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SMOOTHING THE DISPLACEMENT FIELD FOR EDGE-BASED MOTION ESTIMATION
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In this article we present a method for estimating the two-dimensional velocity field on moving edges.

We assume that the 2D velocity field is an affine transformation of the point coordinates. This model

takes into account many different types of motion, and allows us to obtain a recursive relation on the
2D velocity field. We use this relation to determine the optimal smoother based on the measure of the

normal component of the velocity vector. The well-known two-filter formula [1] is used.

1. INTRODUCTION

Motion estimation in a sequence of images is an important
challenge in image processing and scene analysis. Two
approaches can be considered: a 2D region-based and an
edge-based. In this paper we are interested in edge-based
estimation. Indeed, edges may constitute relevant features
for motion robust estimation. The points on the edges
usually correspond usually to orientation discontinuities
between different surfaces or to object boundaries. It can
be assumed that the observed 2D edges or boundaries are
the geometrical projection of the 3D edges on the image
plane. The estimated velocity field is not dense, but there
are many reasons which allows us to consider that this
velocity field is more significant than:the region-based one.
The principal reason is that in these points the apparent
motion (or optical flow) can be considered as the projection
on the image plane of the 3D velocity field of a moving
scene. A.Verri and T.Poggio [8] have shown that the
apparent and the real velocity field are very close where the
image gradient is sufficiently strong. They conclude that to
recover the 3D velocity field, edge-based algorithms seem
more suitable than algorithms based on spatial and
temporal derivatives of the image brightness. In the
following we suppose that edges correspond to features in
the scene.

The first operation of an edge-based motion estimator is the
edge detection. In order to realize this operation we use
J.Canny's method [2], as it is implemented by R.Deriche
[3]. The result of this operation is the localization of the
edge points, and the estimation of the orientation of the
edge segment at each point.

In order-to estimate the displacement vector, it is also
necessary to determine, independently of the method used
for the estimation, connections between edge points. In
this paper we use a simple method to test connections and
to link edge points. At the end of this operation a link of
the points which constitute an entire edge is determined,
the orientation of the edge at each point is obtained and the
normal component of the displacement vector is estimated.

The result of the feature extraction processing is a set of
lists of points belonging in different edge elements. An
edge is described by a list of points py with 2D coordinates
(Xgo¥g)»

{pp:k=1,2,...,N}
for an edge containing N points.

Concerning motion, only one component of the
displacement vector can be measured from edge positions
in successive images. This is the perpendicular to the edge



968

component. It is the well-known aperture probiem. To
measure the normal component a displacement on the
perpendicular direction from the first contour to the second
is considered. This measurement may introduce errors if
the edge is not locally a straight line [7].

If wy = [ U Vi ]T is the 2D velocity vector at point Py
and ny the normal vector at the same point, with |l n =1,
then the normal component of the velocity vector is given
by n{wk. If wi‘ is the measured normal component, then

we can write
1 T
Wy =D W +z

where z, is a random noise, here supposed to be zero-
mean and white with variance equal to Ry.

To estimate the other component of the displacement vector
some smoothness constraints must be used. E.Hildreth [4]
proposed a regularization method which search for a
_compromise between the closeness on the data and the
smoothness of the displacement vector. E.Hildreth [4]
proposed to minimize the following criterion

N-1 N

2 Wy —wy 12+ a2 Y (Wi —nywy)?

k=1 k=1

and to solve for (w,: k =1, 2, ... , N} using the
conjugate gradient algorithm, Here we propose to use an
optimal smoother, also optimizing a quadratic criterion,
and based on the same measures, but in another type of
smoothing, which is presented in the following Section.
The resulting smoother is presented in Section 3.

2. MODEL OF THE VELOCITY FIELD

In a precedent article [7] we considered some simple
geometrical assumptions in order to obtain a model of the
2D velocity field in the case of a rigid 3D motion projected
on the image plane. If this projection is orthographic, the
2D velocity fiels is an affine transformation of the point
coordinates. G.Mailloux et al. [5] use the same model in a
different domain of application concerning two-
dimensional echocardiograms and heart motion. We
present this model in the following, and we use it for
obtaining neighbourhood relations on the velocity field.

The velocity vector w at a point p is modelized by
w=t+ Ap 2)

where t corresponds to a translation vector and matrix A
takes into consideration rotation and some deformation of
the pattern of the edge. The criterion (1) takes into account
only a pure translation vector (A = 0). Let us suppose for
simplicity, that for the definition of the velocity the time
unit is equal to the temporal sampling period. Then, if p'
and p are corresponding points, in two successive frames,
we have

p'=t+ (I+A)p 3
We can assume for applicable models that eigenvalues of
matrix are in modulus small in comparison with 1, and
therefore matrix I+A is always supposed non-singular.
Under these hypotheses, it is easy to demonstrate that a
straight line is transformed by (3) into a straight line, and a
polygon into a polygon. Indeed, if (p', p), (p;’, p;) and
(p,', p,) are corresponding points and (p, P1> Py) are
aligned, we have

det [ p'-p;' p;'-py] =det(I+A) det [ p-p; p;—p,] =0
which means that points (p', p;', P, are aligned.

We also remark that, if t = 0, and A is a positive-definite
matrix, then the motion modelized by (2) is a dilation. If A
is a negative-definite matrix, then the motion modelized by
(2) is a contraction. In conclusion, we can say that the
model proposed here can take into consideration several
different types of motion.

Let us note the elements of matrix A as following
3 by
S
3 by
For two successive points py,; and Py We can write, in

accordance with (2),
Wikl Wi = ADyy 1~ P

From this last equation, and considering separately the two
components of the velocity vector, we can write for
component u, taking into account four successive points
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|
—

WU XXy Yo Yked a |=0 @

b
U U2 X1~ ¥k2 Yk-17Vk2 1

We also can write similar equations for the components v.
A consequence of (4) is that the determinant of the above
matrix must be zero,

Upe1 U XXk Y1k
Wy X Xeg Y Ve | =0
Up 1 U2 Xk 17%k-2 Yk-17Yk2

‘We can then write
Dy y (U1~ Dy 1 (Wg—uy )+D 31Uy 1~y p) =0

. X Xk1 Y Yk
Wlth Dl ,k=

Xk-1"%k2  Yk-17Yk-2

Xe+17 Xk Y1 Yk
and  Dyy,=

Xk-17"%k2  Yk-17Yk-2

If the three points py, py_; and py_, are not aligned, then
D, 4#0, and we can write

D D +D. D
= —Lk+l 2kl Lkl
“k+1-(1+‘]§"LLl; Yoy —L +6l.k uyy 1;1;1 wy, )

which is an autoregressive relation on the velocity. The
same relation is valid for the other component of the
velocity vector.

3. ESTIMATION OF THE VELOCITY FIELD

We propose to use the autoregressive relation given in the
precedent section for estimating the 2D velocity field. Let
us consider the equation (5) and write the autoregressive
relation for the two velocity components

Uy = Byug + By upg + Broikg

Vi1 = Bivic + i1 Vi1 + Bravieo
The identification of coefficients {B, } is obvious according
to (5); they depend on edge line curvature. Of course the
above model is not perfect and we have to take into acount
amodel noise. We designate & the state vector given by

By =lug Wy U o Vg Vg V1T
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The state equation according to the above recursive

relations is given below
<I)l:+llk
Ege1 = [ Ex + oy ©)
* 0 Oy

where the noise vector . @ is zero-mean with covariance
matrix Qy and the transition matrix @y is

P Bra By
Gax={ 1 0 O
0 1 0

The equation of measurement is given by
V=[x 0 0 ¢y 0 0] B+ 7y
where y; is the measured projection of the velocity vector
on the perpendicular to the contour vector and z, isa
measurement noise which is assumed zero-mean with
variance Ry. We have
o cxlT=my
n, being the normal vector. We can write
©1i ©2) = Ex Koy £ (xpo¥id))
if the equation of the contour is known: f(x,y)=0. The
system and measurement noise are assumed to be
independent and independent between different points.

The problem to solve is the following: given the
observation of {y, ; 1<k<N} on the edge, how to estimate
the field of {(ug ., vy ) :1 <k <N} This is a
smoothing problem and we propose to use the two-filter
smoothing formula [1], which gives the optimal solution
with a quadratic criterion

€en =Pun (P;.lldk-lgf,klk-l + P;ilkéb,klk)

-1 _ -1 -1
Pen = Prk-1 + Poxi

where éf,klk-l is a forwards optimal prediction and éb Xik i8
a backwards optimal filtering, both based on the same state
vector equation (6). Pgyy , and Py, are the
corresponding error covariance matrices. The initial
covariance matrix, at k=1, for the forwards filter, and at
k=N, for the backwards filter, are assumed sufficiently
great in the above formula. A similar approach using a
different state equation is presented in [6] where some
results concerning the motion of simulated edges are given.
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4. CONCLUSION

We have introduced a model for the 2D velocity field,
which is adaptable in many domains of applications, and
many types of 2D motion or 3D motion projected on the
image plane. We have shown how this model may be used
to estimate the 2D velocity field on points belonging on
edges detected from a sequence of images. The evaluation
of the performance of this method in natural images is
currently under investigation.
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