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Abstract. This paper deals with the robustness of ADPCM systems versus transmission errors. To secure the stability of the
decoder, it is necessary to modify the form of the LMS' algorithm used to adapt the predictor. Solutions introducing soft
constraints are investigated. While the leakage algorithm is proved to be not fully satisfactory. 2 new stabilizing algorithm is
presented which allows to achieve good performances. Compared to existing methods, the main advantage of this algorithm
is its low computational complexity. From a theoretical point of view, the effect of transmission errors is described by a set
of nonlinear recurrent equations and an analysis is carried out in the deterministic second-order case. In more general cases,
simulation results are given. Especially in image coding, it is shown that the method is efficient 10 fight against relatively high
error rates.

Zusammenfassung. Diese Arbeit behandelt die Robustheit von ADPCM Systemen geneniiber Ubertragungsfehlern. Um die
Stabilitit des Dekodierers sicher zu stellen, muB die Form des LMS-Algorithmus, der fur die Adaption des Pradiktors benutzt
wird, veriindert werden. Es werden Losungen untersucht, wobei schwache Randbedingungen eingefithrt werden. Wiahrend
bewiesen wird, daB der ‘Leakage’-Algorithmus nicht voll befriedigend arbeitet, wird ein neuer stabilisierender Algorithmus
vorgestellt, der es erlaubt, gute Leistungen zu erzielen. Verglichen mit existierenden Methoden ist der Hauptvorteil dieses
Algorithmus seine geringe rechnerische Komplexitat. Der Effekt von Ubertragungsfehlern wird vom theoretischen Standpunkt
aus durch ein System- nichtlinearer rekursiver Gleichungen beschrieben und es wird eine Analyse im deterministischen Fall
zweiter Ordnung durchgefiihrt. In allgemeineren Fillen werden Simulationsergebnisse angegeben. Besonders bei der Bildko-
dierung wird gezeigt daB die Methode relativ hohe Fehlerraten wirkungsvoll bekampft. ‘

Résumé. Cet article traite de la robustesse des systémes ADPCM vis-a-vis des erreurs de transmission. Pour assurer la stabilité
du décodeur, il est nécessaire de modifier Ia forme de Palgorithme LMS qui est utilis¢ pour adapter le prédicteur. Des
solutions introduisant des contraintes douces sont étudiées. Alors que I'algorithme avec facteur de fuite ne donne pas compléte
satisfaction, un nouvel algorithme stabilisant est présenté qui permet d’obtenir de bonnes performances. Comparativement au
méthodes existantes, le principal avantage de cet algorithme est sa faible complexité en charge de calculs. D'un point de vue
théorique, Peflet des erreurs de transmission est décrit par un systéme d'équations récurrentes rion-linéaires et une analyse est
menée dans le cas déterministe d’ordre 2. Dans des situations plus générales, des résultats de simulations sont fournis. En
particulier en codage d’images, il apparait que la méthode est efficace pour lutter contre des taux d’erreurs relativement éleves.

Kevwords. Predictive coding; adaptive filtering; DPCM structure; transmission errors: constrzined algorithms.

Correspondence 10: Dr Jean-Christophe Pesquet, Laboratoire des Signaux et Systémes, Ecole Superieure d’Electricie, Plateau de
Moulon. 91192 Gif-sur-Yvette Cédex, France.
* This paper has won the EURASIP/ELSEVIER Best Student Paper Award 1992.

0165-1684 '93/3$06.00 1 1993 Elsevier Science Publishers B.V. All rights resenved



2 J.C. Pesquet et al. [ LMS algorithms for decoder stability

1. Introduction

ADPCM (Adaptive Differential Pulse Code
Modulation) is a well-known technique to achieve
compression of correlated signals [10]. Indeed, it is
a satsfactory solution to code both speech and
images with low complexity. Yet, in the most wide-
spread structure using a backward adapted pre-
dictor with the LMS algorithm, it appears that in
the presence of transmission errors the decoder
suffers from misalignment with respect to the
encoder, which induces a coding noise. The
decoder may even become unstable. To solve this
~problem, standard algorithms combinc severa!
means and in particular a modification of the adap-
tation and stability checks [5]. This last require-
ment makes the method substantially more
complex when the order of the predictor is high
and/or when two-dimensional fields are processed.

A simpler alternative solution is proposed here.

It is based on a regularization of the prediction

criterion leading to a class of soft-constrained LMS
algorithms. According to the form of the regular-
ization, either the usual LMS with a Leakage Fac-
tor (LF) {2, 6] or a new algorithm called the LMS
with a Stabilizing Factor (SF) [11] is obtained. In
this paper, the capabilities of these two algorithms
to improve the robustness versus transmission
errors are compared. The SF algorithm is proved
to give the best performances.

In Section 2, the principles of adaptive predictive
coding are recalled. Section 3 shows that the effect
of transmission errors may be described by a set of
nonlinear stochastic recurrent equations. In Sec-

tion 4, the failure of the LMS algorithm is analysed

and Section 5 explains the interest of including soft
constraints in this algorithm. Then, in Section 6, a
comparative study of the LF and SF algorithms is
made when the recursion introduced in Section 3
is deterministic and of order two. To do S0, some
tools of nonlinear dynamical systems are used.
Finally, in Section 7, computer simulations illus-
trate the advantages of the SF algorithm in
more general cases and, in particular, for image
coding.
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Fig. 1. Structure of the ADPCM system.

2. Adaptive predictive coding

The structure of the ADPCM system is
presented in Fig. 1. The original signal is denoted
by x,, X, and X, are respectively the reconstructed
and the predicted samples, ¢, is the prediction erro:
and é, is its quantized value.

The predictor is a FIR filter driven by %,. which
is adapted in order to deal with non-stationarities
of x,. Moreover, a backward adaptation is used to
have no information to transmit other than a digi-
tal code corresponding to é,. Finally, the equations
at the encoder are

2.=H,_,X,, (2.1a)
€n=Xo— %, (2.1b)
Rp=Rp+&,, (2.1¢c)
H,=o(X,,H,_,, ¢é,), (2.1d)

where H,eR" is the vector of predictor weights,
X, eR" (respectively X,eR") is the correspondm0
vector of past values of %, (respectively x,)' and .=/
denotes the adaptation algorithm. Similarly. the
equations at the decoder are

=H," X, (2.2a)
=% +é, ' (2.2¢)
d(xr:v n 1y é’ )7 (::d)

where the quantities used are distinguished by u
prime from the equivalent ones at the encoder.
because of possible transmission errors.

]

For one-dimensional applications. we¢ have X.=
~ = T
(Kuvyen ., Xo-n).
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The decoder is said te be misaligned when
(N HL) A (X, H ) The worst case 1s when recur-
sion (2.2) becomes unstable in such a way that the
decoded signal ¥, bursts. The objective of the paper
is to present and analyse a satisfactory adaptation
rule .o/, such that the decoder not only remains
stable, but its misahgnment vanishes with time.
This is what we mean by “robustness versus trans-
mission errors’.

To simplify the analvsis, the quantizer is
assumed to be fixed. In fact. subject to some mild
conditions [5, 7], the adaptation of this device is
not a limiting factor for the robustness.
svioreover, to evaluate the quality of coding, we
will use the prediction gain G [10] which is
defined as

G=P./P., 23)

where P, is the power of x, and P, is the power
of e,.

3. Result of transmission errors

When there is no transmission error, identical
initial values at the encoder and at the decoder
ensure that (%,, H,)=(X..H,) for every n=0.

Conversely, transmission errors lead to the follow- -

ing misalignments:

(3.1a)

‘ Ai,,=.f,',—i‘,,,

AH,=H' —H,. (3.1b)

Subsequently, the dynamical behaviour of these
misalignments is studied. For this purpose, it is
assumed that if a>ny, Aé,=é,—é,=0, which
means that the errors have occurred before the
iteration ny+ 1. Then, when 1#>n,. the following
equations can be obtained from (2.1) and (2.2):

Az, =H!_AX,+XJAH, ,+AXTAH,_,,
(3.2a)

AH,= Q,AX,+ BAH,_,+C,, (3.2b)

where
a,= (" CX,) Nty -
R=CACH, son,

and G, is a vector depending on second- or higher-
order terms in AX, and AH, .. Hence, the previ-
ous system is equivalent to a recurrence giving
(AX, ... AH,). The problem is to get

(AX11+ 1 A1{") m (0‘ 0)~

When this property is reached. the misalignments
existing at iteration n, vanish and robustness versus
transmission errors is achieved.

In general, the analysis is difficult for two
reasons. The first one is the nonlinearity of system
(3.2). The second one is the stochasticity of these
equations since they are dependent on X,, H,_,
and é,, which themselves are functions of the ran-
dom signal x,. It must be emphasized that the
difficulty stems from the use of an adaptive algo-
rithm. Indeed, for the DPCM system where there
is no adaptation of the predictor, #(X,,, H,_,, &,)
is a constant H and (3.2) reduces to

Ax,=HTAX,,
AH,=0.

(3.3a)
(3.3b)

So, Ax, is the output of an [IR filter with a zero
input. The inverse of this filter is usually called an -
innovator. Then; the alignment is reached if and
only if the inverse of the innovator is a strictly .
stable linear filter. It is well-known that this-condi-
tion is satisfied when H belongs g0 a stability

- domain of R". For one-dimensional (respectively

first quadrant quarter-plane two-dimensional) pre-
dictors, this domaif is such that the zeros of the --
transfer function of the corresponding innovator
are inside the unit circle [3] (respectively bi-circle
{12]). For one-dimensional applications where
X, =(%,_1, ,{'”_;)T. the domain is a triangle [3].

4. Failure of the LMS algorithm

A possible- solution to. adapt the predictor
weights is the LMS algorithm [17]. In coding

Vol. 31, No. 1, March 1993
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applications, it has the advantage of providing low
complexity and good tracking propertics. 1t corre-
sponds to the minimization of the mean square

crror (MSE):

J(H)=E{(x,—H"X,)"}. (4.1)
The form of the adaptation algorithm is then

A (X, H,-\, 8)=H,_,+pe,X,. (4.2)

where u >0 is the adaptation step-size. Thus ( 3.2b)
becomes

AH,=uée AX,+AH,_,. (4.3)
Let us now consider a signal x, such that
Xn= H;rthn ’ (4'4)

where H,,eR"Y belongs to the border of the
stability domain of IIR linear filters of order N
(when x, is non-vanishing). Such a signal is a pre-
dictable process which might be a tone in telephony
or a uniform area in an image. Furthermore, let us
assume that the algorithm has converged at the
encoder when n> n, (by choosing n large enough),
ie., H,= H,p, and that the quantizer allows us to
get e,=e,=0. Then, %,=x, and (3.2a) and (4.3)
lead to

A%y = (Hop+ AH,,)"AX, + AHLX,, (4.5a)

AH,=AH,, . (4.5b)
Therefore, there exists a constant misalignment on
H,. Moreover, A%, is the output of an IIR linear
filter whose recursive part is Hy, + AH,, . Because
of the form of H,, , two situations may occur: this
filter can either be stable or unstable according to
the direction of AH, . This means that A%, is not
surely bounded. Hence, the LMS algorithm fails to
secure robustness. It could be noted that, in the
derivation of (4.3) and (4.5a) from (3.2) and (4.2),
no higher-order terms in AX, and AH, _, have been
neglected, i.e., the resulting linear equations are
exact in this case.

Signal Processing

5. Use of soft constrained 1.MS algorithms

To solve the problem mentioned in the previo
secuon. an approach of regularization can be fo
lowed. The criterion of minimization generaliz.
the classical MSE as follows-

JH)=JH)+a(H-H)'"(H-H)
+B(H-H)'E{X, X, \(H-H),
(5.

where H' is a fixed vector of R¥, a >0is the leaka;
factor and >0 is called the stabilizing factor. Th
minimum of J'(H ) can be reached by the stochast
gradient technique. It is easily found that the ur
date equation is

H,=(-pa)H,_ +pulx,~— (1 +B)H X,
+BH X)X, + pa H'. (5.2

Of course, the LMS algorithm appears as a speci:

case of (5.2), when a==0. The terms in @ an
B introduce implicit or soft contraints since the:
become of primary importance in the criterio:
when |[H~ H’|| or (H~ H’)TX, take large value:

It is expected that this property will help preventiny
a divergence of H, or %,. At the same time, in

* stationary context, these constraints lead to a bia:

in the estimation of the vector of weights. It:
asymptotic mean value can be specified, on the con-
dition that H, is convergent (see Appendix A),

E{Hn}—Hopl N — o Hx _Hopl
=~—[al+(1+p)#]™"
x(al+ ﬁgf)(l‘l‘,pl - H ), (5.3

where 3?=E{X,,X,,T} and H,, is the best mea
square estimate of the vector of weights minimizing
J(H). The above relation shows that the bias may
be reduced owing to H/ which appears as an a
priori estimate of H,, . At the same time, the
second and third terms of the criterion (5.1) tenc
to keep H, close to H’. So, H' must be well insid:
the stability domain to favour a stable algorithm
In practice, the fixed predictor corresponding to H
must therefore be chosen “sufficiently’ stable and
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must also be fitted to the long term statistics of the
mput x,,.

When a backward adaptation is used for the
ADPCM system, x, must be replaced by ¥, in (5.2)
so that the decoder is able to duplicate the encoder
updating. This yiclds

.(1/(/\7,,, Hn‘ | én)

=(l-pa)H,_,
+ (e, = B(Ho—— H' ) X)X, + paH,
(5.4)
and the quantities appearing in (3.2b) are
W= {{2— B(Ha-y— H )X )1
-BX.(H,—,-H )"}, (5.5b)
B.=(1—pa)l-upX.X;, (5.5b)
C.=—up{X,AH;_ ,AX,
+[XJAH,_,+(H,_,— H' )TAX,
+AH,_\AX,JAX,}. (5.5¢)

Two cases will be of particular interest. The first -

one is the LMS with a Leakage Factor (LF) which
is obtained when @#0 and B=0. This algorithm
is often the solution to misbehaviours that may
occur with the LMS algorithm [14]. The second
case corresponds to @ =0 and f#0 and is the new
algorithm which was first proposed (but not ana-
lysed) in [11]}: the LMS with a Stabilizing Factor
(SF). Subsequently, this solution will be proved
better than the leakage for the misalignment in our
stability problem.

6. Analysis of a second-order recurrence

6.1. Background

For the reasons given in Section 3. the general
form of the system defined by (3.2) and (5.5) seems
intractable. Nevertheless, some analytical conclu-
sions can be drawn for this nonlinear problem
when it reduces to the following special case. On
the one hand, it is considered that the order of the

predictor is N= 10 which leads to a second-order
recurrence. Note that, m the analysis of nonlinear
systems. it 1s a common practice to study in detail
the low-dimension problems whercas the high-
dimension ones are untractable. On the other hand.
the input v, is chosen predictable in such a way
that the recurrence is deterministic. This choice is
also justified by the analysis of Section 4 which
has highlighted that this kind of signal pushes the
standard LMS algorithm into instability. For a
predictor of order 1, the predictable processes are
of the form

Xp = (Hop) "X, 6.1.1)

with H,.e{—1, 1}.* The corresponding vector of
past samples reduces to X, = H,,x,,. Additionally,
it is assumed that the quantization error is negli-
gible so that &,=e,. Ideas about the hard non-
linearity introduced by the quantizer can be found
in [16]. It is also assumed that the fixed predjctor
is stable. namely

—-1<H/<]1. (6.1.2)

6.2. Characteristics at the encoder
Under the previous assumptions, (5.2) yields

H,=[l-v(l1+0)]H,.,+ V(Hop + cH”),

(6.2.1a)
with
v=uX? (6.2.1b)
-
a=—¥5+ﬁ. (6.2.1¢c)

The parameter v is the normalized step size of the
adaptive algorithm and o is a factor giving a global
evaluation of the regularization. If the following
condition of convergence is satisfied:

2
O<v<yy=-——o

R 6.2.2
I+o ( )

* Non-bold variables are used to specify that scalar values
are now considered.
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(1~ Hoptiy2 4

— .

Fig. 2. Prediction gain as a function of o.

the limiting value of H, is

1
Ho=——(Hypu+oH"). (6.2.3)
1+o
Moreover, the prediction error becomes
asymptotically
€5 = (Hop) X ——(1~ HooH), (6.2.9)
1+o

and the prediction gain which was defined in 2.3)
Is :

(1+0)?

= -/ 6.2.5
(1~ H,p H” )*6? (6.2.5)

As illustrated in Fig. 2, G gets poorer when o
increases (through an increase of @ or B). Note also
that the expression of G shows an improvement of
the quality of the prediction as B gets closer to
Hopi, which is the optimum value of H, . It confirms
the interest of the a priori knowledge.

6.3. Form of the recurrence Jor misalignments

To simplify the notations, let us define

A%, AH,
==, g,=2 (6.3.1a)
Xn Hope
—BXx?
5=2=PX (6.3.1b)
a+BXx

The variables y, and 0, correspond to relative mis-
alignments and § allows us to compare the relative
influences of the stabilizing and leakage factors.
This parameter is a real number ranging from —1
to 1, the extreme values corresponding respectively

Signal Processing

to the SF and LF algorithms. Then. after con
gence at the encoder, the misalignment cquat
3.2) and (5.5) become

Zn:[Iupl ler,‘(n -1 + ()nfl_‘_ln - I()n c s
(6.3

Un=Hop(Hu— H' Yovoy, ,+(1-va)0,
1-6 54
“-5-VO'[20,,~|+H0[\((HPL_I{ )Z'l

+0n—an—l]Xn—|- (63‘

This system is a nonlinear second-order recu:
rence for which, obwiously, (0, 0) is a fixed poi
This point may be unique or not, according to t
values of the parameters. Indeed, let us denote -
(%, 6) another fixed point of the recurrence. It
straightforward to show that if o 50, (6.3.2) gin

Hop(Hop— Ho)y =(1+ )0, (6.3.3
(1= 8)(Hop = H ) 1*+ [2H i — H.,

~H' = 8Q2H o+ Ho—3H” )]y
+2[Hop— Hoo — 86(Ho — H')]=0.  (6.3.3t

In particular, it appears that the LF algorithm (& -
1) possesses a second fixed point

H,,—2H +H’
, 0 — opt o
(x, 6) (‘F,_ H

b}

1-2H, Ho, + H,y, Hf). (6.3.4

This means that there is a risk for the algorithm t.
converge at the decoder towards a state for whic
the misalignment is nonzero. On the contran
(6.3.3) shows that (0, 0) is the only fixed point fo
the SF algorithm (6=-1). Hence the algorithn
cannot lead to a finite misaligned decoder statc
This is a first indication that the SF algorithm i
superior to the LF one.

We will now consider the decoder stability whe:
the misalignment variable (xn, 6.) is close to the
aligned state (0, 0).



J.C. Pesquet et al. j LMS algorithms for decoder stability 7

6.4. Local stability

0.4.1. Conditions of local stubility
The recurrence (6.3.2) may be lincarized in the
neighbourhood of (0, 0) in the following way:

[1 ] = //[I " '],
()n On -1

- [ Heop H o, 1 ]
- L Hop(He —H )ovo 1—-vo]
(6.4.1.1b)

(6.4.1.1a)

The recurrence (6.3.2) is locally stable iff the linear
recurrence (6.4.1.1) is stable, i.e., the matrix .«
has eigenvalues with moduli less than 1. It is well-
known that this is equivalent to the inequalities

D<l, (6.4.1.2a)

|T| <1+D, (6.4.1.2b)

for the determinant D and the trace T of 4. Then,
the necessary and sufficient conditions for local
stability are

HoplHo(1-vo)—(H,.— H )évo] <1,
(6.4.1.3a)
[HoptHoo+ 1= vo|
<1+ HopulHo(1~vo)~ (Ho— H Yovol.
(6.4.1.3b)

Moreover, the algorithm must be convergent,
according to (6.2.2). If this condition is satisfied, it
is shown in Appendix B that the set of inequalities
(6.4.1.3) is equivalent to

c>46, (6.4.1.4a)
—[26—(0~8)vo]Hm H'
<2(2+0)-(2+0+6)vo. (6.4.1.4b)

It is useful to secure local stability for both kinds
of predictable signals of order 1. Thus, introducing
the two values Hop=1 and H,,=-1 into

(6.4.1.4b) vields
[26 —(a—-d)vo| 1
<22+ 0)—(2+ T+ 0 )va. (6.4.1.3)
Besides. if (6.4.1.4a) is satsfied. (6.2.2) yields
Jo—(o -0 )vo>u. (6.4.1.6)
So, inequality (6.4.1.5) may be rearranged as

222+(1-|H'|)o]
R+ +|H'S+(1- |H |)olo
(6.4.1.7)

v<y =

Finally, subject to (6.2.2),.the conditions of local
stability are (6.4.1.4a) and (6.4.1.7). To proceed
further, we will discuss these inequalities according
to the values of the parameters.

6.4.2. Case §<0

When § is negative (a/X*<f). (6.4.1.4a) holds
naturally. Furthermore, it is easy to show that v,o
is greater than 2, so it is greater than vy0. There-
fore, inequality (6.4.1.7) is satisfied. Hence, there
is no constraint over o. So, there is no limitation
in the prediction performances.

6.4.3. Case 6>0

Let us now study the case where & is positive
(a/X*>p).

(i) First, let us emphasize the importance of con-
dition (6.4.1.4a).

Because of this inequality, there is a lower bound
over o and (6.2.5) shows that an upper bound for
the prediction gain results:

(1+68)°

G<Gy=———-22
M -H., H)5?

(6.4.2.1)
This means that the local stability is obtained at
the price of a poorer prediction. An equivalent way
to visualize the performance degradation is the
lower bound on the bias of the weights which is
obtained as a result of (6.2.3),

)
|H, — Hyp| > i3 [1-HupuH|.  (64.2.2)

Vol. 31. No. I, March 1993
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According to (6.4.2.1) and (6.4.2.2). the prediction
degradation is even stronger as & is large and
1, H"is small. For instance, for the LF algorithm
(0 =1) and in the absence of an a priori knowledge
about  H,(H'=0). we get Gy,=4 and
|H, —H,,|>05 The prediction error is only
6 dB below the input signal.

(i1) Secondly, let us show that condition
(6.4.1.7) is not restrictive in practice.

This inequality is relevant only when v, is lower
than the convergence bound v,. According to the
expressions of these quantities in (6.2.2) and
(6.4.1.7), this is equivalent to

1+ [H|+(+ |H)Sle>2.  (6473)

Then, & must be greater than (1-—|H’])/
(1+|H’|). This situation can only happen if
H’#0, i.e. in the presence of some a priori knowl-
edge about H,,. Moreover, it is not difficult to
check that the lower bound thus found for & is
then greater than & and therefore leads to a pre-
diction gain lower than Gy,. In other words, to
achieve the best possible prediction, it is interesting
to choose o close to 6 in such a way that (6.4.2.3)
is generally satisfied. So, from a practical point of
view, if the convergence of the algorithm is taken
for granted, the local stability of the decoder is
ensured iff o is greater than §.

6.4.4. Conclusions

The main results of this Section are summarized
in Table I, which demonstrates the critical role
played by the sign of &. It is clear that the case
8 <0 is more interesting because the convergence
condition is sufficient to ensure the local stability
and there is no need to limit the prediction gain.
In particular, it is shown that, for a predictable

Table !

Characteristics of locally stable constrained algorithms

6<0 3>0
Convergence condition v<v, v<v,
Locally stability condition none o>§, vy,
Maximum prediction gain + Gy

Signal Processing

input of order 1, the SF algorithm is superior 1
the LI algorithm 1o reach the local stability of tl
decoder. Note also that, since better propertics at
obtained when the factor 8 is greater than the leak
age effect @ X°, the name of stabilizing factor

Jjustified for 8.

6.3. Domains of attraction

When the conditions of local stability are ful
filled, we can assert that there exists a domain ¢
attaction Z belonging to the phase plane such tha
if (Yo 0n)ED, (Y. 0,) == (0,0). Accordin-
to (6.2.3) and (6.3.2), this set is parametrized by
8, v, 0 and H,, H’. Numerical methods may bc
used to find the domain £. For instance, a com
puter allows us to determine the domain 2,
defined as

Dre={(Xn» 0n)eR*3pe0, ..., P}
|Zno+p|+[9,.o+p|<€}- (6'5'1

An initial condition (¥, 6,,) in D, leads, afte
maximum P iterations, to a state which is at .
distance of less than ¢ to the fixed point. By choos
ing the integer number P large enough and the rea
number & small enough, a good approximation ol
9 is obtained. Other methods to get the attractior.
domain are presented in [8].

In Figs. 3 and 4, the border of Dp. is drawr
respectively for the LF and SF algorithms, when
P=35000 and £=0.025. It must be noted that therc
is no significant change in the form of this domain
for ‘reasonable’ choices of the parameters v, o anc
H,, H'. Two comments may also be given on thes:

Fig. 3. Domain of attraction & «umoas for the LF algorithn
when v=0.1, =15, H,, H'=0, G=44dB.
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Fig. 4. Domain of attraction Dsymaes for the SF algorithm
when v=0.1, 6=03, H,o H/=0. G=12.7dB.

plots. At first, it may bc obscrved that the-largest
part of the domains belongs to the lower half-
plane. Indeed, according to (6.3.1a),-a positive
value of 8, corresponds to a misalignment on the
weights AH, of the same- sign as H,y. So, the
instability is more easily reached in this case. The
other point to be emphasized is that the domain of
attraction is much.larger in the SF case than in the
LF case. This fact is obviously in favour of the
SF algorithm. This is all the more noteworthy as,
according to relation (6.2.5), the SF algorithm
illustrated in Fig. 4, corresponds to a higher value
of the prediction gain (G=13 dB) than the LF

algorithm, illustrated in Fig. 3 (G=4dB). It is- -

indeed not possible to reach a satisfactory pre-
diction gain with the latter algorithm as a result of
the basic constraint 6> 6=1. :

Based on the previous plots of -the attraction
domain, it is possible to predict whether the con-
strained algorithms will be robust to transmission
errors or whether they will fail to realign the
decoder. This is because the parameters y,.; and
0., are related to the transmission errors arising
before ny.

Let us first consider the case of a single transmis-
sion error at ny. Then, we clearly have

Zm) = Aéuu/Xno k]
0, =VXu,-

(6.5.2a)
(6.5.2b)

Therefore, x,.,0, is positive and the points
(X 0.,) are in the first and the third quadrant of
the phase plane. At a first glance, it appears in Fig.

3 that the I.F algorithms only have a small fraction
of /. in the first quadrant. However, this does not
mean that 1t will fail o reach the alignment
Indeed, we usually have |Ae,,|/V<1 and v

0,1« L.
Now, domain & allows values around 0.1 for 0, .

#X"« | and. thus, according to (6.5.2).

Thercefore, we can conclude that the algorithm will
generally realign after a single error. The same con-
clusion evidently holds for the SF algorithm. which
1s much less critical.

When several consecutive transmission crrors
occur, the expressions of y,,, and 0,,, are not readily
accessible. So, our study does not allow us to give
quantitative results when there is an accumulation
of errors rather than the propagation of a single
error. In a qualitative way, it is understood that
|8.,| will reach greater values. According to the
plots of Fig. 4, such values are likely to be included
in the stability domain of the SF algorithm, if there
are not too many errors. Thus, we can conclude
that this algorithm generally recovers after multiple
errors. In view of Fig. 3, a similar behaviour cannot
be expected for the LF algorithm. These conclu-
sions will be supported by some simulations in the
next section. . .

As was already noted, the previous plots do not
allow us to clearly show the influences of the
parameters v, o and H’. To proceed further, we
will plot 2, for a relatively small value of P. The
size of the corresponding domain gives an indica-
tion of the average speed of alignment. Indeed, the
points belonging to ¢ which are not included in
Dp.. correspond to initial conditions requiring
more than P iterations to reach the alignment. In
this way, the transient behaviour of the alignment
phenomenon is evidenced. Figures 5 and 6 show
the form of %2,, when P=50 and £=0.02.
Although these domains look .quite different in the
LF and SF cases, the influences of v, o and H’
seem to be qualitatively similar. In particular, it
appears that an increase of v or ¢ tends to enlarge
“p, which means that the alignment speed is
globally improved. The introduction of H” has an
opposite effect. This result is in agreement with the
intuition that H/ must not be chosen too close to

Vol. 31, No. {, Murch 1993
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Fig. 5. Domain of attraction Zso g2 for the LF algorithm when (a) v=0.1, o=1.5, Hopn H/=0, G=4.4dB; (b) v=0.05, c=1.5.
Ho H/=0, G=4.4dB; (c) v=0.1, 0=1.7, Ho  H'=0, G=4.04dB; (d) v=0.1, =15, Hop H/=0.6, G=12.4dB.

instability. Indeed, as noted in Section 5, the pres-
ence of the a priori knowledge in criterion (5.1)
tends to bring the estimates of the weights close to
H’. Hence, the choice of this parameter must be
made cautiously. In practice, there will be a trade-
off between the ability to cofhpcnsate the bias of
the stabilizing algorithms and an increase of the
sensitivity to transmission errors.

7. Simulation results

Further results show that the conclusions of the
previous section about the decoder alignment are
valid in a more general framework.

7.1. Extension to a higher order

In the case of a predictor of order two and a
sinusoidal input x,=JX sin(n¢), the recurrence
given by (3.2) and (5.5) is of order four. For

Signal Processing

example, some simulations are provided when
o=n/4 and a perturbation AX,=0.5X.
AH,,=[0.05, —0.05]" arises at no=50. The normal-
ized adaptation step-size v=puX? is set to 0.1 and
there is no a priori knowledge (H'=0). The param-
eter g is still defined as in (6.2.1c). Furthermore.
the prediction gain has been evaluated empiricall
but it is easy to check its values theoretically.

In Figs. 7 and 8, the variations of AX,/X are
plotted for the LF and SF algorithms, respectively.
For the LF algorithm, it appears that the decode:
becomes unstable if o<0.}. The alignment i
reached for o0 =0.2 but the prediction gain i
5.2 dB, which is a poor value. For the SF algo-
rithm, much higher values of G may be obtained.
but if o is chosen too small, the alignment speed i:
slow. By taking o =0.3, the convergence is almos
comparable to the LF algorithm with 6=0.2 an(
the prediction gain is improved at the more satis-
factory value of 12.7 dB.
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Fig. 7. Alignment of the decoder for the LF algorithm with a sinusoid when (a) 0 =0.1, G=8.4dB: (b) 6=0.2, G=5.2 dB.

7.2. Application to image coding

We consider images ordered by a raster scan-
ning. Therefore, if the two-dimensional field is x,,
where p and ¢ are respectively the vertical and hori-
zontal coordinates, it may also be denoted x,,
where n is the scanning order. The two-dimensional
nature of the signal can be taken into account by

a two-dimensional prediction. Generally, the pre-
dictor is a FIR filter with three coefficients [9] such
that '

(7.2.1)

Xo=[Xpq-1 Xp-14 xp—l.li-I]T-'

Furthermore, by adapting the weights with an
LMS algorithm, the performances of DPCM are

Vol. 31, No. 1, March 1993
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" predicior [1, 15].
Simulations are given for the first image of the

test sequence Car (COST 211bis) which is typical
of digital TV applications (see Fig. 9). This image

is characterized by 528 x 674 8-bit pels. To decrease
the transmission rate, the ADPCM system is used
with a five-level fixed quantizer. The quality of the

#

decoded images is evaluated in the presence of
transmission errors both visually and by the signal-

to-distortion ratio defined by

2552

SNR=————.
E{(-\’n - \..r,r )-}

Fig. 9. First image of the Car sequence.

Signat Processing

improved, compared to the performance of a fixed

(7.2.2)

Prrrreppn b ] P

A 0 R S S

AN 2 NG LA :
Fig. 10. Reconstructed image for the LMS algorithm with o.
transmission error at (264, 337).

Figure 10 illustrates the disastrous effect on 1
decoding process of a single transmission err
arising at the centre of the image. when the LN\
algorithm is used to adapt the predictor. By usi
the LF and SF algorithms the behaviour is mu
improved. Figures 11 and 12 show the ditferen.
between the reconstructed image and the origin
when the error rate is 107 (four errors). The val
of the difference is translated by 127, so that the |
grey level corresponds to zero. On these images, 1
supcriority of the SF algorithms clearhy appea
This method also gives sausfactory performan.
when the error rate reaches 10 ° (400 crrors).
evidenced by Figs. 13 and 14, In the first tigure. U
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It must be emphasized that similar behaviours
may be observed in speech coding [4].

8. Conclusions

In an ADPCM system, transmission errors lead
to misalignments between the variables at the
encoder and at the decoder, which have been
modelled by nonlinear recurrent equations. As the
LMS algorithm fails to ensure the alignment of
predictable processes, two constrained algorithms
of low complexity were introduced. There is then
a bias on the estimation of weights but it can be
decreased if an a priori estimate of the weights is
available.

In the case of a prediction of order one and a
predictable input, the dynamical behaviour of mis-
alignments has been studied. The analysis of local
stability and the evaluation of domains of attrac-
tion evidence that the robustness is improved by
the constrained algorithms. Compared to the LF
algorithm, less restrictive stability conditions are
obtained for the new SF algorithm which allows a
better prediction.

It could be interesting to extend these theoretical
results as computer simulations have shown that
similar conclusions can also be drawn for sinus-
oids, speech and image signals.

Appendix A

Taking the expectation of each side of (5.2)
vields

E{H.} =[(1 - pa)—p(1+ B)RIE{H,}
+U[RH o+ (al + BRVH' ], (A1)
by making the usual assumption that H,_, and X,
can be considered as independent and by substitut-

ing Z#H,,, for E{x,X,}. If the following conditions

Signal Processing

are sausfied:
')
< (A.2a)
a+(l +ﬁ)x1n|\
a+(1+B)Amin>0, (A.2b)

where 7, and A, denote the minimum and maxi-
mum eigenvalues of %, respectively, the sequence
H, admits an asymptotic mean value according to

E{H,} —— H.,

=[al+(1+B)R]™"

X [RH 0 + (al+ BRYH ). (A.3)

Note that, when-& is a singular matrix, (A.2b)
implies that a unique asymptotic mean value is
obtained only if a #0.

Appendix B

In this appendix, it is proved that inequalities
(6.4.1.3) reduce to inequalities (6.4.1.4) under con-
dition (6.2.2).

Let us recall that the definitions of & given in
(6.3.1b) imply that

-1<68<l. ‘ (B.1)

Moreover, by using expression (6.2.3), conditions
(6.4.1.3) may be rewritten as follows:

o(1 = Hop H )+ voll + 6Hop H”

+8(1 — Hop H )}>0, (B.2a)
(1= Hop H )0 -6)>0, (B.2b)
[20 -vo(o—8)|(1+Hopu H')
+2[2-(1+8)vo]>0. (B.2¢c)

Let us first consider conditions (B.2b) and
(B.2c). It is straightforward from (6.1.2) that
(B.2b) is equivalent to (6.4.1.4a). Moreover,
(6.4.1.4b) is obviously equivalent to (B.2c).

Let us now prove that condition (B.2a) is always
satisfied. To this purpose, two cases may be
examined.
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() W 1+ ol H+8(0-H,, 1) <0, (6.2.2)

leads to
otl =M, 0"

vl + o Hyp H + 8(1 — Hy H )}

> (3= Hop H'+26(1~ Ho H' )
I+o

+o(1+ H H)). (B.3)

According to (6.1.2) and (B.1),
(1= Hop H )2 1+ Hop H, (B.4)
and we then have
o(l1-H,uH')
+vo[l+ 0 Hop H + (1 — Hop H' )]
>o(1+ Hp H). (B.5)

The above inequality associated to (6.1.2) shows
that (B.2a) is true. '

(i) If 1+ HopH +8(1— Hoypu H )20, it is
obvious that the same conclusion holds.
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