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ABSTRACT

We present in this paper a new pel-recursive algorithm for estimating the displacement vector field in

image sequences. Firstly we use a brightness-offset term in the motion constraint equation. We follow the

Kalman approach to formulate the estimation problem. The state vector of dimension 3 is composed of the

displacement vector and the brightness offset. The extended Kalman filter is used to estimate this state

vector. The new algorithm is applied on two normalized TV sequences and it is shown that the new

algorithm is always better than the commonly used algorithms. The mean square displaced frame difference

obtained is about 20% less in comparison with the commonly used algorithms.

1. INTRODUCTION

Motion estimation is very important for image analysis and image coding. It is based on measures of

spatiotemporal variations in image sequences. Generally it is assumed that the image brightness is only

displaced, but not changed, with only an additive measurement noise. This is expressed in the so-called

motion constraint equation. The image brightness I(x,y) at point (x,y) at moment t is then given by

I(x,y;t) = I(x−u,y−v;t−∆t) + b(x,y;t) (1)

where (u,v) is the displacement vector in the interval ∆t, and b(x,y;t) is an additive noise, which in the

commonly used motion estimation algorithms is assumed to be a white noise in both spatial and temporal

sense. This assumption may not be justified for many real image sequences.

In effect, we must distinguish between the optical flow and the 2D velocity vector field. The optical flow

is defined as the 2D vector field which satisfies the motion constraint equation (1), where b(x,y;t) is only a

measurement noise. The 2D velocity (or displacement) vector field results from the projection of the real 3D

motion vector field into the image plane. This distinction is clearly made by B.K.P.Horn [6] in a qualitative

sense. A.Verri and T.Poggio [13] have given a quantitative expression of the difference between the optical

flow and the 2D velocity vector field. In a simplified formulation they obtain the same equation (1), but the

process b(x,y;t) contains some terms which depend on the 3D velocity vector and the geometrical and

photometric characteristics of the 3D objects projected into the image plane. The case where b(x,y;t) may be

considered as a white measurement noise, is when the 3D motion is translational and the 3D object surface

is lambertian.



Changes in the brightness patterns are taken in consideration for the motion measurement problem by

N.Cornelius and T.Kanade [3]. They use a regularization approach to solve the estimation problem, where

brightness changes are allowed to vary smoothly. C.Moloney and E.Dubois [9] also use the same iterative

approach, where illumination variation is also considered.  C.S.Fuh and P.Maragos [5] give a method of

image matching to estimate displacement, brightness change and illumination variation.

In this paper we propose a pel-recursive algorithm which takes into account the above considerations.

This motion estimation algorithm is principally aimed at compensating for motion in image coding, but may

be also useful for image analysis tasks. The new algorithm is based on Kalman formulation of the estimation

problem.

2. THE MOTION ESTIMATION PROBLEM

We firstly rewrite the motion constraint equation (1) in a form more suitable for estimation purpose and

we consider the discrete case

I(i,j;k)=I(i−v(i,j),j−u(i,j);k−1)+d(i,j)+n(i,j) (2)

where (i,j) are the row and column indices, k is the time index, (v(i,j),u(i,j)) is the corresponding velocity (or

displacement) vector, d(i,j) is the predictable part of the random process which expresses the dissension

between 2D motion field and the optical flow, and n(i,j) is an unpredictable (white) noise. We omit the

dependence of v(i,j), u(i,j), d(i,j) and n(i,j) on time index because it is irrelevant for the estimation method

used here. Equation (2) is the measurement equation we shall use in the following. What is to estimate is the

velocity vector (v(i,j),u(i,j)) and the brightness offset d(i,j). We then form a state vector as following

x(i,j) = 
u i j
v i j
d i j
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The state vector equation is assumed to have recursion in only one direction according to the raster scan.

Then we obtain

x(i,j) = F(i,j) x(i,j−1) + q(i,j) (4)

We assume the stationarity of x(i,j), in the sense that the transition matrix F(i,j) is space-invariant and the

statistical characteristics of the noise vector q(i,j) are also space-invariant. More precisely we suppose that

F(i,j) = 
1 0 0
0 1 0
0 0 ρ

















, with 0 ≤  ρ ≤  1 (5)
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δ(i,l) δ(j,m)= Qδ(i,l) δ(j,m) (6)

where q(i,j) is zero-mean. J.Stuller and G.Krishnamurthy [11] also used such a model, with only two

components, those of the displacement vector, and with a transition factor slightly less than 1. Concerning

the measurement noise n(i,j) we suppose that it is zero-mean and space-invariant as well. We have



E {n(i,j)n(l,m)} = Rδ(i,l) δ(j,m) (7)

Having such  a formulation for the estimation problem we can use the extended Kalman filter to solve it.

The model we use is essentially one-dimensional in space, because the transition in (4) concerns only the

horizontal coordinate. A two-dimensional model is considered by J.N.Driessen and J.Biemond [4] for a

state-vector composed of several motion vectors.

3.  A PEL-RECURSIVE KALMAN-BASED ESTIMATION

We present a new pel-recursive algorithm according to theorem 8.1 of A.Jazwinski [7] on the extended

Kalman filter. The a priori estimation of the state vector at point (i,j) is given by
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where N is the number of pixels per line. The above recursion may be advantageous in the case of

stationarity of the state vector. The case of non-stationarity is taken into account by the detector of

discontinuities introduced below. The covariance matrix of this a priori estimation is given by
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where c>>1.

Taking into account the image brightness at point (i,j), the a posteriori estimation is obtained by

x
^

(i,j)=x
0^
(i,j)+K(i,j)(I(i,j;k)− I

^
(i,j;k)) (10)

with I
^
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0(i,j), where K(i,j) is the Kalman gain given by
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and where H(i,j)  is the following vector

H(i,j) = − 
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The covariance matrix of the a posteriori estimation is given by

P(i,j) = (I−K(i,j)HT(i,j))P0(i,j)(I−K(i,j)HT(i,j))T+  RK(i,j)KT(i,j) (13)

In this standard structure we associate a detector of discontinuities, like that presented in [12]. Without

discontinuity, we suppose that the variable I(i,j;k)− I
^

(i,j;k) is zero-mean and distributed according to a



Laplacian low. In the case of discontinuity, we make the same hypothesis concerning the frame difference.

Under these assumptions, a discontinuity is detected using a Bayesian criterion, if

|I(i,j;k)− I
^

(i,j;k)|−|I(i,j;k)−I(i,j;k−1)|>s (14)

4. RELATED METHODS

We present in this paragraph two known methods, which are related to that presented here, in order to

make comparisons. For both methods no brightness offset is considered; this means that d(i,j) = 0.

Therefore, only two parameters must be estimated, the components of the displacement vector. The

dimension of the state-vector is equal to two.

The first method (named here Algorithm B) was introduced by J. Stuller and G. Krishnamurthy [11],

and also studied by M. Mijiyawa [8]. This method can be obtained directly from the formulas of the

precedent paragraphs with ρ = 0 and σd
2  = 0.

The second method (named here Algorithm C) is derived from Algorithm B after relaxation of the

hypothesis that the covariance matrix of the reduced state-vector q(i,j) is space-invariant. It is assumed that

Q(i,j) = 
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. J.C.Pesquet [10] has demonstrated that this algorithm

is similar to that first introduced by C.Cafforio and F.Rocca [2], and also presented in a different way in

[1,12]. Effectively equations (9)-(13) and (15) give

x
^
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^
0(i,j)+ 

H

H H
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vσ 2 + (i,j) (i,j)T
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5. SIMULATIONS

In the following, results of applying the three algorithms on two TV sequences: "Car" and "Mobile and

Calendar" are given. We use a reduced format with 264 lines of 674 pixels per line for each of the 60 fields.

The first two fields are used as references, thus we give results over 58 fields.

In Fig.1 (resp.2) we give the a priori displaced frame difference for the "Car" (resp."Mobile and

Calendar") sequence versus field number. The mean square Displaced Frame Difference is defined as

following

e(i,j) = I(i,j;k)-I(i-v ,j-u ;k-1)-d for no discontinuity pels
I(i,j;k)-I(i,j;k-1) for discontinuity pels
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Fig.1. The displaced frame difference for the "Car" sequence using the three algorithms.

The gain obtained on mean square DFD is about 20% in comparison with algorithm C. Algorithm B gives

for the "Car" (resp."Mobile and Calendar") sequence approximately the same results as the algorithm C

(resp.A). This is due to the fact that for the "Mobile and Calendar" sequence the hypothesis of translational

motion and Lambertian surfaces may be admitted. Thus brightness offset does not give any improvement.

But due to the translational motion a gain is obtained in comparison with the algorithm C, which is always

the worst among the three algorithms, simulated on the above sequences.
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Fig.2. The displaced frame difference for the "Mobile and Calendar" sequence using the three algorithms.

The proposed motion estimation method is also used in a predictive coding structure. On the "Car"

sequence we used a 5-level quantizer {0, ±19, ±38}, and we obtained a mean distortion over 10 fields of

about 44, or 31.7 db, as Peak SNR, for an entropy of 1.59 bits/pel. On the "Mobile and Calendar" sequence

we used a 7-level quantizer {0, ±19, ±38, ±57}, and we obtained a mean distortion over 56 fields of about

34, or 32.8 db, for an entropy of 1.1 bits/pel. Detected discontinuities must be transmitted; the percentage of

those points is 0.53 (resp. 0.04) for the "Car" (resp. "Mobile and Calendar") sequence.



6. CONCLUSION

A new algorithm is presented, based on the extended Kalman filter, for displacement vector field

estimation in image sequences. This algorithm is suitable for coding applications. It is simulated on two real

image sequences and it is shown to give better results on mean square displaced frame difference, in

comparison with other commonly used algorithms. Some preliminary results concerning the performance of

this algorithm in a predictive coding scheme are given. A suitable encoding technique, with memory, might

give a rate better than the one-dimensional entropy.
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