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Al~tract. We study the problem of designing the optimal receiver for a dispersive channel and the optimal signals to be 
transmitted over a given dispersive channel. The assumed transmission channel is WSSUS (Wide Sense Stationary Uncorrelated 
Scatterers), randomly time variant, so it is characterized by its scattering function. We study first the effective realization of 
the optimal receiver, given a scattering function, and we point out that the structure of the optimal receiver varies according 
to the discrete or continuous structure of the scattering function over the time frequency plane. We give some precise results 
in the case of multipath transmission and in the case of modulation-transmission. 

In a second part, we are interested in the signal design problem. Some new results are given which permit defining--in a 
way more direct than usual--the class of optimal signals for a given dispersive communication. 

Zusammenfassung. Wir studieren das Problem von optimalen Empfiingern fiir dispersive Kan~ile sowie von optimalen 
Signalen fiir einen gegebenen dispersiven Kanal. Es wird angenommen dass der gegebene Kanal WSSUS ist (Wide Sense 
Stationary Uncorrelated Scatterers), stochastisch zeitvariabel, er ist also. durch seine 'scattering' Funktion charakterisiert. 
Wir studieren zuerst die effective Realisierung des optimalen Empf/ingers ~ir eine gegebene 'scattering' Funktion, und wir 
zeigen dass sich die Struktur des optimalen Empf/ingers verfindert, je nach Struktur der kontinuierlichen oder diskreten 
'scattering' Funktion fiber der Zeit-Frequenz Ebene. Wir geben Resultate im Fall von 'multipath' Ubertragung sowie im 
Fall von Modulations-Ubertragung. 

In der zweiten H/ilfte analysieren wir das Problem des optimalen Signals. Neue Ergebnisse werden vorgesteUt die es 
erlauben, in einer direkteren Art als bisher, die Klasse von optimalen Signalen fiir einen gegebenen dispersiven Kanal zu 
definieren. 

R6sum6. Nous 6tudions le probl~me de d6termination du r6cepteur optimal apr6s transmission dans un canal dispersif et 
des signaux optimaux ~ transmettre dans une situation donn6e. La voie de transmission est modElis6e par un filtre al6atoire 
lin6aire variant au cours du temps et suppose WSSUS (stationnaire au sens large et aux diffuseurs non-corr616s). Ainsi, il 
est caract6ris6 par sa fonction de diffusion. Nous 6tudions premi~rement la r6alisation effective du r6cepteur optimal, pour 
une fonction de diffusion et un signal ~ l'6mission donn6s. Nous montrons que la structure du r6cepteur optimal est diffErente 
suivant la structure continue ou discrete de la fonction de diffusion sur le plan temps-fr6quence. Nous donnons certains 
r6sultats pr6cis dans le cas de la transmission multitrajets et dans le cas de la modulation al6atoire. Dans une seconde partie, 
nous nous int6ressons au probl~me de choix des signaux ~ l'6mission. Certains r6sultats nouveaux sont donn6s qui permettent 
de d6finir directement la classe des signaux optimaux pour une communication donn6e. 

Keywords. Fading dispersive channel, detection, binary communication, optimal receiver, signal design. 

1.. Introduction 

In many propagation channels (ionospheric, seismic, tropospheric, aerian or submarine acoustic channels, 
urban communication), in addition to the additive noise, the transmitted signal is randomly distorted in 
many ways. This is called fading transmission, taking into account both random frequency filtering and 
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temporal modulation. The theoretical model used to describe this phenomena is well known. It was first 
treated by Zadeh [22] and Kailath [9] and later, by Bello [1], Ellinthorpe [2], Kennedy [10], Laval [12], 
G. Jourdain [8]. This model is a randomly time variant filter, and with the WSSUS 1 or quasi WSSUS 
hypothesis, the second order characterization of the medium is its scattering function. 

This paper has two aims: first, it presents some new results about the choice of the model adopted for 
the dispersive channel ('discrete' or 'continuous' structure of the scattering function, Section 3) and some 
new results about the signal design problem and optimal performance (Section 4). In addition, it assembles 
some other recent results of the authors, results which have been detailed in separate ways elsewhere, 
but that are recalled here in a comprehensive view. So this paper constitutes an extension of the classical 
results of Van Trees or Kennedy for the problem of optimal communication in a dispersive channel. 

In the second Section, we recall the hypothesis of the problem which is the detection of a gaussian 
signal in gaussian noise. The theoretical structures have been given [ 19], but generally, it is nearly impossible 
to elaborate the optimal receiver and to calculate its performance. We give some new formulas (Section 
2.3.2) for approximating the error probability, which exhibit well the parameters of the dispersive channel. 

In the third Section, we propose some structures of optimal receivers associated with particular forms 
of the scattering function. We distinguish the cases where, with a 'discrete' scattering function, an internal 
model of the medium and of the optimal receiver is not necessary; and the opposite case where an internal 
model is necessary. This technique was originally studied by Kurth [ 11 ]. In particular a new procedure--the 
so-called 'factorable covariance'--enables us to solve the problem directly when the scattering function 
is constituted by a set of Dirac functions in the time and frequency planes. This corresponds, for example, 
to the muttipath transmission that is often encountered in some propagation channel--it has been illustrated 
here in acoustic submarine propagation. Some recent results are given for the performance of the optimal 
receiver after a multipath transmission, using an ideal or non ideal multipath model. 

The fourth Section concerns the choice of signals to be used in a fading dispersive channel. It is well 
known that in this case, the form of the signal has a direct effect upon the performance of the receiver. 
Some recent calculations [15] have shown that the choice of the signal may be guided by means of its 
ambiguity function. We present new results about the variance of the sufficient statistic, and we give some 
ideas for choosing the optimal signal in the frequency dispersive channel. 

2. Basic hypothesis and results about the communicat ion  in a dispersive channel  

2.1. The transmission model  

The deterministic signal f ( t ) ,  with energy E and duration To, is transmitted through the (assumed) 
random linear channel. The input and output signals are assumed--it is practically always true--bandpass 
around the center frequency v0. The transmission model is: 

g(t) = f f(t-sc)/-l(t, s ¢) d~. (1) 

All symbols below, noted with :, correspond to complex amplitudes relative to v0. For example, f(t)  
and ~(t)are the complex amplitudes of the input and output signals, relative to Vo, and/-I(t, ~) is the 

1 Wide Sense Stationary Uncorrelated Scatterers. 
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complex random bitemporal response of the medium: 

f ( t)  = , ~  Re{f(t) ei2~%t}; s(t)=x/-2 Re{g(t) ei2~%t}. 

Then: 

E = If(t)[ 2 dt = If(t)l 2 dt. (2) 
} 

The general statistical hypothesis is the following: H(t, ,)  is a zero mean random function: this can 
often be verified practically. For the second order, we assume the channel is WSSUS (Wide Sense Stationary 
Uncorrelated Scatterers). This means that the covariance of H(t, ,)  is stationary with respect to t and 
uncorrelated with respect to ,: 

E{H(t ,  ,)FI*(t ' ,  , ')} = ir b ( t - t ' ,  , ) ~ ( , - , ' ) .  (3) 

This hypothesis can also be verified in some practical cases, at least for some bandwidth. In this case, the 
channel is statistically characterized by its scattering function S(u, ,),  which is the Fourier Transform of 
F~ with respect to t - t ' .  

rh  ( t-  c, ,) ~ g(u, ,). 
t - - t '  

/t(t ,  ,)  is also assumed to be gaussian; so it is entirely characterized by its two first moments. 
In this case, ~(t) is also a gaussian, complex, zero-mean process, with a nonstationary covariance given 

by: 

JJ f l ( t - , ) f l * ( u - , ) S ( v , , ) e  i2~''-") dud, .  (4) PAt,.)= 

The received instantaneous power depends on the transmitted power and the scattering function: 

E{[~(t)[2} -A /~(t, t )= f I S(v, , ) ,)~(t- ,) l  2 du d,. (5) 

This last formula illustrates the phenomenon of transmitted power dispersion. 
After transmission the signal g(t) is corrupted by additive noise with complex amplitude ti(t). In order 

to facilitate the calculus this noise is also assumed to be gaussian, zero mean and white, with a power 
spectral density No. 

j= -k_/= 

Fig. 1. The transmission model. 

I 

The received mean power E, and the input receiver signal to noise ratio are defined by: 

/~e(t, t) dt --- S(u, ,)  dv d ,  __a M_~__E, (6) 
2 lWo 

where T is the receiver observation interval (T i> To). 
Vol. 6, No. 1, J anua ry  1984  
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2.2. Detection and communication. Optimal realizable receiver 

Two kinds of problem are considered: on-off detection and binary communication. In the first problem, 
~(t) is tested for the presence of g(t): 

Ha:~(t)=g(t)+~(t), t e [0 ,  T]; (7) 

Ho: F(t)=t i ( t ) ,  re [0 ,  T]. 

In the second problem, the choice needs to be made between sl(t) or go(t): 

141:F(t)=§l(t)+~(t), t e [0 ,  T]; 

Ho :~( t )=g0( t )+~( t ) ,  t e [0 ,  T]. (8) 

It is then well known [20] that, for example in the case of (7) the bayesian optimal receiver must calculate 
the statistic l, that is a quadratic functional of the observation ~(t) and compare it to a threshold y. This 
direct derivation leads to a noncausal filter. 

l = <~3'=1n77+ ~ In I+A~ , (9) 
/4o i = 1  

where (i) /~(t, u) satisfies the integral equation: 

Noh(t,u)+ h( t , z )Fs(z ,u)dz=Fs(t ,u)  O<~t,u<~ T. (10) 

(ii) the A~ are the eigenvalues of the covariance/~s(t, u). The threshold ~ is calculated as a function of 
the a priori probabilities and the costs of the two hypotheses. If they are identical, rl = 1. 

The difficulty lies in the solution of the integral equation (9) that leads to an unrealizable filter h(t, u). 
The procedure for deriving the optimal realizable (causal) structure consists of the following steps: to 

derive from ~(t), an optimal estimate of ~(t), we call ~(t), to correlate §~(t) with ~(t); and also to square 
it. The schema is given below: 

~(t) = ~  

h°r(tc'u) 1 
r (t) 

(.) dt 

Fig. 2. The optimal realizable receiver. 

The realizable filter l~o,(t, u) satisfies the following integral equation: 

f0 Nol~o,(t,u)+ f%r(t,z)F~(z,u)dz=F~(t,u), O<~u<~t, 

i l l  " l = ~ o  ° [2 RelF*(t)s,(t)}-I~,(t)l 2] dt. 

Signal Processing 
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2.2.1. Particular cases 
The filtering of F(t) by hor(t, u) implies the solution of the Wiener equation (11). This is ordinarily 

impossible except for some very particular covariances/~. Van Trees has exhibited three limit cases in 
which equation (11) is simplified. 

(a) If the covariance/~ can be considered to be stationary and the observation time T is much larger 
than the characteristic evolution time of the signal covariance. 

(b) If the number of the covariance eigenvalues and eigenfunctions is limited. But one must still calculate 
them! 

(c) If the ratio of the signal to noise eigenvalues is low. 
Another case leads to the direct solution of (9)--the so-called 'factorable covariance' case--and is studied 
in the third Section: By these means some different practically encountered cases can be solved. 

2.2.2. State-variable model 
More generally, in order to obtain St(t), the elaboration of a state-variable model for g(t) is needed. 

The optimal receiver is then determined by means of a state-variable model: that is the optimal filter 
riot(t, U) of Fig. 2 is replaced by a Kalman filter. This kind of structure has been developed by Kurth [11]. 
We have also worked on this structure for different applications. 

The first choice is to represent the channel itself (i.e. H(t, ~)) by means of a state-variable model. Thus, 
when the emitted signal g(t) changes, the channel model remains valid. Second, it is possible to show [11] 
that, if the scattering function ~(z,, ~) is rational in terms of u, the state-variable model of H(t, ~)--and 
consequently this of i ( t ) - - is  easily derived. The general structure of the state-variable model of H and 

is given in the Annex, where the state-variable model of the optimal estimate st(t) can also be found. 
This state-variable model is relative to the variable t in H(t, ~) and consequent!y the variable u in 

:~(u, ~), while ~ is considered as a parameter. The main difficulty in realizing this kind of estimate comes 
from the requirement for ~-parametrization. The solution becomes realistic when S(u, ~) is quantized 
versus (: it will be seen later in the third Section. 

Remark. In the case of binary communication, two identical 'branches' similar to that of Fig. 2 must be 
elaborated--one for ~l(t), one for ~o(t)--and the two statistics 11 and lo must be compared. 

2.3. Performance 

In order to know the quality of the optimal receiver and to eventually compare it to suboptimal receivers, 
for example in problem (7), the detection probability Po and the false alarm probability PF are usually used: 

PD = PI/H,(X) dx; PF = Pt/Ho(X) dx, (13) 
,y 

where the probability density function (pdf) of l under the two hypotheses are needed. Generally they 
are very difficult to calculate because of the quadratic form of the receiver. 

In problem (8), an error probability is calculated: 

P(e) = ½ [P(H, /Ho)  + P(Ho/H1)], (13 bis) 

by assuming the two hypotheses equally likely. 
Vol. 6. No. 1, January 1984 



8 G. Jourdain, G. Tziritas / On fading dispersive channels 

2.3.1. Classical results 
(a) In the on-off case. Usually, some approximate formulas given by [3] are used in this case. These 

formulas are based upon a development that uses the log of the moment generating function of the statistic 
l under the Ho hypothesis. 

/z(s) = log E{exp(sl(r))lHo}. (14) 

In this quantity, s is a variable depending upon the threshold (if 7/= 1 in the equation (9), s is chosen so 
that /2(s)  =0) .  

The calculation of ~(s )  is different according to whether a state variable model is used, or not. Using 
/z(s), various approximate expressions for PD and PF are calculated [19]. 

(b) In the binary communication case. Some results have been given for the general case [19]. In the 
following we are concerned with the symmetrical case only: that is, s0(t) and sl (t) have identical eigenvalues 
(and the same energy) and their eigenfunctions are mutually orthogonal. 2 

It is known that the error probability is then bounded by: 

P( e) <-l " exp ( tz(1/ 2) -~o ). (15) 

The quant i ty / , (1 /2)  is often considered to be an efficiency measure of a particular communication system. 

2.3.2. New results 
We have proposed [ 15] new approximate formulas for the performance calculation. They have a twofold 

advantage: 
(i) They connect receiver performance directly to the emitted signal f ( t )  and not to the received signal 

~(t): this is a major point in the signal design problem (cf. Section 4). 
(ii) They are well adapted when the scattering function exhibits a discrete structure (cf. below Section 

3.1.2). 
These formulas are given below: 
(a) in the on-off case: 

Po=l- Ir (~ / -~-~ ' ln( l+b)  ) 
b ,a , 

p r = l _ l r ( ~  ( l + b ) ' l n ( l + b ) )  
b ,a , 

(18) 

where Ir is the incomplete Gamma function (Pearson's form [14]), a and b are the only parameters of 
these approximate formulas and are connected to the second order moments of I under the HI hypothesis: 

a + 1 =(E{IIHI})2 b =var{llH1} (19) 
v a r { l l H 1 }  ' E{IlH1}" 

2 Let us illustrate this case by a simple example: )~(t) and/~( t )  are assumed orthogonal (ex FSK) and the channel is a two path 
channel (cf. Section 3.1.2.b) with delay L. The orthogonality condition is verified if the correlation ctofl(~') between )7 o and )71 is zero 
for z = 0, +L  and - L .  

Signal Processing 
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They may be calculated with (9) and (10), and with (6): 

E { llH,} = -~o o, 

var{llH,}=-~-~ I f lP~(t, u)12 dt du. 

(20) 

(21) 

The quantity a + 1 can be interpreted as a 'diversity-path effective number' ,  and b as a signal to noise 
ratio by path. 

(b) In the binary symmetrical communication case. 
The same reference [15] gives a new formula for the error probability P(e):  

F(2a+2) { l +b  ]a+~ ( 1 ) 
P ( e ) = r ( a + l ) r ( a + 2 ) \ ~  ] 2F1 2 a + Z , l , a + 2 ; 2 - -  ~ , (22) 

where 2F~ is the hypergeometric function [25], F is the gamma function and a and b are always given 
by the same formula (19) in which the statistic is now the output l~ of the branch corresponding to g~. 

If a is an integer (a = m) one can recover the formula known in the orthogonal signals diversity cases 
[13]: 

( 1 ) , ~ + 1  ( m + n ) ( l + b ~ m  
e ( e ) =  ~ ~ (23) 

.=o\ n / \ 2 - - ~ /  " 

This is consistent with the interpretation of parameters a and b given above. 

3. Optimal receivermstructure and performance 

Different cases are to be considered in this Section, related to different classes of the channel scattering 
function. The optimal receiver structure depends on whether the scattering function exhibits a fully discrete 
form in the time frequency plane, or not. 

3.1. Fully discrete scattering function ('factorable' covariance ). Example of multipath case 

3. I. 1. Optimal receiver in the factorable case 
The optimal receiver structure is related directly to the covariance of the output signal g(t) (see equations 

(6) and (7)). In addition to the three limit cases mentioned above, it is possible [17] to obtain an exact 
solution to equation (6) if the covariance of ~(t) can be 'factorized' as below: 

• g~(t, u)= ~*(t)A~(u), 0 < - t, u << - T (24) 

where q~(t) is a function vector and A is a constant hermitian matrix. This case (24) corresponds to a 
generalization of the 'separable kernel case' (case (ii), above mentioned). Effectively if (24) is substituted 
in (10): 

Noh(t, u)+ h(t, z)~*(z)A~(u) dz= ~*(t)A~(u). 

Vol. 6, No. 1, January 1984 



10 G. Jourdain, G. Tziritas / On fading dispersive channels 

The solution /~(t, u) has a similar form: 

fz( t, u)= ~*( t)B~( u), 

B =  A(No~+ CA) -1. 

(7 measures the correlation between the functions q~(t). 

c = dz .  

The matrix (No~ + CA) is always invertible, for the eigenvalues of/~s are the same as those of CA matrix. 
It can be deduced that the optimal receiver computes the statistic l given by: 

I = U  1 
Noo B~, (25) 

where: 

~= £(t)~(t) dt. 

Thus, a new realizable structure of the optimal receiver is obtained without a state variable model of the 
medium. The scheme below illustrates this structure: 

% 
r(t) 

% 

% 

i 

1 (.) dt 
N o 

NI (.) dt 
Q 

% 

I ~rn 

quadratic 
form 

B 
given 

by (25) 

g g v  

Fig. 3. The optimal receiver in the factorizable case. 

If the matrices A and C are diagonal (then the functions ~i(t) are orthogonal but they may have unequal 
energy), B is itself diagonal and the quadratic form (25) is greatly simplified. 

Let us see now the practical cases corresponding to the hypothesis (24). 

3.1.2. Ideal multipath transmission 
Multipath propagation is very often encountered in ionospheric transmission, or urban communication 

[21] and we have seen it in submarine acoustics [5]. The received signal is then the sum of several signals 
propagated through N paths: 

N 

~(t)= ~ &iT(t-~:~). (26) 
i=1  

Signal Processing 
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The complex amplitudes d~ along each path are assumed to be independent zero mean complex gaussian 
variables, with respective variance qi = E{ladz}. This corresponds to a Rayleigh fading over each path. 
The corresponding scattering function is discrete and exists only over the delay axis: 

N 

S(v, ~)= E q,8(~-~,)~(v). (27) 
i = 1  

Thus, substituting (27) in (4) the covariance of g(t) is, 

N 

F~(t, u)= • q,f(t.~,)f*(u-¢,). (28) 
i = l  

which is of the form (24) with a diagonal matrix A and a vector ~ given below: 

A = " . .  ; d ( t )  = • . 

qN Lf('- 
The optimal receiver is given by (25) in which the correlation matrix C consists of the correlation 
coefficients of the emitted f(t)  calculated for the path delays: 

c , j  = a t  E .  

The matrix B that defines the quadratic combination is: 

in which R is the matrix of the coefficients P0. 
(a) If the correlation time of f(t) is less than the minimal delay between the paths, the C matrix is 

diagonal and so is B. 

1 

0 qN 1 + - -  qN 
N o  

IEi = (E/No)q~ is the signal to noise ratio along the ith path. So in this case, the optimal receiver has N 
'branches' (in which ~(t) is correlated with )7(t-~i) and weighted by/~i/(1 +/~i) before summation (see 
Fig. 4). The N correlators can be replaced by one filter matched to the signal f(t) and followed by N 
delay lines ~:~. If the signal to noise ratios over each path are nearly identical, the weights can disappear. 

(b) The two-path case has been completely studied in [7] for example, and can be extended to N paths. 
The calculation of receiver performance is given there. In the two-path case, the only parameters of 

the medium are: 
• the delay L between the two paths which is then supposed known with the precision of the inverse 

signal bandwidth 
ql/q2 the ratio of the mean power over the two paths 

• the correlation coefficient: 

l f 0 r  p =-~ f( t) f*(t-L) dt, T =  To+L. (29) 

Vol. 6, No. 1, January 1984 
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~o(t_~i) 

2 

2 

F ig .  4.  Multipath optimal receiver with B diagonal. 

We present here only the results of the Po(PF) variations, versus a given received signal to noise ratio 
(equal to 1, 2 . . . . .  50) (see Fig. 5). These curves correspond to the p = 0 case, which leads to the best 
performance. We have also presented the case of a sub-optimal receiver using only one path. 

When the SNR is greater than about 3, reception is better if the transmitted power is identically 
distributed over the two paths (q, =q2)- This is equivalent to a second order temporal diversity [13]. 
When the SNR is less than 3,'the results depend from the threshold and the SNR ratio for the two paths. 

Signal Processing 

"in {O '_ _ _ ' _  . . . .  L_ J 

8 " ' Y  
°7. 

o6 

o5 

04_ 

° 3- i 
o2. 

/ 
/ 

ROC 
2-PATH RATLEIGH 

CHANNEL 

SNR=1,2,5,10,20,50 
QI=Q2 OPTIMAL 
QI=Q2 SUBOPTIMAL 

QIIQ2=IO OPTIMAL 

ol. 

o0[ 
i i t i i i i i i 

o0 oq o2 ~3 o& o5 o6 o3 o8 o9 
Fig .  5.  Performance of the optimal receiver in the two-path case ( p  = 0) .  

1- 

1o 



G. Jourdain, G. Tziritas / On fading dispersive channels 13 

In the 'equal energy and uncorrelated' case (ql = q2; P = 0) we give here the Po and Pz expressions 
calculated directly: 

PD = (14 (q~/ No)) e-~/(q~/N°), 

(l+qE/No)] e_.O(l+qE/No)/(qE/No) PF= 1+*/ ~ j . (30) 

One can see that the approximate formula (18) given in Section 1 by making ql = q2 = q  in (28), becomes 
the exact formula (30) above: in fact, in the two-path case, by substituting (28) into (21) one obtains: 

f f  I/z,(t, U ) I  2 dt d u =  2q2E 2. 

The parameters a and b can then be calculated by means of (19), (20) and (21). One obtains: 

a + l = 2 ,  b = 2 N  0. (31) 

These two results confirm the interpretation given in Section 2.3.2. If the expressions (31) are substituted 
into (18) the exact formulas of (30) are recovered. Therefore the approximate formula (18) is well adapted 
to the multipath case. 

3.1.3. Transmission with some modulation frequencies 
(a) Let us now presume a dispersive medium characterized by a scattering function that exists only 

over the doppler axis, and is distributed on some discrete points of this axis: 

N 

g(~, ~) = Y q,8(~,- ,,,)8(~). 
i = 1  

This corresponds to a modulation of the signal iF(t) by a sum of monochromatic waves: 

N 

S( t )=lVl ( t )T( t ) ;  ] ~ ( t )  = ~,, o ~ j e i 2 ~  t, 
j=l  

where the &j are always complex, independent, zero mean, gaussian variables, with respective variances 
qi = E{It~il2} • We have encountered the case N =  1 in vertical submarine acoustical propagation• 

The covariance of E(t) is 

/=,(t, u)=7(t)/z~(t, u ) [ * ( u ) ,  

with (32) 

]Z/~/(t, U) = ~,, qj e i2~r~/(t-u). 
J 

The form (32) is still of the factorable form (24), in which: 

[0 '°] A = "qN and 
LT(t) ei2~'"N'J 

Vol. 6, No. 1, January 1984 



14 G. Jourdain, G. Tziritas / On fading dispersive channels 

The matrix A is diagonal and the vector ~( t )  is composed of N doppler-delayed signals. The optimal 
receiver has really the same structure as that given above (formulas (29), (30) and Fig. (3)), by replacing 
the vector ~ by the vector given by (44). 

The Ckj coefficients are now: 

Ckj = I T ( l ) [  2 e i2"~C~k-~)t dt & )~T(0, vj - Uk), 

where )~T(r, v) is the translation time-frequency ambiguity function of f :  

~i(r, v) = f f ( t ) f*(t-  r) e -i2~rvt dr. (33) 

The coefficients C;k correspond to the values of the doppler axis of the ,~ function (in the above paragraph, 
they were the values of the delay axis of ;~). 

(a.1) If the minimum frequency range between the v; is greater than the inverse of To, the matrix C 
is diagonal, and the receiver is simplified as above. 

(a.2) If there is only one doppler modulation vj = F, in addition to the 'direct transmission' (v i = 0), 
the situation is obviously parallel to the two-path case. If the second function f ( t -L )  is replaced by 
f(t) e i2~F' the results shown for performance in the two-path case are still valid. 

(b) A similar situation is encountered if the scattering function is composed exclusively of Dirac functions 
whatever the position of these functions in the v - (  plane. Let: 

S ( v ,  ~)  = E ~ qjkt~( ~ ' -  l')k)~(~--~j). (34) 
j k 

The covariance of g(t) is by substituting (33) into (4): 
N 

.r~(t, u)= Y.~f(t-~j)f*(u-~;) eiE'~k('-U)qjk A ~. q.~.(t)~*(U), (35) 
j k n= l  

with: 

q~,(t) = f ( t -  ~:j) e i2~k', q, =qik. (36) 

We define as many q~, (t) functions as couples (~:;, Vk) of S( v, ~). N is the total number of 'Dirac functions' 
in the (v, ~) plane. 

The form (35) is still a particular case of (24), in which the matrix A is always diagonal, and the 
functions q~,(t) are given by (36). 

The matrix C is diagonal only if the position of Dirac functions in the (v, ~) plane are more separated 
than the time-frequency basis of the ambiguity function )~ (that can be approximated by the inverse of 
the signal duration and bandwidth). Obviously this can only be an approximation because of the time- 
frequency duality. 

Up to now we have seen different cases--which correspond to a v, ~: quantized scattering function--where 
the optimal receiver can be obtained directly. 

We now examine the opposite case, in which the scattering function is continuous over the (v, s ¢) plane. 
There may be different situations: if S(v, ~:) is continuous with respect to ~, in all cases its evolution 5~(~) 
must be quantized (for example segmented). If if(v, s ¢) is continuous with respect to v, we have seen above 
that the knowledge of a state variable model of ~(t) enables us to obtain the optimal receiver--which 
itself exhibits a state variable structure. We call this the indirect (state variable) realization of the optimal 
receiver, in opposition to the case given above. 
Signal Processing 



G. Jourdain, G. Tziritas / On fading dispersive channels 15 

3.2. Scattering function continuous over the (v, ~) plane 

3.2.1. Rational scattering function 
In the most general case, the realization of the optimal receiver is obtained by means of a state variable 

~:-parametrized model. On the one hand, this parametrization is difficult. On the other hand, the 
identification of the state variable model itself is not completely solved. A few simple forms of S(~,, g) 
are known, which lead to an internal model. Kurth [11] has studied some simulations. As an example, a 
Lorentzian function--i.e, unimodal with respect to u--such as [20]: 

~(~) = O(O 
(2"rr ~, + K, (~:))2 + K~ 2 (¢)' 

leads to a first order state variable model in which: 
(i) the transition matrix, called/~(~) in the annex, becomes K,(~)- jKi(~) .  

(ii) ()(~) corresponds to the mean power of the white noise exciting the state variable model. 
Obviously, Such a first order model cannot represent every kind of scattering function; but it allows 

many possibilities. 
If the scattering function is multimodal with respect to ~,, a second or more order model must be 

adopted [19]. 

3.2.2. General multipath case 
We have studied the multipath case in particular (see paragraph 3.1.2), but we do not make the 'ideal' 

transmission hypothesis. 
Accordingly, there may be a signal time modulation along each path, and this fast fading leads to a 

frequential spreading of the scattering function. Its theoretical form is: 

N 

i = 1  

A state variable model can be chosen for each frequency spread path (by the same method as described 
in the Annex), provided that Sdi(v) is rational with respect to u. When considering the complete 
transmission, all the state variable models can be put into a vectorial state variable model. 

We give below an example of an experimental submarine scattering function, with an obvious multipath 
structure. In this case, we give as an illustration, the results obtained by keeping five major paths ~:1, ~:2, 

~3, ~4, ~5. 
Here, the state variable internal model corresponding to each path is a first order model for all the 

evolutions with respect to ~, are quasi Lorentzian. Let 1/Ki be the time constant of the respective first 
order model. The quantities qi/~r (i = 1 . . .  5) are the mean powers transmitted over each path. It is possible 
to show [7] that the corresponding optimal signal estimate (main part of the optimal receiver) has the 
structure given in Fig. 7. 

This optimal estimate possesses five 'branches'. Over each branch, the receiver is itself a first order 
system, and after that, there is a correlation with the expected form: )~(t-~:i). In this model, we have 
assumed: 

2Kiqi 
gdi(~') =K~ + 4,'rr2~ 2" 

By normalizing the quantities qi(Y q~ = 1), the constants -K~ 
0.25 Hz. 

(37) 

= -  K corresponding to Fig. 6 are about 
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Fig. 6. Example of an estimated scattering function. 
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~l(t) = ~(t-~l) 

• ~5 (t) I 
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kLJ 

+ i, ,,% 

Fig. 7. Optimal internal estimate of the signal in a non-ideal multipath transmission. 

The matrix and vector  equations of the opt imal  receiver  are: 

= F X ( t )  + Z ( t ) [ F ( t ) -  C * ( t ) X ( t ) ] ,  X(O)  = O, 

£ ( t )  "* " = C ( t ) X ( t ) ,  

where  the matrices  F and C are defined by: 

# = K~; C*(t)  = E [ 7 ( t -  ~1) • • • T (  t - -  ~5)]" 

The Kalman gain matrix is: 

2 0 )  = @(t) ~ ' ( t ) ,  

Signal Processing 



G. Jourdain, G. Tziritas / On fading dispersive channels 

where/~(t) satisfies the Riccati differential equation: 

d/3(t)dt = 2K/3(t)+ O-/3(t)C,(t)--~oC*(t)P(t), t>~O, 

/ 3 ( 0 ) = 0  0 = [  2kt'/" ' ] 

2K' [_ 2kqs3 

17 

(38) 

Let us remark that the one or two frequency-spread paths cases has been studied more extensively [3]. 
In particular, the differential equation (38) has been solved numerically and the mean square time variant 
estimation error has been obtained. An interesting result is that the best receiver in the Bayes sense does 
not lead to a small estimation error for the estimate ~(t). Let us note that another receiver has been 
studied, using a simpler quasi optimal receiver, which might exempt the Kalman gain calculus, and the 
resolution of (38), [23]. 

So, even when the scattering function exists in the entire plane (u, ~), the structure of the optimal 
receiver can be obtained. When it is discretized with respect to ~: (as in the example above), the receiver 
state variable internal model is simplified and it is reasonable to think of an effective realization (for 
example, see Fig. 7). 

4. Per iormance  and emission signal design 

It is well known that in a dispersive transmission, the signal energy is not sufficient to determine the 
receiver performance. In order to know what signal )r(t) is best in a given dispersive transmission, it would 
be necessary to know the output statistic pdf; that is, the error probability in binary communication, and 
from that derive the best form of the emitted signal. In some particular cases (see ideal multipath case) 
we have exact expressions. But in the most general case, these output probabilities are only approached, 
as we have seen above, or bounded [19]. 

4.1. Some general new results 

The formulas commonly used have been recalled in paragraph 2.3.1. In particular, the quantity/z (1/2) 
given by (15) is an efficiency measure of a communication system. 

Kennedy has shown that an optimum value of/~(1/2) can be obtained for different combinations of 
signals )r(t) and spread scattering functions if it is possible to design the signal g(t) so that all its eigenvalues 
are identical and equal to (if.r/No)" (1/3.07) (implicit diversity). 

It is not evident that this optimum configuration can be reached. Moreover, we have no idea about the 
means for reaching it. 

The approximation formulas (18-23) permit a direct connection to be made between the error probability 
and the emitted signal. In fact, the only quantities entering into the error probability expression are the 
output first and second order moments• The first moment is (cf. (20)) the received SNR, which is usually 
given. The second moment is Var{l/H1} (given by (24)) which may be expressed in terms of the normalized 
medium scattering function S,(u, ~) = S(u, ~)/M (M given by (6)), and the normalized ambiguity function: 

1 . 
q~T(~', u) /k ~-X~(r, u), )~given by (33). (39) 
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With (39) and (4), (21) is written as below: 

Var{l/H1} = 4 Sn(f, ~:)S~(~,, r)[~](~:- r, f -  ~,)12 dr  dv d~ dr. (40) 

Thus we have a direct relationship between the receiver performance and the signal ambiguity function. 
Performance variation versus the quantity: 

b = Var{lIH1}--N~, 

has been studied [15]. 
It has been shown that, for a given received SNR, a value of b exists that minimizes the error probability. 

The parameter b -which  is a SNR per diversity path--for high received SNR, approaches 3.5 for detection 
problems (eq. 7) and 3 for binary communication problems (eq. 8). So when knowing the optimal value 
of b, one must point out the optimal value of the ambiguity function given by (40), and consequently the 
optimal signals. 

For some values of SNR the optimal value of b cannot be reached: we may see this by studying in 
greater detail the variance defined by equation (40). 

If the scattering function can be reduced to 6(~:)8(v) (this is the Rayleigh model), so that 

Var{llH1} = (/~,[N0) 2, (41) 

the signal form is no longer of relevance to performance. 
On the contrary, if the signal is a large time and bandwidth signal, so that its ambiguity function can 

be approached by a double Dirac function then: 

Var{l iHa} = (J~r~ 2 ff ff ~2 (f, ~:)df ds c. (42) 
\No/  

In fact, the variance is always included between these two bounds; let: 

V = g a r { l l H 1 }  = b/PMNo 
(/~r/N0) 2 

be the double integral in (40). V can be interpreted as the two-dimensional scalar product of S,(f, ~) 
with a quantity .4(f, ~) that is defined to be the two-dimensional convolution of Sn and I~:12: 

.8(f, _A .g,, • ij;:l =, (43) 2dim 

2dim 

The quantities entering into this convolution are real and positive; so the scalar product of S~ and .4 is 
greater than that between S~ and S~: 

2dim 

So: 

(/~,~2. f f S~(f ,~)df  d~Var{ l IH,} .  
N o /  
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On the other hand, the two-dimensional Schwarz inequality leads to: 

(S',, A) <<- ~/(gn, S,)(A, A), 

(The scalar products are all two-dimensional ones). 
Moreover, Sn(z,, ~:) is normalized; so (S'~, S',)~< 1. 
In the same way, let us show that .~ is also normalized. Assume the following bidimensional Fourier 

transforms (2 dim F.T.): 

ei(t, ~,) 2dim" "~(f' ~); /~(t, ~,) ~ S.(f, ¢) 

and Iq~TI 2 is its own 2 dim F.T. 

Or: 

I I  ~(f '  ~:) df  ds ~ = d(O, O) =/~(0, 0).  I~(O, 0)12. 

/ ~ ( 0 , 0 ) = I I g , ( z , , ~ ) d u d ~ = l  andN~T(0,0)12=l. 

So: d(0 ,  0) = land by the same reasoning as given above: 

{/~,A)= I f  A2( f , , )d fd ,<~l .  

So: 

(S',, A)<~ 1 and Var{llH,}~ ,=\|~, 2 (45) 
\No] " 

These two bounds (44) and (45) are illustrated in the following scheme where we have given Var{lIH1} 
in terms of S.N.R. The nearly linear curve is the optimal value needed to minimize the error probability 
and the textured zone is the possible zone for Var{lIH2}. It is limited by the two above bounds. 

We see therefore that it is not always possible to choose an optimal value for the variance. The inferior 
bound depends on the medium itself. For example we have plotted it for the case of two identical paths 
[see example below (Section 4.2a)]: in this case we see that when the S.N.R. is below 6, it is possible to 
choose the optimal value; when the S.N.R. is larger, it is only possible to reach the minimal variance. 
The optimal variance would be reached if there were more propagation paths in order to 'distribute' 
E.,/No in the best way: it is an 'implicit diversity' system [24]. 

4.2. Examples 

(a) When the medium is only time dispersive, the scattering function becomes S(v, K) = (~(~)8 (v) and 
the parameter b is now: 

f l (~(~')()(r)lq~T('-r' 0)12 d~: dr, b=  
No 

where ~F is always a normalized ambiguity function of f(t). In this case the parameter of interest in the 
performance is only the signal correlation function ~[(r, 0), i.e. the main parameter will be the effective 
signal bandwidth. The choice of frequency or phase modulation is important. We have seen above the 
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10 20 

Fig. 8. Choice of the variance. 

particular case of ideal two-path case: in this case the only parameter which appears in the error probability 
calculation is the correlation coefficient p for the delay between the two paths. The mostfavourable case is 

always p = O. 
(b) When the medium is only frequency dispersive, the scattering function becomes S(~,, () = S(~,) 8(~) 

and the parameter b is: 

b =/~ '  r f  d~ d/z, (46) 
N o J J  

where ~i(0, ~) is the doppler resolution function of f(t). In fact: 

~7(0, ~,) = I)r(t)l 2. (47) 

So in this case, only the amplitude modulation can influence the performance. Here the important parameter 

is the effective signal duration. 
Different new numerical simulations have been carried out in the binary symmetric communication 

case [2]. The scattering function is assumed to have a Lorentzian form (given by the expression (37) 
above) and normalized: so, q~ = q = 1. In this work, the performance has not been evaluated by calculating 
the parameter b but by calculating/z(1/2). 

The quantity/z(1/2) has been studied for the four forms of amplitude modulation given above in the 
first column, in order to compare these different forms. 

It has been established that, by considering the 'effective duration', T,, defined by Kennedy [10] as: 

[fo" ]' r .  = E 2.  I/(t) l  4 dt (49)  

The forms given above are quasi-identical from the view of performance with respect to/z(1/2).  For the 
first form, Tu = To. Figure 10, given below, was obtained numerically, and the performance tt(1/2) versus 
the mean received SNR for different values of the product K T ,  (K is the channel frequential spreading 
given by the scattering function). 
Signal Processing 
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Fig. 9. Different amplitude modulations. 
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A maximum value o f /x (1 /2 )  exists for each curve, occurring for a SNR that verifies the relation: 

£1No 
N 

- - - 3 . 4 ,  with N = I + K T , .  (67) 

N is the diversity number in the Kennedy  sense [10]. 
We have confirmed here the effectiveness of the parameter T, for evaluating new signals, and we have 

recovered the result given above by means of the new approximate formulas of the error  probability 
(formula (22)). 

So, for a given received SNR and a given dispersive channel (K)  one can choose the optimal 7",; and 
by optimizing this choice for each configuration, the performance will be characterized by the envelope 
curve (Fig. 10 above), which is not far from the optimum (given by 0.1488). 
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Another fifth signal form has been studied, which is more readily adapted to temporal diversity: the 
coded signals no. 1 and 2 are given in the second column of Fig. 9. Similar results are obtained with 
respect to the quantity T,. However, we have observed that with the second code, the evolution of/~(1/2) 
versus SNR remains for a longer interval very near to the optimum/z(1/2).  It corresponds to the dotted 
lines of Fig. 10. In this sense, this second type of signal is preferable. It means that the two impulses of 
the signal 7(0 are distant enough for decorrelation versus the channel correlation time 1/K. 

This is analogous to a temporal diversity. Nevertheless, let us remark that the longer the duration of 
7(0 the more reduced is the information rate. 

(c) Time and frequency dispersive channel. We have studied the case of two L-delayed paths, and 
frequency dispersive (in the sense of the case given above): 

~(/2, ~) = ~1(/¢)¢~(~) + ~2(p)¢~(~- L). 

The parameter b becomes the summation of four terms in which the doppler resolution of the signal 
always occurs, but in addition the value of the ambiguity function for a delay L is also of interest. 

b=-~oo[f f Sl(f)'~,(v)lg]f(O,f-v)]2dfdv+ f f S2(f)S2(v)]~[(O,f-v)12dfdv 

When the frequency spreading is assumed to be of the same type as above (with parameters K1 and K2 
respectively), we have observed [2] the influence of both kinds of parameters KiTu and L~ T. It appears 
that the conclusions obtained in the separate cases--only time dispersive and only frequency dispersive--are 
valid and can be gathered together. 

5. Conclusion 

In this paper, we have developed techniques for elaborating an optimal receiver at the output of a 
dispersive channel that is characterized by a scattering function estimated previously. 

In most cases, it is possible to elaborate the optimal receiver: in fact when the scattering function can 
be considered to be discrete in the delay-doppler plane, the optimal receiver is given explicitly in paragraph 
3.1. The most difficult case occurs when the scattering function is continuous with respect to delay time: 
tlie evolution along this axis must be quantized. When the scattering function is continuous with respect 
to doppler shift, the optimal receiver analysis must be carried out by means of an internal model (ex. 
paragraph 3.2). Nevertheless some new results permit us to assume that good results can also be obtained 
by using a simplified Kalman filter [23]. 

These results show the importance of the quality of the estimation of the medium scattering function; 
particularly of the plus or minus quantized character of this function. 

But in many cases it is still very difficult to calculate the optimal receiver performance exactly and so to 
compare it with a suboptimal receiver. We have shown here a new way to consider the calculation of 
performance and of signal design (paragraph 4). 

The major new results are in paragraph 4: first the general evolution of the variance of the statistics 
and the domain where it will be possible to adapt signal ambiguity exactly to the scattering function (Fig. 
8). In addition, we have new results for the only frequency dispersive case, where we have compared 
Signal Processing 
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several amplitude modulation forms and we have exhibited the importance of the parameter T~ and its 
connexion to temporal diversity. These connections are also exhibited in [24] in another way. 

Annex 

A 

State variable model of g(t) and of the optimal estimate g~(t) [17]. 
(a) The general structure of the state variable model o f /4 ( t ,  ~) and g(t) is given in Fig. A1 in which 

U(t, ~:) is the noise incoming to the state variable model. 

I 
Fig. A1. State variable model of H and s. 

The whole model (input noise, and matrix systems) is parametrized versus ~:, in order to obtain the 
random bivariable function I-~(t, ~:); the state model itself is related to the variable t. But let us recall the 
hypothesis WSSUS enables to simplify the model because: 

(i) the matrices F, G, d are independent of t; 
(ii) the input noise is stationary versus t and ~: decorrelated. 
The corresponding equations of Fig. A1 are: 

~ - - 2 ( t , ~ ) = F ( ~ ) 2 ( t , ~ ) + d ( ~ ) U ( t , ~ ) ,  t > 0 .  (A2) 
0t 

The noise U(t, ~) is zero-mean, with the covariance: 

E{U(t,  ~) O(t' ,  ~)} = 0 ( ~ ) 8 ( t -  t ' ) 8 ( ~ -  ~), (A3) 

•(t, ~) = t?+(~)x(t, ~). 

/~(~) is the state transition matrix, ¢~(~:) the input vector, ¢~(() the observation vector. 
The system order, as well as the matrices/~, (~, C, is defined from the form of the scattering function. 
The state vector initial covariance is: 

E{XT(0, ~)X'+(0, ~)} =/~o(~) 8 ( ~ - ~ ) ,  (A4) 

in which/~o(~) is the solution of the matricial differential equation: 

/~(~)Po+(~) + Po(~)/~+(~) + G(~)(~(~)~+(g) = 0. (A5) 

So we have the state model corresponding to the signal ~(t) given by: 

g(t) = f 7(t-s~)t~t(~:)X(t, s ~) dg. 
3 

(A6) 
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(b) The structure of the state variable model optimal receiver is deduced directly from the s(t)  model. 
The estimating structure with the internal model is given below, with the corresponding equations [17]. 
In fact /4( t ,  ~) is first estimated, then g(t) is estimated in order to obtain s,(t). The matrices F, G, C are 
obviously the same as in the above model of g(t). 

the estimate equations are: 

- -  X ( t ,  ~) = ~'(~)X(t ,  ~) + Z ( t ,  ~:)[~(t)- §r(t)], t>  0, (A7) 
0t 

x ( 0 ,  ¢) = 0, 

gr(t) = )~(t- ~)C (~ )X( t ,  ~) d~. (AS) 

The matrix of Kalman gain Z( t ,  ~) is given by: 

Z(t,  ~:) =N~0 f xP(t, so, ~-)C(~'))~*(t- z) d~ -. (A9) 

Where/~(t ,  ~, r) satisfies the Riccati matricial equations: 

H'(  t, ~, ~) = ~ (  ~)F( t, ~, ~) + F(  t, ~, ~-)~'(~-) + ~(~)O(~)t~*(~) 
ot 

No 

with 1~(0, ~, r)-~ Po ( ~ ) 8 ( ~ - , ) ,  1~o is given by (A4). 
So we have obtained the optimal realizable structure of the estimate signal ~ (t) and the optimal bayesian 

receiver is obtained by reporting the Fig. A2 in the dotted 'box' of Fig. 2. 

A A 

(_~t) 

Fig. A2. State variable model of the optimal receiver. 

This optimal system is obviously very difficult to realize, the main difficulty being the ~ parametrization. 
Let us recall that Kurth has proposed a theoretical method of development of the variance P(t, ~, ~') into 
orthogonal functions, in order to try to realize this structure. 
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