
Signal Processing 9 (1985) 89-100 89 
North-Holland 

DISCRETE REALIZATION FOR RECEIVERS DETECTING SIGNALS OVER 
R A N D O M  DISPERSIVE CHANNELS. PART Ih DOPPLER-SPREAD CHANNEL 

L. A N D R I O T  
Etudes et Productions Schlumberger, 26 Rue de la Cavde, BP 202, 92142 Clamart Cddex, France 

G. TZIRITAS and G. J O U R D A I N  
Centre d" Etude des Ph~nom~nes Al~atoires et Gdophysiques, Laboratoire associ~ au C N R S  ( LA 346), BP46-38402 Saint Martin 
d' H~res Cedex, France 

Received 18 September 1984 
Revised 13 December 1984 and 3 April 1985 

Abstract. We propose a new suboptimal receiver for detecting signals transmitted over random doppler-spread channels. We 
discuss in particular the first order channel and a transmitted signal of a constant envelope. The proposed receiver is composed 
of an integrator, a sampler and a quadratic filter. We give numerical results concerning the performances of this receiver. In 
particular, we give the evolution of error probability versus the number of samples (or sampling rate). We show the important 
role of the ratio of signal duration to channel coherence time and we suggest how to choose the transmitted signal duration 
and the sampling rate for a given signal to noise ratio. 

Zusammenfassung. Vorgeschlagen wird ein neuer suboptimaler Empf'dnger zur Detektion von Signalen, die fiber Kan~ile mit 
zuf~illig ver~inderlichen Doppler-Frequenzverschiebungen iibertragen werden. Insbesondere wird ein Kanalmodell 1. Grades ., 
und ein Sendesignal mit konstanter Einhiillender untersucht. Der vorgeschlagene Empf'anger besteht aus einem Integrator, 
einer Abtastschaltung und einem Quadrierer. Fiir die Wirkungsweise des Empf[ingers wird ein Zahlenbeispiel gegeben. 
Insbesondere wird die Fehlerwahrscheinlichkeit fiber der Zahl der Abtastwerte bzw. der Abtastrate aufgetragen. Das Verh/iltnis 
von Signaldauer und Kanalkoh~irenzzeit spieit eine wichtige Rolle; wir machen einen Vorschlag, wie man die Dauer des 
Sendesignals und die Abtastfrequenz bei einem gegebenen Signal-Rauschabstand am besten wlihlen sollte. 

R~um~. Nous proposons un nouveau r6cepteur sous-optimal pour d~tecter des signaux ayant travers~ une voie de transmission 
al~atoire et dispersive en fr~quence. Nous ~tudions, en particulier, le milieu :~ module interne d'ordre 1 et un signal 6mis 
d'enveloppe constante. Le r~cepteur propos~ est compos~ d'un int6grateur, d'un ~chantillonneur et d'un filtre quadratique. 
Nous donnons des r~sultats num~riques concernant les performances de ce r~cepteur. En particulier, nous donnons l'~volution 
de la probabilit~ d'erreur en fonction du nombre d'~chantillons (ou fr~quence d'~chantillonnage). Nous montrons le r61e 
important du rapport de la dur6e du signal 6mis sur le temps de coherence du milieu et nous sugg~rons comment choisir la 
dur~e du signal ~mis et la fr~quence d'6chantillonnage pour un rapport signal ~ bruit donn6. 

Keywords. Doppler spread channel, scattering function, detection, binary communication, diversity, suboptimal receiver, 
sampling, quadratic filter, error probability. 

1. Introduction 

In part  one [1], G. Tziritas and G. Hakizimana discussed a discrete realization for receivers detecting 
signals over range-spread channels. In this second part, using a different approach,  we will study the case 
of  a doppler-spread channel where the frequency dispersion results from the movement  of  a random 
scatterer and for which the optimal receiver [2] is composed of  two parts: an estimator, essentially to 
track the movement ,  and a correlator. 
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We propose here a new suboptimum receiver composed of a linear filter, a sampler and a quadratic 
filter. The linear filter is necessary in the presence of white noise and will be associated with the 
doppler-dispersion. The sampler reduces the dimension of observation space and simplifies the decision 
problem with a certain loss of optimality. The quadratic filter realizes a quadratic form of sampled data 
and responds to the random phenomena. This receiver represents a further development of the classical 
receiver [3]. 

In Section 2, we will describe the channel model, the hypotheses concerning both the channel and the 
scattering function characterization. We will also discuss the binary decision problem which we are trying 
to resolve. In Section 3, we will define the concept of "coherence time" of the channel and we introduce 
the transmission diversity parameter [4]. These elements play an important role in determining the receiver 
proposed here, especially in as concerns the sampler, and its performances. In Section 4, we will describe 
the method for determining the filter processing composed of an integrator throughout the sampling 
period, which is followed by a periodic sampler and finally the classical quadratic filter [2]. In Section 5, 
we will study the case of a first order doppler  scattering function and a transmitted signal of a constant 
envelope. 

We will give numerical results which exhibit the parameters of  transmission and of the receiver: the 
signal to noise ratio, the ratio of transmission duration to coherence time of the channel and the number 
of samples. We will finish this paper by discussing the numerical results obtained. 

2. Channel model and detection problem 

The doppler-spread channel corresponds to a "single scatterer" random medium. We suppose that the 
reflective characteristics of the scatterer change during the signalling interval and that the ratio of wave 
propagation velocity to scatterer's radial velocity is large enough compared to twice the product bandwidth 
duration of the transmitted signal. W~ also suppose that the bandwidth of the pulse is relatively small 
compared to the carrier frequency. With these assumptions, we can say that the random medium modulates 
in amplitude the transmitted pulse. Let f ( t )  be the complex envelope of the transmitted signal f ( t )  of 
energy E, and duration T, as it is given in (1) of Part I. 

The complex envelope of  the signal at the output of the channel is therefore 

~ ( t ) = 6 ( t ) f ( t ) ;  O<~t<~ T + L  (1) 

where 6 ( 0  is the random amplitude modulation. 
In what follows we suppose that the second order statistical properties are given: 
i) the expected value of 6(0  is zero, 

E{6(t)}=O; Vt 

and 
ii) there exists a relationship between the real and imaginary parts of 6 (0 ,  which is expressed as follows 

E{~(t)~(u)}=O; Vt, u, 
(2) 

E{~t( t)~*( u)} = I~a( t, u). 

This means that the covariance function of the real part is the same as that of the imaginary part, and 
that the cross-covariance function between the two parts is an antisymmetrical function. In this paper we 
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suppose that the random function ti(t) is a wide-sense stationary (WSS) and gaussian. Then one can 
define the power spectrum S(v) of  the envelope d(t)  as the Fourier transform o f / ( a ( t - u ) .  ,~(v) is the 
scattering function of  the medium and characterizes the frequency spreading of the transmitted signal 
energy. That is, if a signal at frequency Uo is transmitted, then at the channel output, a random signal 
with power spectrum S( u - Uo) is received. It is a doppler-spread channel, because the scatterer is randomly 
fluctuating. 

We shall now study the detection problem. This problem can be formulated as testing the hypothesis 

of  signal presence in additive white noise (cf (5) of Part I). 
We suppose that the complex envelope r~(t) of  the noise is gaussian, zero-mean, and white of power 

spectral density No, that is 

E{ri(t)} = 0, Vt 

E { ~ ( t ) ~ * ( u ) }  = N o r ( t -  u), (3) 

E { ~ ( t ) ~ ( u ) } = O ,  Vt, u, 

where 6(- )  is the Dirac distribution. 
Theoretical results concerning this problem are well-known [2]. One must solve a Fredholm integral 

equation which is generally very difficult. In this paper we study the scattering function as follows 

S(v) - 2k 
(2w v)2 + ka , (4) 

which is normalized S_~ S(v) dv = 1. 
This means that d( t )  is a first order process, with a cutoff frequency at kHz. The envelope of  the 

transmitted signal is as follows 

i ( t )  = o 4  T. (5) 

Thus the average received energy is 

/~. = E [d( t )12lf( t ) l  ~ dt = -~  /(a(O) dt = E,. (6) 

For the scattering function in (4), there exists a state variable representation of the channel [2], and 
the Fredholm integral equation is replaced by a Riccati differential equation. H.U Van Trees [2] also gives 
the optimum receiver, containing a Kalman filter, which is simplified by H. Cherifi, G. Tziritas and 
G. Jourdain [5] in the sense of  a heuristic determination of the gain of  the Kalman filter. 

In this paper, we propose a different approach. We study sampling techniques for detecting signals, 
which are spread by the channel. For a better comprehension of the obtained results, we present in the 
following section some important parameters of  the transmission. 

3. Transmission parameters 

We introduce firstly the "coherence bandwidth" of  the channel according to A. Ishimaru [6]. Let us 
consider an input signal of a constant envelope. The correlation of  the output signal at two different times 
tl and t2 decreases as the time difference t~ - t2 increases. The time difference At  at which the correlation 
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practically disappears or decreases to a specified level is called the "coherence time". For the scattering 
function in (4), the "coherence time" is approximately 

1 
At= 

k" 

Thus kT can be interpreted as the number of independent realizations of the channel characteristics 
during the transmission time T. In other words, at the channel output, a diversity or a number of degrees 
of freedom is generated during the transmission time. G. Tziritas [4] has proposed a more convenient 
approach to the transmission diversity, which takes into account the envelope of the transmitted signal. 
This approach permits the characterization of the channel and the transmitted signal simultaneously in 
their interaction. Hence, we define the "transmission diversity" 

(7) 
I/£~(t, u)l 2 dt du [f(t)[zlf(u)[2[I(a(t, u)l 2 dt du 

If ~i(t) is a wide-sense stationary process and normalized in power / ~ ( 0 ) =  1, then the transmission's 
diversity a is given by 

(8) 
a -  ior ior [f(t)12lf(u)12]I(~( t -  u)[ 2 dt du 

For the scattering function of (4), the covariance function is /~a(r)= exp(-klr l )  and the transmission's 
diversity for a constant envelope is 

2(kT) 2 
a - 2 k T -  1 +e  -2k7" (9) 

If kT is small, the transmission diversity differs only a little from 1. If kT is large, the asymptote of the 
transmission diversity is kT+0.5 (Fig. 1). 

In the same paper [4], we studied the performances of the optimum receiver for the detection and the 
binary symmetric communication problems. For each signal to noise ratio (if.r/No) an optimal value for 
the transmission diversity and the parameter kT were obtained. 

Figure 2 gives these optimal values for a binary FSK (Frequency Shift Keying) communication problem 
formulated in (7) of Part I and it is considered as symmetric for evaluating optimal kT. This important 
result will be rediscovered using sampling techniques for realizing the receiver. 

4. Use of sampling 

The object of using sampling is to obtain simple receiver configurations and to have a finite dimension 
of the observation space. T. Kadota and L. Shepp [7] prove that the better choice for the second requirement 
is a subspace of the space associated with the output signal covariance, if the additive noise is white. But 
the first requirement is not satisfied. The problem remains difficult and the solution is complicated. For 
this reason we shall choose the subspace generated by sampling the output signal. We want to make 
Signal Processing 
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Fig. 1. Transmission diversity for a first order amplitude modulation and a constant envelope signal, and its asymptote. 
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Fig. 2. The optimal kT versus signal to noise ratio for a binary FSK (Frequency-Shift-Keying) communication problem. 

comparisons with the results obtained for the continuous time optimal receiver. Thus, we have to confront 
the singularity of white noise [8]. The advantages of white noise modelization for continuous time become 
a disadvantage when we want to use sampling. We have overcome this difficulty by filtering the received 

signal. The structure of  the proposed receiver is given in Fig. 3. 
After sampling, we obtain a vector ~ which is the new observation space. The detection problem can 

then be presented as follows: 

~ = [ 6  . . . . .  ~k . . . . .  ~N] T, 
H~: ~= i + J l  

# = [ # , , . . . ,  #k , - . - ,  ~N] T, (10) 
H o :  ~ = J i  

ti = [ ~ l ,  • • . ,  ~k . . . .  , ~ N ]  a'. 
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LINEAR ~ "~(k~ "OUADRATIc t 
~(f)~ FILTER SANPLER [ FILTER 

Fig. 3. Structure of the proposed receiver. 

With the gaussian assumption, it is known that, for the test (10), the optimum receiver is a quadratic filter 
whose operation on ~ is as follows: 

H 1 

l=  F ( K o ' - K ~ - I ) ~  ~ y (11) 
H0 

The matrix K1 (resp Ko) is the covariance of the vector ~ under hypothesis HI (resp Ho). 
The realization of the quadratic filter generally uses Choleski's procedure. 

K o  I - K ~  l = A * A  (12)  

where A is a lower triangular matrix. The matrix A* is the transposed conjugate of A. This decomposition 
is possible, because Ko ~-  K~ -1 is a positive definite Hermitian matrix. Thus the obtained statistic is given 
by 

1 = I IAr l l  2 (13) 

where I1" II is the euclidean norm. 
The Fig. 4 gives the quadratic filter using a causal linear filter. Generally the filter associated with the 

lower triangular matrix A is time-variant. If the matrices Ko and g~ are Toeplitz a time-invariant realization 
is possible. T. Kailath et  al. [10] give the following formula for Toeplitz matrices 

R -1 = A1 B1 - B N A N .  (14) 

_ ~  FILTER l 

Fig. 4. The quadratic filter realization using Choleski's factorization. 

This was first obtained by Gohberg and Semencul, where A~, B1, A N and BN are lower-triangular Toeplitz 
matrices. We give in Appendix the method to determine the above matrices. The realization of the quadratic 
filter (11) using formula (14) can be implemented by time-invariant causal filters. 

B. Picinbono [11] proposes a fast procedure to realize a quadratic filter associated with a Toeplitz 
matrix. However, it does not always correspond to our case. We thus terminate the discussion about the 
quadratic filter of the receiver (Fig. 3), and we now discuss the design of the linear filter of the receiver. 

The sampling, which comes after the linear filter in Fig. 3, can be periodic or non periodic. Moreover, 
the linear filter can be time-variant, but we require that its impulse response be limited in the sampling 
interval in order to avoid interferences from previous filter inputs (like noise). To determine the linear 
filter, we introduce a criterion, for maximizing the power signal to noise ratio produced after the sampling 
of the filter output. 

We develop these ideas in the case of the WSS channel and a constant envelope transmitted signal. Let 
~(z) be the impulse response of the linear filter, which is non-zero only for O~ ~-~< At, with At being the 
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period of  sampling. We consider here only periodic sampling, because we have a stationary signal g(t) 
in [0, T]. 

Hence we have 

~k= ~,(u)~(kat-u)du=~k+~k. 

We can calculate the signal ~k and noise ~k power. 

2 Et fo ~t ~, = E{Iskl ~}--¥ g(u)g*(v)/~(v-- u) dv du, 

cry, = E{[rik] 2} = No I~(u)l e du. 

Let {A,} and {q3,(.)} be respectively the eigenvalues and the eigenfunctions of the covariance function 
/~a(' ," ) in [0, At], that is 

/ ~ ( t , u ) =  ~ A,~, ( t )~*(u) ;  O<~t,u<~At 
n = l  

We want to determine if(u) such that the signal to noise power ratio is maximized. This requirement gives 

~(u)  = '~m.~(U); O<~u<-at 

where ffmax(" ) is the eigenfunction which corresponds to the largest eigenvalue. 

As /~a is stationary 

~ ( u ) = 4 * ( A t - u ) ;  O<~u<~At. 

Thus the linear filter is matched to this eigenfunctionk In general, the complex envelope of  the filter is 
low-pass. We can therefore use an integrator over the sampling interval 

1 0<~ <~At 

With the above assumptions, the covariance matrix of the noise (hypothesis/40) is given by 

No 
Ko = ~ t  I, where I is the identity matrix 

For the signal component,  we have 

( ,~)2 j(,,_,)a ' I (a ( t -u )  dtdu.  

For the scattering function given in (4), we obtain the signal component of the covariance matrix, as follows 

For  a non  s t a t i ona ry  s igna l  .~(t) the l inear  filter mus t  be ma tched  to the e igenfunc t ion  co r r e spond ing  to a s a m p l i n g  interval ,  

with the s a m e  cr i te r ion  of  op t imiza t ion .  
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for n ~ m, and 

E{Is, l:} = 2 ~ -1+  + e  - " T / N  , n = l , . . . , N .  (15) 

But the receiver and the error probability depend on the sampling rate. Thus, by numerical calculation 

of the error probability, we are searching for a sufficient sampling rate. The Collins' method of computing 
error probabili ty is used [12]. 

This is the subject of  the following section. 

5. Numerical  results and comments  

In Fig. 5, we give the probabili ty of error versus the sampling rate (measured by N = T/At)  for kT = 5 

and for different values of  the signal to noise ratio. 

5 
• 1 . . . . . . . .  i 

10 15 20 N 

Fig. 5. Error probability versus number of samples for kT = 5 and SNR = 1, 2, 5, 10, 20, 100 (from top to bottom). 

The error probabili ty is defined by 

1 -  Pc~+ PF 
Pr{e} 

2 

where PD is the detection probability and P~ is the false alarm probability. 

Figures 6 and 7 give the same curves for kT = 10 and 100 respectively. 
The above probabili ty of  error decreases asymptotically, when the number  of samples in [0, T] increases. 

This evolution is more or less fast depending on the product kT. Then a sufficient number  of samples can 
be defined, so that the corresponding probabili ty of error is close enough to the asymptotic value. For a 
large signal to noise ratio, we state that this number  grows with the signal to noise ratio up to about kT. 
It means that a sufficient At is about l /k ,  which corresponds to the channel coherence time. The first 
important  results can be roughly explained by the fact that two samples, which belong to the same interval 
of  channel coherence time, contain similar information, making the sampling redundant.  We also notice 
that the sufficient number  of  samples can be reduced (down to kT/2  and even less) when the signal to 
Signal Processing 
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Fig. 6. Error probability versus number of samples for kT = 10 and SNR = 1, 2, 5, 10, 20, 100 (from top to bottom), 
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Fig. 7. Error probability versus number of samples for kT= 100 and SNR = 1, 2, 5, 10, 20, 100 (from top to bottom). 

noise ratio becomes small ( S N R < 2 ) .  However, the probability of  error is, in that case, not much 
below ~. 

The asymptotic performances of  the receiver, when the number  of  samples becomes large, can be 

directly computed,  using Collin's method [12] and some approximations for the eigenvalues of  the signal 
component  of  the covariance matrix [13]. L. Andriot [14] makes an extensive development of  the calculation 
of asymptotic performances.  We present here the most important results. 

The asymptotic  performances are given in Fig. 8, for dif[erent values of  product kT. A comparison with 

numerical results obtained without using eigenvalue approximation shows that the limit performances are 
valid for kT>~ 10. The asymptotic performances are also compared with the bound on error probability 

given by G. Tziritas [4]. The asymptotic error probabili ty is minimal versus signal to noise ratio for an 
optimal product  k T  (in the domain of validity), which is itself an increasing function of the signal to 
noise ratio. We give this optimal k T  versus signal to noise ratio in Fig. 9. 

This important  result confirms similar conclusions found for a continuous structure of  the optimal 
receiver (for the case of  binary symmetric communicat ion in Fig. 2). It means that, the channel coherence 
time being fixed, it is possible to choose an optimal duration of  the transmitted signal in order to minimize 

V o l .  9 ,  N o .  2 ,  S e p t e m b e r  1 9 8 5  
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Fig. 8. A s y m p t o t i c  error  p r o b a b i l i t y .  
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Fig. 9. Op t ima l  kT  versus  SNR u s i n g  a s y m p t o t i c  f o r m u l a s .  

the error probability for a given signal to noise ratio. The sampling rate, then, can be chosen, as explained 
before, with respect to the signal to noise ratio and the kT product. 

6. Conclusion 

We have studied a new suboptimum receiver (Fig. 3) using sampling techniques for detecting signals 
over a first order doppler spread channel. We have computed the performances of the receiver depending 
on three parameters: the signal to noise ratio, the product kT and the number of samples or the sampling 
rate. We have shown that the three parameters are related. Thus for a given signal to noise ratio and for 
a given channel coherence time (=  1/k) there exists an optimal duration for the transmitted signal. This 
result shows that the receiver proposed here is near to optimum, because we have the same behaviour 
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with the optimum receiver. The choice of the duration of the constant envelope transmitted signal being 
made, the sufficient number of samples is approximately k T  for a large signal to noise ratio, and less 
important for a small signal to noise ratio. At this point, we emphasize the duality between the doppler- 
spread and the range-spread channel. We find a similar result concerning parameter k T  (ratio of signal 
bandwidth to channel coherence bandwidth), for the doppler- and range-spread channel respectively. 

Furthermore, one can see that the performances of the proposed receiver are near to those of the 
optimum receiver for a sufficient number of samples• We have not given numerical results for the binary 
symmetric communication problem, but we expect similar results to be obtained. Using another procedure, 
H. Cherifi [15] studied the "Rayleigh receiver" for the binary symmetric communication problem over a 
doppler spread channel, which is equivalent to a single sample receiver. A synthesis of the two parts 
remains to be done, that is the design of a receiver using a sampler for a double spread random channel. 

Appendix 

We give here the explicit formulae for the inverse of a Toeplitz matrix according to T. Kailath, A. Vieira 
and M. Morf [16]. 

Let us consider a symmetric (hermitean) Toeplitz positive definite matrix RN 

R N 

r o r~ . . .  r N _ l l  

rl ro • . . rN_ 2 

r N - i  rN-2 • • • r 0 J 

Let  DN be the determinant of R N and aN = ~ N  = D N / D N - I  . 

Consider the following equations: 

[1 a l , N ' ' "  a N _ I , N ] R N  = [ a  N 0 "  "" 0]  

and 

[bN , , N ' ' "  b~.N 1]RN : - [ 0 ' ' '  0 f iN] -  

These equations can be effectively solved by the so-called Levinson algorithm [17]. Then the inverse of 
the non-singular Teoplitz matrix RN is given by: [1 

al.  N " . 0 

R N  = 1 

N "~I~N " " " al ,N 

0 

bN--1,N " 

bl, N " . . 

bl ,N " " " bN-I,l~ 1 

0 . .bil'N 

olIO 
a N - I ' N  • • • al.,N ] 

• 0 " • • . . • 

The definitions of matrices A~, B~, AN and BN in formula (14) are then obvious. 
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