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Abstract—Compressed sensing (CS) samples signals at a much
lower rate than the Nyquist rate if they are sparse in some basis.
In this paper, the CS methodology is applied to sinusoidally mod-
eled audio signals. As this model is sparse by definition in the fre-
quency domain (being equal to the sum of a small number of si-
nusoids), we investigate whether CS can be used to encode audio
signals at low bitrates. In contrast to encoding the sinusoidal pa-
rameters (amplitude, frequency, phase) as current state-of-the-art
methods do, we propose encoding few randomly selected samples
of the time-domain description of the sinusoidal component (per
signal segment). The potential of applying compressed sensing both
to single-channel and multi-channel audio coding is examined. The
listening test results are encouraging, indicating that the proposed
approach can achieve comparable performance to that of state-of-
the-art methods. Given that CS can lead to novel coding systems
where the sampling and compression operations are combined into
one low-complexity step, the proposed methodology can be consid-
ered as an important step towards applying the CS framework to
audio coding applications.

Index Terms—Audio coding, compressed sensing (CS), signal re-
construction, signal sampling, sinusoidal model.

1. INTRODUCTION

HE growing demand for audio content far outpaces the
T corresponding growth in users’ storage space or band-
width. Thus, there is a constant incentive to further improve the
compression of audio signals. This can be accomplished either
by applying compression algorithms to the actual samples of a
digital audio signal, or using initially a signal model and then
encoding the model parameters as a second step. In this paper,
we propose a novel method for encoding the parameters of the
sinusoidal model.

Manuscript received December 24, 2009; revised May 05, 2010; accepted Oc-
tober 17, 2010. Date of publication November 09, 2010; date of current version
May 13, 2011. This work was supported in part by the Marie Curie TOK-DEV
“ASPIRE” grant and in part by the PEOPLE-IAPP “AVID-MODE” grant within
the 6th and 7th European Community Framework Programs, respectively. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Patrick Naylor.

A. Griffin, C. Tzagkarakis, A. Mouchtaris, and P. Tsakalides are with the In-
stitute of Computer Science, Foundation for Research and Technology-Hellas
(FORTH-ICS), and Department of Computer Science, University of Crete, Her-
aklion, Crete GR-70013, Greece (e-mail: agriffin@ics.forth.gr; tzagarak @ics.
forth.gr; mouchtar @ics.forth.gr; tsakalid@ics.forth.gr).

T. Hirvonen was with the Institute of Computer Science, Foundation for
Research and Technology-Hellas (FORTH-ICS), Heraklion, Crete GR-70013,
Greece. He is now with the Dolby Laboratories, Stockholm SE-113 30,
Sweden, (e-mail: toni.hirvonen@dolby.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2010.2090656

The sinusoidal model represents an audio signal using a
small number of time-varying sinusoids [1]. The remainder
error signal—often termed the residual signal-—can also be
modeled to further improve the resulting subjective quality of
the sinusoidal model [2]. The sinusoidal model allows for a
compact representation of the original signal and for efficient
encoding and quantization. Extending the sinusoidal model to
multi-channel audio applications has also been proposed (e.g.,
[3D.

Various methods for quantization of the sinusoidal model
parameters (amplitude, phase, and frequency) have been pro-
posed in the literature. Initial methods in this area suggested
quantizing the parameters independently of each other [4]-[8].
The frequency locations of the sinusoids were quantized based
on research into the just noticeable differences in frequency
(JNDF), while the amplitudes were quantized based either on
the just noticeable differences in amplitude (JNDA) or the esti-
mated frequency masking thresholds. In these initial quantizers,
phases were uniformly quantized, or were not quantized at all
for low-bitrate applications. More recent quantizers operate
by jointly encoding all the sinusoidal parameters based on
high-rate theory and can be expressed analytically [9]-[12].
The bitrates achieved by these methods can be further reduced
using differential coding, e.g., [13]. It must be noted that all
the aforementioned methods encode the sinusoidal parameters
independently for each short-time segment of the audio signal.
Extensions of these methods, where the sinusoidal parameters
can be jointly quantized across neighboring segments, have
recently been proposed, e.g., [14].

In this paper, we propose using the emerging compressed
sensing (CS) [15], [16] methodology to encode and compress
the sinusoidally modeled audio signals. Compressed sensing
seeks to represent a signal using a number of linear, non-adap-
tive measurements. Usually, the number of measurements is
much lower than the number of samples needed if the signal
is sampled at the Nyquist rate. CS requires that the signal is
sparse in some basis—in the sense that it is a linear combina-
tion of a small number of basis functions—in order to correctly
reconstruct the original signal. Clearly, the sinusoidally mod-
eled part of an audio signal is a sparse signal, and it is thus nat-
ural to wonder how CS might be used to encode such a signal.
We present such an investigation of how CS can be applied to
encoding the time-domain signal of the model instead of the si-
nusoidal model parameters as state-of-the-art methods propose,
extending our recent work in [17], [18]. We extend our previous
work in terms of providing more results for the single-channel
audio coding case, but also we propose here a system which
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applies CS to the case of sinusoidally modeled multi-channel
audio. At the same time, the paper proposes a psychoacoustic
modeling analysis for the selection of sinusoidal components in
a multi-channel audio recording, which provides a very com-
pact description of multi-channel audio and is very efficient for
low-bitrate applications.

This is, to our knowledge, the first attempt to exploit the
sparse representation of the sinusoidal model for audio signals
using compressed sensing, and many interesting and important
issues are raised in this context. The most important problems
encountered in this work are summarized in this paragraph.
The encoding operation is based on randomly sampling the
time-domain sinusoidal signal, which is obtained after applying
the sinusoidal model to a monophonic or multi-channel audio
signal. The random samples can be further encoded (here
scalar quantization is suggested, but other methods could be
used to improve performance). An issue that arises is that as
the encoding is performed in the time-domain—rather than
the Fourier domain—the quantization error is not localized in
frequency, and it is therefore more complicated to predict the
audio quality of the reconstructed signal; this was addressed
by suggesting a spectral whitening procedure for the sinu-
soidal amplitudes. Another issue is that the sinusoidal model
estimated frequencies should correspond to single bins of the
discrete Fourier transform, or else the sparsity requirement
cannot be satisfied. In practice, this translates into encoding
the sinusoidal parameters selected from a peak-picking proce-
dure (with the possible inclusion of a psychoacoustic model),
without further refinement of the estimated frequencies. This
important problem can be addressed (as explained in detail
later) by employing zero-padding in the Fourier analysis (i.e.,
improving the frequency resolution by shortening the bin
spacing), and also by employing interpolation techniques in the
decoder (since sparsity is not needed after the CS decoding).
The improved frequency resolution resulted in a need to in-
crease the number of CS measurements, and consequently the
bitrate, and this problem was alleviated by employing a process
termed “frequency mapping.” Another important problem
which was addressed in this paper is the fact that CS theory
allows for signal reconstruction with high probability but not
with certainty; three different ways of overcoming this problem
(termed “‘operating modes”) are suggested in this paper. In
summary, several practical problems were raised during our
research; by providing a complete end-to-end design of a
CS-based sinusoidal coding system, this paper both clarifies
several limitations of CS to audio coding, but also presents
ways to overcome them, and in this sense we believe that this
paper will be of interest to researchers working on applying the
CS theory to signal coding.

The paper deals only with encoding the sinusoidal part of the
model (i.e., there is no treatment for the residual signal). It is
noted that other than the proposed method, the authors are only
familiar with the work of [19] for applying the CS methodology
to audio coding in general. While our focus in this paper is on
exploiting the sinusoidal model in this context, in [19] the goal
was to exploit the excitation/filter model using CS.

The importance of applying CS theory to audio coding lies
mainly to the applicability of CS to sensor network applications.
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Sensor-based local encoding of audio signals could enable a va-
riety of audio-related applications, such as environmental mon-
itoring, recording audio in large outdoor venues, and so forth.
This paper provides an important step towards applying CS to
audio coding, at least in low-bitrate audio applications where
the sinusoidal part of an audio signal provides sufficient quality.
It is shown here for multi-channel audio signals that, except for
one primary (reference) audio channel, a simple low-complexity
system can be used to encode the sinusoidal model for all re-
maining channels of the multi-channel recording. This is an im-
portant result given that research in CS is still at an early stage,
and its practical value in coding applications is still unclear.

The remainder of the paper is organized as follows. In
Section II, background information about the sinusoidal model
is given, and a novel psychoacoustic model for sinusoidal
modeling for multi-channel audio signals is proposed. Back-
ground information about the CS methodology is presented in
Section III. In Section IV, a detailed discussion about the prac-
tical implementation of the method is provided related to issues
such as alleviating the effects of quantization (Section IV-A);
bitrate improvements (Section IV-B); quantization and en-
tropy coding (Section IV-C); CS reconstruction algorithms
(Section IV-D); achieved bitrates (Section IV-E); operating
modes (Section IV-F); and complexity (Section IV-G). The
discussion of Section IV is then extended to the multi-channel
case in Section V. In Section VI, results from listening tests
demonstrate the audio quality achieved with the proposed
coding scheme for the single-channel (Section VI-A) and
the multi-channel case (Section VI-B), while in Section VII
concluding remarks are made.

II. SINUSOIDAL MODEL

The sinusoidal model was initially used in the analysis/syn-
thesis of speech [1]. A short-time segment of an audio signal
s(n) is represented as the sum of a small number of K sinu-
soids with time-varying amplitudes and frequencies. This can
be written as

K
s(n) = Z ay, cos(2m fyn + 6y,) (1)

k=1

where ay, fr, and 6, are the amplitude, frequency, and phase,
respectively. To estimate the parameters of the model, one needs
to segment the signal into a number of short-time frames and
compute a short-time frequency representation for each frame.
Consequently, the prominent spectral peaks are identified using
a peak detection algorithm (possibly enhanced by perceptual-
based criteria). Interpolation methods can be used to increase
the accuracy of the algorithm [2]. Each peak in the /th frame is
represented as a triad of the form {cy , fi x,0: 1} (amplitude,
frequency, phase), corresponding to the kth sinewave. A peak
continuation algorithm is usually employed in order to assign
each peak to a frequency trajectory by matching the peaks of
the previous frame to the current frame, using linear amplitude
interpolation and cubic phase interpolation.

A more accurate representation of audio signals is achieved
when a stochastic component is included in the model. This
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model is usually called the sinusoids plus noise model, or deter-
ministic plus stochastic decomposition. In this model, the sinu-
soidal part corresponds to the “deterministic” part of the signal
due to the structured nature of this model. The remaining signal
is the sinusoidal noise component e(n), also referred to here as
residual or sinusoidal error signal, which is the “stochastic” part
of the audio signal, since it is very difficult to accurately model,
but at the same time essential for high-quality audio synthesis.
Accurately modeling the stochastic component has been exam-
ined both for the single-channel case, e.g., [2], [20], [21] and
the multi-channel audio case [3]. Practically, after the sinusoidal
parameters are estimated, the noise component is computed by
subtracting the sinusoidal component from the original signal.
Note that in this paper we are only interested in encoding the
sinusoidal part.

A. Single-Channel Sinusoidal Selection

To perform single-channel sinusoidal analysis, we employed
state-of-the-art psychoacoustic analysis based on [22]. In the ith
iteration, the algorithm picks a perceptually optimal sinusoidal
component frequency, amplitude, and phase. This choice mini-
mizes the perceptual distortion measure

Di= / ()| Ri(w)|2dw @)

where R;(w) is the Fourier transform of the residual signal
(original frame minus the currently selected sinusoids) after the
ith iteration, and A;(w) is a frequency weighting function set
as the inverse of the current masking threshold energy.

One issue with CS encoding is that no further refinement of
the sinusoid frequencies can be performed in the encoder, be-
cause frequencies which do not correspond to exact frequency
bins would result in loss of the sparsity in the frequency do-
main. This is an important problem, because it implies that we
must restrict the sinusoidal frequency estimation to the selection
of frequency bins (e.g., following a peak-picking procedure),
without the possibility of further refinement of the estimated fre-
quencies in the encoder. This can be alleviated by zero-padding
the signal frame, in other words improving the frequency res-
olution during the parameter estimation by reducing the bin
spacing. We have found, though, that for CS-based encoding
this can be performed to a limited degree, as zero-padding will
increase the number of measurements that must be encoded as
explained in Section IV (and consequently the bitrate). Fortu-
nately, this problem can be partly addressed by employing the
“frequency mapping” procedure, described in Section IV. Fur-
thermore, since the sparsity restriction need not hold after the
signal is decoded, frequency re-estimation can be performed in
the decoder, such as interpolation among frames.

B. Multi-Channel Sinusoidal Selection

To perform multi-channel sinusoidal analysis, we have
extended the sinusoidal modeling method presented in
[23]—which employs a matching pursuit algorithm to de-
termine the model parameters of each frame—to include the
psychoacoustic analysis of [22]. For the multichannel case,
in each iteration, the algorithm picks a sinusoidal compo-
nent frequency that is optimal for all channels, as well as
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channel-specific amplitudes and phases. This choice minimizes
the perceptual distortion measure

Di= Y [ Aic()l i) G)

where R; .(w) is the Fourier transform of the residual signal of
the cth channel after the th iteration, and 4, . (w) is a frequency
weighting function set as the inverse of the current masking
threshold energy. The contributions of each channel are simply
summed to obtain the final measure.

An important question is what masking model is suitable for
multi-channel audio where the different channels have different
binaural attributes in the reproduction. In transform coding, a
common problem is caused by binaural masking level differ-
ence (BMLD); sometimes quantization noise that is masked in
monaural reproduction is detectable because of binaural release,
and using separate masking analysis for different channels is not
suitable for loudspeaker rendering. However, this effect in para-
metric coding is not so well established.

We performed preliminary experiments using: 1) separate
masking analysis, i.e., individual ALC(w) based on the masker
of channel ¢ for each signal separately [see (3)]; 2) the masker
of the sum signal of all channel signals to obtain A;(w) for
all ¢; and 3) power summation of the other signals’ attenuated
maskers to the masker of channel ¢ according to

Ao (w) = ! . “4)

M; (w) + > weM; g (w)
k;céc

In the above equation, M (w) indicates the masker energy,
wy, the estimated attenuation (panning) factor that was varied
heuristically, and k iterates through all channel signals ex-
cluding c. In this paper, we chose to use the first method, i.e.,
separate masking analysis for channels (wy = 0), for the
reason that we did not find notable differencies in BMLD noise
unmasking, and that the sound quality seemed to be marginally
better with headphone reproduction. For loudspeaker reproduc-
tion, the second or third method may be more suitable.

The use of this psychoacoustic multi-channel sinusoidal
model resulted in sparser modeled signals, increasing the
effectiveness of our compressed sensing encoding.

III. COMPRESSED SENSING

Compressed sensing [15], [16]—also known as compressive
sensing or compressive sampling—is an emerging field which
has grown up in response to the increasing amount of data that
needs to be sensed, processed and stored. A great majority of
this data is compressed as soon as it has been sensed at the
Nyquist rate. The idea behind compressed sensing is to go di-
rectly from the full-rate, analog signal to the compact represen-
tation by using measurements in the sparse basis. Thus, the CS
theory is based on the assumption that the signal of interest is
sparse in some basis as it can be accurately and efficiently repre-
sented in that basis. This is not possible unless the sparse basis is
known in advance, which is generally not the case. Thus com-
pressed sensing uses random measurements in a basis that is
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incoherent with the sparse basis. Incoherence means that no el-
ement of one basis has a sparse representation in terms of the
other basis [15], [16]. This gives compressed sensing its univer-
sality, the same measurement technique can be used for signals
that are sparse in different bases. This still results in the impor-
tant part of the signal being captured with many less measure-
ments than the Nyquist rate.

Compressed sensing has found applications in many areas:
image processing [24], spatial localization [25], [26], medical
signal processing [27], to name a few. In addition, compressed
sensing is particularly suited to multiple sensor scenarios,
making it a good choice for wireless sensor networks [26], [28].

Although sparse representations of sound exist, for example
[29]-[31], compressed sensing has not yet been particularly suc-
cessfully applied to audio signals. We surmise that this is due to
the fact that the sparse bases for audio do not represent audio
with enough sparsity, or that they do not integrate well into the
compressed sensing methodology. In this paper, we take a dif-
ferent approach, by applying compressed sensing to a paramet-
rically modeled audio signal that we know is sparse. This is a
novel application of compressed sensing as we are using it to en-
code a sparse signal that is known in advance. We now briefly
review the compressed sensing methodology and set up a more
formal framework for the work in the following sections.

A. Measurements

Let x; be the N samples of the sinusoidal component in the
lth frame. It is clear that x; is a sparse signal in the frequency
domain. To facilitate our compressed sensing reconstruction, we
require that the frequencies f; . are selected from a discrete set,
the most natural set being that formed by the frequencies used
in the N-point fast Fourier transform (FFT). Thus, ; can be
written as

I = ‘I’Xl (5)

where ¥ is an N x N inverse FFT matrix, and X is the FFT
of ;. As z; is a real signal, X; will contain 2K non-zero com-
plex entries representing the real and imaginary parts—or in an
equivalent description, the amplitudes and phases—of the com-
ponent sinusoids.

In the encoder, we take M non-adaptive linear measurements
of z;, where M < N, which result in the M X 1 vector y;. This
measurement process can be written as

y, = Pz = VX, (6)

where ®; is an M x N matrix representing the measurement
process. For the CS reconstruction to work, ®; and ¥ must be in-
coherent. In order to provide incoherence that is independent of
the basis used for reconstruction, a matrix with elements chosen
in some random manner is generally used. As our signal of in-
terest is sparse in the frequency domain, we can simply take
random samples in the time domain to satisfy the incoherence
condition, see [32] for further discussion of random sampling.
Note that in this case, ®; is formed by randomly selected rows
of the N x N identity matrix.
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B. Reconstruction

Once y; has been measured, it must be quantized and sent
to a decoder, where it is reconstructed. Reconstruction of a
compressed sensed signal involves trying to recover the sparse
vector X ;. It has been shown [15], [16] that

X; = argmin | X, st y =YX, @)
with p = 1 will recover X; with high probability if enough
measurements are taken. Note that ®; is considered available
at the receiver as all that is required to generate it is the same
seed as that used in the transmitter. It has recently been shown
in [33] and [34] that p < 1 can outperform the p = 1 case.
It is the method of [34] that we use for reconstruction in this
paper. Further discussion of the reconstruction is presented in
Section IV-D.

A property of CS reconstruction is that perfect reconstruc-
tion cannot be guaranteed, and thus only a probability of “per-
fect” reconstruction can be guaranteed, where “perfect” defines
some acceptability criteria, typically a signal-to-distortion ratio.
Aside from the effects of the reconstruction algorithm, this prob-
ability is dependent on M, N, K, and @), the number of bits of
quantization used.

Another important feature of the reconstruction is that when
it fails, it can fail catastrophically for the whole frame. In our
case, not only will the amplitudes and phases of the sinusoids
in the frame be wrong, but the sinusoids selected—or equiva-
lently, their frequencies—will also be wrong. In the audio en-
vironment, this is significant as the ear is sensitive to such dis-
continuities. Thus, it is essential to minimize the probability of
frame reconstruction errors (FREs), and if possible eliminate
them.

Let F'; be the positive FFT frequency indices in z;, whose
components Fj ;. are related to the frequencies in the x; by

fup = Bk ®)

N

As F is known in the encoder, we can use a simple forward
error correction to detect whether an FRE has occurred. We
found that an 8-bit cyclic redundancy check (CRC) on F; de-
tected all the errors that occurred in our simulations. Once we
detect an FRE, we can either re-encode and retransmit the frame
in error, or use interpolation between the correct frames before
and after the errored frame to estimate it. These issues are dis-
cussed further in Section I'V-F.

IV. SINGLE-CHANNEL SYSTEM DESIGN

A block diagram of our proposed system for single-channel
sinusoidal audio coding is depicted in Fig. 1. The audio signal
is first passed through a psychoacoustic sinusoidal modeling
block to obtain the sinusoidal parameters {F;, a;, 8,;} for the
current frame. These then go through what can be thought of as
a “pre-conditioning” phase where the amplitudes are whitened
and the frequencies remapped. The modified sinusoidal param-
eters {F},a’;,0;} are then reconstructed into a time domain
signal, from which M samples are randomly selected. These
random samples are then quantized to () bits by a uniform scalar
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Fig. 1. Block diagram of the proposed system for the single-channel case. In the encoder, the sinusoidal part of the monophonic audio signal is encoded by
randomly sampling its time-domain representation, and then quantizing the random samples using scalar quantization. The inverse procedure is then followed in

the decoder.

quantizer, and sent over the transmission channel along with the
side information from the spectral whitening, frequency map-
ping and CRC blocks.

In the decoder, the bit stream representing the random sam-
ples is returned to sample values in the dequantizer block, and
passed to the compressed sensing reconstruction algorithm,
which outputs an estimate of the modified sinusoidal parame-
ters, {ﬁ; &;, él} If the CRC detector determines that the block
has been correctly reconstructed, the effects of the spectral
whitening and frequency mapping are removed to obtain an
estimate of the original sinusoid parameters, {ﬁ'h a,,0,},
which are passed to the sinusoid model resynthesis block. If
the block has not been correctly reconstructed, then the current
frame is either retransmitted or interpolated, as discussed in
Section IV-F.

In the remainder of this section, we discuss the important
components of our proposed system in more detail. All the data
used in the simulations discussed in this section are the audio
signals that are used in the listening tests of Section VI. The
audio signals were all sampled at 22 kHz using a 20-ms window
with 50% overlapping between frames. Unless otherwise stated,
the parameters used were an N = 2048-point FFT from which
we computed a K = 25 sinusoid component x;. The total
number of frames of audio data in the simulations is about 5000.

As discussed in the previous section, the probability of FRE
(Prrr) is a key performance figure in our system. Fig. 2
presents the simulated Pprg versus M for a simple example
with N = 256 and K = 10. Let us just consider the “No
quantization, no SW” curve; it is clear that Pprg decreases as
M increases, due to more information being available at the
decoder. Of course, a higher M requires a higher bitrate, and
thus we chose to set

PFRE ~ 10_2

€))

as a design constraint. The effects of this choice are discussed
further in Sections I'V-F and VI.

A. Spectral Whitening

Once we quantize the M samples that we send, we find that
PrrE increases significantly. Equivalently, the M required to

10° G

Probability of frame reconstruction errors

—— No quantization, no SW
—b— 0 =4,n0oSW
—e— (0 =4, 3 bits SW

3 . . . . 'Y
10 30 40 50 60 70 80

Number of random samples, M

Fig. 2. Prrg versus M for a simple example with N = 256, K = 10 and
three cases: no quantization and no spectral whitening, () = 4 bits quantization
and no spectral whitening, and ) = 4 bits quantization and 3 bits for spectral
whitening.

achieve the same Pprp increases. Fig. 2 illustrates this dramat-
ically; the “Q = 4,n0 SW” curve in Fig. 2 shows that our system
becomes unusable for the 4-bit quantization with no spectral
whitening case.

As our quantization is performed in the time domain, it has an
effect similar to adding noise to all of the frequencies in the re-
covered frame £;. We must then select the K largest components
of Z; and zero the remaining components. This is illustrated in
Fig. 3. The top plot shows the reconstruction without quantiza-
tion, and the desired components are the K largest values in the
reconstruction. The middle plot shows the effect of 4-bit quanti-
zation, where some of the undesired components are now larger
than the desired ones and an FRE will occur.

To alleviate this problem we implemented spectral whitening
in the encoder. We first tried to employ envelope estimation of
the sinusoidal amplitudes based on [35], but we could not get ac-
ceptable performance without incurring too large an overhead.
Our final choice was to simply divide each amplitude by a 3-bit
quantized version of itself, and send this whitening information
along with the quantized measurements. The result is seen the
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Fig. 3. Reconstructed frames showing the effects of 4-bit quantization and
spectral whitening.

bottom plot in Fig. 3, where the desired components are clearly
the K largest values and thus no FRE will occur. This whitening
incurs an overhead of approximately 3K bits, but the savings in
reduced M and Q) allow us to achieve a lower overall bitrate for
a given PpRrg.

In the case of 4-bit quantization and 3-bit spectral whitening,
our system again becomes feasible as illustrated in Fig. 2. In
fact, this case only requires ten more random samples than the
case with no quantization.

B. Frequency Mapping

The number of random samples M that must be encoded (and
thus the bitrate) increases with N, the number of bins used in
the FFT. In other words, there is a trade-off between the amount
of encoded information and the frequency resolution of the si-
nusoidal model. In turn, lowering the frequency resolution in
order to retain a low bitrate will affect the resulting quality of
the modeled audio signal, since the restriction in the number
of bins clearly limits the frequency estimation during the si-
nusoidal parameter selection. This effect can be partly allevi-
ated by frequency mapping, which reduces the effective number
of bins in the model by a factor of Cry;, which we term the
frequency mapping factor. Thus, the number of bins after fre-
quency mapping Ny is given by

(10)
We choose C'pyp to be a power of two so that the resulting Ny

will always be a power of two, suitable for use in an FFT.
Thus, we create F'j, a mapped version of F';, whose compo-

nents are calculated as
Fip
F { |
’ Crum

where |-| denotes the floor function. We also need to calculate
and send F; with components Fl k& given by

Y

Fx = Fi, mod Cpy. (12)
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Fig. 4. Pygre versus M for various values of frequency mapping, 4-bits of
quantization of the random samples, and 3 bits for spectral whitening.

We send F';—which amounts to K logy Cry bits—along with
our M measurements, and once we have performed the recon-
struction and obtained F;, we can calculate the elements of F
as
Fii. = CrmFly + Fi. (13)

It is important to note that not all frames can be mapped by
the same value of Cry, it is very dependent on each frame’s
particular distribution of F;. Essentially, each Fj; must map
to a distinct Fj ;. However, this can easily be checked in the
encoder so that the value of Cr\ chosen is the highest value for
which (11) produces distinct values of £, , k=1,..., K.

The decrease in the required M for a given PFRE for various
values of Cgy is clearly illustrated in Fig. 4. Throughout this
work, we have only presented results for which a significant
number—agreater than 95%—of the frames can be mapped by
the given values of Cr);. The frames that can not be mapped
to the highest value of C'ry; are mapped to the next-highest
possible value to ensure minimum impact on bitrate. The final
bitrates achieved due to frequency mapping are discussed in
Section IV-E.

C. Quantization and Entropy Coding of Random Samples

We employed a uniform scalar quantizer to quantize the M
random samples to () bits per sample.

The effects of quantizing the random samples cannot be an-
alyzed in a straight-forward manner [36]—[38]. In our system,
the quantization is done in the time domain, but its effects are
more readily observed in the frequency domain as changes
in the amplitudes and phases of the sinusoidal components.
Compounding the difficulties of analysis is the fact that these
changes are only visible after passing through a highly non-
linear CS reconstruction algorithm. The final complication is
that we are dealing with audio signals and thus psychoacoustic
effects should be taken into account.

As [36]-[38] indicate, the optimal quantization of CS mea-
surements is a very complicated problem, and one that has yet
to be solved. Moreover, current work in the area suggests that
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TABLE I
NUMBER OF BITS PER SINUSOID USED FOR SPECTRAL WHITENING, FOR
DIFFERENT VALUES OF )

@ | SW bits

quantizing the CS measurements will always have inferior per-
formance to directly quantizing the sparse signal. We do not dis-
pute that here, and indeed, this is not strictly what we are doing.
Through the use of frequency mapping—to reduce the dimen-
sion of the sparse vector—and spectral whitening—to reduce
the dynamic range of the amplitudes—we are simplifying the
job that the CS reconstruction has to do. Of course, these two
processes also have the side benefit of improving the quality of
the reconstructed signals. All this is only possible because we
know the sparse signal in advance.

For a purely objective discussion, we now consider the seg-
mental SNR of the reconstructed audio signals. This is the mean
SNR of the all the reconstructed frames, and is affected by the
number of random samples M, the number of bits used for quan-
tization (), and the reconstruction algorithm used. The number
of bits used for SW also affects the reconstructed SNR; how-
ever, this dramatically affects the final bitrate, so we chose to
use the minimum number of bits for SW that allows us to sat-
isfy (9) with the lowest overall bitrate. Note that this varies with
Q, and the chosen values are presented in Table 1.

Fig. 5 presents the mean segmental SNR of the reconstructed
audio frames as M and (Q are varied. The error is measured
between the sinusoidal component and its quantized version
in the time-domain. The SNR increases as M increases, but
nowhere near as significantly as when () is increased. We also
calculated the amplitude-only SNR (ignoring the phase), which
produced slightly higher, but otherwise very similar results to
Fig. 5. The non-integer values of @) are achieved by a simple
sharing of bits. For example, for Q = 3.5, 7 bits are shared
over two consecutive random samples. It must also be noted that
the curves in Fig. 5 were simulated using the error-free mode of
Section IV-F3, ensuring that there were no FREs. In fact, the
choice of () affects the Prrg, and thus the choice of M that
can be used, as illustrated in Fig. 6. It is for this reason that the
curves for () = 3 and 3.5 begin at M = 85 and 80, respectively,
in Fig. 5, as the Prgrp is too high at lower values of M to enable
error-free reconstruction in these cases.

It is clear from Fig. 6 that increasing () reduces the M re-
quired for a given Prrg, but that there is no reduction once
@ > 4.5. Thus, one can conclude from Figs. 5 and 6 that @
is more important than M in terms of improving reconstructed
SNR. However, each increase in () dramatically increases the
final bitrate, so that great care must be taken in the choice of
both (Q and M. This is discussed further is Section IV-E and
subjective results on the effects of quantization on audio quality
are presented in the listening tests of Section VI.

To further reduce the number of bits required for each
quantization value, an entropy coding scheme [39] may be
used after the quantizer. Entropy coding is a lossless data com-
pression scheme, which maps the more probable codewords
(quantization indices) into shorter bit sequences and less likely
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Fig. 6. Prrg versus M for varying number of bits used for quantization (),
and J\’YFM = 128.

codewords into longer bit sequences. In our implementation
Huffman coding is used as an entropy encoding technique.
Thus, it is expected that the average codeword length will
be reduced after the Huffman coding. The average codeword
length is defined as

(14)

where p; is the probability of occurrence for the 4th codeword,
I; is the length of each codeword and 2° is the total number of
codewords, as b is the number of bits assigned to each codeword
before the Huffman encoding.

Table II presents the percentages of compression that can be
achieved through Huffman encoding for each audio signal for
Q = 3, 4, and 5 bits of quantization. The possible compres-
sion clearly decreases as () increases, but for our chosen case of
Q@ = 4, acompression of about 8% is clearly achievable. It must
be noted though that this requires a training procedure—some-
thing we prefer to avoid—so this is presented as an optional en-
hancement. Also, the derived values correspond to the best-case
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TABLE II
COMPRESSION ACHIEVED AFTER ENTROPY CODING FOR ALL AUDIO SIGNALS.
(Q2: CODEWORD LENGTH, (): AVERAGE CODEWORD LENGTH AFTER ENTROPY
CODING, PC: PERCENTAGE OF COMPRESSION ACHIEVED)

Signal Q @ PC |Q @ pPC|Q @ ©PC
Violin 3 264 11.9% 4 370 7.5% 5 473 54%
Harpsichord 3 262 12.7% 4 3,67 82% 5 470 6.1%
Trumpet 3 260 13.6% 4 3.63 93% 5 466 6.8%
Soprano 3 259 137% 4 362 94% 5 465 7.0%
Chorus 3 264 122% 4 368 8.0% 5 471 59%
Female sp. 3 260 132% 4 3.64 9.0% 5 468 6.5%
Male sp. 3 260 134% 4 3.63 92% 5 466 6.8%
Average 3 261 129% 4 3.65 87% 5 468 63%
W — —

; " [ —a— Smoothed £o
,,,,,,,, N 0| —A— Modified Smoothed £0
: —©— “Super” Algorithm

Probability of Frame Reconstruction Error

70 80 90 100 110 120
Number of random samples, M

Fig. 7. Ppry versus M for different reconstruction algorithms, with 4 bits for
quantization of the random samples, 3 bits for spectral whitening, and Ny =
128.

scenario that the training and testing signals are of similar na-
ture, since training was performed using the same recordings
(but different segments) as the ones that were encoded.

D. “Super” Reconstruction Algorithm

In order to ensure we obtained the lowest possible bitrate, we
analyzed the performance of a variety of reconstruction algo-
rithms. The one chose to use in our system was the smoothed £
norm—described in [34]—as it gave the best performance and
was very efficient.

The fact that our decoder can tell when an FRE has occurred,
allows us to propose the use of a new reconstruction paradigm.
In a sense, it can be considered as a “super” algorithm as it
makes use of other reconstruction algorithms. Let us term these
other reconstruction algorithms as “sub-algorithms.” The super
algorithm proceeds as follows: for each frame, we run sub-al-
gorithm number 1 and check the CRC, if an FRE has occurred
we run sub-algorithm number 2 and check the CRC, if an FRE
has occurred, we run sub-algorithm number 3, and so on until
the frame has been successfully reconstructed.

Thus, for the super-algorithm to fail all of the sub-algorithms
must fail. At worst, the performance of the super-algorithm will
be that of the best sub-algorithm, but frequently it will be better,
as different sub-algorithms generally fail for different frames.
It must be noted that the super-algorithm will incur additional
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TABLE III
PARAMETERS THAT ACHIEVE A PROBABILITY OF FRE OF APPROXIMATELY
10—2 FOR VARIOUS VALUES OF Ny

raw overhead final per
Nem | Q| M ‘ bitrate | CRC | FM | SW H bitrate | sinusoid
2048 | 4 | 275 1100 8 0 75 1183 473
1024 | 4 195 780 8 25 75 888 35.5
512 4 155 620 8 61 75 764 30.6
256 4 115 460 8 96 75 639 25.6
128 4 88 352 8 140 75 575 23.0

TABLE 1V

PARAMETERS THAT ACHIEVE A PROBABILITY OF FRE OF APPROXIMATELY
10—2 FOR VARIOUS VALUES OF ()

raw overhead final per

Nem Q M bitrate | CRC | FM | SW bitrate | sinusoid
128 3 109 327 8 140 | 125 600 24.0
128 3.5 94 329 8 140 | 100 577 23.1
128 4 88 352 8 140 75 575 23.0
128 | 45 84 378 8 140 75 601 24.0
128 5 83 415 8 140 75 638 25.5
128 5.5 83 456 8 140 | 75 680 27.2
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. '| =— Male speech
——6— Female speech

Probability of Frame Reconstruction Error
—
o
%

=

o
1
w

Number of random samples, M

Fig. 8. Prrg versus M for individual signals, with 4 bits for quantization of
the random samples, 3 bits for spectral whitening, and Npy = 128.

complexity in the decoder due to the fact that multiple sub-al-
gorithms may need to be run, but in practice this effect could be
minimized by running the best performing sub-algorithm first.

This is nicely illustrated in Fig. 7, where we consider the per-
formance of a super algorithm based on two sub-algorithms: the
smoothed ¢ algorithm, and a modified smoothed ¢, algorithm.
The modified smoothed ¢ algorithm was obtained by using a
different smoothing algorithm. The super algorithm clearly pro-
vides the best possible performance, particularly when the Prrp
for the two sub-algorithms are less than 1072,

E. Bitrates

Table III presents the bitrates achievable for a Prrg of ap-
proximately 10~2 with Q = 4. The overhead consists of the
extra bits required for the CRC, the frequency mapping (FM)
and the spectral whitening (SW). It is clear that the overhead in-
curred from spectral whitening and frequency mapping is more
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Fig. 9. Block diagram of the proposed system for the case of multi-channel audio. In the encoder, the sinusoidal part of each audio channel is encoded by randomly
sampling its time-domain representation, and then quantizing the random samples using scalar quantization. The single-channel system is fully applied to one of

the audio channels (primary channel) in (a), while for the remaining channels (b)

only a subset of the quantization process is needed. In the decoder, the sinusoidal

part is reconstructed from the random samples of the multiple channels. (a) Primary Audio Channel. (b) cth Audio Channel.

than accounted for by significant reductions in M, resulting in
overall lower bitrates.

Table IV shows the effect of  on the bitrates achievable for a
Prrr of approximately 1072, Of interest here is that the bitrates
achievable for Q = 3 and 4.5 are the same, similarly for Q = 3
and 4.5. Fig. 5 suggests that the bitrate with the higher value of
Q) will sound better, and this is discussed further in Section VI.

In Fig. 8, we present the Prrg versus M for the individual
signals used in our simulations and listening tests with for the
case with Ngyp = 128, Q = 4 and 3-bit spectral whitening. It
is clear that for a Prrg of 10~2 the M does not vary much, say
from 87 to 96. Equivalently, with a fixed M of 88, the Prrg, only
varies from about 0.007 to 0.04. This supports our claim that our
system does not require any training, as this is a wide variety of
signals that perform similarly. See Section VI for more details
on the signals used.

It should also be noted from Table II that the above bitrates
can be reduced by about 1 bit per sinusoid if entropy coding
is used, although this will require training, something we are
trying to avoid.

F. Operating Modes

To address the fact that we can only specify a probability of
reconstruction, we propose three different operating modes to
address the effect of frame reconstruction errors:

1) Retransmission: In the retransmission mode, any frame
for which the CRC detects an FRE is re-encoded in the encoder
using a different set of random samples and retransmitted. Obvi-
ously this requires more bandwidth, but if the Prrg is kept low
enough this increase should be tolerable. For instance, we aim
for Prre =~ 1072 in this work, which would incur an increase
in bit-rate of approximately one percent.

2) Interpolation: In most sinusoidal coding applications, re-
transmission is not a viable option. For applications where re-
transmission is undesirable—or indeed impossible—the inter-
polation mode may be used. In this mode, lost frames are re-
constructed using the same interpolation method as used in the
regular synthesis of McAulay and Quatieri [1], i.e., using 1)
linear amplitude interpolation and 2) cubic phase interpolation
between matched sinusoids of different frames. Non-matched
sinusoids are either “born” or “die” away (interpolated from and

to zero amplitude). In case of a lost frame, a sufficient number
of samples are interpolated between the previous and succes-
sive good frame. The assumption that a good frame is available
both before and after the FRE is valid as we are considering low
values of Prrg. The effect of interpolation on the reconstructed
signals is investigated in the listening tests of Section VI.

3) Error-Free: The final mode is one in which reconstruction
is guaranteed, i.e., no FREs will occur. This is done by recon-
structing the frame in the encoder using the random samples
selected. If the frame is successfully reconstructed, then these
random samples are transmitted. If not, then a new set of random
samples are selected and reconstruction is attempted again. This
process is repeated until a set of random samples that permit suc-
cessful reconstruction is found.

In addition to eliminating the need for retransmission or in-
terpolation, the error-free mode allows for a lower bit-rate, by
allowing the system to operate with many less random samples
than the other two modes. Of course, the reconstruction in the
encoder increases the complexity of the encoder, and so we do
not explore this mode further in this work.

G. Complexity

As an indication of complexity, our MATLAB CS implemen-
tation could run in real time, as the encoder and decoder take
600 us and 4 ms per frame, respectively (only the CS encoding
and decoding part, excluding the sinusoidal analysis and syn-
thesis). With 20-ms frames and 10-ms frame advance (for 50%
overlap), these equate to 6% and 40% of the available processing
time. This benchmarking was performed on a Microsoft Win-
dows XP PC with 2 GB of RAM running at 2 GHz.

V. MULTI-CHANNEL SYSTEM DESIGN

A block diagram of our proposed system for the case of multi-
channel audio is depicted in Fig. 9. The primary channel is en-
coded in a manner very similar to that described in the previous
section, and is shown in Fig. 9(a), which corresponds to the
block diagram of Fig. 1. The only differences are that the psy-
choacoustic sinusoidal modeling block now takes all C' audio
channels as an input, as discussed in Section II-B, and that many
quantities now have an extra subscript specifying which of the
C channels they belong to.
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For the encoding and decoding of the remaining channels (ex-
cluding the primary channel) we propose performing the fol-
lowing procedure. Due to the fact that the sinusoidal models for
all the channels share the same frequency indices

Fo=F; ¢=23,..C (15)
F.,=F;, ¢=23,..C (16)
F.,=F, ¢=23..0 (17)
Fo=F, ¢=23,..0C (18)

the encoding and decoding for the other (C' — 1) channels can
be a lot simpler, as shown in Fig. 9(b). In particular, the com-
pressed sensing reconstruction collapses to a back-projection.
Let us write the measurement process of (6) as

yc,l = ¢c,l‘I’Arc,l (19)
where Yo ®.;, and X . ; denote the cth channel versions of y;,
®,, and X, respectively.

Now let ¥ be the columns of ¥ chosen using F'; ;, and Xf,l
be the rows of X .; chosen using F'1 ;. We can then write (19)
as

Y., =B ¥rX!,. (20)
Which can then be rewritten as
x5 = (@) 'y, @1

where (B)T denotes the Moore—Penrose pseudo-inverse of a
matrix B, defined as (B)' = (BEB) “'BH with B denoting
the conjugate transpose of B.

Thus, (21) gives a way of recovering Xf:l from®. ;, F; ;,and
y. ;. However, the decoder only has ®. ;, FA’M, and ¥, ;, which
is yc_l after it has been through quantization and dequantization.

So the decoder for the other (C —1) channels can recover an
estimate of X f ; using

~ .
Xc,l = (QC,I‘I,F)Tyc,l'

(22)

One particular advantage of the recovery of (22) is that it
is only the primary (¢ = 1) audio channel that determines
whether or not an FRE occurs. The number of random samples
required for the other (C' — 1) channels can be significantly less
than that for the primary channel, and thus M. < Mj, ¢ =
2,3,...C. Decreasing M. only decreases the signal-to-distor-
tion ratio, which the ear is much less sensitive to than the effect
of FREs. This of course means that the primary channel will be
the best quality channel, with the other (C' — 1) channel being of
lower quality. This may or may not be desired, and if not, sum
and differences of the channels may be sent instead of the actual
channels. This still allows the recovery of the original channels,
but with a more even quality.

VI. LISTENING TESTS

In this section, we examine the performance of our proposed
system, with respect to the resulting audio quality. Listening
tests were performed in a quiet office space using high-quality
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headphones (Sennheiser HD650), with the participation of ten
volunteers (authors not included). Monophonic audio files were
used for the single-channel algorithm, and stereophonic files
were used for the multi-channel algorithm. Two types of tests
were performed. The first test was based on the ITU-R BS.1116
[40] methodology; thus, the coded signals were compared
against the originally recorded signals using a 5-scale grading
system (from 1-“very annoying” audio quality compared to the
original, to 5-“not perceived” difference in quality). Low-pass
filtered (with 3.5-kHz cutoff) versions of the original audio
recordings were used as anchor signals. This test is referred
to as the quality rating test in the following paragraphs. The
second type of test employed was a preference test (forced
choice), where listeners indicated their preference among a pair
of audio signals at each time, in terms of quality.

It is noted that for all listening tests the sinusoidal error signal
was obtained and added to the sinusoidal part, so that audio
quality is judged without placing emphasis on the stochastic
component, and this is similar to other tests in this area [10],
[12]. The signals were downsampled to 22 kHz, so that the sto-
chastic component affects the resulting quality to a lesser degree
compared to the 44.1-kHz case. This is because the stochastic
component is particularly dominant in higher frequencies—thus
its effect would be more evident at the 44.1-kHz than the 22-kHz
sampling rate—and the focus of the paper is on the sinusoidal
rather than the stochastic component.

The sinusoidal analysis/synthesis window was 20 ms, using
K = 25 sinusoids per frame, with 50% overlapping. Our pro-
posed algorithm used an N = 2048-point FFT and Ngy; = 128.
The values of () and M are different for the single-channel
and multi-channel cases. Due to the use of the psychoacoustic
model, for some frames less than 25 sinusoids were selected.
Thus, the bitrate results in the following paragraphs are given in
terms of bits per sinusoid. The parameters were chosen so as to
always obtain Prrg ~ 102,

A. Single-Channel Case

For the single-channel case, the following seven signals
were used (Signals 1-7): harpsichord, violin, trumpet, soprano,
chorus, female speech, male speech. Signals 1-4 were obtained
from the EBU SQAM disc, Signal 5 was provided by Prof. Kyr-
iakakis of the University of Southern California (a recording
of the chorus of a classical music performance), while Signals
6-7 were obtained from the VOICES corpus [41] of OGI’s
CSLU. The audio signals used in the tests can all be found at
our website.!

The results of the single-channel listening test are given in
Fig. 10. The retransmission mode was employed for this quality
test. The proposed method was implemented operating at the
following rates:

* @ = 3.0 bits per sample, M = 109 samples, resulting in

24 bits per sinusoid;

* (@ = 4.0 bits per sample, M = 88 samples, resulting in 23

bits per sinusoid;

* (@ = 4.5 bits per sample, M = 84 samples, resulting in 24

bits per sinusoid.

Ihttp://www.ics.forth.gr/~mouchtar/cs4sm/



1392

Not

perceived [

Perceived,
not annoying

Slightly :
annoying |- - - - -

Annoying A V&K 21 T
O V&K 24
Very @ Q=30
ANNOYING [+« ¢+ v r e v Q=40 (4
O Q=45
Harp Trumpet Violin Soprano Chorus Female Male
speech speech

Fig. 10. Results of quality rating listening tests. V&K refers to the method
of [10] with the given target entropy (21 or 24 bits per sinusoid). () = 3.0 and
() = 4.5 correspond to the proposed method with 24 bits per sinusoid (different
choices of implementation parameters), while @ = 4.0 corresponds to 23 bits
per sinusoid.

These values correspond to the first, third, and fourth rows of
Table IV, where the additional details of the implementation pa-
rameters (overhead) can be found. We note that the resulting bi-
trates (23 or 24 bits per sinusoid) could be further reduced by
employing the entropy coding of Section IV-C. The proposed
method was compared to a state-of-the-art method, namely that
of [10], operating at the same rate of 24 bits per sinusoid (de-
noted as V&K 24 in the figure), and also at a lower bitrate of 21
bits per sinusoid (denoted as V&K 21 in the figure).

From the results of Fig. 10 it can be clearly seen that the pro-
posed method achieves similar quality to state-of-the-art sinu-
soidal coding methods for the same bitrate. More specifically,
comparing the Q = 4.0 and Q = 4.5 cases with the similar bi-
trate of V&K 24, we can see that the proposed method results
in comparable audio quality, and in fact outperforms V&K 24
for some signals. The results for the lower bitrate of 21 bits per
sinusoid indicate that listeners can distinguish the reduction in
bitrate and thus in quality for some of the signals. Consequently,
it was sensible to compare our method operating at 24 bits per
sinusoid with the method of [10] at that same rate and not lower.
On the other hand, the ) = 3.0 case, is clearly seen to result in
lower audio quality for most audio signals, although it also op-
erates at the same bitrate of 24 bits per sinusoid as ) = 4.5.

The @ = 3.0 case was included in the test so as to verify
our expectation from Fig. 5, that using more bits per sample is
more important than increasing the number of samples (for a
constant bitrate), especially at low bitrates where the effect of
quantization is more evident. This fact, which was indicated by
the SNR results in that figure, was verified in this listening test.
Given that the results for the proposed method are similar for
the @ = 4.0 and Q = 4.5 choices, we use ) = 4.0 for the
remaining listening test results in the single- and multi-channel
cases since it provides a slightly lower bitrate than ) = 4.5.

At this point, it must be noted that more recent methods may
perform better than the method of [10] (such as [12]) and thus
could achieve similar performance to our method using less bits
per sinusoid, depending though on the particular signal used. As
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Fig. 11. Results of the preference listening tests for retransmitted signals
(black) over 1% FRE interpolated signals (gray).
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Fig. 12. Results of the preference listening tests for retransmitted signals
(black) over 10% FRE interpolated signals (gray).

explained, our general objective is to examine the applicability
of the CS framework to sinusoidal audio coding—and thus we
do not claim here superiority of the proposed approach com-
pared to current state-of-the-art methods.

The preference tests in this section were performed in order
to examine the quality that can be achieved in the interpolation
mode of operation for our system, compared to the retransmis-
sion mode. In the interpolation case, delays for retransmission
of the frames in error are avoided, and thus it is of practical
value to investigate its performance. Thus, we evaluated the in-
terpolation case for a 1% probability of frame error, and for a
10% probability of error. The audio signals were encoded using
@ = 4.0 resulting in 23 bits per sinusoid. The results of the
comparison of the 1% case to the retransmission case (i.e., no
FREs) are given in Fig. 11. It can be seen from this test that in
this case, there is a preference towards the retransmission mode
signals but not in all seven signals. For this purpose, the overall
preference is also given which indicates only a small preference
to the retransmission mode signals, and in general indicates that
in most cases the 1% frame errors can be acceptably corrected
with the interpolation method. In contrast, for the case of 10%
frame errors shown in Fig. 12, the preference is clear towards
the retransmission operation mode, which indicates that the in-
terpolation method can no longer conceal the frame errors to an
acceptable degree.

B. Multi-Channel Case

While the proposed multi-channel coding scheme operates in
principle regardless of the number of channels, and in fact be-
comes more beneficial in terms of total bitrate when the number
of channels is high, it was convenient for us to perform listening
tests using headphones and stereo signals, following the ITU-R
BS.1116 methodology as previously. The following six stereo
signals were used: male and female speech, male and female
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Fig. 13. Results of quality rating tests for various stereo signals. “V&K” refers
to the method of [10]. The bits per sinusoid values (35 or 37) are given as the
sum for the two encoded audio channels.

TABLE V
PARAMETERS USED TO ENCODE THE SIGNALS USED IN THE MULTI-CHANNEL
LISTENING TESTS, AND THEIR ASSOCIATED PER-FRAME BITRATES

raw overhead final per

chan | Q@ | M ‘ bitrate | CRC | FM | SW H bitrate | sine
1 40 | 88 352 8 140 | 75 575 23.00

2 40 | 69 ‘ 276 0 0 75 H 351 14.04

2 40 | 62 248 0 0 50 298 11.92

chorus, trumpet and violin, a cappella singing, jazz, and rock.
The latter three types of recordings were obtained from popular
music CDs, while the remaining audio signals are the same used
in the previous section. The test signals used in this section can
be found at our aforementioned website (multi-channel case).

The results of this test are given in Fig. 13, where the vertical
lines indicate the 95% confidence limits. Again, V&K refers
to the method of [10]. Our proposed method was implemented
using 4-bit quantization of the random samples, and the param-
eters given in Table V. In order to balance the overall quality
of the reconstructed stereo signals, the primary and secondary
channels were alternated every other frame, so that the left and
right channels were each encoded as the primary channel 50%
of the time. This was found to produce signals with a slightly
higher quality than using a sum and difference method.

The primary channel had 3 bits per sinusoid of spectral
whitening (SW), 5.6 bits per sinusoid for frequency mapping
(FM), and required 88 random samples to achieve a Pprp of
approximately 102, giving a required bit rate of 23.0 bits per
sinusoid. The secondary channel had 3 or 2 bits per sinusoid
of spectral whitening and no bits were required for frequency
mapping. The number of random samples for the secondary
channel were 69 or 62, resulting in 14.04 and 11.92 bits per
sinusoid, respectively.

In Fig. 13, the value of 35 bits per sinusoid for the proposed
method corresponds to the parameters leading to 23 for the pri-
mary and 11.92 for the secondary channel in Table V, while the
37 total bits per sinusoid correspond to the 14.04 bits per sinu-
soid value in the table for the secondary channel. Note that if
additional channels were to be encoded, they would be consid-
ered as secondary channels. We used the retransmission mode
to ensure no FREs occurred.
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The signals generated by our method were compared again
to the method of [10], denoted as “V&K,” operating at the rates
of 23 and 12 (total 35), and 24 and 13 (total 37) bits per sinu-
soid, for the left and right channels, respectively. These values
were selected so as to achieve the best possible sound quality
for this method, considering that in the single-channel case 21
bits per sinusoid were found to provide inadequate quality. For
this method, both channels were coded separately, and no fre-
quency information was sent for the right channel as it were
the same as that used in the left channel. Thus, the fact that our
multi-channel sinusoidal model uses the same frequency indices
for all channels, which was exploited in our multi-channel CS
coding method as explained, is also exploited for the method of
[10], so that the comparison provided is fair.

It can be seen in Fig. 13 that our proposed method achieves
a similar quality to that of [10] for the total rate of 35 bits per
sinusoid. This is also true for the 37 bits per sinusoid case, al-
though in this latter case one can observe a very slight but con-
sistent preference towards the method of [10]. Overall, the re-
sults obtained for the multi-channel case can be considered as
quite encouraging, given that our interest in this paper is to pro-
vide a study as to whether CS can be applied to audio coding,
which is in principle verified by our results. Further work cer-
tainly remains given that the decoding complexity for the pro-
posed method remains significantly higher than state-of-art si-
nusoidal coding methods.

VII. CONCLUSION

The methodology of compressed sensing was introduced to
the long examined problem of encoding the sinusoidal parame-
ters of an audio signal. Current state-of-the-art methods directly
encode these parameters based on the high-rate theory, mini-
mizing the distortion using a jointly optimal scalar quantizer for
these parameters. In contrast, based on CS theory we propose
using a small subset of the samples of the sinusoidal part, given
that this part is sparse in the frequency domain. These samples
are randomly chosen and subsequently quantized using a scalar
quantizer. The complexity in the encoder is similar to state-of-
the-art methods, while it is higher in the decoder. The method-
ology was examined both for monophonic as well as multi-
channel audio signals, and it was found that comparable per-
formance in terms of audio quality of current sinusoidal coding
methods can be achieved with the proposed methodology. It is
noted that our interest is not to claim at this point superiority
of the proposed method in terms of bitrate or complexity com-
pared to state-of-the-art methods for sinusoidal audio coding.
Our interest is to examine the applicability of the CS theory
to this area, as a first step towards examining the challenging
problem of applying CS to audio coding in a more general con-
text. Given the important property of CS to combine sampling
and compression in a single step and move the complexity from
the encoder to the decoder, our final long-term objective is to
design an audio coding methodology based on CS which is ap-
plicable for the case that the encoder operates on a resource-con-
strained platform, such as a wireless sensor network. In that
case, audio-related applications such as environmental moni-
toring, remote presence, and obtaining field recordings would
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be greatly facilitated. At the same time, more near-term but cer-
tainly non-trivial issues such as combining the sinusoidal mod-
eling with the random measurement procedure, and including
psychoacoustic analysis in the quantization of the random mea-
surements will be examined in our future work.
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