4.3 MAP labeling

Using the same neighborhood de�nition as it appears in the change detection part, we can modelize the

problem as a MRF with second order neighborhood, where a Gibbs distribution is used to describe the

a posteriori probability of a global labeling form ! (p(!) = 1
Z
e�

1
T
U(It;It+1;!)), where the cost function is

decomposed in two terms,

U(!; I(t); I(t+ 1)) = U1(!) + U2(!; I(t); I(t+ 1)) (33)

where the de�nition of U1 and U2 is similar to those presented in the change detection problem, and a

more sophisticated de�nition is required for the potential function, thus

� U1(!) is the term which accounts for the expected homogeneity of the label �eld:

U1(!)
4
=

X
fs;gsg2C

Vs;gs(!s; !gs) (34)

where C denotes the relations between the pixels and their neighbors according to the given neigh-

borhood system G, and the potential function is given by

Vs;gs(!s; !gs)
4
= �e>k

2
666664
��m 1 1 1

1 ��d �dd 1

1 �dd ��d 1

1 1 1 ��m

3
777775

2
666664
nBB

nBO

nOB

nOO

3
777775 (35)
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(1)

(2)

(3)

(a) (b)

Figure 9: Localization for Trevor White sequence: (a) Histograms analysis with mixture of Gaussian

distributions { (b) Histograms analysis with mixture of Uniform distributions, (1) Maximum Likelihood

detection maps { (2) Detection maps with ICM algorithm and multiscaling in label and data spaces { (3)

Detection maps with HCF algorithm and multiscaling in label space

where the following mapping f(B;B) : 1; (B;O) : 2; (O;B) : 3; (O;O) : 4g is used for k, ek is a vector

with the k-th element equal to 1 and the others zero, and nBB (resp. nBO; nOB; nOO) is the number

of pixels with label (B;B) (resp. (B;O); (O;B); (O;O)). �m is a potential value that facilitates the

selection of (B;B) and (O;O) label, �d facilitates the selection of (B;O) and (O;B) labels and �dd

is the cost to pay to get neighbors with label (B;O) for pixels with label (O;B) (or the opposite),

while the cost to pay to get neighbors with di�erent label in any other case is 1.0. The exception

value �dd is used because facts (B;O) and (O;B) are mutually exlusive as neighbors. Finally � is a

weight value.

� U2(!; d) expresses the adequacy between observed gray level values and current labels according to

p((Is(t); Is(t+ 1))j!s) likelihoods:

U2(!; I(t); I(t+ 1))
4
= �

X
s2S

ln[p((Is(t); Is(t+ 1))j!s] (36)

For solving the labeling problem the MaximumA Posteriori (MAP) criterion is considered, which is equiv-

alent to the minimization of the energy function U(It; It+1; !),

U(!; I(t); I(t+ 1)) =
X
c2Cs

Vc(!)�
X
s2S

ln[p((Is(t); Is(t+ 1))j!s] (37)
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Figure 10: Location for Trevor White Sequence

The ICM and HCF algorithms in a multiscale implemetntation are used for the minimization of the

proposed cost function. An important point in this process is that due to the initialization step, the label

(B;B) is given, at pixels with Static decision on change detection map. This initialization decreases at a

signi�cant factor the required computational cost. In Figure 9 are given the results of the labeling process

on the Trevor White sequence for the two approaches of evaluation of the probability density functions

presented above. The ML decision test result is given for illustrating the e�cacy of these estimated

probability distributions. In black is the background, and in gray the covered and uncovered regions.

Also results from the multiscale approaches combined with the minimization algorithms are given. The

projection of this result on the two successive frames gives the location of the moving object at the two

corresponding moments (Figure 10).

5 Comments and Conclusions

In this paper, we described methods and related algorithms for solving two interesting problems arising in

motion detection, the detection of moving objects and their localization.

5.1 Comments

5.1.1 The regularization parameter estimation

In order to check the e�ciency of the automatic estimation of �, in the motion detection problem, we

�rst choose �s = �m = �diff = �, as already mentioned. In spite of this simpli�cation, the adaptive

determination of � allows to obtain very satisfactory motion detection maps.

Figure 11: Automatic motion detection: Trevor White, Sphere

However, the method seems to fail for Sphere sequence (Figure 11). This can be explained by the fact

that the initial ML labeling (left image) exhibits a very large and compact static region. Thus a large �
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value arises, which results in the removing the isolated mobile labels. The best result for Sphere (Figure 6)

is obtained by using the complete model (13), with an reinforcement of mobile labeling through �m. For

Trevor White sequence a very satisfactory result is obtained with the simpli�ed model.

5.1.2 ICM versus HCF

According to the experiments, ICM and HCF exhibit di�erent behaviors. Three di�erent aspects are

examined: the computational cost, the sensitivity with respect to the regularization parameter, and the

dependency on the initial labeling. As for the computational cost, ICM appears less expensive than HCF

(Figure 12), due to the use of a sorted \instability stack" by the later. However, in multiscale approaches,

HCF
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I  m  a  g  e
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   3.2      3.9       5.1       6.5       8.4     10.4 

Figure 12: Computational cost for ICM, HCF

the cost for HCF is reduced signi�cantly. Indeed, at the coarse levels the required cost for creating and

maintaining the HCF stack is very small, and by the time the �ner levels are reached, the stack operations

become very few. On the contrary, the cost of ICM remains about the same, even with multiscale approach.

Another interesting aspect of the behavior of HCF, is the sensitivity with respect to the regularization

parameter. It turns out that it is quite high in the single-scale approach, especially around the \opti-

mal" value, where small variations can produce completely di�erent results. This can be explained by the

fact that for many sites (especially at the beginning), the labeling decision is taken with an incomplete

neighborhood labeling. On the other hand, ICM has the opposite behavior: large variations on the reg-

ularization parameter do not inuence much the estimation (Figure 13). Finally, HCF seems to be more

independent on the initial labeling. It produces estimates than can be signi�cantly di�erent from the initial

ML labeling. On the other hand ICM has a signi�cant dependency on the initial labeling (Figure 14).

A concluding comment is that, although ICM has less computational cost, it is not exible, and it

cannot avoid strong noise inuence (as it appears on the initial labeling). For cases with low noise level,

however it can provide fast a good detection map. HCF is more exible, thus compensating its signi�cant

computational cost. Especially in high level noise cases, it can produce a better result than ICM.
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Figure 13: Sensitivity on Regularization for ICM, HCF

5.1.3 Multigrid versus Multiresolution

As for the comparison between the two hierarchical approaches, the one using a pyramid of images appears

more exible since parameters can be tuned independently at di�erent resolutions. At the same time, this

can be perceived as an increase of the model complexity in terms of parameter estimation. The second

approach, is by contrast simpler and proves to be less sensitive to noise inuence, since at the coarsest level

blockwise data likelihoods are used. Both methods of multiscaling provide about the same computational

cost.

5.2 Conclusion

Concerning the �rst problem, that is change detection, the main contribution of this paper is the use of a

very e�cient mixture decomposition of the distribution of the inter-frame di�erence. Thus the threshold

for the ML decision test is adapted to the data. Introducing then a Gibbs random �eld model for the

labels, we proposed the use of two known, and slightly modi�ed, deterministic relaxation algorithms, for

solving the resulting minimization problem, in a single-scale or multiscale approaches. Also a new method

for determining the regularization parameter is proposed resulting in a fully adaptive model for the moving

object detection problem. The reliable statistical model used enables to obtain good results on real image

sequences, even if the camera is moving, in which case its motion is �rstly estimated and compensated.

The image segmentation in changed and unchanged regions was then used for a further step in the

segmentation process, which searchs for determining covered and uncovered regions as parts of the whole

changed region. As a result we obtained the localization of the moving object in the two frames. At the

�rst step of the proposed algorithm, the probability density function of the background and the moving

object are evaluated by identi�ng an adaptive mixture decomposition, or by approximating them, for

less computation cost, using a piecewise uniform distribution. This operation is done separately for each

object in a rectagular area around the object, where the percentage of the populations are approximately

equal. Three solutions were proposed for the modelization and identi�cation of the joint probability

distribution of the couple of image intensities on the same site in two successive frames. The two �rst
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Figure 14: Dependency from Maximum Likelihood labeling for ICM, HCF

were an extension of the mixture decomposition of the respective one-dimensional distributions, and the

other one was evaluated under a piecewise uniform probability distribution assumption. The e�cacy of all

these probability distributions was checked implementing the corresponding ML decision tests. The �nal

labeling result were obtained using deterministic relaxation algorithms (HCF and ICM) based on a Gibbs

random �eld model and multiscale techniques in order to reduce the required computational cost. Very

satisfactory results were obtained.

A Mixture density estimation

A common problem in statistical analysis is mixture decomposition. To be more speci�c, the problem

is to decompose observed samples in a known number of populations which could theoretically describe

the data. It is assumed that the probability distribution for the observed data, except the values of some

parameters, are known. Let K be known number classes, Pk be the a priori probability of class number

k, and p(xj�k) be the probability density function for the same class, where �k is a vector of unknown

parameters. The mixture of the K classes gives the following probability density function

p(xj�) =
KX
k=1

Pkp(xj�k);
KX
k=1

Pk = 1 (38)

where � is a vector made up of f�k : k = 1; : : : ; Kg and fPk : k = 1; : : : ; Kg. The problem is to estimate

the unknown parameters in �. The maximum likelihood (ML) estimator is given by Duda and Hart [16]

and R. Schalko� [26]. Another method based on fuzzy ISODATA process, is proposed by J. Bedzek and

J. Dunn [3]. Here we use the ML estimator, thus we present the general formula and its application in the

case of Laplacian densities. The case of Gaussian densities is considered in [24] and [16].

Let us de�ne the a posteriori probability of class i given an observation x

Pi(xj�) = Pip(xj�i)PK
k=1 Pkp(xj�k)

(39)

If fx1; : : : ; xn; : : : ; xNg is a data set, the a priori probabilities and the parameters of the probability density
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model must satisfy the following equations:

P̂i =
1

N

NX
n=1

P̂i(xnj�) (40)

and
NX
n=1

P̂i(xnj�)r�i log p(xnj�̂i) = 0 (41)

where

P̂i(xnj�̂) = P̂ip(xnj�̂i)PK
k=1 P̂kp(xnj�̂k)

(42)

For the case of a mixture of two generalized zero-mean Gaussian densities, the following iterative

algorithm is obtained concerning parameters (�i; ci)

�
�i(t) =

PN
n=1 P̂i(xnj�̂(t� 1))jxnjci(t�1)

NP̂i(t� 1)
(43)

�
ci(t) = min

c

(
NX
n=1

P̂i(xnj�̂i(t); c)
�
ln c� ln�

�
1

c

�
�
� jxnj
�i(t)

�c � )
(44)

where c takes values on a prede�ned �nite set. Parameter values �i are initialized using the moment

estimation method for Laplacian distributions (ci = 1:0).
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