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ABSTRACT

This paper proposes lo organize the codebook of any
veclor quantizer, according to a binary tree—structure.
Unlike the classical approach, the arborescence is built
in an ascending way, using date classification meth-
ods. For this purpose, several Sequential Agglomerative
Nonoverlapping elgorithms (SAHN) are performed. A
new encoding process is proposed 1o improve the V@
performance. It is based on a percepiron algorithm.
Stmulation resulls are provided for the selected SAHN
methods.

1 INTRODUCTION

In the last decade, vector quantization (VQ) has been
found to be a powerful data compression technique
which has become very popular in speech and image
coding [1]. According to Shannon’s rate—distortion
theory [2], it is known that VQ achieves better per-
formance than the scalar quantization. For brevity, we
denote both vector quantization and vector quantizer
by VQ, the context will show if VQ stands for vector
quantizer or vector quantization.

A VQ is a mapping Q from R* to a given codebook
C = {e;}iz1, n of N k-dimensional codevectors, un-
der some distance measure d(-,-).

In V@, the first key step is the design of an op-
timal codebock, minimizing the expected distortion
E[d(x, @(x))]. For the traditional squared—error, the
centroid and nearest neighbor rules are necessary con-
ditions for optimality [3]. The popular LBG algorithm
[4] decreases iteratively the distortion in an attempt to
satisfy the latter rules. Such algorithm does not need
a priori to know the source statistics. Therefore, a
long training sequence S = {x;};=1, 1 of L vectors is
used. In this context, the LBG algorithm performs a
partition {S;}i=1,.. ~ of & according to :

Si={xy, € §/ d(x;,,¢;) < d(x,,c;)Vji# i} (1)

Vi=1,..., N (2)

where L; is the number of vectors x;, in &;. Unfortu-
nately, the LBG algorithm does not provide any struc-
ture for C. Therefore, finding the nearest neighbor
Q(x) of a test vector x implies a full-search proce-
dure which requires N vector distance computations
d(x,¢;). The codebook size controls the bit-rate r
bits/sample since N = 2%¥7. Thus, the complexity of
encading x increases exponentially with & and ». This
exponential growth restricts the applicability of VQ.
To circumvent this problem, C can be constrained to
have a binary tree—structure (BTS) as in [5]. Thus,
the encoding process is accelerated since the search
complexity grows linearly with r. However, the BTS
constraint involves a loss of performance. The hope
is to reduce the complexity to compensate the degra-
dation, This paper proposes to perform a method of
generating a BTS codebook, using the Sequential Ag-
glomerative Nonoverlapping (SAHN) techniques. The
first section describes such grouping methods in the
context of the V). Section 2 deals with the problem of
the encoding process. Finally, simulations results are
given, in section 3.

2 SAHN METHODS

2.1 Principles

The objective to build a BTS over a given unstruc-
tured codebook C, using SAHN approaches. The N
triplets (e;, L;, ;) constitute a specific data system.
SAHN techniques start with these disjoint clusters &;.
The first step is to select the pair of cells the most
“similar” which, when merged, is viewed as a single
cluster. The N — 1 remaining cells are then examined
to the next fusion. The procedure 1s continued untill
all the initial N members are in one group. Finally, a
sequence of N — 1 nested clusters is generated. Note
that such procedure assumes to get some measure of
“closeness” or “similarity” between two groups. This
is achieved by defining an inter—clusters distance, de-
noted &(-, ). Several definitions are avalaible according
to the desired merging strategy. As for us, we choose
the following six SAHN methods [6], [7]:
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* Ward method
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e Variance increase method
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e Nearest centroids method
b6(Si,Sj) = dlci, ¢5). (8)

One attractive feature of such methods is that they
are linear combinatorial. Indeed, a recurrence formula
[8] allows to update the distance between the recent
merged cluster §; U S; and the remaining ones S. Its
expression is

8(S, S US;) =
ak_ié(Sk, S{) -+ ak,jﬁ(sk,Sj) + ,@.7,_,'5(51’, Sj) +
Vij k6(Sk, 8i) = 8(Sk, S5)| Ve £ k£ (9)

Reference [7] gives the parameters for the considered
8(+, ). Thus, the computational burden is mainly ded-
icated to the calculation of the Miv.r_—l—l initial values of
8(-,). The next values are then obtained by (9) which
reduces dramatically the complexity of these clustering
procedures.

2.2 Algorithm Flow Chart

The considered strategies can be now summarized in a
general algorithm described below.

¢ step 0 (initialization)
Begin with the disjoint clustering (¢;, Iy, S;)
Compute the pairs 8(8;,S;) Vi < j.

e step 1
Select the most similar pair in the current cluster-
ing, say (S;,S;).
In case of ties, select the first pair encountered.
If necessary, calculate the centroid of the new clus-
ter S; U S;.

e stcp 2
Update the distances between the two clusters
6(Sk,8: US;), Yk # 1,k # j, using the recurrence
formula, given in eq.(9).

+ step 3
If only one cluster remains, stop. Else go to step 1.

3 ENCODING PROCESS

3.1 Discriminant Function

Once the N — 1 fusions performed, the VQ must cover
the BTS to encode a test vector x. More precisely, at
each node, a rule is requested to select one of the two
possible candidate cells &; and §;. This is a discrim-
inant problem and therefore; a discriminant function
has to be determined. For sake of simplicity, only lin-
ear functions defined as

D(x) = a,'i_,-Tx + bi,j (10)
are considered. The related decision rule is

if D(x) >0, xe&;; (11)
if D{x)<0, xe€8;.

The problem is to find at each layer, the (a;;, b;;).
Since any knowledge of the clusters shape is avalaible, a
learning process is investigated. In this context, a per-
ceptron based error—correction procedure is performed
on the training sequence, to adjust the position of the
discriminant hyperplane. More precisely, a gradient—
descent algorithm (the fixed-increment algorithm [9))
is used, at each non-terminal node. Note that the tra-
ditional nearest matching codevector implies a particu-
lar position of the separator hyperplane. As such, the
described encoder might outperform the usual tree—
structured encoder [5]; this is validated by the simu-
lations, This fact shows the major advantage of the
considered linear categorizer. Thus, the encoding pro-
cedure is operated, according to the decision rule, given
in eq.(11). The index of the last layer is then trans-
mitted.

3.2 Encoding Complexity

The SAHN methods generate unbalanced trees. There-
[ore, the followed path (in other words, the number
of crossed layers) depends on both the considered ar-
borescence and the query vector. The tree rate de-
scribes the intrinsic structure of the hierarchy. Tts ex-
pression is

R —ff%m (12)

tree o L

where h(i) is the height of the terminal node i, e.g.
the minimum number of layers crossed from the root



to reach the terminal node i. Besides, the average num-
ber of comparisons N BL;., required to code a given
test sequence measures the complexity of the process.
The equality Riree = N BLyss holds when the training
set encoding is accurate. Thus, for a test sequence, the
difference | Ripee — NBLyese | is related to both the
fusion strategy and the discriminant function adopted.

4 SIMULATIONS RESULTS

Simulation experiments are performed using two typ-
ical video—conferencing scenes, “White Trevor” and
“Miss America”. The images are 360 x 288 by 8
bits (respectively, at 15 [rames/s and 10 frames/s).
The training sequence issues from their partition into
L = 199440 nonoverlapping square blocks of size 4 x
4 pixels (k = 16). The selected objective performance
indicator is the peak signal-to-noise (PSNR) defined
as
2552

PSNR(dB) = IOIog(W)

where < - > denotes averaging over the entire se-
quence. Codebooks at different bit-rate are generated
by the LBG algorithm, initialized either randomly or
by the “splitting” technique. These codebooks are then
hierarchized by SAHN algorithins. We give only per-
formances inside the training set. The same results are
obtained for the two sequences. Only those related to
“Miss America” are detailed.

As expected, the discriminant function chosen outper-
forms clearly the traditional “nearest neighbor code-
vector”. Fig. 1 confirms this for 83. Indced, at the bit—
rate r = 0.625 bpp, a gain of 6.5 dB can be achieved.
Besides, our simulations lead to the rejection of the
linkage methods as illustrated in Fig. 2. On one hand,
6, tends to yield rather clongated clusters (c.g. very
deep trees), increasing the probability of misclassifi-
cation. This 1s the well known chaining effect. On
the other hand, the complete linkage favors compact
groups but it gives bad performances. These phenom-
ena are depicted on the Fig. 3 where high (resp. low)
values of Ry... are produced by &, (resp. &5). In ad-
dition to the low PSN R, a computational load is re-
quired in cvaluating the initial inter—clusters distances.
These are the reasons why we tend to exclude the link-
age methods. The same conclusion is valid for the
increase variance method. §&; penalizes the big cells.
The miselassification of vectors belonging to big cells
1s frequent and induces very small PSNR. At the op-
posite, the remaining strategies performi much better
{Fig. 4). Note that the classical Tree-Structured V@,
introduced in [5] gives comparable PSNR (Fig. 5).
Finally, the degradation of the performance, respect
to the full-search is attributable to both the BTS con-
straint and the assumption of hnear separability of the

(13)

disjoint clusters, at each node. However, such loss of
performance is compensated by a dramatical reduction
of the complexity (Fig. 6).

5 CONCLUSION

The Sequential Agglomerative Hierarchical Nonover-
lapping technique is depicted in this paper. More pre-
cisely, six combinatorial strategies are tested to or-
ganize unstructured codebooks according to a binary
tree—structure. Such structure constraint has the ad-
vantage to reduce the encoding procedure complex-
ity. In practice, there i1s no major difficulty to im-
plement the SAHN methods. Good performances are
achieved especially when a perceptron’s error correc-
tion works as a learning process. Furthemore, these
performances are very close to those of the well known
Tree-Structured VQ. The problem of adapting the
BTS, in the context of image sequence VQ are the mat-
ter of our future investigations.
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Figure 1: Fixed—-increment algorithm/“nearest match-
ing codevector” rule, codebook initilization random.
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Figure 4: VQ performances, codebook initilization ran-
dom.
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Figure 5: SAHN/TSV{() performances, “splitting” ini-

tilization of the codebook.
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