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ABSTRACT 

This paper deals with the robustness of ADPCM systems 
versus transmission errors. To secure the stability of the 
decoder, it is necessary to modify the form of the LMS algorithm 
used to adapt the predictor. Solutions introducing soft 
constraints are investigated. While the leakage algorithm is 
proved to be not fully satisfactory, a new stabilizing algorithm is 
presented which allows to achieve good performances. 
Compared to existing methods, the main advantage of this 
algorithm is its low computational complexity. From a theoretical 
point of view, the effect of tranmission errors is decribed by a 
set of nonlinear recurrent equations. An analysis is carried out in 
the deterministic second-order case. 

1. INTRODUCTION 

ADPCM (Adaptive Differential Pulse Code Modulation) is a 
well-known technique to achieve compression of correlated 
signals [l]. It is indeed a satisfactory solution to code both 
speech and images with low complexity. Yet, in the most 
widespread structure using a backward adapted predictor with 
the LMS algorithm, it appears that the decoder may become 
unstable in the presence of transmission errors.To solve this 
problem, standard algorithms combine several means and in 
particular a modification of the adaptation and stability checks 
[2]. This last requirement makes the method substantially more 
complex when the order of the predictor is high and/or when 
two-dimensional fields are processed. 

A simpler alternative solution is proposed here. It is based on 
a regularization of the prediction criterion leading to a class of 
soft-constrained LMS algorithms. According to the form of the 
regularization, either the usual LMS with a Leakage Factor (LF) 
[3] or a new algorithm called the LMS with a Stabilizing Factor 
(SF) [4] is obtained. In this paper, the capabilities of these two 
algorithms to improve the robustness versus transmission errors 
are compared. The SF algorithm is proved to reach the best 
performances. 

2. ADAPTIVE PREDICTIVE CODING 

The structure of the ADPCM system is presented in Figure 
2.1. x, denotes the original signal, 2, and 2, are respectively the 
reconstructed and the predicted samples, e,, is the prediction 

error and t ,  is its quantized value. The predictor is a FIR filter 
driven by K,, which is adapted in order to deal with 
nonstationaxities of x,. Moreover, a backward adaptation is used 
to have no information to transmit other than a digital code 
corresponding to 2,. Finally, the equations of the encoder are: 

e,  = X ,  - H, - lTXn 

K, = H, - lTXn + 2, 
(2.la) 
(2. lb) 
(2.lc) H, = a(%,, H, - 1 ,  2,) 

where H, E IRN is the vector of predictor weights, 3, E IRN is a 
vector of past values of K, and a denotes the adaptation 
algorithm. The equations of the decoder are similar to (2.lb) and 
(2. IC) but, because of transmission errors, the quantities used 
are distinguished by a prime from the equivalent ones at the 
encoder. 

3. EFFECT OF TRANSMISSION ERRORS 

When there is no transmission error, identical initial values at 
the encoder and at the decoder ensure that (H,, 3,) = (H ,‘, 2,’) 
for every n 2 0. Conversely, transmission errors lead to 
misadjustments between the previous variables. Subsequently, 
these misadjustments are denoted by A and their dynamical 
behaviour is studied. For this purpose, it is assumed that if 
n > no, A&, = 0, which means that errors arise before the 
iteration no + 1. Then, when n > no, the following equations can 
be obtained from (2.1): 

where Q, =(zk, a,a , 33 n = (ZL a a  and C, is a vector 
n - 1  

depending on second or higher order terms in AX,, and AH, - 1. 
The problem is to get (A?,, AH,),->-(O, 0). In general, the 

analysis is difficult for two reasons. The first one is the 
nonlinearity of system (3.1). The second one is the stochasticity 
of these equations since they are dependent on w,, H, - 1  and E,, 
which themselves are functions of the random signal x, . 
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A possible solution to adapt the predictor weights is the LMS 
algorithm [5] : 

A@,, e,, H,. 1) = H,.  1 + pC,X,, p > 0 .  (4.1) 

Thus equation (3.lb) becomes 

AH,, = p,, AX, + AH,- 1 .  (4.2) 

Let us now consider a signal x,, such that 

where H E IRN belongs to the border of the stability domain of 
linear predictors of order N when xn is non vanishing. Such a 
signal is a predictable process like a tone in telephony or a 
uniform area in an image. Further, let us assume that the 
algorithm has converged at the encoder when n > no (by 
choosing no large enough) and that the quantizer allows to get 
2, = 0. Then, Z,, = x, and equations (3. la) and (4.2) lead to 

A?, = (H + AH,,)TA~, + AH,, ,T~~, ,  (4.4a) 
AH, = AHflo. (4.4b) 

Therefore, there exists a constant misadjustment on H,. 
Moreover, A?, is the output of an IIR linear filter whose 
recursive part is H + AHflo. Because of the form of H ,  this 
filter can be either stable or unstable according to the direction of 
AHw. This means that E,, is not surely bounded. 

5. USE OF SOFT CONSTRAINE3D LMS ALGORlTHMS 

To prevent the divergence mentioned in the previous Section, 
an approach of regularization can be followed. The criterion of 
minimization is the following one: 

J(H) = E( (xn - HTX,)2}+ a(H - Hf)T(H - Hf) + 
P(H -Hf)TE(X,X,,T}(H -Hj) (5.1) 

where H ~ E  IRN, a 2 0 and p 1 0. The minimum can be reached 
by the stochastic gradient technique yielding the following 
update equation: 

On condition that H, is convergent, its asymptotic mean value 
can be specifid. 

E(H,j,,-;t_[(l + PI1 + aR-'I-'[H + (PI + aR-')HfI (5.3) 

where 33, = E(W,fznT) and H is the best mean square estimate 
of the vector of weights. The above relation shows that the use 
of a and p leads to a bias in the estimation of the ckfficients. 
However this bias may be reduced owing to Hf which appears 
as an a priori estimate of 8. 

When a backward adaptation is used for the ADPCM system, 
the quantities appearing in (3.lb) are 

Q n = P L ( [ 4 - W n -  1-HjRJ  - P f L @ I n -  I-HJFJ (5.44 
w,, =(l--CLcI)I-p@Z$,T (5.4) 
c, =-@ (2JI-L - ITA% + 

EflTAHfl- 1 +(€Ifl- l-HhTEn+AH,- lT&,,)Sn). (5.44 

Two cases are of particular interest. The f is t  one is the LMS 
with a Leakage Factor (LF) which is obtained when a # 0 and 
P = 0. The second new algorithm, which is also considered, 
corresponds to a = 0 and p # 0 and is the LMS with a 
Stabilizing Factor (SF). 

6. ANALYSIS OF A SECOND-ORDER RECURRENCE 

6.1. Background 
For the reasons given in Section 3, the general form of the 

system defined by (3.1) and (5.4) seems untractable. 
Nevertheless, some analytical conclusions can be drawn for this 
nonlinear problem when it reduces to a deterministic second- 
order recurrence. 

This particular case corresponds to a predictor of order 1 and 
a constant signal x, = X. Additionally, it is assumed that the 
quantization error is negligible so that 2, = e,. Ideas about the 
hard nonlinearity introduced by the quantizer can be found in 
[6]. It is also considered that 0 I Hf S 1 which is not a strong 
assumption since ii = I. 

6.2. LF algorithm 
Characteristics at the encoder 
Under the previous assumptions, equation (5.2) yields: 

1406 



H, = [ l  - (6+ @)]H, - 1 + pX2+ 6Hf (6.1) 

with 6 = pa. 
Therefore, if the following condition of convergence is satisfied: 

-1 < 1 - (6+ @) < 1 (6.2) 

the asymptotic values of H, and e, are: 

pX2 + 6Hf 
H, = 

p X 2 +  6 
(6.3a) 

e, = (1 - H,)X . (6.3b) 

Form of the recurrence 
To simplify the notations, let us define X, = 7 and 

AZn 

K, = A h .  Then , (3.1) and (5.4) lead to: 

The fixed points (X, K) of this second order recurrence are (0,O) 

a n d (  1 - 2 H w + H f ,  H,-Hf 1-2H,+Hf). 

Local stability 
Using the Jacobian matrix of system (6.4), the previous 

recurrence may be linearized in the neighbourhood of the fixed 
point (X, K) as follows 

Then, the local stability at the point (X, K) is ensured if and only 
if the eigenvalues of the Jacobian are strictly lower than 1 in 
module. It is straightforward to show that an equivalent 
condition is: 

D < 1  
I 7 l < l + D  

(6.6a) 
(6.6b) 

where D and T denote respectively the determinant and the trace 
of the Jacobian. 

For the first fixed point (0, 0), these inequalities associated to 
(6.2) and (6.3a) are easily shown to be equivalent to the four 
following linear inequations: 

l + H  
H, <-+ 
Hf< H, 
6 > 0  
2H,+ (1 -Hf)6 < 2 

It follows from (6.3 b) and (6.7.a) that 

(6.7a) 
(6.7b) 
(6.7~) 
(6.7d) 

which is a strong limitation if Hfis not close to 1. 
It may be also useful to characterize the stability domain with the 
help of the parameters (p, a) as depicted in Figure 6.1. This plot 
shows that for p and a given, the local stability is independent 
of the choice of Hfin [0, 13. 

a 

fig. 6.1: LF local stability domain at point (0,O) 

For the second fixed point, it is straightforward that the 
stability can not be obtained when (0,O) is stable. 

Domain of attraction 
When p and a are chosen according to Figure 6.1, we can 

assert that there exists a domain of attraction $9 belonging to the 
phase plane such that if (X,,, K,,) E B, (X,, K,),-2- 0. The 
border of .&I may be determined using numerical methods [7]. 
The plot given in Figure 6.2 shows the form of this domain for a 
particular choice of H,, Hf and 6 .  From a practical point of 
view, X,,and K, are related to the transmission errors arising 
before no. When there is a single error at no, this dependence is 

simply X,= x and K,, = pXAt,,. Generally, IAZ,,I I X 

and pX2 is small versus 1 so that IX,I < 1 and K,, z 0. Then, 
according to Figure 6.2, there is no problem to satisfy the 
adjustment property. 

AL.,, 

3’ 

- 3  -2 - 1  0 1 2 3 
X 

fig. 6.2: LF domain of attraction : H, = 0.4, Hf= 0, 6 = 0.1 
(a = 1.5 %, pX2 = 0.067) 
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6.3. SF algorithm 

be briefly reviewed. 
A quite similar approach may be followed in this case and will 

Form of the recurrence 
By setting 6 = ppX2, (5.2) leads again to equation (6.1). 

Then, it comes from (3.1) and (5.4): 

and it is easily seen that the only fixed point of this recurrence is 
(0, 0). 

Stabilitv 
By calculating the Jacobian, it appears that conditions (6.6) 

are equivalent to (6.7b), (6.7~) and (6.7d). The local stability 
domain of point (0, 0) is therefore larger than for the LF 
algorithm since the constraint (6.7a) is not necessary (see Figure 
6.3). The main interest is that there is no lower bound on the 
prediction error. 

!3 

firr. 6.3 : SF local stability domain 

The domain of attraction of (0,O) is plotted in Figure 6.4. 

7. CONCLUSIONS 

In an ADPCM system, transmission errors lead to 
misadjustments between the variables at the encoder and at the 
decoder, which have been modeled by nonlinear recurrent 
equations. As the LMS algorithm fails to ensure the adjustment 
of predictable processes, two constrained algorithms of low 
complexity were introduced. There is then a bias on the 
estimation of weights which is performed but it can be decreased 
if an a priori estimate of the weights is available. 

In the case of a prediction of order one and a constant input, 
the dynamical behaviour of misadjustments has been studied. 
The analysis of local stability and the evaluation of domains of 
attraction evidence that the robustness is improved by the 
constrained algorithms. Compared to the LF algorithm, less 
restrictive stability conditions are obtained for the new SF 
algorithm which allows a better prediction. 

Further developments are currently investigated to extend 
these theoretical results. Computer simulations show that similar 
conclusions could be drawn for speech [SI and image [9] 
coding. 
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fig. 6.4: SF domain of attraction : H ,  = 0.8, H f =  0,6 = 0.02 

(p = 0.25, pX2 = 0.08) 
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