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ABSTRACT 

Recovering 3-D motion parameters from 2-D displacements 
is a difficult task, given the influence of noise contained in 
these data, which correspond at  best to a crude approxima- 
tion of the real motion field. The need for stability of the 
system of equations to solve is therefore essential. In this 
paper, we present a novel method based on an unbiased es- 
timator that aims at  enhancing this stability and strongly 
reduces the influence of noise contamination. Experimental 
results using synthetic and real optical flows are presented 
to demonstrate the effectiveness of our method in compar- 
ison to a set of selected methods. 

1. INTRODUCTION 

The estimation of 3-D motion parameters from a sequence 
of images is a fundamental task in image analysis with nu- 
merous applications, such as egomotion and time-to-contact 
estimation for mobile robots, video segmentation, depth 
layering, or video content description. Most methods for 
3-D motion analysis begin by extracting two-dimensional 
motion information. Many algorithms have been proposed 
for extracting 3-D motion parameters from optical flow. A 
detailed review is proposed by Heeger and Jepson in [l]. 
Heeger and Jepson [l] minimize a residual function where 
depth and rotation parameters are eliminated in order to  
obtain a measure of error as a function of translation which 
is then analyzed to select the correct translation. Lobo and 
Tsotsos [2] propose a voting scheme based on triplets of 
points using the Collinear Point Constraint for cancelling 
rotation and finding the focus of expansion. Daniilidis [3] 
makes use of fixation on a scene point and projection of 
the spherical motion field on two latitudinal directions to 
decouple the motion parameter space, searching then along 
meridians of the image sphere. 

One main problem in correctly estimating the camera 
motion parameters is the fact that the 2-D motion field 
usually contains noisy data and outliers, making most of 
the above mentioned methods unstable. The set of incor- 
rect data can be even larger if independent motions exist 
throughout the image sequence. The negative effects of 
this set of outliers on motion estimation increase with the 
complexity of the motion model which is used to describe 
the camera motion. Komodalus and Tziritas [4] proposed 
a robust estimation method to cope with the set of outliers 
and the use of a hierarchy of motion models sequentially 
tested. In this paper, we focus on improving the motion 
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parameter estimation in the case of translational motion. 
Section 2 describes the equations linking the projected 2-D 
motions and 3-D motions inside the image sequence, which 
yields an overdetermined system of linear equations in the 
translation case. Section 3 presents our approach, based on 
the projection of the equations’ coefficients into a different 
space, chosen appropriately in order to  reduce the influence 
of noise contamination. In Section 4, experimental results 
using synthetic noisy optical flows are analyzed in order to 
compare the selected methods and to show the superiority 
of our approach. Experimental results using real optical 
flow are also presented. Finally, conclusions are drawn. 

2. 3-D MOTION PARAMETERS FROM 2-D 
DISPLACEMENTS 

2.1. Optical flow 

In this paper we only consider the pure 3-D translational 
motion. The 2-D motion vector (U,.) at  an image point 
(2, y) can be expressed using the instantaneous 3-D trans- 
lation vector (Tx ,  T y ,  T z )  

By eliminating Z from the motion field equations (1) and 
introducing, in the case of T, # 0,  the notation ( a  = 
Tz f/TZ,/3 = Ty f / T Z ) ,  we obtain for all points i: 

U(+ - u(c)P = z(c)u(c) - y(z)u(c) (2) 

The point (a ,p )  is called Focus of Expansion (FOE) and 
corresponds to the point of intersection of the lines support- 
ing the motion vectors defined by the translational compo- 
nents. This case of 3-D translation will be referred as to 
full translation. 

In the case of T, = 0, the FOE is a t  infinity. Only the 
direction of translation may be recovered. This direction is 
defined by the ratio y = Ty/Tz (or T,/Ty). This case of 
3-D motion will be referred as to pannzng. 

In both cases, the parameter estimation consists in solv- 
ing the corresponding overdetermined system, where all co- 
efficients are noisy, given that they depend on U and U. In- 
deed, the observed optical flow field is a very crude approxi- 
mation of the motion field, whatever method for computing 
it is used. An interesting review of optical flow techniques 
including performance analysis is presented in [5]. 



2.2. Point correspondences 

Let us now consider the discrete case where point corre- 
spondences have been obtained. Let (z’, y’) be a t  time 1’ 
the point corresponding to (z,y) a t  time 1.  Let us denote 
again by (Tx, 7’17, Tz)  the 3-D translational displacement. 
We then obtain the relations of image point coordinates 

By eliminating Z from the above two correspondence equa- 
tions, if Tz # 0, we obstain one linear equation for each 
point correspondence, which is quite similar to the equa- 
tion obtained with the optical flow vector, 

-(y’-y).+(.’-.)P = z‘y-zy’ = (2-z)y-(y’ -y)z .  (4) 

From the algebraic point of view, if we denote U = z’ - 1: 
and U = y’ - y,  we have exactly the same equations. 

2.3. Existing methods for solving overdetermined 
systems 

Several main technique,j have been proposed for solving 
overdetermined linear systems. The simplest and therefore 
most often used error minimizing technique is Least Squares 
(LS). Although it offers a simple technique for solving the 
problem, the provided estimate is biased. 

In the case of error:; affecting the equation coefficients 
the Total Least Square (TLS) algorithm aims at finding the 
best solution of the overdetermined system of equations. 
This is performed via classical eigenanalysis on Singular 
Value Decomposition. ‘The smallest eigenvalue is selected 
and the solution depends on the corresponding eigenvec- 
tor. In the case where there are multiple small eigenvalues, 
instability appears in the solution of TLS. 

Least-squares-based estimators may be completely per- 
turbed by a few outliers [6]. The goal of positive-breakdown 
methods is robustness a.gainst the presence of several unan- 
nounced outliers that may have occurred anywhere in the 
data. There are several types of high-breakdown robust 
methods, in particular the Least Median of Squares (LMedS) 
and the M-estimators. An interesting review is given in [7]. 

The M-estimators inethod [8] can be reduced to a re- 
weighted least-squares (RLS) technique. It is used for 3-D 
motion estimation in [4.]. In our approach, among different 
M-estimators we selected the Tukey estimator. The Tukey’s 
weighting function use:; a scale parameter c, chosen in our 
implementations as a fiinction of the median of the residu- 
als. 

3. THE OPTIMAL PROJECTION METHOD 

All the previous methods, i . e . ,  LS, TLS, RLS, try to solve 
for the motion parameters using a large set of equations 
where the coefficients itre very unstable, given the noise af- 
fecting the optical flow vectors U and D. This is the key 
observation that has given rise to  our method. We search 
for equations whose coefficients are optimal according to  
criteria derived from t!ne supposed noise model of the opti- 
cal flow. They are basically obtained by first projecting the 
vector of coefficients of each original equations into a space 

with a chosen basis of vectors. This scheme greatly reduces 
the influence of noise contamination in the new set of ecloa- 
tion coefficieiits. Moreover, unlike all the above mentioned 
methods. our estimator is designed to be unbiased. 

3.1. Noise in optical flow observations 

The proposed method is based on the model of the noise 
affecting the optical flow data. We suppose that the two 
components of the motion field U and ‘U are perturbed by 
additive zero-meaii Gaussian noise. The two noise processes 
are assumed to be independent, and each of them is as- 
sumed to be spatially uncorrelated. This last property is 
not necessary for obtaining an unbiased estimator, but i t  is 
included for simplifying the variance expressions. 

The variance of the noise is supposed to be either con- 
stant or proportional to the square of the corresponding 
component. This last model seems compatible with the 
probability distribution of optical flow proposed in [9] and 
the observations made in the review of optical flow tech- 
niques by Barroil et al. [5]. Siirdar noise models are used 
in [lo, 2, 111. Considering the proposed noise model, we 
have: 

~ ( i )  = ~ ( i )  + Nl(i) and ~ ( i )  ~ ( i )  + Nz(i)  (5)  

where i indexes the image points where an optical flow vec- 
tor is defined and p(i) and u ( i )  are the ideal optical flow 
components a t  point i. When the “proportional” model is 
used the noise processes NI and Nz are such that: 

E { N f ( z ) }  = u2jh2(i) and E {iV:(i)} = C T ~ U ~ ( ~ )  

We will describe our method first in the case of a 3-D 
translation parallel to the image plane (panning) and then 
in the general case of full 3-D translation. 

3.2. Translation parallel to the image plane 
We consider the case where the translational motion along 
the optical axis is null. According to (l), we can write: 

Given that the depth Z ( i )  is unknown, we can only solve for 
either y = Ty/Tz or y = 7i/Tu.  This parameter is related 
to  the direction of the translation in the image plane, whose 
angle to the horizontal axis is given by arctan(Tv/T,). We 
achieve the estimation of this parameter by projecting the 
observed process on a deterministic process e(z) that is t o  
be specified later. This projection will yield: 

1 

I I 1 

As a consequence of the above assumptions, the meaii values 
of variables u1 and are: 
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Their variances are given by: 

var { u l )  = U' Cpz( i )e2( i )andvar  {VI}  = u2 x v 2 ( i ) e 2 ( i )  
I t 

We propose to estimate y = T,/T, if u1 > v i ,  or y = T,/Ty 
otherwise. Without loss of generality, we consider the first 
case, and the estimate will be i. = v1/u1. 

We will now consider the choice of the axis of projection 
{ e ( ; ) } .  A possible criterion is the maximization of the signal 
t o  noise ratio of the denominator variable. This ratio is 
maximized if e(z) = XZ(i). As Z(z) is unknown but always 
positive, we propose to choose e ( ; )  = l /K,  where K is the 
number of points. The estimate is then given by: 

Let us now consider the ideal choice e ( i )  = y. We obtain: 

E { U I }  = -Lf, E { V I }  = - T y f  (11) 

The last equations show the very important reduction of 
the noise disturbance in estimating y,  in this ideal case. 
Indeed, it is known that under the above conditions the 
estimator is unbiased and efficient, with a variance equal to 
F .  0 2  In our case, by selecting e(z) = 1/K, the estimator is 

2 
still unbiased but with a variance proportional to k with 

a factor of ( 1 + var:$)2 ( ~ ) z  ), where 20 is the mean depth of 

the scene. Thus, the efficiency of the estimator depends 
on the variation of the depth of the scene with respect to 
its mean value. If the noise is spatially correlated, another 
factor increases the estimate variance. The stronger the 
correlation coefficient is, the greater the value of this factor 
will be. A very important property is that our estimator is 
unbiased and the associated error is proportional to $. 
3.3. Translation non parallel to the image plane 

We consider the general case where the 3-D translation is 
not parallel to the image plane (T, # 0). We aim at  estimat- 
ing the FOE which is the point (c. ,P) = (T,f/T,,T,f/T,) 
in the image plane. We can write: 

u( i )  a - p(i) p = v ( i )  z ( i )  - p ( i )  y(i)  

From the overdetermined set of equations with noisy co- 
efficients computed from the motion field, we propose to 
obtain two equations by projecting into two deterministic 
fields el(;) and ez(z). These two equations are: 

01 Q - u1 ,8 = w1 and v2 (Y - z1z P = wz (13) 

where, for k = 1,2:  

U k  = U T e k ,  v k  = V T e k ,  and Wk = ( V X  - U y ) T e k .  (14) 

We therefore obtain the estimate of the position of the FOE: 

) (15) 
u 1 v 2  - u2v1 ' u 1 v z  - u 2 v 1  

We suppose c z ( z )  = cy(z) = c z ( z ) y ( i )  = 0. If this is 
not the case, z ( i )  and y( i )  are expressed in a new coordinate 
system centered a t  their centroid and whose orthonormal 
axes are the first and second principal axes of the distribu- 
tion of the points. Therefore, if we set e l ( z )  = X z ( i ) Z ( i )  
and e Z ( z )  = X y(z)Z(i), we have: 

These relations prove that the proposed estimators are un- 
biased. Indeed, the quotient (17) / (16) is Q and the quan- 
tity (18) / (16) is p. We may also prove that (16) and 
(17) (idem for (16) and (18)) are decorrelated aiid that the 
signal-to-noise ratio for both numerator and denoniinat'or 
is approximately K ,  the number of points. As the depth 
Z ( z )  is unknown, we propose to choose as basis e l ( i )  = z ( i )  
and e z ( i )  = y(i) .  As in the panning case, the effectiveness 
of this choice depends on the variation with respect to its 
mean value, and also on the spatial noise correlation. 

4. EXPERIMENTAL RESULTS 

4.1. Results from simulated realistic data 

In order to compare the different methods and to study the 
effect of noise on their accuracy, we use synthetic optical 
flow fields which are contaminated by different amounts of 
noise. The simulated optical flow fields are generated using 
range images from the MSU/WSU Range Image Database, 
available online a t  http://www.eexs.  wuu.edu/IRL/Ell?/. To 
simulate a realistic flow field, noise is iritroduced into the 
synthetic optical flow vectors. Being similar to the noise 
model used in [Z], we choose the following model, which is 
compatible with our assumptions: 

U = p + N ( O ,  b)*O.Ol*p and = v+N(O,b)*O.Ol*v (19) 

Fig. 1. Comparison of the four methods for noise tolerance 
in the case of full translation 
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where N ( 0 , b )  is a Ga.ussian random variable with mean 0 
and standard deviation b.  In the case of full translation 
the assessenlent criterion is the angular error between the 
vectors (a,,8, f) and (&, p ,  f ) ,  where (a, p )  is the true FOE 
and (&,b )  is the estimated one. In the case of panning, 
the criterion is the error in degrees in the direction of the 
translation in the image plane. 

The methods whkh have been implemented for com- 
parison are Least Squares (LS), Total Least Squares (TLS), 
M-estimators Reweighted Least Squares (RLS) and the pro- 
posed method (PRO.1). These different methods are corn- 
pared for noise tolerance by computing the angular errors 
versus the noise standard deviation b ,  varying from 0 to 
100%. For each noise: level, the computed values are aver- 
age values over 50 runs. Fig.1 plots the values of angular 
FOE error in the full translation case. It can be seen from 
this graph that our method is far more efficient than the 
other three, giving a maximum error of 0.67 degrees. As 
expected, LS is the less tolerant to noise. RLS is much 
more efficient than ‘I’LS in the case of full translation. On 
the other hand, the RLS method being iterative is more 
time-consuming. In the panning case the conclusions from 
the experimental results are similar. Our method is even 
slightly more efficienii in this case giving a maximum error 
of 0.24 degrees. 

The proposed method proves to be very tolerant to the 
noise model we applied which has been found to be close to 
the one affecting real optical flows. Moreover, it offers the 
advantage of being very fast and easily implemented, since 
it consists primarily of projection and summation. In this 
particular aspect, TlLS is more computationaly expensive, 
performing singular value decomposition. 

LS 
TLS 
RLS 

PROJ 

4.2. Results from real data 

The algorithms were applied to the well-known “marbled 
block” and “flower-garden” sequences, with known ground 
truth values. The “inarbled block” sequence was captured 
by a robot arm moving in full translation over a textured 
floor. The sequence “flower-garden’’ correspoIids to a pan- 
ning along the horimntal axis T, of the camera. The scene 
coiitaiiis a tree in the foreground, a textured garden, and a 
house in the background. “Marbled block” contains many 
sharp discontinuities in depth and “garden-flower’’ presents 
some non-textured areas that cause problem for the opti- 
cal flow computation, giving rise to a consequent number 
of outliers. Our method (PROJ) has not been designed 
explicitly to be opt,imal in that case. Table 1 gives the 
results of the different algorithms on these two sequences. 
The proposed meth.od is the most efficient of the set on 
these real examples as well, especially in the panning case. 
These results tend 1;o show that the assumptions made on 
the noise model ancl on the criteria of selection of the pro- 
jection bases were :generally valid. As another source for 
comparison, Daniilidis reported a result with a 7.24” error 
in FOE for the “Ma.rbled Block” sequence [3]. 

\ , , ,  \ I ,  

ETTFOE = 7.58” 
ETTFOE = 5.25’ 
ETTFOE = 5.42O 
E T T F - ~ R  = 4.94” 

ETT-, = 2.73” 
Err, = 2.67O 
Err7 = 2.63O 
ETT,  = 1.42” 

51. CONCLUSION 

In this paper, we h.ave presented a novel method for esti- 
mating the paramel.ers of translational motion from optical 

I Seauence I I  Marbled Block I Flower Garden I 
1 -  I I 

Type I I  Full translation I Panning 
Truth II (a.B) = (-777.0.95.6) I Y = 0” 

I , 

Table 1. Comparative results on real optical flows 

flow. Our results on synthetic and real optical flows are 
more accurate than the other tested methods. This is due 
to the fact that our scheme, unlike the other methods, is 
based on an unbiased estimator that strongly reduces the 
influence of noise contamination in the data. Moreover, 
computational requirements are low, making this method 
very attractive for fast 3-D translational motion parameter 
estimation. We are currently working on the extension of 

method to the general case of 3-D motion. 
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