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Abstract. In this article we present an image predictive coding method using both intra- and inter-frame predictors. The intra-
frame predictor is an adaptive FIR filter using the well-known LMS algorithm to track continuously spatial local characteristics
of the intensity. The inter-frame predictor is motion-adaptive using a pel-recursive method cstimating Lhe displacement vector.
Weight coeflicients are continuously adapted in order to favor the prediction mode which performs better between intra-frame
and motion compensation mode. It is a backwards adaptation which does not necessitate the transmission of an overhead
information. Neither the weight coefficients nor displacement vectors are transmitted. Apart from the uantized prediction
error, it may be necessary to transmit the detection of a discontinuity of the displacement vector. For the examined image
sequence a significant improvement is obtained in comparison with only adaptive intra-frame or only motion compensation
mode. We give and discuss the extension of a known adaptive quantizer for 2D signals. A crucial problem in predictive coding,
particularly with adaptive techniques, is the sensitivity to transmission crrors. A method ensuring the self-adjustment of the
decoder in the presence of transmission errors, which do not affect the pixel synchronization, is proposed for the intra-framc
mode. Neither overhead information nor error-correcting codes are needed.

Keywords. Predictive image coding; adaptive prediction; motion compensation; adaptive quantization; channel errors.

1. Introduction

Among different image coding methodologies, predictive coding can be simply implemented and produces
good results at higher rates. In this paper, we are intercsted in adaptive methods of predictive coding. The
block diagram of the predictive coder/decoder discussed in this paper is shown in Fig. 1. It contains an
adaptive predictor and an adaptive quantizer, the adaptation being realized using the quantized prediction
error &, which is the transmitted information only. In Fig. 1, x is the original signal, x is the signal
reconstructed by the decoder, % is the predicted signal and e is the prediction error. As a result of eventual
transmission errors the received prediction error may be different, &, and similarly will be concerning the
predicted, X', and the reconstructed, %', signals.

Knowing that there exist simultaneously spatial and temporal redundancies, we consider a hybrid struc-
ture of intra- and inter-frame prediction (Fig. 2). The spatial part of the predictor is a linear filter. Given
that the statistical characteristics of the luminance vary spatially and that this signal is characterized by
many nonstationarities, the predictive filter must be space-varying. An approach which permits tracking of
the variations is an adaptive filter. A method of adapting the 2D filter consists of switching between different
filters, switching based on a classification rule. Sometimes this technique requires the transmission of
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overhead information, i.e. the class of each pixel. Another adaptive method is to identify the optimum
linear filter for a block of the frame using a least squares criterion [11]. The coefficients of the filter must
also be transmitted in this case. To avoid the transmission of additional information we here use a continu-
ously adapted filter, the adaptation being based on previously reconstructed pels. The adaptive algorithm
used 1s that of Least Mean Squares (LMS) first introduced by Widrow. The temporal part of the predictor
is adapted using an estimator of the displacement vector. A pel-recursive estimator is used, similar to the
one of Walker and Rao [17] and of Cafforio and Rocca [3]. We discuss the displacement estimator in more

detail in Section 2.

Thus we have an adaptive filter for spatial prediction and a motion adaptive inter-frame prediction. It
is obvious that in some regions one typc of the described predictions performs better than another, in the
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Fig. 1. The structure of the adaptive predictive coder/decoder.
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Fig. 2. An adaptive intra-inter-frame predictor.
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sense that the prediction error is minimized. We must then adapt between these two types of prediction.
We here propose to continuously adapt a weight coefficient for the inter-frame predictor and the coefficients
of a traversal intra-frame filter. The predictor can then be written as

Km.n;ty="%  atk, DEm—l,n—1; )+ bl(m— 6, n—it; t— 1), (1)

(k)esS

where 1 is the luminance or the intensity, I is the reconstructed intensity, m (respectively #) is the row
(respectively column) index, ¢ is the temporal coordinate, S is a quarter-plane or a nonsymmetric half-
plane domain, 7 (respectively ) is the horizontal (respectively vertical) component of the estimated displace-
ment vector. The coefficients of the spatial filter {a(k,/)} and the weight coefficient » are continuously
adapted using the LMS algorithm.

The prediction error which is quantized and transmitted is not stationary and its probability distribution
is unknown. A reduction of the distortion is obtained, if the quantizer is not fixed, but adapted to the
statistics of the prediction error. An extension of known techniques in 1D predictive coding is given in this
paper for a scalar three-level quantizer.

It is known that predictive coding is sensitive to transmission errors, even with constant length codes.
The sensitivity to transmission errors is greater if the predictor is adaptive and this adaptation is based on
the prediction error. A topic also studied in this paper is the adjustment of the decoder in the presence of
transmission errors. We only consider errors which do not affect the pixel synchronization and we demon-
strate that the self-adjustment of the decoder can be obtained using some regularization constraints.

The organization of the paper is as follows. In Section 2 the algorithm of motion estimation is briefly
presented and discussed. In Section 3 the algorithm of adaptive updating of the coefficients is given. In
Section 4 the adaptive quantizer used in this paper is presented and discussed. Section 5 presents constraints
and modifications used to obtain the self-adjustment of the decoder in the case of transmission errors.
Section 6 gives some results of the algorithms proposed in this paper to illustrate and evaluate their
performances.

2. Motion compensation

The displacement vector is estimated for each pixel. The algorithm used here to estimate the displacement
vector is similar to that of Walker and Rao [17] and Cafforio and Rocca [3]. Tt is a pel-recursive intensity-
based algorithm which is presented below. The estimator is composed of three parts. The first part is an
a priori estimator using the estimated values of the displacement vector in the causal neighborhood of the
current pixel. The second part is a detector of discontinuities on the velocity ficld. The third part is an a
posteriori estimator based on the minimization of the Displaced Frame Difference (DFD).

2.1. A priori estimation of the displacement vector

The a priori estimator used here is based on the hypothesis that the displacement vector is slowly varying.
Thercfore it is assumed that the motion is locally translatory. The simplest a priori estimation (z°, ¢°) at
pixel (m, n) under this assumption, knowing the already estimated values (i, 9} of the displacement vector,
is obtained from the previous pixel in the raster scan order:

0 5 —
[u(m,n)]z[u(m,n 1):|’ for n>0, )

v"(m, n) dm,n—1)
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and for the first column:

|:uo(m, O)}_ [ﬁ(m -1, 0)} for m>0
(m,0)] Lém—1,0) 1 '

2.2. Detection of a discontinuity

As the estimation method is based on the intensity using local measurements, the algorithm may estimate
false displacements. Discontinuities on the real velocity vector field also exist, because in natural scenes
independent 3D rigid movements, or edges between different surfaces which arc subject to the same 3D
rigid motion may cxist. An cfficient cstimate of the velocity vector necessitates the joint detection of all
these discontinuities. This detection must be based on the correctness of the a priori estimation of the
displacement vector and consequently on the prediction error of the intensily. The prediction error bascd
on the displacement estimation is the displaced frame difference given in

Alm, my=1Im, n; 1) = Km—o", n—u"; r—1). 3)

Two approaches, which are described below, can be considered.

(1) The test of discontinuity is realized at the current pixel using the current a priori DFD. If a disconti-
nuity is detected, a reset code is transmitted to set the a priori estimation to zero. To determine the test we
assume that f(#1, n; 1), knowing the displacement vector, is a Laplacian (or Gaussian) distributed variable
with mean f(m — v, n—u; — 1) and standard deviation ¢ (=hypothesis 0: no discontinuity). Under hypo-
thesis of discontinuity I(i, n; t) is assumed Laplacian-distributed {or respectively Gaussian) with mean
I(m, n; t—1) and the same standard deviation. The test is determined by maximizing the probability a
posteriori. We suppose known probabilities of discontinuity (p;) and no discontinuity {po>p;). Some
calculations give the following test: in the Laplacian casc a discontinuity is detected if

H(m, ;1) — Im— 0%, n— a5 (— )| = m, n; 1) =L, nz 1— 1) > = 1n 2, (4)
\/i ™M
and in the Gaussian case if
m,n; ) —Im—0", n—u"; t— 1)) — (I(m, n; t)*I(n;, nit— 1y >20° m, (5

F4

(2) The test of discontinuity is realized in a causal neighborhood S, of the current pixel. If a discontinuity
is detected, the a priori estimation is set to zero, but there is no need to transmit a reset code. Using similar
assumptions as in case (1), we obtain the following test: a discontinuity is detected in the Laplacian
case if

> Hm—ik,n—1; H-—Im—k—"n—1-"5t- D[ lm—k,n—5L; )~ Im—k,n—1;1—1)

(kdyeSy

o Do
>—card[ Sy} In=—, (6)
V2 ‘ 4
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card[Sa] being the cardinal of set of pixels Sy, and in the Gaussian case if

S o (Hm—k;n—L)—IKm—k—1" n—1—d1-1))°

{k/)eSy

—(Im—k,n-LO—Im—kn—1I;t— 1))2>20'2 card[Sq] 1n@. (7
I

2.3. A posteriori estimation of the displacement vector

Independently of the detection of a discontinuity the displacement vector must be updated at each point.
The criterion which is optimized is the square of the 4 posteriori displaced frame difference:

em,my=Im,n;)—I(m—v,n—u;1—1) (8)
under some regularization constraints. Finally the following quadratic form must be minimized:
J(u, v)=(m, n}+ AL(u—u’y + (0 — ")), (9

where A is a regularization constant measuring the confidence on the a priori estimation in connection with
the estimation error. In reality this criterion is not directly quadratic on the unknown parameters w and o.
A first order development is admitted in order to obtain the linearization of e(m, n),

e(m, n)=e°(m, n)+gx(u—u0) +gy(v——v°), (10)

where g, =L(m—v°,n—u’; t—1) and g,=I,(m—1", n—u"; 1—1) are the horizontal and the vertical gradi-
ents of the intensity. Using this approximation we obtain the following solution:

[ﬁ(m, n)}[uo(m,n)]_ (m,n) [gx} (an
smmy ) Le"mm) ] A+gitgile )

In practice the reconstructed image intensity is used to determine g, and g,, in order to have exactly the
same estimator at the decoder. For the same reason the DFD is calculated using the reconstructed intensity.

2.4, Cdnvergence properties of the algorithm

Another way to interpret (11) is that of recursive stochastic adaptive algorithms, which have interesting
performance in tracking the eventually changing displacement vector. The algorithm based on (2) and (11),
without the discontinuity delection, is known as the Normalized Least Mean Square algorithm (NLMS).
In [2] it is proven that thc NLMS algorithm according to (2} and (11) is almost surely and mean square
expenentially convergent, if {g., g,} constitutes
{a) a stationary ergodic process having positive-definite covariance, or
(b) a nonstationary @-mixing process with mixing constants {@.,.} satisfying

g ¥ 130
Z Z Pran < X0

m=0 n=0
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%]

M— o0 N = Nm=0 n=0

1i(m, n) L(m, n)L(m, ”)}}
I(m, n)(m, n) I',z,(m., n)

being positive-definite (E being the notation for the average). Let us remind that a g-mixing process is one
for which the distance future is weakly dependent upon the present and that the mixing constants measure
this dependence.

This convergence property means that, if the real 2D motion is translatory, and the linear model according
to (10) is valid, then the algorithm according to (2) and (11) converges to the real displacement vector. It
also means that, if the real displacement vector is varying, the algorithm according to (2) and (11) converges
to a vector which ensures the minimization of the DFD.

3. Adaptative intra—inter-frame prediction

Two methods can be used in order to adapt the predictor to the spatiotemporal characteristics of the
signal. The first uses a forward segmentation where the best predictor is selected from a set of predictors.
For example, an inter-frame predictor may be better for parts of the frame without motion or with slow
motion, and an intra-frame predictor may be better for parts with fast motion. The second method uses a
backward scheme of adaptation of the predictor without segmentation. The predictor is a weighted sum of
predictors and the predictor coefficients are adapted continuously, pel by pel, to the local characteristics of
the intensity. In this papcr we adopt the second method. We use four directive predictors: a horizontal, a
vertical, a diagonal and a temporal one. The last one is based on displacement estimation. In (1), a(0, 1)
is the horizontal coefficient, a(1, 0) the vertical, a(1, 1) the diagonal and b the temporal. A similar scheme
is used by Pirsch. The work of Pirsch [16] is limited to the case of only two predictors: an intra-frame
using three fixed coefficients and an inter-frame without motion compensation.

To adapt the predictor coefficients we use the Least Mean Square (LMS) algorithm for its simplicity and
good performances in nonstationary situations. The LMS adaptive filter has been used in one-dimensional
predictive coding, and in a wide range of one-dimensional signal processing applications. A thorough study
of adaptive FIR filters is given by Macchi and Bellanger [10]. An extension of the LMS algorithm for two-
dimensional signals is discussed by Hadhoud and Thomas [8]. Alexander and Rajala [1] used the LMS
algorithm in image coding and obtained a reduction of the distortion of about 6 dB compared with a fixed
coefficient DPCM. We also have given results of applying the LMS algorithm in intra- and inter-frame
image coding, with or without adaptive quantization |14].

The stochastic gradient algorithm minimizes the mean square prediction error

E{(Hm, n; )~ I(m, n; D). (12)

The coefficients (here three intra-frame and one inter-frame coefficients) are updated by the following
expression:

a(0, 1) a(0, 1) Im,n—1;1
a(l,0) a(l,0) ) Im—1,n;0)
= + _
a(l, 1) a(l, 1) Helmml g =19 | (13)
b donm b da Tm—6,n—i;1-1)
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where ¢1s the quantized prediction error and ¢ is known as the adaptation step-size. The updated coefficients
at pixel (m, r) arc usced to predict the intensity at the next pixel (m, #n+ 1). Tt has been proved that without
quantization the inequality

0<p< (14)
vP,
(v: number of coefficients, P,: power of the intensity signal) is necessary to ensure the convergence [10].
In fact, the adaptation step size must be big enough to quickly forget the initial conditions and to have
good tracking propertics and it must be small enough Lo obtain a low steady state mean-square error. The
adaptation step size we use is about 1/(vP;). This value of the step-sizc maximizes the convergence speed
of the LMS algorithm [10].
We must note that the gradient term on the right-hand part of {13) uses the quantized prediction error
and previously transmitted and reconstructed pels. Thus, in abscnce of transmission errors exactly the same
operation can be realized by the decoder.

4. Adaptive quantization

In order Lo achieve an interesting compression rate a scalar three-level quantizer is used to quantize the
prediction error. In image predictive coding two types of distortion may be visible:
- granular or roundoff errors in homogeneous zones,

slope overload errors in edge elements.

4.1. A three-level aduptive gquantizer

Also knowing that the prediction error is not a spatially stationary process, an adaptive quantizer may
track the statistics of the prediction error for minimizing the quantization error (Fig. 3). The parameter
s(i, k) completely characlerizes the quantizer, when the prediction error is supposed zero-mean. It is adapted
by a backwards technique, which means that only the previously quantized values of the prediction error

.‘\ men(c)
s(m,n).
s{m,n)
) e
s(m,n) -
2
| —s(m,n}

Fig. 3. A three-level adaptive quantizer.
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are used. For one-dimensional DPCM schemes this technique was studied by several authors [4-7, 9]. Here
the parameter s(im, n) is updated by the following algorithm:

zim,n—1)z(m—1,n)

s{m, n) = S — , m=0 and n=0, (15)

é(m, n)=0,,,(e(m, n)), (16)

z(m, n)=F(e(m’ n))s(m, ), (17)
s(m, n)

with z(—1,n)=z(m, —1)=z(—1, —1) for all m=0 and n==0, and F{-) a positive valued function which
satisfies

F)=F-1)>1, F)<I, (18)

F(1} is called the step-size adaptation paramcter. A possible choice for these parameters is F(0)F(1)=1.
The parameter z(m, n) may be interpreted as the state variable of the quantizer.
The parameter z(r1, 1) is bounded in order to avoid that s(i, k) converges to zero or diverges:

0<é<z(m, n) <A, (19)

The adaptive quantizer with this maximum and minimum constraint is known in the 1D case as the
saturating adaptive quantizer and studied in [5]. Because z(m, n) is bounded, s(r1, n) is also bounded:

52 2
Zés(m, n)sg. . (20)

4.2. Convergence properties of the adaptive quantizer

We now consider the case of a fixed 2D predictive filter. We shall study the convergence properties of
the adaptive quantizer assuming that the predictive filter is matched. For this reason according to the
results of [5], we must prove that the space-averaged mean-absolute vahie of the reconstructed signal and
of the prediction error are bounded. We give these bounds in the following. If the predictive filter is stable,
then the reconstructed 2D signal is deterministically bounded. For this, consider a recursive predictive filter
which satisfies

Xm,my=3% Y alk, DE(m—k,n—1)+&(m, n). 20
(k.es
Knowing that &(m, n) is absolutely bounded by A*/8, the result is obvious. In Appendix A we prove that,
if the filter is quarter-plane (with a(k, 7/} =0, for k> K and /> L), a bound for ¥(m, n} is given by

2 -1

A l K L .
|%(m, m)|<— inf ——— a(k, yr ¥ry e 101100 2
O nn(l— (1 —r2) 31 9° kzﬂ 1§0 ( UERE ( )

[+ |{]£0

where (r ¢'?, r; ¢9%) belongs to the convergence region in the z-transform domain with 0<r, <1, 0<r,<1,
0<0,<2m and 0< 0, <2xn. This expression relates the bound for ¥(m, #) to the coefficients of the filter
Talk, )},

CALZEDY
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Let us now consider the prediction error under the hypothesis of a matched predictive filter, that is, we
suppose
K L
x(m,m)=73% 3 alk, Dxim—k,n—=10)+w(m, n), (23)
Wiz
where w(m, 1) is a 2D white noise. We shall demonstrate that the space-averaged mean-absolute prediction
error is bounded. It is relatively easy to show that

K L

em,my= > Y alk,De(m—k.n—D+awa(mn), m=0 and nz0, (24)
k=6 =0
el 11120

with

K L
oim,r)=wim,n)— 3% 3 alk, De(m—k n-1).
Wiivizo
The solution of this 2D linear difference equation on e(m, ) depends on the input @(m, n) and on the
initial conditions. Let us consider the following initial conditions for the predictor: X(m, n) =0, for m <0
or n<Q. Then, e(m, n)= x(m, n), for m<0 or n<0. Let us writc

e(m, n)=e®(m, n) +e%(m, n) (25)

where the part ¢"”(m, n) depends on the input @(m, n) with zero initial conditions, and @ (m, n) is the
solution of the homogeneous 2ID linear difference equation resulting from (24), with @(m, #) =0, depending
on the initial conditions only. Concerning the first term € (m, #), we can write

K I K L
m,my= Y alk, Ne®(m—k,n—D+wimn)— % Y alk, De(m—1Ik,n=1). (26)
tnze Wil

Let us consider the impulse response A(k, /) of the above recursive filter. We can write

m n K L
emm)=3 Y Wk, D{wm—k,n=0—Y ¥ alk, h)em—k—k,n—I-1)]. 27

h=0 =0 k=0 h=0

kil + 1|+ 0

Knowing that the quantized prediction error is bounded by A%/8, we obtain the following bound:

AZ K L oc oz
E{e®(m, n)} <[E{wim,m} +— Y Y lalk, D] T T |atk, 1. (28)
61‘]{1:4?‘”’:3 k=0 I—0

The second term ¢'”(m, n) due to the initial conditions is studied in Appendix B, where it is proved that
its space-averaged mean absolute value converges to zero, i.e.

1 M—-1 N1
lim ‘E{ Y Y 1e9m, n)|}=0. (29)

Moo No oo MN m=0 n=0
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Using (25), {28) and (29), we finally find that

1 M—-1 N—1
lim  sup { Y Y letm, ”)l}

' E
Mo N—x MN m=0 n=0

. A =z
S(cu+(la(ﬂs DI+ a(l, 0} +|a(l, l)l)) 2 Ak, I, (30)
6 k—0 I—u
where ¢, = E{|w{m, n)|}.
The above results, according to the study of [5], permit to establish the existence of a unique stationary
joint distribution of the input and decoded 2D processes.

5. Decoding in the presence of transmission errors

The main problem with predictive coding, and particularly with adaptive methods, was found to be its
instability in the presence of transmission errors. It is important to ensurc the robustncss of the decoder
without rate augmentation. The criterion of adaptation of the predictor must then be modified. We study
this problem in the case of intraframe coding without motion compensation (h=0).

The algorithm presented in Section 3 may be divergent in the presence of transmission errors. A mod-
ification of the initial algorithm, constraining the output of the predictor, leads to the stabilization of the
filter in the decoder. The criterion minimized for the constrained LMS algorithm is

J.=E{*m, n)} + nE{(T(m, n)— L(m, n))*}, (31)

where fr(m, m) is the output of a fixed coefficient filter, whose inverse is a stable filter, and 17 is a positive
constant which may bec interpreted as a regularization factor.

For stationary signals, the minimization of the above criterion gives the following solution:
1 n

H,= H+
I+9 1+n

H, (32)

where H (vector containing the filter coeflicients) is the optimal solution resulting from the LMS algorithm.
Thus H. is the barycenter of (H, 1) and (H;, n). Therefore H; may be interpreted as an a priori conservative
cstimation of the predictor coeflicients with confidence degree 1. A similar approach is introduced in [12]
for another type of adaptive predictor. The updated equation of the constraind stochastic gradient algorithm
is

a(0, 1} a(0, 1) Im,n—1;1)
a(l,0) | =| a(1,0) +ul@lm, m)— n(I(m, my—Ietm, n)))| Km—1,n;1) |, (33)
(1(1, 1) (m.n) (l(]., 1) (ma 1) f(ﬁ'l— l,n-— ] ; l’)

A study of this algorithm is given in {13], where its performance is evaluated, and in [15], where its
robustness is proved for some specific signals,

If an adaptive quantizer is used, it is also vulnerable to transmission errors. It must be modificd, to avoid
or to dissipate the effects of transmission errors. In [7] a technique is introduced for this purpose in the

Signal Processing: fmage Communicution
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case of a 1D adaptive quantizer. Wec usc the same technique here by modifying (15) to diminish the cffect
of a transmission error:

zZ(m, n—1)"z{m—1,n)"

zZim—1, n— 1)7’1

s(m, n)= , (34)

where (< y <1. In fact, the above equation gives a linear recursive relation on In ¢ (m, n):

(35)

Inz{m, m)y=yInz(m—1,n)+yInz(m, n—l)—y2 In z(m-—l,n—l)—!—]nF(e('m’fz')).

s(mm, n)

The 2D lincar recursive filter on In z{m, n) is separable and obviously stable for 0« y < 1. Thus effccts of
errors on F(e(m, n)/s(m, n)) will be dissipated.

The theoretical results of [13] and [15], and simulation results of the [ollowing section demonstrate that
the decoder is readjusted if the transmission errors do not affect the pixel synchronization. This supposes
that fixed length codes are used and only bit inversions are considered. The case of variable length codes
is more difficult; it is not considered here.

6. Simulations and results

The coder described in this paper has been simulated for the ‘CAR’ sequence of images provided by
CCETT (COST 211 bis European normalization). Figurc 4 gives the first image of the sequence. The car
is in movement and the camera pans the scene. A strong additional noise disturbs the intensity and dillerent
types of spatial details are present in the scene. To appreciate the importance of the motion, the difference
between the first two frames is given in Fig. 5. The empirical standard deviation of the difference is 30.1.

The quality criterion is given by the mean square distortion

M- N1

= LY U Tonm (0

Fig. 4. The first frame of the sequence ‘CAR’ (CCETT).
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Fig. 5. The difference between the first two frames.

or equivalently by \/D. The power of the prediction error is given in order to appreciate the performance
of the predictor. Finally, the entropy of the quantized prediction error is given, this quantity bemng closely
linked to the compression rate.

Table 1 gives numerical results for 60 fields of the sequence using the adaptive quantizer of Section 4.
We distinguish two cases of predictors using a motion estimator : in case A the coder transmits the addresses
of points of discontinuity and in case B it does not transmit them. The detection of discontinuities is
described in Section 2, and the rate of discontinuities detected for the framc of Tablc 1 was about 1%. P,
is the power of the prediction crror using the adaptive quantizer and H is the entropy of the 3-level
quantized prediction error (H also includes the discontinuity side information in the case of coders A).
SNR is the signal-to-noise ratio given in dB and defined by

2557 ‘
SNR =10 logy, o (37)

In our simulations cach field is composed of 264 lines and 674 points per line. For the obtained value of
the entropy and for fields of 288 by 720 points, the bit-rate is about 15 Mbits/sec for the luminance
component. The pictures given in the paper are frames composed of 512 by 512 points. Figure 6 gives the
distortion for the 60 ficlds of the sequence using the hybrid predictor of casc A, cxcept the first two fields
which are coded using an adaptive intra-field predictor.

Table 1

Numerical results for the “CAR” sequence

Hybrid Hybrid Motion Motion Adaptive
prediction prediction compensation  compensation  intraframe
A B A B

VP, 13.3 13.9 16.0 16.2 16.4

VD 7.5 7.8 8.6 8.7 9.0

SNR 30.7 303 29.5 293 29.1

H 1.33 1.33 1.36 1.36 1.41

Signal Processing: fmage Communication
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80 4

70 4

50 T T T T 1
0 10 20 30 40 50 60
Fig. 6. Distortion of the ‘CAR’ sequence using the hybrid coder A,

Figures 7, 8 and 9 give the prediction error before quantization for the hybrid adaptive, the motion
compensated and the adaptive intraframe predictor, respectively. The prediction error is dilated by a factor
2 in these three figures.

If the rate of transmission errors is about 1077, the square root of the distortion is 9.1 at the coder, using
the stabilization method of Section 5, and 9.3 at the decoder for frame ‘CAR_00’. This distortion is
practically visually imperceptible. In Fig. 10 reconstructed at the decoder frame “CAR 00’ 1s given, when
the pure LMS algorithm is used for adapting an intra-frame predictor and when only one transmission
error occurs. In Fig, 11 is given the reconstructed at the decoder frame ‘CAR_00°, when the modified LMS
algorithm is used for adapting an intra-frame predictor and when the rate of transmission errors is about
107>, We give in Fig. 12 frame ‘CAR 00 as it is rcconstructed at the decoder, when a block of 256
transmission errors occurred at the 255th line of the frame. The square root of the distortion is 9.5. All
these results illustrate the small sensitivity of the proposed adaptive method to transmission errors.

7. Conclusion

An adaptive intra-inter-frame predictive coding method is presented. The simulation of the proposed
method for a very critical image sequence illustrated a certain improvement in comparison with

Fig. 7. The prediction error before quantization for the hybrid adaptive predictor.
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s

Fig. 10. The decoded frame *CAR_00" with the LMS intra-frame predictor after one transmission error.
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Fig. 11. The deeoded frame ‘CAR_00" with the moditied LMS intra-frame predictor with a rate of transmission errors of 107,

Fig. 12, The decoded frame "CAR_00" with the modified LMS intra-frame predictor after a block of 256 transmission errors.

non-adaptive methods or only motion compensation techniques. Only a small complexily increase from
motion compensalion pel-recursive methods is needed. The crucial problem of transmission crrors is consid-
ered in the casc of adaptive intraframe prediction. Only some algorithmic complexity is added in order to
make the decoder in practice non-sensitive 1o channel errors. Knowing that pel predictive methods produce
good results at higher rates, which are improved using adaplive techniques, we think that replacing the pel
prediction by block prediction, and scalar quantization by vector quantization, good results could be
obtained at lower bil-rates.

Appendix A. Bounding the output of a 2D quarter-plane linear filter

Firstly we prove the following proposition.
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PROPOSITION. Let h(m, n) he the impulsional vesponse of a first quarter-plane 2D linear filter and H(z, w)
its transformation in the (z, w) dowmain. If the filter is stable, then

o0 o l
> ¥ |h(m,n)|<inf ————————sup|H(r, e, r e, (A1)
m=0 n=0 r'”(l_rl)(lvrQ) 81.6>
where (r; &', r, &%) belongs to the region of convergence of Iz, w), with 0<r <1 and 0<r,<1.

PROQOF. The impulsional response is related to its transformation in the (z, w) domain by

h{m, n)= ——1_5 f j; H(z, w)z" 'w" ' dz dw, (A.2)
& &) (&

-2

where ) and €, are closed curves belonging to the convergence region. Let us put z=r, e’ and
w=ry ¢! with 0<r <1, 0<r<1,0<8,<2n and 0< 6, <2rn. Then we can write

n 2n
h(m, n)= J f H(ry ', ry 1) 0% 40, d6,. (A3)
0 i

1
(2n)’
From this expression we obtain the following inequality:

lh(m, n)|\(2 ¥ J J |H(ry €', ry €'*) d6) 6, (A4)
and, also,
[h(m, n)| <77r sup |H(r, e, 1, e7%)). (A.5)
8.6,

The summation over the quarter-plane gives

oo u 1 2n 2n . .
P I I B : . f j |H(r €™, r2 €'} d6, d6. (A.6)
] 0

m=0 n=0 (211:) (l_rl)(l_rl)

Then we havc

xG =) 1
him, S = H(r; &%, r e A7
mgu EOI {(m, n)|< d=ro(i=r2 3}‘5’,' (ri e, e (A7)

This is true for any (r;, r2) satisfying the above conditions, and thus the proposition is demonstrated. [
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If the filter 1s recursive quarter-plane, for which

K I =1
Hiz,wy=[1-Y Y alk,Dz"*w "} , (A.8)
k=0 /-0
|k + |0
then we can write
pa o 1 K i -1
S |h(m, n)| <inf — sup 1= % Y alk, ryfes' e O (A.9)
m=0 n—0 nos (T =r ) (1 —r3) 6162 k=0 /=0

EUEE

Appendix B. Study of the prediction error due to the initial conditions

An upper bound of E {Z:':_O] Z:;Ol le"'(m, )|} is derived which allows to prove that the space-averaged
mean-absolute value of e (s, n) vanishes to zero. In order o simplify the demonstration and the notation,
we consider the particular case where =K =1, in (24). Then, we have

Vm, my=a(l, 0} (m—1, n)+a(0, Ne(m, n— Dy+a(l, DePm—1,n—1), if m=0 and nz=0,
¢'%(m, n)=e(m, n), if m<0 or n<0.
(B.1)

Let us define

EOz, w)= Z Z eV(m, n)z "w (B.2)

m—0 a0
It is casy to prove that the previous (z, w) transform satisfies
11 —a(l,0z ' —a(0, Dw™' —a(l, Dz"'w™"1EV(z, w)

=a(l, 0)e(—1, 0) +a(0, 1)e(0, —1}+a(l, De(—1, —1)

+ i [a(1, Me(—1, n)+a(l, De(—1, n—1)]w "
=1

n=

Y [a(0, Vet —1) +a(l, De(m—1, )]z, (B.3)

m=1
The above relation is also equivalent to
e (m, ny=a(1, 0)h(m, 0)e(~1, n) +a(0, HAO, melm, —1)+a(l, Dh(m, n)e(—1, —1)

+ i [a(l, OYA(m, Ky +a(l, Da(m, k— 1D ]e(—1,n—k)

k=

+ Y [a0, Datk, n) +a(1, Datk—1, m]e(m—k, —1). (B.4)
k-1
Yol. 4, No. 6, November (992



474 G. Tziritas, J.C. Pesquet [ Predictive coding of images

Taking the absolute value of ¢(sn, #) and using inequality (A.5) of Appendix A, we oblain
e (m, n)|<c,,{a"'/3"|a(1, De(—1, —1)|
+ a'”[ld(la 0)e(—1, m}| + (Ja(1, DB +a(1, 1}]) é] B le(—1, n—k)FJ
+ﬁ"|:|a(0, Dye(m, —1)|+ (la(0, D] +]a(l, 1 krE:;I o e(m—k, l)q}, (B.5)
where ¢y =supg, o, |H(r e r ey, a=r and B=r (0<u<1,0<f<1). Then, one can write

M-1 N-I
>y le”(m, )|

=0 =10

Cja-e™a-gh gyl
SLH{ U=a)(1=p) la(l, De(—1, —1)[+ —a

=g

N -t ) 1 N-2 .
>{Ia(i,O)l Y, le(=1 k) + (la(1, 0} +la(1, 1)]) g (1-p" "l)le(—l.k)lJ

1-87| Mo 1
+ [[0(0, DI Y letk, —D)l+ (la0, Ve +la(l, 1){)
| k=0 l—a

<Y (1—a¥ ek, —m}}. (B.6)
k=0

Let us consider the following initial conditions for the predictor: (=1, k)=x(k, —1)=0, for all k= -1,
Then, e(—1, k)=x(—1, k) and e(k, —1)=x(k, —1), for all £=—1. The above equation leads to

E{ Y e m, n);}

m=0 n=0

CJa=a™a-gr)
@xc”{ G—aa—p @i

—a™ AN -l
+ [|a(|,0)w+la(l,0)EB+Ia(1,1)I<N_1ﬁ81 B ﬂ
P [la(U, l)|M+|a(0’ Dia +la(1, 1) (M—l—a i):'} (B.7)
- l-—a l1—a
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where ¢, =E{|x(m, n)|}. Finally, we find

M-1 N -1
E{ YO €0, n)|}

=0 p—U

CylClr

g0 1—a™ 1.0 1, N
<(1~a)(1ﬁﬁ){( a™ )(la(1, 0} +la(l, 1))

+(1=BY)(ja(0, 1)l +la(1, 1)|)M_(Lfa H1=-87)

(I—a)(1-p)
* B = w@la(l, 0)|+a(l = B)la(l, 0)|+ (1 —ap)la(l, l)l]}- (B.8)
From this inequality, it is straightforward to show that
1 {M’l Nt . }
lim —E{§ ¥ e '(m, =0. B.9
M- Nox MN mé() ng() ’ ( n)| ( )
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