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ABSTRACT
We present an unsupervised, automatic human motion analy-
sis and action recognition scheme tested on athletics videos.
First, four major human points are recognized and tracked us-
ing human silhouettes that are computed by a robust camera
estimation and object localization method. Statistical analy-
sis of the tracking points motion obtains a temporal segmen-
tation on running and jump stage. The method is tested on
athletics videos of pole vault, high jump, triple jump and long
jump recognizing them using robust and independent from
the camera motion and the athlete performance features. The
experimental results indicate the good performance of the
proposed scheme, even in sequences with complicated con-
tent and motion.

1. INTRODUCTION

Human motion analysis using computer vision techniques
has many applications in many areas, such as analysis of
athletic events, surveillance, entertainment, user interfaces,
content-based image storage and retrieval. These systems at-
tempt to detect, track and identify people and recognize their
action given a number of predefined actions. Thus, there has
been a significant number of recent papers on human track-
ing and activity recognition. We can classify these systems
into different categories, according to the input data, the as-
sumptions adopted, the method used and the output. Wang,
Hu and Tan [10] emphasize on three major issues of human
motion analysis systems, namely human detection, tracking
and activity understanding. According to them, there are 2D,
with or without explicit shape models, and 3D approaches.

First, we consider 2-D approaches. Wang et al. [11] pro-
pose a method to recognize and track a walker using 2D hu-
man model and both static and dynamic cues of body biomet-
rics. Moreover, many systems use Shape-From-Silhouette
methods to detect and track the human in 2D [6] or 3D space
[2]. The silhouettes are easy to extract providing valuable in-
formation about the position and shape of the person. When
the camera is static, background subtraction techniques can
give high accuracy measures of human silhouettes. Other-
wise, camera motion estimation methods [3] can locate the
independently moving objects.

Several approaches have been proposed recently in the
literature for detecting video actions and activities using 2D
or 3D motion captured data. Bodbick and Davis [1] use tem-
poral templates strategy. They interpret human motion in an
image sequence by using motion-energy (MEI) and motion
history images (MHI). Mori et al. [4] use 3D motion data
and associate each action with a distinct feature detector and
HMM, followed by hierarchical recognition. In [5], the ac-
tion recognition is performed using a probabilistic context-
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Fig. 1: (a) Low quality silhouette: low accuracy human boundary,
the silhouette could be partitioned to several segments and several
objects could be appeared.(b) Estimated human points: head center
(green point), mass center (magenta point), left end of leg (blue
point) and right end of leg (brown point). The human body major
axis is shown as a red dashed line.(c) The four major human points.
(d) The two characteristics angles: the human major axis angle (A1)
and the angle between legs (A34).

free grammar (PCFG) based on an automatic keyframe se-
lection process.

Most of them consider simple classes like running, walk-
ing and standing using as input video sequences from static
camera and controlled environments. Thus, they obtain high
accuracy measurements about human silhouettes and high
performance results. A challenging problem appears when
the camera is moving and the estimated human silhouettes
are of low quality or extremely wrong (see Fig. 1(a)). In
this work we focus on automatic human detection, tracking
and action recognition under real and dynamic environments
of athletic meetings. We suppose that the camera tracks the
athlete and we the test algorithm in sports like pole vault,
high jump, triple jump and long jump. Furthermore, our
method works when other humans appear in the scene. The
main contribution of the method is that it works automat-
ically without any initialization or prior knowledge about
camera motion and human parameters, providing also sta-
tistical results about athlete motion. Moreover, the proposed,
robust and independent from the camera motion and the ath-
lete performance features, obtain a high performance action
recognition method.

1.1 System Overview

The proposed architecture consists of two main modules.
First, four major human points are recognized and tracked
using the precomputed human silhouettes. Silhouettes are
computed using a general purpose algorithm for detecting
and localizing the moving objects of videos. In general, the



basic steps of the algorithm are camera motion estimation,
change detection and label propagation based on Bayesian
statistics. The human major axis, the gait period and a tem-
poral segmentation on running and jump stage are estimated
by statistical analysis of the tracking points motion. On the
second module, the action recognition task is performed us-
ing the above features. The input video could be from sports
like pole vault, high jump, triple jump and long jump.

The rest of the paper is organized as follows. Section 2
presents the human motion analysis module. Section 3 de-
scribes the action recognition module. Finally, Sections 4
and 5 provide experimental results and the discussion, re-
spectively.

2. HUMAN MOTION ANALYSIS

In this section, we describe the methods that detect and track
the major human points. Moreover, we define useful action
recognition features which are related to the human motion.

2.1 Moving Objects Localization

The overall method relies on athletes’ silhouettes, extracted
for each frame of the sport event video. Silhouettes are
computed using the objects localization framework described
in [8]. Moving objects detection is mainly based on change
detection between successive video frames. The change de-
tection problem is modelled by the mixture of two zero-mean
Laplacian distributions, which correspond to pixel classes
“static” and “mobile”. An Expectation Maximization (EM)
method is employed to fit the mixture model to the com-
puted histogram of pixel inter-frame differences. The es-
timated by EM model parameters, are then used to label
“static”/“mobile” pixels of high confidence to the class they
belong. The remaining pixels are labeled by the Multi-label
Fast Marching algorithm [9], using a propagation velocity
which is based on Bayesian statistics of the mixture model
and the local labeling information of neighboring pixels.
Post processing procedures usually follow, in order to im-
prove the localization of the detected objects. Thus, the final
result of the localization framework is a map of the “mobile”
objects of the scene.

Since the localization framework is applicable to videos
where the camera remains static, the camera motion of sport
event videos is robustly computed and appropriately sub-
tracted, as it is described in [3]. The 2D motion field is given
by equations:

u = α1 +βx+ γx2 +δxy

v = α2 +βy+ γxy+δy2

whereβ is the zoom factor,γ, δ are the quadratic parameters
which are introduced in the 2D motion field by camera pan
and tilt respectively andα1, α2, are the corresponding 2D
translational parameters. This 2D model refers to a rotating
camera with a possibly changing focal length, as exactly is
the case in videos of many sport events. The motion estima-
tion method is based on block matching, confidence measure
computation and M-estimation and is fast and robust, lead-
ing to very good moving objects localization results, even
in cases where the camera motion is very large and texture
information is poor.

2.2 Major Human Points Estimation

In this step, four major human points, namely: the head cen-
ter, the mass center, the left end of leg and the right end
of leg (see Fig. 1(c)) are detected and tracked using as in-
put human silhouettes extracted by the Moving Objects Lo-
calization method. The method is divided into two proce-
dures: the detection procedure and the tracking procedure.
We select to track the above points as they are visible in the
whole sequence providing sufficient information for the ac-
tivity recognition. Our purpose is to develop a robust algo-
rithm on low quality human silhouettes (see Fig. 1). This
method is an extension of [7], where three major human
points (the head center, the mass center and the end of leg)
are detected and tracked. The consistency and the balanc-
ing of the leg tracking of [7] method is improved by tracking
both of the end of legs.

2.2.1 Detection

In this step, the four major human points are automatically
detected. This procedure is executed just once, in the first
silhouette frame of the sequence. The previous position of
the four major human points is unknown, so the input of the
method (human silhouette) should be of high quality, without
many misclassified pixels. The algorithm named “Human
Points’ Detection” is executed as it is described below.

First, the mass center point (Xc,Yc) is computed. This
point is defined as the mass center of the foreground pixels
F . Next, the human body major axis (see Fig. 1(b)) is com-
puted. It is defined as the main axis of the best fit ellipse.
This axis passes from the mass center point, that already has
been estimated, so we have to compute just the axis orienta-
tion. The orientationΘ is defined by the three second order
momentsm1,1,m2,0,m0,2 (Equation 1, 2).

mp,q = ∑
(x,y)∈F

(x−Xc)p(y−Yc)q (1)

Θ = arctan(
2m1,1

m2,0−m0,2
) (2)

It is assumed that the human stands vertically in the first
frame, so the head is found above the mass center and the
end of the leg is found under the mass center. The head
point (H) is defined as the farthest major axis point from the
mass center (C), that is found above the mass center. Then,
the end of leg points search space is reduced to the silhou-
ette boundary pointsS that are found under the mass cen-
ter. This property can be expressed by the following con-
straint ~CH · ~CL < 0.1· |CH|2,L ∈ S. The first end of leg point
(L1) can be computed by getting the farthest foreground pixel
from theC, that is found below theC. The next end of leg
point should have the following properties: high distances
from the mass center, the head point and the first end of leg
point. Moreover, the trianglePCL1 should be close to an
isosceles triangle. The last two constraints are equal to the
trianglePCL1 area maximization. Therefore, the next end of
leg point is computed by maximizing an appropriate function
Fl , whereE(PCL1) denotes the area of the trianglePCL1:
Fl (P) = |PH| · |PC| ·E(PCL1). The functionFl (P) is maxi-
mized when the above constraints are satisfied providing at
the same time theL2 point.Finally, it is trivial to distinguish
the leg pointsL1,L2 to the left and right end of leg points
using the human major axis.



2.2.2 Tracking

In this step, the four major human points are tracked. This
procedure is executed in every frame of the sequence, apart
from the first one, taking as input the position of the four
major human points in the previous frame and the current
silhouette image. Finally, the position of the four major hu-
man points in the current frame is estimated by the algorithm
that is described below.

First, we reclassify the binary silhouette image pixels in
order to reduce the number of wrong classified pixels. This
is done using the following method. We compute the min-
imum distance of each foreground object from the previous
position of the four human points multiplied by the percent-
age of the foreground pixels that belong to a line segment
started on the mass center of the foreground object and ended
on the specific major human point. If this distance is higher
than a threshold then the foreground pixels will be classified
to background class (gray pixels of Figure 1(b)). Next, we
reclassify all the background pixels that belong to human sil-
houette holes to foreground class.

The four major human points can be detected by “Hu-
man Points’ Detection” algorithm which has been described
in the detection step. This method produces two pairs of so-
lutions for the head point and the leg points, as it is unknown
if the head point is found above or under the mass center. We
choose the pair which is closer to the estimated pair of the
previous frame.

2.3 Human Motion Parameters

In this section we describe the human motion parameters in
which is based the temporal signal segmentation and the ac-
tivity recognition. Using the estimated four human major
points trajectories, we can compute features that are inde-
pendent from the camera motion. First we introduce the hu-
man body axis which is given by the angle between the hu-
man major axis and the horizontal axis (A1). If this angle is
about90o, the human is standing or running, while this angle
changes a lot during the jump of the high jump.

Moreover, a very important angle about the human mo-
tion is the angle between the legs (A34). This angle is related
to the human pose and the camera position. However, from
its trajectory, the gait period can be measured providing an
estimation of the human speed. This angle is used to discrim-
inate a triple jump sequence from a long jump sequence. Let
A1(t), A34(t) denote the anglesA1, A34 respectively at frame
t (see Fig. 1(d)). We avoid the possible2π discontinuities
of signalsA1(t), A34(t) by adding an appropriate2kπ,k∈ Z∗
factor onA(t) if |A(t)−A(t−1)|> π.

2.4 Temporal Signal Segmentation

A discrimination to running stage and jump stage provides a
temporal action recognition in each sequence. In triple jump,
long jump the running stage include the first two and half
jumps and the half jump, respectively. This segmentation is
based on the angle signalA1(t). We have supposed that the
human major axis on the fist frame is vertical (the athlete is
standing or running). Lett1 be the time that the jump stage
starts. It holds thatA1(t) remains almost constant for the
time period[0, t1]. During the jump stage, this angle changes
a lot, but over the time it can be approximated by a d-order
polynomial,d≤ 5. We have used the following algorithm to
compute the timet1.

0 20 40 60 80 100 120
1

1.5

2

2.5

3

3.5

4

4.5

5

frames

ra
ds

Original
Approximation

0 20 40 60 80 100 120
−0.5

0

0.5

1

1.5

2

2.5

frames

ra
ds

Original
Approximation

Fig. 2: Results of Temporal Signal Segmentation method for a high
jump (left) and long jump (right) sequence. The originalA1(t) sig-
nal and its approximation are plotted with blue and red line, respec-
tively. The timet1 is shown with red circle.
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Fig. 3: The originalA34(t) signal in a(a) triple jump and(b) long
jump sequence. The timesτk are shown with red circles.

Let h be a time variable. We approximateA1(t), t < h,
by a zero order polynomial andA1(t), t ≥ h by a d-order
polynomial in a least-squares sense, under the constraint
that whend ≥ 1 the approximated signal should be con-
tinuous. LetE1(h), E2(h,d) denote the errors of these ap-
proximations. Lethd denote the time of the minimum error
(ed = minh(E1(h)+E2(h,d))). It holds thated < ed−1 as the
higher order polynomial will better approximate the curve.
However, we have to select ast1 the appropriate timehd so
that the numerical approximation of the second derivative of
ed (ed+1+ed−1−2·ed) is maximized. Results of this method
are illustrated in Fig. 2, the order of the jump stage polyno-
mial varies.

2.5 Gait Period Estimation

The gait period is a characteristic feature of the running
stage. We can estimate it, by computing the mean period
of angle signalA34(t) on a time window and a metric that
measures the estimation robustness.

First, the times (τk,k∈ {1, · · · ,N}) of the local maximum
and minimum ofA34(t) are estimated in a short time win-
dow (see Fig. 3). Ifτk is a valid extremum (not noise), then
the quantitiesdpk = |A34(τk)−A34(τk−1)|, dnk = |A34(τk)−
A34(τk+1)| should be about 1 rad. Thus, we introduce the
reliability factor of the extremumτk W(τk) = dp2

k · dn2
k ·

e2−dn2
k−dp2

k . If W(τk) is close to one, then the measurement
τk is probably valid. So, we have to use it on gait period esti-
mation. LetTk = 2· (τk− τk−1) be a measurement of the gait
period using theτk, τk−1. The gait period (G) is determined
by the weighted mean ofTk, G = 1

∑N−1
k=1 W(τk)

∑N−1
k=1 W(τk) ·Tk.

The robustness of theG estimation can be measured by the
mean (EG) of the distributionPr(x=W(τk)) = W(τk)

∑ i=1N−1W(τi)
,

EG ∈ [0,1]. If the mean is higher than0.5, then the measure-
mentG is probably valid.
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Fig. 4: The proposed classification schema.

3. ACTION RECOGNITION

In this section, we present the action recognition method.
First, the pole vault is recognized, since the pole can be eas-
ily detected using the silhouettes. Next, the high jump is rec-
ognized, based on the variance of theA1(t) signal. Finally,
the most difficult discrimination between the triple jump and
long jump is done using the angle signalA34. The proposed
schema is shown in Fig. 4.

3.1 Pole Vault Recognition

The pole vault is recognized first, since the pole can be easily
detected using the athlete silhouette. We propose a silhouette
analysis algorithm which is executed in each frame of the
first half of the video sequence detecting the pole by its high
eccentricity. If the pole is detected in at least two frames of
a sequence, then the sequence is classified as pole vault. The
method is described below.

First, the highest area object (O1) is detected. Then, the
end of pole point (Pe) is estimated. This point is defined as
the farthestO1 point from the mass center ofO1 object under
the constraint that it is found above the mass center as the ath-
lete is running. The pole pixels will be detected by a region
growing method (RG) starting fromPe point. This method
terminates when the area of region exceeds the25% of the
O1 area or when the number of pixels (B) of the boundary
between the region andO1 exceeds a threshold (Bmax). The
threshold is a percentage (e.g. 20%) of the square root of
theO1 area approximating theO1 mean width. However, the
region will have been expanded in the athlete area. There-
fore, we have to ignore the last pixels that RG adds, until the
region eccentricity will be maximum (see Fig. 5).

Finally, the estimated pole region (O2) is characterized
as pole if its shape is like the pole’s shape. We measure this
similarity using the region eccentricity. A simple and low
cost method for eccentricity estimation that works always
successfully in our data is described hereafter. We compute
the distanced between the farthest point (Pf ) of O2 from
Pe and Pe itself. Then, theP1 eccentricity (ε) can be esti-
mated by the ratioε = πd2

O2 area. In the RG methodPf can be
approximated by the last point that the method adds, so the
eccentricity computation cost isO(1). If ε is higher than a
threshold (e.g. 20) and the region length is at least35% of
theO1 length then theO2 object will be a pole.

The 2D image projection of a pole is a rectangle. Thus,
an alternative robust method could be the computation of the
O2 bounding rectangle, which is defined as the smallest rect-
angle enclosing the object. TheO2 eccentricity can be mea-
sured by the ratioab, wherea,b denote the length and width
of the rectangle, respectively. In addition, the ratioab

O2 area
should be higher than a threshold.
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Fig. 5: Results of the Pole Detection procedure. The light gray
pixels denote those that ignored (last added) by the RG method and
the gray pixels denote the estimated pole region.(a), (b), (c) The
pole was successfully recognized,(a) ε = 68.26, (b) ε = 44.39, (c)
ε = 34.03 (d) ε = 8.12, (c) ε = 3.22.

3.2 High Jump Recognition

In the next step, the high jump is recognized. The high jump
can be easily detected from triple jump and long jump be-
cause of the major human axis rotation during the jump-
ing. Therefore, since the variance of the signalA1(t) will be
higher in high jump than the triple jump and long jump cases,
we used as threshold the value0.3. This feature is indepen-
dent from the camera motion and the athlete performance. A
more robust computation of the variance can be done ignor-
ing the5%lower and the5%higher values ofA1(t).

3.3 Triple Jump and Long Jump Recognition

Finally, the triple jump and long jump are recognized. This is
a difficult discrimination because of high similarity between
them. In triple jump, the athlete gait period is lower during
the jumps than the running stage (see Fig. 3(a)). On the other
hand, in long jump, the athlete gait period during the jump is
about the same as the running stage, or can not be measured
when the legs are joined (see Fig. 3(b)). Therefore, we can
discriminate them if we use a feature that measures how the
gait period is changing during the sequence.

We apply the temporal signal segmentation method tak-
ing the running stage[0, t1]. Let t0 be the time so that the dif-
ference (V(t0)) between the gait period measured at[0, t0] and
the gait period measured at(t0, t1] will be maximum.V(t0) is
positive in triple jump and negative or close to zero in long
jump. This feature is independent from the camera motion
and the athlete performance.

4. EXPERIMENTAL RESULTS

We have tested the proposed algorithm on a data set con-
taining 39 video sequences: 12 pole vault, 9 high jumps,
8 triple jumps and 10 long jumps. The correct classifica-
tion rates were100%, 88.9%, 87.5% and80% for the pole
vault, high jump, triple jump and long jump, respectively.
Moreover, the pole vault and high jump classifiers don’t pro-
duce any false alarms. Results of Human Points Tracking
method are shown in Fig. 6. In many cases, the low quality
silhouettes increase the errors of major human points com-
putation (about10− 15% of human height) mainly on leg
points. Therefore, the87.5% and80%are high rates as the
triple jump and long jump discrimination is only based on leg
points motion. However, the discrimination between triple
jump and long jump could possibly be improved using thex
mass center point trajectory. We avoid to use it, because it is
dependent on camera motion.



Fig. 6: Results of Major Human Points Tracking method on high jump and long jump sequence.

5. CONCLUSION

In this paper, an unsupervised, automatic human motion
analysis and action recognition scheme is proposed tested on
pole vault, high jump, long jump and triple jump videos. The
silhouette analysis algorithm is color independent and it de-
tects the major human points without tracking them. Conse-
quently, if in some frames the silhouette estimation algorithm
fails, the system will not loose its stability.

The pole vault recognition method, which is based on
pole detection from silhouette shape, is executed first yield-
ing 100%recognition ratio. The action recognition into long
jump, high jump and triple jump is performed using inde-
pendent from the camera motion and the athlete performance
features, like gait period and human major axis signals. The
human major axis feature is more robust to silhouette noise
than the gait period feature. Thus, the high jump classifica-
tion performance is the higher. An extension of the proposed
methodology may include the addition of more sports and
actions using more statistical features. Statistics analysis of
athletics motion and video content based retrieval and index-
ing systems could be based on our method.
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