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Abstract

This work[9] aims at determining dense mo-
tion and disparity �elds given a stereoscopic se-
quence of images for the construction of stereo
interpolated images. At each time instant the two
dense motion �elds, for the left and the right se-
quences, and the disparity �eld of the next stereo-
scopic pair are jointly estimated. The disparity
�eld of the current stereoscopic pair is considered
as known. The disparity �eld of the �rst stereo-
scopic pair is estimated separately. For both prob-
lems multi-scale iterative relaxation algorithms
are used. Stereo occlusions and motion occlu-
sions/disclosures are detected using error con�-
dence measures. For the reconstruction of inter-
mediate views a disparity compensated linear in-
terpolation algorithm is used. Results are given
for real stereoscopic data.

1 Introduction

One of the drawbacks of existing stereoscopic
imaging systems is the lack of a look-around capa-
bility. The viewer can only observe the recorded
scene without distortion from the viewpoint of the
cameras. To overcome this problem intermediate
views, depending on the position of the viewer,
have to be constructed. If a 3D-model of the
scene is available the construction of the interme-
diate views can be done by a perspective trans-
formation. Unfortunately most real world image
sequences are too complex to model. Therefore
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most existing methods which consider the prob-
lem of the construction of intermediate views in-
terpolate between subsequent stereoscopic pairs
by using the corresponding disparity �elds[10].
However in approaches where the disparity �elds
are independently estimated at subsequent time
instances the interpolated images su�er from an-
noying artifacts due to temporal inconsistencies.
Temporal consistency restrictions have been re-
ported to produce more natural result [3, 5] but
most approaches found in the literature[12] uti-
lize the relations between the motion and the dis-
parity �elds in subsequent steps[2]. This work
aims at an integrated approach to the problem
of dynamic stereoscopic vision, which utilizes the
interdependencies of disparity and motion �elds
in their estimation phase. In this way a temporal
consistency restriction is imposed over the dispar-
ity �elds and thus over the stereo interpolated im-
ages. In a similar approach Tamtaoui and Labit
[11] jointly estimate the two motion �elds under
stereoscopic constraints, to solve the problem of
motion and disparity estimation.

At any time instant two dense motion �elds
(for the left and right image sequences) and the
dense disparity �eld for the next stereoscopic pair
are computed. The disparity �eld of the current
stereoscopic pair is considered as known, that is
previously estimated. A cost function, which con-
tains known equations regarding velocity and dis-
parity �elds in relation to image intensity, and
which also constraints the di�erent �elds to be
adaptively smooth, is constructed. Minimization
of the cost function results into estimation of the
velocity and disparity �elds. This minimization
can be achieved using an iterative relaxation algo-
rithm based on the gradient of the cost function.



For the �rst stereoscopic pair of the sequence the
disparity �eld is estimated by minimizing a cost
function using a similar iterative relaxation algo-
rithm.

The disparity �elds which result this way are
then used for the construction of intermediate
views using a disparity compensated linear in-
terpolation algorithm. The interpolation process
includes the detection of stereo occluded areas
which is performed using error con�dence mea-
sures.

The analysis is based on a stereoscopic optical
system either parallel or with a small converg-
ing angle. Then a 3-D point, whose perspective
projections in the right and left image respec-
tively are (xr; yr) and (xl; yl), the disparity vector

(~� = (xr � xl; yr � yl) is an 1-D vector along the
x-axis.

In Section 2 we present a regularization
method for obtaining a smooth disparity �eld
from a stereoscopic pair of images using Disconti-
nuity Adaptive Functions. Also a method for de-
tecting stereo occlusions is proposed. In Section
3 the disparity �eld of the next stereoscopic pair
is partially constructed simultaneously with the
estimation of the two motion �elds. In Section
4 the detection of motion occlusions/disclosures
is described and the construction of the dispar-
ity �eld between the second stereoscopic pair is
completed. In Section 5 the stereo interpolation
method is presented, and in Section 6 some results
are given with real stereoscopic data.

2 Disparity �eld estimation and
stereo occlusion detection be-
tween a stereoscopic pair of im-
ages

In this section we present a regularization
method for the estimation of a dense disparity
�eld from a stereoscopic pair, using Discontinu-
ity Adaptive Functions. The estimated dispar-
ity �eld and error con�dence measures are then
used for the construction of maps where stereo
occluded areas are detected.

2.1 Disparity field estimation

The solution to the stereoscopic problem of
�nding the correspondence between left and right
images consists of determining a dense disparity
�eld � through which every point (xl; yl) in the
left image is matched to a point (xl + �; yl) in
the right image. From the intensity preservation
principle, it follows that Il(xl; yl) = Ir(xl+ �; yr).
However, since intensity measurements are not
exact and all hypotheses are not absolute, the

following cost function, including a smoothness
constraint, is minimized [4]
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where N{| = f({�1; |); ({+1; |); ({; |�1); ({; |+1)g
is the 4-point neighborhood of ({; |). The de-
pendence of � on ({; |) is omitted for simplify-
ing the notation. g(:) is a Discontinuity Adap-
tive Function [7], which, if it is carefully chosen,
may regularize the solution and at the same time
preserve the discontinuities. In that framework
the adaptive interaction function h(:) which is de-
�ned such that : g0(x) = xh(x) determines the
interaction between neighboring pixels. In this
work g(:) and h(:) were chosen to be : g(x) =


jxj � 
2 ln (1 + jxj


) and h(x) = 1

1+ jxj



. � is a

weight coe�cient which determines to what de-
gree estimation of the �eld is in
uenced by the
smoothing operator. Minimization of this quan-
tity results into the following set of equations:

(Ir({+�; |)�Il({; |))Irx({+�; |)+��(����) = 0 (1)
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Assuming that the magnitude of the �eld is rel-
atively small and image intensity varies smoothly,
the intensity at point ({+ �; |) at the right image
can be approximated as a �rst order Taylor ex-
pansion around point ({+��; |). Then the following
iterative solution can be derived from Eq.(1):

�k = ��k�1 �
�IrlIrx

��+ (Irx)2
(2)

where �k is the disparity �eld estimated at the
k iteration and �Irl = Ir({ + ��; |) � Il({; |).
The algorithm is terminated, when the percent-
age of diminishment of the average correction
Efj�k � �k�1jg becomes less than a threshold.

The previously described algorithm, as a
gradient-descent algorithm, can estimate success-
fully only �elds of small disparities. Otherwise, it
requires good initial conditions, so that it will not
be entrapped and converge to a local minimum.
Thus, it is insu�cient for real data, where large
disparity values are possible and no prior general
knowledge of the scene depth is available.

Consequently, a coarse-to-�ne multi-scale
method in a pyramidal form is implemented,
where in the upper levels the algorithm is ap-
plied to images of sub-multiple dimensions of the
original ones [1]. Those images are the result of



reduction by low-pass �ltering and sub-sampling.
An immediate result of this reduction is the scale
change on the magnitude of the �eld to be esti-
mated. The algorithm is applied at the various
levels of the pyramid, from the top to bottom,
and the disparity �eld which is estimated at the
coarser level l constitutes the initial estimation at
the subsequent �ner level l� 1. In this way what
we actually have to estimate at level l � 1 is the

di�erence � � �̂l between the real disparity �eld
and the coarse estimation that we obtained at the
previous level.

The value of parameter 
 is also adapted at
the various levels of the pyramid. At coarser lev-
els where there is lack of detail, due to the low-
pass �ltering and sub-sampling, larger values of 

impose a \harder" smoothing, while at �ner lev-
els of detail the discontinuities are more carefully
preserved.

2.2 Stereo occlusion detection

For the stereo occlusion detection a 1-D dispar-
ity �eld, assigned to the left image of the stereo-
scopic pair is assumed. The assumption of only
horizontal disparity enables us to detect occlu-
sions in a line-by-line way, that is at each time
to take into consideration only the correspond-
ing lines of the left and the right image. As-
suming that for areas that can be seen by both
cameras the disparity estimation is accurate, at
points that can be seen only by the left camera
multiple matches can occur, that is more than
one points in the left image might correspond to
a single point in the right image. To remove the
con
ict we compare the error con�dence measures
of the con
icting matches. The measure that we
used was a quantity derived from an error analysis
of the gradient based methods[6], extended to the
4-neighborhood of the left point of the match in
question.

ECM(i; j) =
X
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2
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1
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where �I(m;n) = Ir(m+ �(m;n); n)� Il(m;n)

The match with the smallest error con�dence
measure is declared correct and the endpoints at
the left image of all the other con
icting matches
are declared left occluded areas. Right occluded
areas are detected at points in the right image
that are not matched.

3 Joint motion/disparity estima-
tion

Once the stereo occlusion areas in the �rst
stereoscopic pair are detected, a multi-scale iter-
ative relaxation algorithm [8] is applied in order
to estimate the two motion �elds and (partially)
the disparity �eld for the second stereoscopic pair
of images. The aim is to determine for a point in
the left frame at t a displacement vector (ul; vl)
by giving its corresponding point in the left frame
at t + 1, and for a point in the right frame at t

a displacement vector (ur; vr) by giving its cor-
responding point in the right frame at t + 1. To
estimate the motion �elds and the second dispar-
ity �eld, the correspondence between points in the
�rst stereoscopic image pair is used, as derived in
the �rst stage by evaluating the �eld �t.

The following relations among the components
of the �elds to be estimated hold [13], when there
is a correct match between points ({; |) and ({0; |0)

vr({
0; |0) = vl({; |) and (4)

�t+1({+ ul; |+ vl) = ur({
0; |0)� ul({; |) + �t({; |)(5)

Therefore, for points that are not stereo oc-
cluded to completely determine the requested
�elds it is su�cient to evaluate their three com-
ponents ur, ul and vl. For these points Eq. (5)
implies that we can implicitly construct the dense
disparity �eld �t+1.

The solution with respect to the motion and
disparity �elds is achieved with the minimization
of a cost function which consists of three major
parts. One for points that are not stereo occluded,
and two for the left and the right stereo occluded
areas respectively. For the former the estimation
of the left and right motion �elds and the esti-
mation of the second disparity �eld are intercon-
nected, while for the later the motion �elds are
estimated independently.

For areas that are not stereo occluded the min-
imization of the squared deviation from the image
intensity preservation principle and a smoothness
constraint for the estimated �elds are considered.
The total quantity is:

DFDll+DFDrr+DFDlr+�(G(ur)+G(ul)+G(vl))
(6)

The �rst term is the mean square DFD between
the two left images, the second term the mean
square DFD between the two right images. With
the third term we try to minimize the mean
square DFD for the second stereoscopic pair. The
last terms refer to the smoothing of the com-
ponents of the velocity �elds which is achieved
by means of the Discontinuity Adaptive Function



(DAF)[7] which was de�ned in Section 2. The
term G(:) is de�ned as the sum of the local cost
terms that g(:) imposes, that is (for �eld ul for
example): G(ul) =

P
({;|)

P
p2N{|

g(ul � u
p
l ). We

should note that all the terms refer only to points
that are not stereo occluded at the �rst stereo-
scopic pair.

For stereo occluded areas the left and the right
motion �elds are independently estimated in a
way similar to the monocular motion analysis [4].
However a DAF is used as a regularization means
in this case too. The cost term for such areas (e.g.
left occluded areas) is:

DFDll + �(G(ul) +G(vl)) (7)

where the �rst term is the mean square DFD be-
tween the left images and the later terms refer
to the smoothing of the left motion �eld. For all
terms we refer only to points that belong to left
occluded areas.

The solution with respect to the requested
�elds is achieved with the minimization of the to-
tal cost function, using an iterative relaxation al-
gorithm which is based on its gradient. Three sets
of equations are derived, whose iterative solution
provides the estimation for the requested �elds.
For areas that are not stereo occluded the solu-
tion at the kth iteration is given by the relation:
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where the notation and the details about the way
the relation was derived are explained in Ap-
pendix A.

For the stereo occluded areas the resulting
set of equations is similar to the one derived at
monocular motion analysis. The solution at the

kth iteration for the left motion �eld is given by
the relation:�
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�
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�
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l I
2
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(9)
and a similar solution is obtained for the right
motion �eld.

A coarse-to-�ne multi-scale approach [1] is
used in the same way as in Section 2 in order
to overcome the limitations of the gradient based
algorithm.

4 Motion occlusion detection and
construction of the disparity map

Applying the algorithm described in the previ-
ous section we obtain the two dense motion �elds,

and we can partially construct the disparity �eld
�t+1 for the second stereoscopic pair by using the
Eq. (5). However we do not have information
about �t+1 at areas that the motion has disclo-
sured, that is they were not visible at the �rst
stereoscopic pair, and at areas that were stereo
occluded at the �rst stereoscopic pair. In order to
determine the disparity �eld at every point of the
left image of the second stereoscopic pair, as a �rst
step we detect the motion occluded/disclosured
areas in the left image sequence.

The detection of motion occlusions/disclosures
is based on an error con�dence measures similar
to that of Section 2. Via the velocity �eld (ul; vl)
assigned to the left image of the �rst stereoscopic
pair pixels at the left image of the second stereo-
scopic pair are matched with pixels at the left
image of the �rst stereoscopic pair. With a rea-
soning similar to that of Section 2, occlusions are
detected in the image at time instance t when-
ever multiple matches occur. To remove the con-

ict we compare the error con�dence measures
of the con
icting matches. The match with the
smallest con�dence error is declared right and the
endpoints at the left image at time t of all the
other con
icting matches are declared motion oc-
cluded. Motion disclosures are identi�ed in the
image at time instance t + 1 at the points that
are unmatched.

The detection of the
motion occlusions/disclosures is followed by the
construction of the dense disparity �eld assigned
to the left image of the second stereoscopic pair.
To do so, for each point ({; |) in the left image of
the �rst stereoscopic pair, which is not motion or
stereo occluded we �nd the corresponding point
({+ ul; |+ vl) at the left image at time t+ 1 and
we assign to it the disparity value that Eq. (5)
implies.

This process leaves a number of points with no
disparity vector assigned to them. These points
are either points that the motion has disclosured
or points whose correspondences in the left image
of the previous stereoscopic pair are stereo oc-
cluded. The disparity values for those areas are
estimated using the multi-scale gradient based al-
gorithm described in Section 2.

5 Stereo interpolation

The disparity �elds constructed either by the
method described in Section 2 or in Sections 3 and
4 are used for the construction of stereo interpo-
lated images. The objective is to construct an
interpolated image at position s 2 [0 : : : 1], where
the left and the right image of the pair are con-
sidered to be at position 0 and 1 respectively.
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Figure 1: Interpolation

To construct the interpolated image, we
project into it the disparity vectors that corre-
spond to pixels in the left image that are not
stereo occluded (Fig. 1). Con
icts that still may
occur are removed by comparing the error con�-
dence values of the matches that the con
icting
disparity vectors imply. Then we assign an inten-
sity value to each pixel in the interpolated image
to which a disparity vector projects. The inten-
sity value assigned is a weighted average of the
intensity values of the endpoint pixels of the dis-
parity vector. More speci�cally if I l and Ir are
the intensity values at the endpoints then the in-
tensity value I i at the point in the interpolated
image is given by:

I i = (1� s)I l + sIr

This procedure leaves a number of holes in the
interpolated images at object points that can only
be seen by one of the cameras. For those points
we identify at which of the two images the cor-
responding area is visible by comparing the dis-
parity vectors at the edges of the hole. As Fig. 1
reveals, if the vector at the left(right) edge of the
hole is larger then the vector at the right(left)
edge of the hole, then the correspondences can
be found at the left(right) image. The intensity
values for the points of the holes are then copied
from the image for which the correspondence was
found.

6 Results

The algorithms have been tested on real stereo-
scopic sequences. Intermediate views have been
constructed for subsequent frames of the stereo-
scopic sequences \aqua", \train" and \Claude"
with baselines 8.75cm, 8.75cm and 25cm respec-
tively. For all sequences the disparity �elds used
for the construction of interpolated images for
the �rst stereoscopic pair are estimated by the
algorithm of Section 2. The depth map for the
10th stereoscopic pair of the sequence \aqua",
which was constructed using the disparity map
estimated this way, is presented in Fig. 2(a).

(a) Depth map (b) Inte

Figure 2: Depth map and interpolated image for the 10th stereos

The corresponding interpolated image in the
middle viewpoint, that is at position s = 0:5, is
presented in Fig. 2(b). Interpolated images for
the �rst time instances of the sequences \train"
and \Claude" are presented in Fig. 3(c) and
Fig. 3(d). The interpolated images for the rest of
the sequence are constructed with the use of the
disparity �elds estimated by the algorithm of Sec-
tion 3. Interpolated images for subsequent time
instances are presented for the sequence \train"
which contains the most complex scene of the
three (with respect to motion), since the apparent
motion includes two independent motions (two
trains) and the motion of the scene. The interpo-
lation is done at position s = 0:5 and the result
is presented in Fig. 4.

7 Conclusions

A method for the joint estimation of motion
and disparity �elds for the construction of stereo
interpolated images in a stereoscopic image se-
quence was presented. Results with real data were
given in order to exhibit the performance of the
proposed method. The evaluation was done qual-
itatively. Due to the joint motion and disparity
estimation, the spatial and the temporal consis-
tency of the disparity �elds are good and the in-
termediate pictures natural. However, in the joint
motion/estimation method proposed in this work
the motion occlusion/disclosures and stereo oc-
clusions are detected at steps that follow the es-
timation of the corresponding �elds. In this way
the estimation of the disparity and motion �elds
near these areas is deteriorated. Most visible ar-
tifacts in the interpolated images appear in such



areas. A method that would incorporate the de-
tection phase into the estimation process might
improve further the results. Furthermore the use
of a spatial continuity constraint in the detection
of occlusions, both for stereo and motion, should

be investigated in future work.
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A Derivation of the iterative solu-
tion for joint motion/disparity
�eld estimation

The component of the cost function which cor-
responds to areas that are not stereo occluded at
the �rst stereoscopic pair is:
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where �Il = Il({; |; t)� Il({+ ul; |+ vl; t+ 1),
�Ir = Ir({

0; |0; t)� Ir({
0 + ur; |

0 + vl; t+ 1)
and �Irl = Ir({

0+ur; |
0+ vl; t+1)� Il({+ul; |+
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The points (i; j) over which the summation is
done, are the points at the �rst left image that

are not stereo occluded. For simpli�cation rea-
sons the dependence of ul; ur and vl on (i; j) is
omitted.

Let us de�ne an interpolation operation on the
ul �eld using the adaptive interaction function
h(:) as follows
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and in the same way on vl and ur.
Assuming that the �elds to be estimated are

small in magnitude and that the intensities vary
smoothly, the following approximations is used,
at time instant t+ 1

Il({+ ul; |+ vl) � Il({+ �ul; |+ �vl)+

(u� �ul)Ilx({+ �ul; |+ �vl) + (v � �vl)Ily({+ �ul; |+ �vl)

and the same for Ir({+ ur; |+ vr).
Let us simplify the notation of the above

derivatives by omitting to explicitly indicate the
point location (e.g. Irx = Irx({

0+�ul; |
0+�vl; t+1) ).

Let us also note �I l the value of �Il given above
if (ul; vl) = (�ul; �vl), and in the same way �Ir and
�Irl. Finally, we note �u
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and in the same way �v

l and �u
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The solution which is obtained with above as-
sumptions are summarized in the following set of
equations:2
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The iterative solution of Eq. (8) is obtained by
taking into consideration only the diagonal ele-
ments of Eq. (11).
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(c) \train" (d) \Claude"

Figure 3: Interpolated images for the 1st stereoscopic pairs of \train" and \Claude" sequences



(a) frame 2 (b) frame 4

(c) frame 6 (d) frame 8

Figure 4: Interpolated images for sequence \train"


