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ABSTRACT

The algorithm presented in this paper was proposed for
comparisons using the COST 211 data set. It is com-
prised of three main stages: (1) classi�cation of the im-
age sequence, and parametric motion estimation in case
of a moving camera, (2) change detection having as ref-
erence a �xed frame, an appropriately selected frame or
a displaced frame, and (3) object localisation using lo-
cal colour features. The image sequence classi�cation is
based on statistical tests on the frame di�erence. The
change detection module uses the two-label fast march-
ing algorithm. Finally, the object localisation uses a
region growing algorithm based on the colour similarity.

1 INTRODUCTION

Video segmentation is a key step in image sequence anal-
ysis and its results are extensively used for determining
motion features of scene objects, as well as for coding
purposes to reduce storage requirements. The devel-
opment and wide-spread use of the international cod-
ing standard MPEG-4 [11], which relies on the concept
of image/video objects as transmission elements, has
raised the importance of these methods. Moving objects
could also be used for content description in MPEG-7
applications.
Various approaches have been proposed for video or

spatio-temporal segmentation. An overview of segmen-
tation tools, as well as of region-based representations of
image and video, are presented in [6]. The video object
extraction could be based on change detection and mov-
ing object localisation, or on motion �eld segmentation,
particularly when the camera is moving. Our approach
is based exclusively on change detection. The costly and
potentially inaccurate motion estimation process is not
needed. We present here some relevant work from the
related literature for better situating our contribution.
In the framework of COST 211 an Analysis Model

(AM) is proposed for image and video analysis and seg-
mentation [2]. The essential feature of the AM is its
ability to fuse information from di�erent sources: colour
segmentation, motion segmentation, and change detec-
tion. Kim et al. [5] proposed a method using global

motion estimation, change detection, temporal and spa-
tial segmentation.

Our algorithm, after the global motion estimation
phase, is mainly based on change detection. The change
detection problem is formulated as two-label classi�ca-
tion. In [8] we have introduced a new methodology for
pixel labelling called Bayesian Level Sets, extending the
level set method [7] to pixel classi�cation problems. We
have also introduced the Multi-label Fast Marching al-
gorithm and applied it at �rst to the change detection
problem [10]. A more recent and detailed presentation
is given in [9]. The algorithm presented in this paper
di�ers from previous work in the �nal stage where the
boundary based object localisation is replaced by a re-
gion based object labelling.

In Section 2 the method for selecting the appropri-
ate frame di�erence for detecting the moving object is
presented. In Section 3 we present the multi-label fast
marching algorithm, which uses the frame di�erence and
an initial labelling for segmenting the image into un-
changed and changed regions with respect to the cam-
era, i.e. changes independent of the camera motion.
The last step of the entire algorithm is presented in Sec-
tion 4 where a region growing technique extends an ini-
tial segmentation map. Section 5 concludes the paper,
commenting on the obtained results.

2 FRAME DIFFERENCE

In our approach the main step in video object segmen-
tation is change detection. Therefore for each frame
we must �rst determine another frame which will be
retained as reference frame and used for the compari-
son. Three di�erent main situations may occur: (a) a
constant reference frame, as in surveillance applications,
(b) another frame appropriately selected, in the case of
a still camera, and (c) a computed displaced frame, in
the case of a moving camera.

The image sequence must be classi�ed according to
the above categories. We use a hierarchical categoriza-
tion based on statistics of frame di�erences. At �rst the
hypothesis (a) is tested against the other two. We can
consider there to exist a unique background reference



image if, for a number of frames, the observed frame
di�erences are negligible. A test on the empirical prob-
ability distribution is then used.
When the reference is not constant we have to deter-

mine the more appropriate reference in order to identify
independently moving objects. In order to determine
the reference frame, it must be decided if the camera is
moving or not. The test is again based on the empirical
probability distribution of the frame di�erences.
Before considering the two possible cases we will

present the statistical model used for the frame dif-
ference, because the determination of the appropriate
reference frame is based on this model. Let D =
fd(x; y); (x; y) 2 Sg denote the gray level di�erence im-
age. The change detection problem consists of determin-
ing a \binary" label �(x; y) for each pixel on the image
grid. We associate the random �eld �(x; y) with two
possible events, �(x; y) = static (unchanged pixel), and
�(x; y) = mobile (changed pixel). Let pDjstatic(djstatic)
(resp. pDjmobile(djmobile)) be the probability density
function of the observed inter-frame di�erence under
the H0 (resp. H1) hypothesis. These probability den-
sity functions are assumed to be zero-mean Laplacian
for both hypotheses (l = 0; 1)

p(d(x; y)j�(x; y) = l) =
�l
2

e��ljd(x;y)j: (1)

Let P0 (resp. P1) be the a priori probability of hypothe-
sis H0 (resp. H1). Thus the probability density function
is given by

pD(d) = P0 pDj0 (djstatic) + P1 pDj1(djmobile): (2)

In this mixture distribution fPl; �l; l 2 f0; 1gg are un-
known parameters. The principle of Maximum Likeli-
hood is used to obtain an estimate of these parameters
[3].
In the case of a still camera, the current frame must be

compared to another frame su�ciently distinct, i.e., is a
frame where the moving object is displaced to be clearly
detectable. For that the mixture of Laplacian distribu-
tions (2) is �rst identi�ed. The degree of discrimination
of the two distributions is indicated by the ratio of the
two corresponding standard deviations, or, equivalently,
by the ratio of the two estimated parameters �0 and �1.
So we search for the closest frame, which is su�ciently
discriminated from the current one. The threshold (T�)
on the ratio of standard deviations is supplied by the
user, and thus is determined the frame di�erence.
In the case of a moving camera the frame di�erence

is determined by the displaced frame di�erence of suc-
cessive frames. The camera movement must be com-
puted for obtaining the displaced frame di�erence. We
use a three-parameter model for describing the camera
motion, composed of two translation parameters and a
zoom parameter. The estimation of the three param-
eters is based on a frame matching technique with a

robust criterion of least median of absolute displaced
di�erences. For computational complexity reasons the
median is determined using the histogram of the abso-
lute displaced frame di�erences.

3 CHANGE DETECTION USING FAST
MARCHING ALGORITHM

3.1 Initial labelling

An initial map of labelled sites is obtained using sta-
tistical tests. The �rst test detects changed sites with
high con�dence. The false alarm probability is set to
a small value, say PF . For the entire COST data set
PF = 10�7. Subsequently a series of tests is used for
�nding unchanged sites with high con�dence, i.e., with
a small probability of non-detection. For these tests a se-
ries of six windows of dimension (2w+1)2, w = 2; : : : ; 7,
is considered and the corresponding thresholds are pre-
set as a function of �1. Let us denote by Bw the set
of pixels labelled as unchanged when testing window in-
dexed by w. We set them as follows

Bw =
�
(x; y) :

wX
k=�w

wX
l=�w

jd(x+ k; y + l)j < 
w
�1

	
;

for w = 2; : : : ; 7. The probability of non-detection de-
pends on the threshold 
w, while �1 is inversely propor-
tional to the dispersion of d(x; y) under the \changed"
hypothesis. As the evaluation of this probability is not
straightforward, the numerical value of 
w is empirically
�xed. Finally the union of the above sets [7

w=2Bw de-
termines the initial set of \unchanged" pixels.

3.2 Label propagation

A multi-label fast marching level set algorithm is then
applied to all sets of points initially labelled. This algo-
rithm is an extension of the well-known fast marching
algorithm [7]. The contour of each region is propagated
according to a motion �eld, which depends on the label
and on the absolute inter-frame di�erence. The label-
dependent propagation speed is set according to the a

posteriori probability principle. As the same principle
will be used later for other level set propagations and
for their respective velocities, we shall present here the
fundamental aspects of the de�nition of the propaga-
tion speed. The candidate label is ideally propagated
with a speed in the interval [0; 1], equal in magnitude
to the a posteriori probability of the candidate label at
the considered point. Let us de�ne at a site (x; y), for a
candidate label l and for a data vector d the propagation
speed as

vl(x; y) = Prfl(x; y)jd(x; y)g
Then we can write

vl(x; y) =
p(d(x; y)jl(x; y))Prfl(x; y)gX

k

p(d(x; y)jk(x; y))Prfk(x; y)g
: (3)



Therefore the propagation speed depends on the likeli-
hood ratios and on the a priori probabilities. The likeli-
hood ratios can be evaluated according to assumptions
on the data, and the a priori probabilities could be es-
timated, either globally or locally, or assumed all equal.
In the case of a decision between the \changed" and

the \unchanged" labels according to the assumption of
Laplacian distributions, the likelihood ratios are expo-
nential functions of the absolute value of the inter-frame
di�erence. In a pixel-based framework the decision pro-
cess is highly noisy. Moreover, the moving object might
be non-rigid, its various components undergoing dif-
ferent movements. In regions of uniform intensity the
frame di�erence could be small, while the object is mov-
ing. The memory of the \changed" area of the previous
frames should be used in the de�nition of the local a pri-

ori probabilities used in the propagation process. Ac-
cording to Equations (3) and (1) the two propagation
velocities could be written as follows

v0(x; y) =
1

1 + Q1(x;y;0)�1
Q0(x;y;0)�0

e(�0��1)jd(x;y)j

and

v1(x; y) =
1

1 + Q0(x;y;1)�0
Q1(x;y;1)�1

e�(�0��1)jd(x;y)j
;

where the parameters �0 and �1 have been previously
estimated. We distinguish the notation of the a pri-

ori probabilities de�ned here from those given in Equa-
tion (2), because they should adapted to the conditions
of propagation and to local situations. Indeed, the above
velocity de�nition is extended in order to include the
neighbourhood of the considered point

vl(x; y) = Prfl(x; y)jd(x; y); k̂(x0; y0); (x0; y0) 2 N (x; y))g;

where the neighbourhood may depend on the label, and
may be de�ned on the current frame as well as on pre-
vious frames. Therefore in this case the ratio of a pri-

ori probabilities is adapted to the local context, as in a
Markovian model. A more detailed presentation of the
approach for de�ning and estimating these probabilities
follows.
From the statistical analysis of the data's mixture dis-

tribution we have an estimation of the a priori probabil-
ities of the two labels (P0; P1). This is an estimation and
not a priori knowledge. However, the initially labelled
points are not necessarily distributed according to the
same probabilities, because the initial detection depends
on the amount of motion, which could be spatially and
temporally variant. We de�ne a parameter � measur-
ing the divergence of the two probability distributions
as follows:

� =

 
P̂0P1

P̂1P0

!�0(P̂0+P̂1)

;

where P̂0 + P̂1 + P̂u = 1, P̂u being the percentage of
unlabelled pixels. The parameter �0 is �xed equal to 4
if the camera is not moving, and to 2 if the camera is
moving. Then � will be the ratio of the a priori proba-
bilities. In addition, for v1(x; y) the previous \change"
map and local assignements are taken into account, and
we de�ne

Q0(x; y; 1)

Q1(x; y; 1)
=

e�1�(�(x;y)+n1(x;y)�n0(x;y))�

�
;

where �(x; y) = ln(2�(x; y)�1), with �(x; y) the distance
of the (interior) point from the border of the \changed"
area on the previous pair of frames, and n1(x; y) (resp.
n0(x; y)) the number of pixels in neighbourhood already
labelled as \changed" (resp. \unchanged"). The param-
eter � is adopted from the Markovian nature of the label
process and it can be interpreted as a potential charac-
terizing the labels of a pair of points. Finally, the exact
propagation velocity for the \unchanged" label is

v0(x; y) =
1

1 + � �1
�0
e�0+(�0��1)jd(x;y)j�n�(x;y)�

(4)

and for the \changed" label

v1(x; y) =
1

1 + 1
�
�0
�1
e�1�(�0��1)jd(x;y)j�(�(x;y)�n�(x;y))�

;

(5)
where n�(x; y) = n0(x; y) � n1(x; y). In the tested im-
plementation the parameters are set as follows: �0 = 4�
and �1 = 5� + 4.
We use the fast marching algorithm for advancing the

contours towards the unlabelled space. Often in level set
approaches constraints on the boundary points are in-
troduced in order to obtain a smooth and regularised
contour and so that an automatic stopping criterion
for the evolution is available. Our approach di�ers in
that the propagation speed depends on competitive re-
gion properties, which both stabilise the contour and
provide automatic stopping for the advancing contours.
Only the smoothness of the boundary is not guaranteed.
Therefore the dependence of the propagation speed on
the pixel properties alone, and not on contour curva-
ture measures, is not a strong disadvantage here. The
main advantage is the computational e�ciency of the
fast marching algorithm.
The proposed algorithm is a variant of the fast march-

ing algorithm which, while retaining the properties of
the original, is able to cope with multiple classes (or
labels). The execution time of the new algorithm is ef-
fectively made independent of the number of existing
classes by handling all the propagations in parallel and
dynamically limiting the range of action for each label
to the continually shrinking set of pixels for which a �-
nal decision has not yet been reached. The propagation
speed may also have a di�erent de�nition for each class
and the speed could take into account the statistical de-
scription of the considered class.



The high-level description of the algorithm is as fol-
lows:

InitTValueMap()
InitTrialLists()
while (ExistTrialPixels())
f
pxl = FindLeastTValue()
MarkPixelAlive(pxl)
UpdateLabelMap(pxl)
AddNeighborsToTrialLists(pxl)
UpdateNeighborTValues(pxl)

g

The algorithm is supplied with a label map partially
�lled with decisions. A map with pointers to linked lists
of trial pixel candidacies is also maintained. These lists
are initially empty except for sites neighbouring initial
decisions. For those sites a trial pixel candidacy is added
to the corresponding list for each di�erent label of neigh-
bouring decisions and an initial arrival time is assigned.
The arrival time for the initially labelled sites is set to
zero, while for all others it is set to in�nity. Apart from
their participation in trial lists, all trial candidacies are
maintained in a common priority queue, in order to fa-
cilitate the selection of the candidacy with the smallest
arrival time.

While there are still unresolved trial candidacies, the
trial candidacy with the smallest arrival time is selected
and turned alive. If no other alive candidacy exists for
this site, its label is copied to the �nal label map. For
each neighbour of this site a trial candidacy of the same
label is added, if it does not already possess one, to its
corresponding trial list. Finally, all neighbouring trial
pixels of the same label update their arrival times ac-
cording to the stationary level set equation

k rT (x; y) k= 1

v(x; y)
(6)

where v(x; y) corresponds to the propagation speed at
point (x; y) of the evolving front, while T (x; y) is a map
of crossing times.

While it may seem that for a given site trial pixels
can exist for all di�erent labels, in fact there can be at
most four, since a trial candidacy is only introduced by
a �nalised decision of a neighbouring pixel. In prac-
tice trial pixels of di�erent labels coexist only in region
boundaries; therefore the average number of label candi-
dacies per pixel is at most two. Even in the worst case,
it is evident that the time and space complexity of the
algorithm is independent of the number of di�erent la-
bels. Experiments indicate a running time no more than
twice that required by the single contour fast marching
algorithm.

4 MOVING OBJECT LOCALIZATION US-
ING REGION GROWING ALGORITHM

4.1 Initialisation

The change detection stage could be used for initialisa-
tion of the moving object tracker. The objective now is
to localize the boundary of the moving object. The ideal
change area is the union of sites which are occupied by
the object in two successive time instants

C(t; t+ 1) = O(t) [ O(t+ 1); (7)

where O(t) is the set of points belonging to the moving
object at time t. Let us also consider the change area

C(t� 1; t) = O(t) [ O(t� 1): (8)

It can easily be shown that the intersection of two suc-
cessive change maps C(t� 1; t) \ C(t; t+ 1) is equal to

O(t) [ (O(t + 1) \ O(t� 1)):

This means that the intersection of two successive
change maps is a better initialisation for moving object
localisation than either of them. In addition sometimes

(O(t + 1) \ O(t� 1)) � O(t):

If this is true, then

C(t; t+ 1) \ C(t; t� 1) = O(t):

Of course the above described situation is an ideal
one, and is a good approximation only in the case of
a still camera. Thus in this case, knowing also that
there are some errors in change detection and that some-
times under some assumptions the intersection of the
two change maps gives the object location, we propose
to initialize a region growing algorithm by this map, i.e.,
the intersection of two successive change maps. This
search will be performed in two stages: �rst, an area
containing the object's boundary is extracted, and sec-
ond, the boundary is detected. The description of these
stages follows.

4.2 Extraction of the uncertainty area

The objective now is to determine the area that con-
tains the object's boundary with extremely high con�-
dence. Because of errors resulting from the change de-
tection stage, and also because of the fact that the ini-
tial boundary is, in principle, placed outside the object,
as shown in the previous subsection, it is necessary to
�nd an area large enough to contain the object's bound-
ary. This task is simpli�ed if some knowledge about the
background is available. In the absence of knowledge
concerning the background, the initial boundary could
be relaxed in both directions, inside and outside, with
a constant speed, which may be di�erent for the two
directions. Within this area then we search for the pho-
tometric boundary.



The objective is to place the inner border on the mov-
ing object and the outer border on the background. We
emphasise here that inner means inside the object and
outer means outside the object. Therefore if an object
contains holes the inner border corresponding to the hole
includes the respective outer border, in which case the
inner border is expanding and the outer border is shrink-
ing. In any case the object contour is expected to be
between them at every point and under this assump-
tion it will be possible to determine its location by the
gradient-based module described in the next subsection.
Therefore, the inner border should advance rapidly for
points on the background and slowly for points on the
object, whereas the opposite should be happen for the
outer border.
For cases in which the background can be easily de-

scribed, a level set approach extracts the zone of the ob-
ject's boundary. Let us suppose that the image intensity
of the background could be described by a Gaussian ran-
dom variable with mean � and variance �2. This model
could be adapted to local measurements.
The propagation speeds will be also determined by

the a posteriori probability principle. If, as assumed,
the intensity on the background points is distributed
according to the Gaussian distribution, the local aver-
age value of the intensity should also follow the Gaus-
sian distribution with the same mean value and variance
proportional to �2. The likelihood test on the validity
of this hypothesis is based on the normalised di�erence
between the average and the mean value

(�I � �)2

�2

where �I is the average value of the intensity in a window
of size 3 � 3 centered at the examined point. A low
value means a good �t with the background. Therefore
the inner border should advance more rapidly for low
values of the above statistics, while the outer border
should be decelerated for the same values.
On the other hand it is almost certain that the bor-

der resulting from the previous stages is located on the
background. Thus the probability of being on the back-
ground is much higher than the probability of being on
the object. For the outer border the speed is de�ned as

vb =
1

1 + cbe
�4

(�I��)2

�2

(9)

where it is considered that the variance of �I is equal to
�2=8. According to Equation (3) the constant cb is

cb =
Pb
Po

�

�
p
2�

;

where Pb and Po are the a priori probabilities of being
on the background or on the moving object, respectively.
We have assumed that in the absence of knowledge the

intensity on the object is uniformly distributed in an in-
terval whose the width is � (possibly equal to 255). As
the initial contour is more likely located on the back-
ground, Po is given a smaller value than Pb (typically
Pb=Po = 3). The outer border advances with the com-
plementary speed

vo = 1� vb; (10)

using the same local variance computation.
The width of the uncertainty zone is determined by

a threshold on the arrival times, which depends on the
size of the detected objects and on the amount of motion
and which provides the stopping criterion. At each point
along the boundary the distance from a correspond-
ing \center" point of the object is determined using a
heuristic technique for fast computation. The uncer-
tainty zone is a �xed percentage of this radius modi�ed
in order to be adapted to the motion magnitude. How-
ever, motion is not estimated, and only a global motion
indicator is extracted from the comparison of the con-
secutive changed areas. The motion indicator is equal
to the number of pixels with di�erent labels on two con-
secutive \change" maps reported to the number of the
detected object points.

4.3 Region growing-based object localisation

The last stage of object segmentation is carried out by a
seeded region growing (SRG) algorithm which was ini-
tially proposed for static image segmentation using a
homogeneity measure on the intensity function [1]. It
is a sequential labelling technique, in which each step
of the algorithm labels exactly one pixel, that with the
lowest dissimilarity. In [4] the SRG algorithm was used
for semi-automatic motion segmentation.
The segmentation result depends on the dissimilarity

criterion, say �(�; �). The colour features of both back-
ground and foreground are unknown in our case. In ad-
dition local inhomogeneity is possible. For these reasons
we �rst determine the connected components already
labeled, with two possible labels: background and fore-
ground. On the boundary of all connected components
we place representative points, for which we compute
the locally average colour vector in the Lab system. The
dissimilarity of the candidate for labelling and region
growing point from the labelled regions is determined
using this feature and the euclidean distance. After ev-
ery pixel labelling the corresponding feature is up-dated.
Therefore, we search for sequential spatial segmenta-
tion based on colour homogeneity, knowing that both
background and foreground objects may be globally in-
homogeneous, but presenting local colour similarities,
su�cient for their discrimination.
For the implementation of the SRG algorithm, a list

that keeps its members (pixels) ordered according to the
dissimilarity criterion is used, traditionally referred to as
Sequentially Sorted List (SSL). With this data structure
available, the complete SRG algorithm is as follows:



S1 Label the points of the initial sets.

S2 Insert all neighbours of the initial sets into the SSL.

S3 Compute the average local colour vector for a pre-
determined subset of the boundary points of the
initial sets.

S4 While the SSL is not empty:

S4.1 Remove the �rst point y from the SSL and
label it.

S4.2 Update the colour features of the representa-
tive to which the point y was associated.

S4.3 Test the neighbours of y and update the SSL:

S4.3.1 Add neighbours of y which are neither
already labeled nor already in the SSL,
according to their value of �(�; �).

S4.3.2 Test for neighbours which are already
in the SSL and now border on an ad-
ditional set because of y's classi�cation.
These are 
agged as boundary points.
Furthermore, if their �(�; �) is reduced,
they are promoted accordingly in the SSL.

When SRG is completed, every pixel is assigned one
of the two possible labels: foreground or background.

5 RESULTS AND CONCLUSION

We applied the above described algorithm to the entire
COST data set. The results are given in the following
web page

http://www.csd.uoc.gr/~tziritas/cost.html

We obtained results ranging from good to very good,
depending on the image sequence. The image sequence
classi�cation was always correct. The parametric mo-
tion model was estimated with su�cient accuracy. The
independent motion detection was con�dent in the case
of camera motion. The mixture of Laplacians was ac-
curately estimated, and the initialization of the label
map was correct, except for some problems caused by
shadows, re
exions and homogeneous intensity on the
moving objects. The fast marching algorithm was very
e�cient and performant. The last stage of moving ob-
ject localisation can be further improved. The mod-
elization of local colour and texture content could be
possible, leading to a more adaptive region growing, or
eventually a pixel labelling procedure.
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