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ABSTRACT 
 
In this article we analyze the motion of 3-D objects either in 
terms of image contours or intensity gradients. We make the 
assumption that the objects viewed are locally rigid and 
planar. We suppose that the projection is perspective and use 
the "perspective" velocity vector, which has been introduced 
by G.L.Scott19. We give spatial relations on the "perspective" 
velocity field both in the case of points lying on a contour and 
in the case of dense image points. We utilize these spatial 
relations to estimate the "perspective" velocity field using the 
normal velocity component on a contour or the motion 
constraint equation in the 2D image. In the first case the 
Kalman filter is used. In the second case a Gauss-Seidel 
relaxation algorithm is proposed. We demonstrate that if the 
"perspective" velocity vector is known at three points, one 
can reconstruct the 3-D motion parameters and the plane 
orientation. We also demonstrate that if the "perspective" 
velocity vector is known at four points the 3-D motion 
parameters and the relative depths can be reconstructed 
solving two systems of three linear equations and a system of 
four linear equations. 
 
1. INTRODUCTION 
 
In many applications the retinal motion results from the 
presence in the scene of moving 3-D objects and/or from 
retinal motion in a static environment. The principal task is 
therefore the analysis of an image sequence for estimating the 
motion of 3-D objects. It is well-known that the retinal 
motion contains also information on the structure of the 3-D 
objects. Thus the reconstruction of the depth map constitutes 
the other task in motion analysis. 
 There exist two approaches in motion perception and 
analysis. In the first one the motion is considered discrete in 
the time, and in the second continuous. Psychophysical 
experiences support the distinction of the two types of motion 
in biological vision13. In machine vision the two approaches 
are considered. The discrete motion analysis is based in token 
matching1, while continuous motion analysis is intensity 
gradient based6. Our study is concerned with the continuous 
motion analysis. 
 It is well established that 3-D structure information can 
be extracted from motion measurement. In human vision 
local 3-D rigidity assumption is decisive for 3-D inference 
from 2-D motion4. The same assumption is generally used in 

machine vision and particularly in the domain of robotics. 
Hypotheses concerning surface structure (as planar or 
quadratic) do not relax not in the least the 3-D rigidity 
assumption. 
  We use a gradient-based method for determining the 
retinal motion. This means that we utilize the motion 
constraint equation in the whole image plane or the contour 
normal displacement as initial motion measurement. Thus we 
obtain at every point of the image plane or the contour a 
single component of the velocity field. The following stage of 
the analysis consists to estimate the retinal velocity field 
using a single velocity component. In order to make this, 
methods using smoothing constraints are known in the 
literature5,6. We use the "perspective" velocity vector, which 
is introduced by G.L.Scott10, to represent the retinal motion. 
We propose a method for estimating the "perspective" 
velocity field. We make the assumption that the objects are 
locally rigid and planar.  
 The last stage of the analysis consists to determine the 
3-D motion parameters and the structure or depth 
characteristics from the retinal velocity field. One can 
distinguish two approaches for reconstructing the 3-D objects 
structure and motion. The first one uses the velocity field as 
sparse, and the second as dense. In the second approach one 
must dispose the first and second derivatives of the velocity 
field. For the case of a sparse velocity field we give here a 
system of linear equations for determining the 3-D motion 
parameters and structure. 
 In Section 2 we recall the main equations for the 
"perspective" velocity field and we consider the hypothesis of 
plane surfaces. In Section 3 autoregressive spatial relations on 
"perspective" velocity field are given. Using these relations 
and the measurement of a single component we apply the 
Kalman filter for a recursive estimation of the 2-D velocity 
field on a contour and a relaxation or gradient method for 
estimation in the whole image plane. In Section 4 we give a 
system of linear equations for determining the 3-D motion 
parameters and structure or depth characteristics. A 
discussion and some conclusions constitute the last Section, 
where some applications are also given. 
 
2. THE "PERSPECTIVE" VELOCITY FIELD 
 
Let us consider a 3-D coordinate system  O(X,Y,Z) that is 
fixed with respect to the retina, OZ being the line of  sight8. 
The camera focal length is normalized  (f=1).  Let 



 

 

Vt=(VX,VY,VZ) be the translational velocity and  
Ω=(ΩX,ΩY,ΩZ) be the angular velocity of a point P(X,Y,Z) in 
an observer-relative decomposition. If the observer is moving 
through a static environment the velocity of P is -Vt and -
Ω.  For a point P(X,Y,Z) the velocity components are given 
by  

 
           X = VX + Z ΩY - Y ΩZ         
           Y = VY + X ΩZ - Z ΩX         (2.1)                   

   Z = VZ + Y ΩX - X ΩY 
The "perspective" velocity vector is obtained by dividing by 
Z10                                              
u = VX/Z + ΩY -yΩZ                                                            
v = VY/Z -ΩX +xΩZ                             (2.2)                           w 
= VZ/Z + yΩX -xΩY                                  
Let (ϕ,ψ) be the retinal velocity field. It is related to the 
"perspective" velocity field by (2.3) 
               ϕ=u-xw                                                             
ψ = v - yw 
 Formulae (2.2) are valid in the whole image plane for a 
moving observer. Otherwise their validity is limited in the 
image of the moving object, and in the motion analysis a 
segmentation will be necessary or the detection of 
discontinuities on the 3-D motion parameters. 
 Formulae (2.2) show that the "perspective" velocity 
components are depending on the depth Z of P. If one wants 
obtain expressions depending only on two-dimensional 
coordinates, one must make a hypothesis concerning the 
surface shape. A simple and plausible hypothesis is that the 
surface is locally plane. In other words one takes in 
consideration only the surface orientation. Let us define a 
plane (excluding degenerate case in which the plane contains 
the nodal point) nXX+nYY+nZZ=1. For a perspective 
projection we have 1/Z = nXx + nYy + nZ and we obtain from 
(2.2)  
      u=(nZVX+ΩY)+nXVXx+(nYVX-ΩZ)y                                          
v = (nZVY-ΩX)+(nXVY+ΩZ)x+nYVYy       ( 2.4)   
      w = nZVZ +(nXVZ-ΩY)x+(ΩX+nYVZ)y   
 G.L.Scott10 indicates that if there exists a first order 
"perspective" velocity field, like this of (2.4), there exists a 
one-parameter family of such fields, consistent with the same 
motion: (u-cx, v-cy, w-c). 
 
3. ESTIMATION OF THE "PERSPECTIVE" VELOCITY 
FIELD 
 
3.1. Spatial relations on the "perspective" velocity field 
 
The expressions (2.4) for the 2-D velocity field suggest 
spatial relations, which are locally valid, depending on the 
validity of planarity assumption. We develop in detail the 
discrete case. For the continuous case we give only the 
general spatial relations. For the component u we have 
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All second order derivatives are also vanishing for the other 
components v and w. 
 We consider now the case of discrete points lying on a 
contour. Let us put on again the expression for the component 
u 
                 u = a1x+b1y+c1 .  
We consider a series of points  (xk,yk). We can write 
     uk+1-uk   = a1(xk+1-xk)+b1(yk+1-yk)  
    uk-uk-1   = a1(xk-xk-1)+b1(yk-yk-1)      (3.2)   
    uk-1-uk-2  = a1(xk-1-xk-2)+b1(yk-1-yk-2) 
We can write the same equations for the components v and w. 
A consequence of (3.2) is that 
 

212121

111

111

−−−−−−

−−−

+++

−−−
−−−

−−−

kkkkkk

kkkkkk

kkkkkk

yyxxuu
yyxxuu
yyxxuu

 =  0     (3.3) 

 
and the same for v and w. One can then write 
 D1,k(uk+1-uk)-D2,k+1(uk-uk-1)+D1,k+1(uk-1-uk-2) = 0  where D1,k and 
D2,k+1 are calculated from (3.3). Thus one can obtain an 
autoregressive relation on the velocity. 

 
3.2. Motion measurement from 2-D images: gradient methods 
 From image changing intensities one can measure only 
a single component of the two-dimensional or "perspective" 
velocity field. The motion constraint equation gives a 
relationship between temporal and spatial gradients of image 
intensity g(x,y) and retinal velocities6 
       gxϕ + gyψ + gt = 0             (3.4) 
This equation is not valid at occluding edges, it assumes the 
intensity of any pixel does not change significantly over a 
short time interval and that the image irradiance changing is 
entirely due to motion. 
 Another approach that is gradient-based uses the 
normal component of the velocity at contour points. This 
supposes that a stage of edge detection is preceding2,3. The 
measurement of normal component is given by equation 
(3.4), but it is erroneous for occluding edges. Another method 
to measure the normal component is to consider a 
displacement on the perpendicular direction from the first 
contour to the second5. 

 
3.3. Estimation of the "perspective" velocity vector on 
contour points 
 We propose to use the autoregressive relation given in 
section 3.1 for estimating the "perspective" velocity field. 
 Let us consider the equation (3.4) and write the 
autoregressive relation for the component u 
         uk+1 = βkuk + βk-1uk-1 + βk-2uk-2  
where the identification of  βk  is obvious. We can write the 
same relation for the other velocity components. We 
designate  ξk  the state vector. It is given by 
 ξk = [uk  uk-1  uk-2  vk  vk-1  vk-2  wk  wk-1  wk-2]T   
The state equation is given below 
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where the noise vector ωk is zero-mean with covariance Qk 

and the transition matrix Φk+1|k is 

   Φk+1|k =  














 −−

010
001

21 kkk βββ
 

The equation of measurement is given by 
 yk = [ c1k  0 0  c2k  0  0  c3k  0   0 ] ξk + zk 
where yk is the measured projection of the velocity on the 
normal vector of the contour 
 
(c1k, c2k, c3k) ),(),( 22

kkykkx yxfyxf +  
  =(fx(xk,yk),fy(xk,yk),-(xkfx(xk,yk)+ykfy(xk,yk))) 
and zk is a measurement noise which is supposed zero-mean 
with variance Rk. The system and measurement noise are 
supposed independent between them and between different 
points. This is a classical linear estimation problem and the 
solution is the well-known Kalman filter for the discrete 
case7,9. We discuss here how to apply the filter on a contour. 
If the contour is closed, one can choose any point as initial 
and develop the filter around the contour. It is obvious that 
the velocity at the first points will be worst estimated than 
that of last points. In all cases a second application of the 
filter around the contour will be necessary. If the contour is 
not closed, the same technique can be applied inversing the 
sense of direction of the filter at the final point. 

 
3.4. Estimation on the image plane 
 One can use the spatial relations on the "perspective" 
velocity field and the gradient equation (3.4) for estimating 
the retinal motion. We have three spatial relations for each 
velocity component at each point. The more natural way to 
use them is the minimization of a quadratic functional, which 
has the following form 
    λ2(||A1U||2+||A2U||2+||A3U||2+||A1V||2+||A2V||2+||A3V||2 
        +||A1W||2+||A2W||2+||A3W||2) + ||GxU+GyV+GzW+Gt||2 
where U, V and W are the complete velocity components, A1, 
A2, A3, Gx, Gy, Gz, Gt are linear operators on the image plane, 
and || ||2 is the euclidean norm. The operators A1, A2 and A3 
are determined from the spatial relations. The operators  Gx, 
Gy, Gz, where  
         gz;i,j = -xi,jgx;i,j -yi,jgy;i,j, 
and Gt contain the spatial and the temporal gradient of the 
image intensity. The minimization of the above quadratic 
functional gives a system of linear equations, given below 
(3.5)  
λ2[(A1)TA1+(A2)TA2+(A3)TA3]U+Gx

T(GxU+GyV+GzW+Gt)=0   
λ2[(A1)TA1+(A2)TA2+(A3)TA3]V+Gy

T(GxU+GyV+GzW+Gt)=0   
λ2[(A1)TA1+(A2)TA2+(A3)TA3]W+Gz

T(GxU+GyV+GzW+Gt)=0  
where superscript T signifies the adjoint operator. We specify 
in the following the operators A1, A2, A3, and we give a 
method to solve the above system of equations. 

 The quadratic functional to minimize is given below 

∫∫ [λ2 [(uxx)2+2(uxy)2+(uyy)2+(vxx)2+2(vxy)2+(vyy)2  

   +(wxx)2+2(wxy)2+(wyy)2] +(gxu+gyv+gzw+gt)2] dx dy 
The smoothness constraint of this functional is to be close to 
the surface reconstruction constraints by a thin plate model12. 
 The minimization leads to a system of linear equations 
of the following form 
        ui,j = u i,j - gx;i,j γi,j 
        vi,j = v i,j - gy;i,j γi,j 
         wi,j = w i,j - gz;i,j γi,j 
with 
 γi,j[λ2+(gx;i,j)2+(gy;i,j)2+(gz;i,j)2]=(gx;i,j u i,j+gy;i,j v i,j+gz;i,j w i,j+gt;i,j) 
and where the averaging is given below for the component u 
(without loss of generality we use the same weighting factor 
 λ2)  
u i,j = 0.4(ui+1,j+ui-1,j+ui,j+1+ui,j-1) 
     -0.1(ui+1,j+1+ui+1,j-1+ui-1,j+1+ui-1,j-1) 
     -0.05(ui+2,j+ui,j-2+ui-2,j+ui,j+2)        (3.6)   
 We can use these equations in an iterative method, 
such as the Gauss-Seidel method, for determining the 
solution of the system of equations 
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This method is the same utilized by B.Horn and B.Schunck6 
to determine the optical flow. The difference lies in the 
choice of local averaging. The local averaging used here is 
the discrete version of 
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and that of B.Horn and B.Schunck is the discrete version of 
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This is the consequence of the different functional minimized 
for the two methods. 
 
4. 3-D MOTION PARAMETERS AND STRUCTURE 
ESTIMATION 
 
 We consider now that the retinal velocity field is 
estimated and we will determine the 3-D motion parameters 
and structure using it. If the 2-D velocity field is dense, 
H.Longuet-Higgins and K.Prazdny8 and A.Waxman and 
S.Ullman14 give a method to calculate at each point the 3-D 
motion parameters and the surface orientation and curvature 
scaled by the depth. They use ϕ, ψ and their 1st and 2nd order 
spatial derivatives. They reconstitute all information 
contained in the optical flow, but one can remark that 



 

 

derivation amplify the errors of 2-D velocity field estimation. 
Nevertheless A.Waxman and S.Ullman14 give directly the 
velocity field and its spatial derivatives as initial observable. 
 Our approach is different, but it can be considered as 
complementary. We use the "perspective" velocity field at 
distinct image points. If the retinal velocity field is sparse, 
this is the single method for 3-D motion and depth 
reconstruction. The information about structure in the case of 
a sparse velocity field is the relative depths, in the case of a 
dense field is the surface orientation and eventually the 
curvature. 
 We study separately the case of planar surfaces and 
that of curved surfaces. 
 
4.1. Planar surface 
 If the "perspective" velocity vector is known at three 
non-aligned points from the expressions (2.4) results that one 
can obtain nine values, called the essential parameters. 
   nXVX+c = a1,  nYVX-ΩZ = b1,  nZVX+ΩY = c1 
   nXVY+ΩZ = a2,  nYVY+c = b2,  nZVY-ΩX = c2 
   nXVZ-ΩY = a3,  ΩX+nYVZ = b3,  nZVZ+c = c3 
This system of non-linear equations has been solved by 
M.Subbarao and A.Waxman11 to obtain: nX/nZ, nY/nZ (nZ_0), 
nZVX, nZVY, nZVZ, ΩX, ΩY and ΩZ. (One can easily 
demonstrate that the condition nZ_0is equivalent to: 
(a3+c1)2(c3-b2)+(b3+c2)2(c3-a1)+(b3+c2)(a3+c1)(a2+b1) ≠  0). In 
general there exist two solutions. The duality can be resolved 
using spatial or temporal coherence11. 
 
4.2. Non-planar surface 
 Let us consider that the three components of the 
"perspective" velocity vector are known at four image points. 
From (2.2) one can write 
 
   Zi= 

cxyu
V

iZiYi

X
+Ω+Ω−

                             (4.1)  

             
for i = 1, 2, 3, 4, and a similar equation for VY and VZ. We 
assume that VZ _ 0 and we put e1 = VX/VZ  and  e2 = VY/VZ. 
Let us consider two points. We have (4.2) and (4.3)  
e1(wi-wj)-(ΩZ+e1ΩX)(yi-yj)+(e1ΩY-c)(xi-xj)=ui-uj     
e2(wi-wj)-(e2ΩX+c)(yi-yj)+(ΩZ+e2ΩY)(xi-xj)=vi-vj 
Knowing the "perspective" velocity vector at four non-
aligned points we obtain two systems of three linear 
equations (the first from (4.2) and the second from (4.3)). 
Solving the two linear systems we obtain: 
     e1,  ΩZ+e1 ΩX = e3,  e1 ΩY-c = e4        (4.4) 
         e2,    ΩZ+e2 ΩY = e5,    e2 ΩX+c = e6             (4.5)    
From the two last equations of (4.4) and (4.5) we obtain a 
system of four linear equations 
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If   e1
2+e2

2  ≠  0, the solution is: 
   ΩX = [e1(e3-e5)+e2(e4+e6)]/(e1

2+e2
2)             

   ΩY = [e1(e4+e6)-e2(e3-e5)]/(e1
2+e2

2)  
   ΩZ = [e1

2e5+e2
2e3-e1e2(e4+e6)]/(e1

2+e2
2)   

   c  = [e1
2e6-e2

2e4-e1e2(e3-e5)]/(e1
2+e2

2) 
Then from (4.1) we obtain Zi/VZ. If  e1

2+e2
2  = 0, (4.4) gives                 

          ΩZ = e3 = e5                                        
          c = e6 = -e4   .       
ΩX is obtained from:    vi+ΩX +yic-xiΩZ = 0,  
and ΩY from:    ui-ΩY +yiΩZ+xic = 0. 
 The solution has been obtained assuming that VZ _ 0. 
This is equivalent to have 
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 We remark that one can separate the translational and 
the rotational component of the 2-D velocity field. Therefore 
it is possible to determine the focus of expansion that is the 
point  
            (VX/VZ, VY/VZ) 
where the translational velocity component is vanishing. 
 One can also determine an instantaneous time-of-
collision, which is an interesting parameter in passive 
navigation  
 

    Tcol = 
ZVyxZ

Z

ZYX −Ω−Ω
=− 1
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5. APPLICATIONS AND CONCLUSIONS 
 
 We have applied the method presented here on a 
simulated motion of a quartic curve, whose the equation on 
the image plane is given in the following 
       x4 + y4 = 1 
The  3-D  parameters  were: nX = nY =0, nZVZ = 0.1,  VX = VY 
= 0, ΩX = ΩZ = 0, ΩY = 0.1. Four iterations along the contour 
were necessary to estimate exactly the retinal velocity field, 
when the measurement noise is zero. In Fig. 1 we give the 
obtained results, which is the true 2-D velocity field and the 
estimated one. They are coinciding.   

 
Fig. 1. The true and the estimated 2-D velocity field for a 
quartic curve lying on a plane. 
 
 We summarize in the following the principal results 
contained in this article. 
 Using the assumption of local 3-D rigidity and local 
planarity we have given spatial relations on the "perspective" 
velocity field. For points lying on a contour an autoregressive 
relation of order 3 for each component velocity component is 
given (3.4). In the whole image plane three spatial relations 
are given (3.1) for each velocity component. 



 

 

 The spatial relations on the 2-D velocity field are used 
to estimate it, utilizing for a contour the perpendicular 
component of the velocity and for the whole image the 
motion constraint equation. In the case of a contour we 
propose a recursive method utilizing a Kalman filter as 
estimator. In the case of the whole image plane we propose a 
classical relaxation method to solve the system of linear 
equations. 
 Finally we give a system of linear equations to 
determine the motion parameters and the relative depths. 
Four points and their velocities are considered. A least 
squares resolution may be used to reduce the effect of the 
retinal velocity field estimation noise on the estimated 2-D 
velocity field. We show also that the translational and the 
rotational component of the velocity can be separated, and 
therefore the focus of expansion may be determined. We give 
also the instantaneous time-of-collision. 
 Before closing this article we would like comment 
certain aspects, which merit more attention. The stage of 
initial local measurements from image intensities is very 
important. We have seen that we can obtain a good 
estimation of the retinal velocity field from a single 
component and that we can reconstruct the 3-D motion and 
structure exactly from the retinal velocity field. The stage that 
eventually introduces important errors is the initial 
measurement. We think that an effort must be consecrated to 
improve this measurement stage, or eventually a method 
matching contours globally must be determined. 
 Another important and difficult problem, which is not 
studied here, is that of discontinuities on the 2-D velocity 
field. Discontinuities arise at occluding boundaries at both 
cases of several moving objects and depth discontinuities. If 
only depth discontinuities are present, a detector at the stage 
of estimation of the retinal velocity field must be used to 
avoid the propagation of errors. If several moving objects are 
present in the scene, a segmentation of the retinal velocity 
field is necessary. 
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