
ROBUST TEXT-INDEPENDENT SPEAKER IDENTIFICATION USING SHORT TEST
AND TRAINING SESSIONS

Christos Tzagkarakis and Athanasios Mouchtaris

Department of Computer Science, University of Crete and
Institute of Computer Science (FORTH-ICS)

Foundation for Research and Technology - Hellas
Heraklion, Crete, Greece

{tzagarak, mouchtar}@ics.forth.gr

ABSTRACT
In this paper two methods for noise-robust text-independent speaker
identification are described and compared against a baseline method
for speaker identification based on the Gaussian Mixture Model
(GMM). The two methods proposed in this paper are: (a) a statis-
tical approach based on the Generalized Gaussian Density (GGD),
and (b) a Sparse Representation Classification (SRC) method. The
performance evaluation of each method is examined in a database
containing twelve speakers. The main contribution of the paper is
to investigate whether the SRC and GGD approaches can achieve
robust speaker identification performance under noisy conditions
using short duration testing and training data, in relevance to the
baseline method. Our simulations indicate that the SRC approach
significantly outperforms the other two methods under the short test
and training sessions restriction, for all the signal-to-noise ratios
(SNR) cases that were examined.

1. INTRODUCTION

Speaker recognition systems are essential in a variety of security
and commercial applications, such as information retrieval, control
of financial transactions, control of entrance into safe or reserved
areas and buildings, etc. [1]. Speaker recognition can be based on
both the separate or combined use of several biometric features [2]
(voice, face, fingerprints, etc.). In our study, we focus on speaker
recognition using only voice patterns.

Speaker recognition can be categorized into speaker verifica-
tion and speaker identification. In speaker verification, a speaker
claims to be of a certain identity and his/her voice is used to ver-
ify this claim. On the other hand, speaker identification is the task
of determining an unknown speaker’s identity. Generally speak-
ing, speaker verification is a one-to-one match where one speaker’s
voice is matched to one template (“voice print” or “voice model”)
whereas speaker identification is a one-to-N match where the voice
is compared against N templates. Speaker recognition methods can
also be divided into text-dependent and text-independent methods.
The former require the speaker to provide utterances of keywords
or sentences, the same text being used for both training and recog-
nition. In text-independent recognition, the decision does not rely
on a specific text being spoken. In our study we focus on text-
independent speaker identification.

In order to correctly identify a person, each speaker in the
database is usually assigned a specific speaker model consistently
describing the extracted speech features. During the identification
process, the system returns the speaker’s identity based on the clos-
est matching of the test utterance against all speaker models. This
procedure has proven to be effective under acoustic conditions in
matched training and testing [3]. However, in practical applications
where speech signals are corrupted by noise due to either the envi-
ronment in which the speaker is present (e.g. the user is crossing a
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busy street) or due to the voice transmission medium (e.g. the user is
speaking through a cell-phone), robust identification is a challeng-
ing problem.

The most popular approach for speaker identification is based
on Gaussian Mixture Models (GMM) [3] (a brief description is
given in Section 2.1). Other classifiers such as Support Vector Ma-
chines (SVM) [4] have also been used for this task. Recently, the
focus of the speaker recognition research community has been given
both on the study of features that are more robust in noise environ-
ments and on finding more robust and efficient identification algo-
rithms. Specifically, in [5] robust features based on mel-scale fre-
quency cepstral coefficients (MFCCs [6]) are proposed, in combina-
tion with a projection measure technique for speaker identification.
In [7], the speech features are based on a harmonic decomposition
of the signal where a reliable frame weighting method is adopted
for noise compensation. In [8], the descriptors introduced are based
on the AM-FM representation of the speech signal, while in [9] the
proposed features are derived from auditory filtering and cepstral
analysis (in both cases a GMM is used to model the feature space).
In [10, 11] the noise robust speaker identification problem under
mismatched testing and training conditions is studied. In [10], the
identification is performed in the space of adapted GMMs where
Bhattacharyya shape is used to measure the closeness of speaker
models, while in [11] a multicondition model training and miss-
ing feature theory is adopted to deal with the training and testing
mismatch, where this model is incorporated into a GMM for noise
robust speaker identification.

An important aspect in speaker identification is that in real-time
applications the system should be able to respond within a short
time duration about the identity of the speaker. However, when the
number of the enrolled speakers in the database grows significantly,
it is quite difficult for the system to quickly assign the speaker with
a specific identity. For addressing such real-time efficiency con-
cerns, in [12] a method based on approximating GMM likelihood
scoring with an approximated cross entropy is proposed. In [13],
the GMM-based speaker models are clustered using a k-means al-
gorithm so as to select only a small proportion of speaker models
used in likelihood computations. These approaches achieve a more
efficient operation compared to state-of-the-art, without degrading
the identification performance in large population databases.

In this paper, we study the problem of noise-robust text-
independent speaker identification under the assumption of short
testing and training sessions. There are two reasons for following
this approach: (i) it is often not feasible to have large amounts of
training data from all the speakers and (ii) in order to speed up the
identification process, the testing data (i.e., the speaker utterance to
be identified) should be as short as possible. Towards this direc-
tion, two methods are proposed and tested under noisy conditions
(additive white Gaussian noise), and compared to a baseline GMM
method [3]. The first approach is adopted from the music classifi-
cation task [14], while the second method is based on sparse repre-
sentation classification which was recently proposed and applied on
robust face recognition [15].
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2. CLASSIFICATION METHODS

In the current section a brief description of the methods used to per-
form the identification process is given. For the feature extraction
task it is assumed that the speech signal/utterance is segmented into
overlapping frames. In this paper we use the MFCC features [6].

2.1 Gaussian Mixture Model

Gaussian Mixture Models (GMMs) have been applied with great
success in the text-independent speaker identification problem [3].
The approach is to model the probability density function (PDF)
of the feature space of each speaker in the dataset (training phase)
as a sum of Gaussian functions, and then use the maximum a-
posteriori rule to identify the speaker. A Gaussian mixture density
is a weighted sum of M multidimensional Gaussian densities, where
the mixture density can be represented as

λi =
{

pi
m,μ i

m,Σ
i
m

}
, m = 1, . . . ,M, (1)

where for the ith speaker, pi
m is the weight of the mth mixture (prior

probability), μ i
m is the corresponding mean vector,Σi

m is the covari-
ance matrix, and M is the total number of Gaussian mixtures. Each
speaker is represented by a GMM and the corresponding model λ ,
whose parameters are computed via the Expectation-Maximization
(EM) algorithm applied on the training features. For the speaker
identification task (testing phase), the estimated speaker identity
(speaker index) is obtained based on the maximum a-posteriori
probability for a given sequence of observations as follows

Sq = arg max
1≤i≤S

p(λi|X) = arg max
1≤i≤S

p(X |λi)p(λi)

p(X)
. (2)

In the above equation, X = [x1,x2 . . .xn] denotes the sequence of n
feature vectors, and S is the total number of speakers. For equally
likely speakers and since p(X) is the same for all speaker models
the above equation becomes

Sq = arg max
1≤i≤S

p(X |λi). (3)

For independent observations and using logarithms, the identifica-
tion criterion becomes

Sq = arg max
1≤i≤S

n

∑
t=1

log p(xt |λi), (4)

where

p(xt |λi) =

M

∑
m=1

pi
m

(2π)K/2|Σi
m|1/2

exp
{
− 1

2
(xt −μ i

m)
TΣi

m
−1

(xt −μ i
m)

}
,

K being the dimension of each feature vector.

2.2 Statistical Modeling based on Generalized Gaussian Den-
sity

In this subsection, we briefly describe a statistical approach which
treats the speaker identification problem as a multiple hypothesis
problem. We previously proposed this approach within the context
of music genre classification in [14], and in this paper we are inter-
ested to test its applicability for the speaker identification task.

Let us assume that there are S speakers and that we have rep-
resented the speaker to be identified as Sq, given a set X of feature
vectors xt = (x1,x2, ...,xK)

T . Each speaker is assigned a hypoth-
esis Hi. The goal is to select one hypothesis out of S, which best
describes the data from Sq. Under the common assumption of equal
prior probabilities of the hypotheses, the optimal rule resulting in

the minimum probability of classification error is to select the hy-
pothesis with the highest likelihood among the S. Thus, Sq is as-
signed to the speaker corresponding to the hypothesis Hj if

p(xt |Hj)≥ p(xt |Hi), i �= j ,∀ i = 1, ...,S. (5)

For solving this problem, a parametric approach is adopted where
each conditional probability density p(x|Hi) is modeled by a mem-
ber of a family of PDFs, denoted by p(x;θi) where θ i is a set of
model parameters. Under this assumption, the extracted features
for the ith speaker are represented by the estimated model parame-
ter θ̂ i, computed in the feature extraction stage. For assigning Sq to
the closest speaker identity:
1. Compute the Kullback-Leibler Divergence (KLD) between the

density of the speaker to be identified p(x;θq) and the density
p(x;θ i) associated with the ith speaker identity in the database,
∀ i = 1, . . . ,S:

D(p(x;θq)‖p(x;θ i)) =
∫

p(x;θq) log
p(x;θq)

p(x;θ i)
dx. (6)

2. Assign Sq to the identity corresponding to the smallest value of
the KLD.

A chain rule holds for the KLD and is applied in order to combine
the KLDs from multiple data sets or dataset dimensions. This rule
states that the KLD between two joint PDFs, p(X,Y) and q(X,Y),
where X,Y are assumed to be independent data sets, is given by

D(p(X,Y)‖q(X,Y)) = D(p(X)‖q(X))+D(p(Y)‖q(Y)). (7)

The proposed method is based on fitting a Generalized Gaussian
Density (GGD) on the PDF of the data set (features). In fact, in-
dependence among MFCC vector components is assumed, thus a
GGD for each scalar component is estimated. This task can be
achieved by estimating the two parameters of the GGD (α , β ),
which is defined as

p(x; α ,β ) =
β

2αΓ(1/β )
e−(|x|/α)β , (8)

where Γ(·) is the Gamma function, and the GGD parameters are
computed using Maximum Likelihood (ML) estimation. Substitu-
tion of (8) into (6) gives the following closed form for the KLD
between two GGDs

D(pα1,β1
||pα2,β2

) = log
(β1α2Γ(1/β2)

β2α1Γ(1/β1)

)

+
(α1

α2

)β2 Γ(
β2+1
β1

)

Γ( 1
β1
)

− 1
β1

. (9)

Based on the independence assumption for the MFCC coefficients,
(7) yields the following expression for the overall normalized dis-
tance between two test utterances U1, U2

D(U1‖U2) =
1
K

K

∑
k=1

D(pU1,k‖pU2,k), (10)

where K is the order of the MFCCs (dimension of a feature vector).

2.3 Sparse Representation Classification

The approach of classification based on sparse representation is de-
scribed in this subsection. This approach was initially applied in
face recognition in [15], and is first applied in speaker identification
in this paper.

Let us assume that the ni training samples corresponding to the
feature vectors of the ith speaker are arranged as columns of a matrix

Vi = [vi,1|vi,2| . . . |vi,ni ] ∈ R
K×ni , (11)
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where K is the dimension of each (column) feature vector. Given
a new test sample (feature vector) xt ∈ R

K that belongs to the ith

class, xt can be expressed as a linear combination of the training
samples associated with class i

xt = ci,1vi,1 + ci,2vi,2 + . . .+ ci,nivi,ni =Vici, (12)

where ci, j ∈ R are scalars. Let us also define the matrix V for the
entire training set as the concatenation of the N = n1+ . . .+nS train-
ing samples of all S classes (speakers):

V = [V1|V2| . . . |VS] = [v1,1|v1,2| . . . |vi, j| . . . |vS,nS ]. (13)

The linear representation of xt can be rewritten as xt =Vc, where

c= [0, . . . ,0,ci,1,ci,2, . . . ,ci,ni ,0, . . . ,0]
T ∈ R

N , (14)

is a coefficient vector whose elements are zero except those associ-
ated with the ith class. As a result, if S is large enough, c will be
sufficient sparse. This observation motivates us to solve the follow-
ing optimization problem for a sparse solution

ĉ= argmin
c

‖c‖0 , s.t. xt =Vc, (15)

where ‖ · ‖0 denotes the �0 norm, which counts the number of non-
zero elements in a vector. The optimization problem in (15) is an
NP-hard problem. However, an approximate solution can be ob-
tained if the �0 norm is substituted by the �1 norm as follows

ĉ= argmin
c

‖c‖1 , s.t. xt =Vc, (16)

where ‖ · ‖1 denotes the �1 norm of a vector. The efficient solution
of the optimization problem in (16) has been studied extensively.
Orthogonal Matching Pursuit (OMP) [16] is a popular solution to
this problem, and this method is used in our simulations.

In the ideal case, the non-zero entries in ĉ will be associated
with the columns of matrix V from a single class i, and the test
sample will be assigned to that class. However, because of mod-
eling errors and/or noise, there are small non-zero entries in ĉ that
correspond to multiple classes. To overcome this problem, we per-
form an iterative procedure where we classify xt to each one of
the possible classes and use the training vectors of this class for re-
constructing xt . In other words, in each repetition we retain only
the coefficients in ĉ that correspond to a particular class, and use
the training vectors of this class as a basis to represent xt . We in-
troduce for each class a function δi : RN → R

N , which selects the
coefficients associated only with the class i. Then, each test feature
vector is classified to the class that minimizes the �2 norm residual

min
i

ri(xt) = ‖xt −Vδi(ĉ)‖2 (17)

for i = 1, . . . ,S.

3. EXPERIMENTAL RESULTS

In this section, we examine the identification performance of the
three methods described in Section 2, regarding the correct speaker
identification rate. For this purpose, several simulations under noisy
conditions were conducted. The speech signals used for the simu-
lations were obtained from the VOICES corpus, available by OGI’s
CSLU [17], which consists of twelve speakers (seven male and five
female speakers). For all simulations, 20-dimensional MFCC co-
efficients were extracted from the speech utterances in a segment-
by-segment basis. The frame duration was kept at 20 msec with 10
msec of frame shift. Before the feature extraction task, the training
as well as the test utterances were pre-filtered using a low-pass filter
of the form H(z) = 1− 0.97z−1, and then a silence detector algo-
rithm based on the short-term energy and zero-crossing measures of
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Figure 1: Example Amplitude Probability Density curves of the
8th MFCC coefficient from the training data (20 sec) of the 10th

speaker.

speech segments was applied 1. All the speech signals in the corpus
have a sampling rate of 22050 Hz. For the GMM-based identifi-
cation results, a GMM with a diagonal covariance matrix was cho-
sen for the simulations. The number of mixtures depended on the
amount of training data (see description of Experiment 1 below).

For the GGD-based identification case, Amplitude Probability
Density (APD) curves (P(|X | > x)) are adopted to show that the
GGD best matches the actual density of the data. An example for a
part of the VOICES corpus is given in Figure 1, where we compare
the empirical APD (solid line) against the APD curves obtained for
the GGD, Weibull, Gamma, Exponential and the Gaussian mod-
els. The results in the figure correspond to the 8th MFCC coef-
ficient of the training data (20 sec duration) corresponding to the
10th speaker (independence among feature vector components is as-
sumed). Clearly, the GGD follows more closely the empirical APD
than the other densities. This trend was observed in the majority
of the training utterances used in our experiments. Thus, the GGD
model is expected to give better results than the other densities when
applied directly to the MFCC coefficients of the twelve speakers.

The performance evaluation follows the philosophy as de-
scribed in [3]: each sequence of feature vectors {xt} is divided into
overlapping segments of L feature vectors, where the first two seg-
ments have the following form

x1,x2,x3, . . . ,xL︸ ︷︷ ︸
1st segment

,xL+1,xL+2, . . .

x1,x2,x3, . . . ,xL,xL+1︸ ︷︷ ︸
2ndsegment

,xL+2, . . .

The comparison between the identified speaker of each segment and
the actual speaker of the test utterance is repeated for each speaker
in the corpus, and the total correct identification rate is computed as
the percentage of the correctly identified segments of length L over
all test utterances

correct ident. rate =
# correctly identified segments

total# of segments
·100%. (18)

In the previous sections, it was mentioned that in this paper
the focus is given on noise robust speaker identification using short
training and testing sessions. Towards this direction, white Gaus-
sian noise is added on the test utterances, the SNR taking the values

1http://www.mathworks.com/matlabcentral/fileexchange/19298-
speechcore
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of 10, 15, 20, 25 dB. In addition, the test segment lengths L vary
from 10 to 500 with a step size of L = 40. Length L = 10 cor-
responds to 0.1 sec, length L = 50 corresponds to 0.5 sec, and so
forth. The training utterances have a duration of 5, 10, 15 and 20
seconds, corresponding to a quite short training session. The train-
ing for all methods is performed using the clean speech data. The
testing data have a duration of approximately 20 sec.

3.1 Experiment 1 – Identification using GMM

In this experiment, during the training process the MFCC coeffi-
cients for each speaker are collected. For each speaker, the cor-
responding MFCC data are modeled using a diagonal GMM. The
number of mixtures was chosen to be 4, for the 5 and 10 sec train-
ing data, and 8 for the 15 and 20 sec training data. These choices of
parameters were found experimentally to produce the best perfor-
mance for the GMM-based identification. Clearly, the number of
mixtures is small due to the small size of the training dataset. Dur-
ing the identification process, the identification rule (4) is used, and
the correct identification rate is computed as in (18).

3.2 Experiment 2 – Identification using KLD based on GGD

The same experimental steps as in Experiment 1 are also followed
here. Thus, for each speaker the MFCC vectors are collected during
the training process. We estimate the GGD parameters (α ,β ) for
each vector component, assuming independence among the MFCC
components. During the identification process, a test utterance con-
tains multiple MFCC vectors as explained. For each MFCC compo-
nent of the test vectors, the GGD parameters (α ,β ) are estimated.
In order to identify a speaker, we compute the KLD between the
GGD model of the test data and each of the GGD models of the
speakers in the dataset (per vector component). This procedure re-
sults in 20 distance values (since each MFCC vector contains 20
components). The final step is to compute the mean of these dis-
tances, as in (10). The identity of the speaker whose data result in
the minimum distance is identified as the final result. The correct
identification rate is computed as in (18).

3.3 Experiment 3 – Identification using SRC

In this subsection, the experimental procedure for the SRC approach
is described. First, consider that from the training speech data of
each speaker a number of ni of MFCC vectors is extracted. Consider
a test utterance length of L frames. Adopting the notations from the
theory of SRC in Section 2.3, the training matrix V has dimension
20× (12 · ni) and the test sample (feature) vector xt is a 20× 1
vector. The test segment consists of L distinct test samples xt . Thus,
the optimization problem of the form

(Pl) : ĉl = argmin
cl

‖cl‖1 , s.t. xt,l =Vcl , for l = 1, . . . ,L (19)

is solved L times for each different xt,l . The Orthogonal Matching
Pursuit [16] is used to solve this problem. Each solution ĉl of the
problem (Pl) is used to get an identity i (for i = 1, . . . ,12) of one of
the 12 speakers in the dataset. Thus, a segment of length L vectors
will provide L identification results. The predominant identity is
found based on the majority of the decisions and the identification
rate is computed as in (18).

3.4 Discussion

In this subsection, the main observations of the results in Fig-
ures (2.a)-(2.d) are discussed. The percentage of correct identifi-
cation results is given as a function of the length of the test utter-
ance. We are mainly interested to examine the performance of the
described methods for short test sessions. The four figures corre-
spond to training data of duration 5, 10, 15, and 20 sec respectively,
so as to examine the effect of using a short training dataset. The cor-
rect identification rates as a function of the test utterances segment
length L are depicted. The black, red and green curves correspond
to the SRC, GMM and KLD-GGD method, respectively. There are

twelve curves in total, where the first part of each legend name indi-
cates the corresponding method and the last part indicates the SNR
value used for this method, e.g. “SRC 10dB” means that the black
solid curve depicts the identification performance of the SRC ap-
proach under noise conditions of 10dB. From the Figures (2.a)-(2.d)
we notice that the SRC method is superior over the GMM and KLD-
GGD approach, especially for short test and training sessions, and
is quite robust to noise. The GMM performance improves as the
training and test data duration increases because the large amount
of feature vectors increases the accuracy of the GMM model, how-
ever its sensitivity to noise is clearly indicated. The KLD-GGD
approach does not have high correct identification rates even in the
case where the amount of training and test data is 20 and 5 sec,
respectively. Based on the results, we can assume that the GGD
parameters (α ,β ) are not well-estimated in the case where the test
data have short duration.

The main point regarding the SRC method that has to be high-
lighted is that even in the case where the training data duration is
5 sec and the test utterance segments length is as low as 2 sec, the
performance is greater than 80% for SNR values 15, 20 and 25 dB.
Even in the extreme case of 10 dB SNR, the correct identification
rate is above 70% for at least 2 sec test utterance segments length.
Additionally, for lower test sessions than 2 sec the identification re-
sults for SRC are significantly better than the baseline method. For
example, for 20 sec training data and 1.5 sec of test data, the SRC
method gives correct identification above 70% for all SNR values.
For the same case, for 10 dB SNR, GMM results in correct iden-
tification of slightly more than only 20%. This is important for
applications where a decision must be made using a small amount
of test data, without having enough training data for a given number
of speakers, and the speaker is located in a noisy environment.

4. CONCLUSIONS

In this paper, we presented two methods for noise robust speaker
identification using short-time training and testing data. They were
both compared to a baseline GMM-based system. The first method
was previously proposed for music genre classification, based on
modeling the MFCC coefficients of the speakers using the GGD
model. The second identification method was based on the recently
proposed SRC algorithm. It was shown through experimental eval-
uation that the SRC approach performs significantly better than the
other two methods when the amount of testing and training data is
small, and is very robust to noise. Our future research plans include
testing the SRC method with a larger set of speakers and a wide
variety of noise types.
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