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ABSTRACT

Speaker identification is a key component in many practical appli-
cations and the need of finding algorithms, which are robust under
adverse noisy conditions, is extremely important. In this paper, the
problem of text-independent speaker identification is studied in light
of classification based on sparsity representation combined with a
discriminative dictionary learning technique. Experimental evalua-
tions on a small dataset reveal that the proposed method achieves a
superior performance under short training sessions restrictions. In
specific, the proposed method achieved high robustness for all the
noisy conditions that were examined, when compared with a GMM
universal background model (UBM-GMM) and sparse representa-
tion classification (SRC) approaches.

Index Terms— speaker identification, sparse representation,
discriminative dictionary learning, K-SVD

1. INTRODUCTION

Speaker recognition constitutes an essential part of distinct emerg-
ing applications. Ranging from the control of financial transactions,
the entrance into safe or reserved areas and buildings, and the in-
formation retrieval from speech databases [1], to the most modern
technologies of speaker-tracking during a teleconference, speaker
diarization for meetings, and speech-aided systems in ambient in-
telligence environments [2, 3]. This necessitates strongly the design
and development of efficient speaker recognition algorithms charac-
terized by increased robustness in diverse environments and condi-
tions.

Speaker recognition can be categorized into speaker verification
and speaker identification. In speaker verification, a speaker claims
to be of a certain identity and his/her voice is used to verify this
claim. On the other hand, speaker identification is the task of deter-
mining an unknown speaker’s identity. Speaker recognition methods
can also be divided into text-dependent and text-independent meth-
ods. The former requires the speaker to provide utterances of key-
words or sentences, the same text being used for both training and
recognition. In text-independent recognition, the decision does not
rely on a specific text being spoken.

In this paper, we focus on text-independent speaker identifica-
tion. A commonly used approach, in order to estimate the iden-
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tity of a speaker, is to assign each candidate speaker from a given
database to a specific speaker model describing consistently the ex-
tracted speech features. During the identification process, the system
decides for the speaker’s identity based on the closest matching of
the test utterance against all speaker models. State-of-the-art meth-
ods follow a universal speaker modeling approach, such as, Gaussian
mixture models (GMMs) [4, 5] using all the available training data
to build a model before the acquisition of the test sample.

In the current work, we study the problem of noise robust text-
independent speaker identification under the assumption of short
training sessions. This is crucial in applications where the voice data
are obtained in highly noisy environments and it is often not feasible
to have large amounts of training data from all the speakers. Towards
this direction, a discriminative learning approach is introduced. The
problem is faced under a joint learning perspective, where an over-
complete dictionary is learned, resulting in highly discriminative
sparse codes, along with a linear classifier. A speech corpus of
twelve speakers is used for the identification evaluation towards the
direction of examining applications consisting of a moderate number
of speakers (e.g., teleconference meetings).

The rest of the paper is organized as follows: Section 2
overviews the most recent methods on sparsity based classifica-
tion methods for speech signals, while Section 3 describes in brief
the sparse representation classification (SRC) approach. In Sec-
tion 4 we analyze the proposed approach for noise robust speaker
identification using a discriminative dictionary learning algorithm.
The experimental evaluation and comparison of the performance of
the proposed technique with state-of-the-art methods is described in
Section 5. Finally, Section 6 summarizes the main conclusions and
gives directions for future work.

2. PRIOR WORK ON SPARSITY BASED
CLASSIFICATION FOR SPEECH SIGNALS

The concept of sparse representation (or sparse coding) comes as an
alternative solution to the universal data models, which do not gen-
eralize well for limited training data. Prior work on classification of
speech signals have recently provided promising results. The main
focus is given on representing an input test sample as a sparse lin-
ear combination of an overcomplete matrix, the so-called dictionary,
whose columns consist of a set of basis functions, usually referred to
as atoms. In [6], robust speech recognition is achieved by modeling
noisy speech signals as a sparse linear combination of speech and
noise exemplars (spectro-temporal representations spanning multi-
ple time-frames of the speech signal). A similar approach is fol-



lowed in [7], where a combination of large vocabulary continuous
speech recognition techniques with small vocabulary tasks results in
low phonetic error rates.

Sparse codes may also serve as a new type of feature vectors to
be given as input in a typical classifier. More specifically, a gradi-
ent descent-based dictionary learning approach is adopted in [8] to
learn the redundant matrix related with the training data. This comes
in combination with a multilayer perceptron classifier, which is ap-
plied on the generated sparse codes for phoneme recognition. The
same task is also studied in [9]. An orthogonal matching pursuit-
based (OMP) dictionary learning technique is applied and the ob-
tained sparse codes are further used for classification by means of
a support vector machine (SVM) classifier. A phone recognition
approach employing hidden Markov models (HMM) is examined
in [10], using sparse codes which take advantage of the phonetic
labels information as additional features during the recognition pro-
cess. Moreover, the sparse codes feature extraction is followed by
sparse discriminant analysis to perform speaker recognition in [11],
while in [12] SRC is used for the same task using GMM mean su-
pervectors as feature vectors on clean speech data taken from TIMIT
speech corpus.

Dictionary learning techniques can be applied for learning the
best dictionary that gives the most discriminative sparse codes for
classification. The work in [13] showed that a satisfactory speaker
verification performance can be achieved by applying a supervised
K-SVD algorithm for learning an appropriate discriminative dictio-
nary. Motivated by the successful application of K-SVD for face and
object categorization [14], our proposed method addresses the prob-
lem of text-independent speaker identification by extending our pre-
vious work [15]. Here, we adopt a discriminative dictionary learning
approach, which is applied on noise robust speaker identification un-
der the assumption of short training speech utterances.

Our proposed method learns an overcomplete dictionary, result-
ing in highly discriminative sparse codes, along with a linear clas-
sifier. This estimation is performed in a joint fashion by imposing
additional constraints on the associated objective function in order to
produce similar sparse codes for those training samples belonging to
the same speaker. This is in contrast to recently introduced sparsity-
based methods [6, 7, 8, 9, 10, 11, 12], which do not treat jointly the
estimation of the dictionary, the sparse codes, and the classifier pa-
rameters. On the other hand, in [13], a method was suggested to
learn jointly only the dictionary and the sparse codes. To the best of
our knowledge, this is the first study on noise robust speaker identi-
fication, which tackles the problem from such a threefold joint learn-
ing perspective.

3. SPARSE REPRESENTATION CLASSIFICATION FOR
SPEAKER IDENTIFICATION

In this section, the sparse representation classification (SRC) method
is briefly described, which was also employed in our previous
work [15] for noise robust speaker identification using short training
and testing speech data. Let S be the total number of speakers in our
database. Then, for each speaker, a matrix V; is constructed based
on the feature vectors extracted from the ¢-th speaker as follows:

Vi = [vii|viz| - |Vin;] € Rdxni, i1=1,...,8, (1)

where the column vector v; ; denotes the j-th d-dimensional feature
vector of the i-th speaker, and n; is the number of training feature
vectors for the i-th speaker. The total number of training feature
vectors in our database equals Nt = nq + ... + ng. In the present

work, mel-frequency coefficients have been used as feature vectors
(ref. Section 5).

In a speaker identification application, the goal is to infer cor-
rectly the identity of an unknown speaker, given a new test sample
(feature vector) x; € R In the following, let x; be a feature
vector, which is extracted from the ¢-th speaker. Then, it can be ex-
pressed as a linear combination of the training samples associated
with this speaker as follows:

X¢ = Ci,1Vi,1 + Ci2Via + -+ Ciny Vin; = ViCi, 2)
where ¢; = {¢;; }7;1 is the vector of coefficients of the representa-

tion of x; in terms of the columns of V.
The overall training data matrix V is formed by concatenating

all the training data matrices V,;,¢ =1,..., 5,
Vo= il Vi veal s [vams | [vsal o [Veng]
= [Vi|Vo|---|Vs] e RPN 3)

By combining (2) and (3), x+ can be expressed in terms of the overall
training data matrix V, namely, x; = V¢, where

Cc = [0, ..., 0 Ci,ly Ciy2y -y Cing, 0, ..., 0] € ]RNtTXl @)
denotes the coefficients vector, hereafter called the sparse code,
whose elements are all zero except for those associated with the ¢-th
speaker. Notice that, the larger the number of speakers S is, the
sparser the sparse code ¢ will be.

Given the training data matrix V and the new feature vector
(test sample) x;, the following optimization problem can be solved
through the orthogonal matching pursuit (OMP) [16] algorithm in
order to obtain an estimate of c,

¢ = argmin ||x; — Vcl|2, s.t. |lc]jo = K, ®)
[

where ||+ ||2 denotes the £2 norm, ||-||o is the £o (pseudo)norm, which
is defined as the number of non-zero elements of a given vector and
K denotes the number of iterations of the algorithm or, equivalently,
the number of non-zero elements in €.

In the ideal case, the indices of the non-zero entries of ¢ will
correspond to those columns of V associated with the i-th speaker,
and thus, the test sample x; will be assigned correctly to that speaker.
However, due to potential modeling errors and/or noise-corrupted
data, in practice there may be also several non-zero entries of small
amplitude in ¢, which correspond to multiple speakers. To overcome
this drawback, we define for each speaker ¢ an indicator function 9; :
RNt — R™" such that the only non-zero entries of vector §;(&) €
RM" are from the i-th speaker, and this procedure is repeated S
times for each speaker. As a result, for a given speaker ¢ we can
approximate X; = V§;(&) and assign the test sample to the speaker
with the minimum residual between x; and f(i as

i* = argmin ||x¢ — V& (€)|2, i=1,...,5. (6)

This process is performed for each frame of the speech signal of
the speaker to be identified, and the final class, that is, the speaker’s
identity, is estimated by means of a majority voting approach applied
on a predefined set of frames. In other words, the unknown speaker
is assigned the class to which most of the frames of his/her speech
signal are classified in using (6).



4. DISCRIMINATIVE DICTIONARY SPARSE CODING
BASED ON K-SVD

In this section, the method of discriminative dictionary sparse coding
based on a (class) label-consistent K-SVD is analyzed, which con-
stitutes the key component of our proposed approach. This method,
which was introduced in the framework of face and object recogni-
tion [14] and to our knowledge is now applied for a first time in the
field of speaker identification. We apply the method in the context
of noisy conditions using small training data sessions.

Following the notation of Section 3, the sparse coding optimiza-
tion problem expressed by (5) can be extended to the following dic-
tionary learning optimization problem:

Lo _ B )
D,C =argmin |[V - DC|%,

s.t. ‘|Cj‘|O:K7 Vj::ly"'7NtT‘7 (7)

where || - || 7 denotes the Frobenius norm of a matrix, D € R%*Z is
the learned dictionary, C € RZ*™tr is the matrix of sparse codes,
where c; denotes the j-th column of C, and Z is the dictionary

size. We emphasize at this point that the sparse codes {c]}N’T S

RZ*1 are of different dimensionality compared with the sparse code

vectors introduced in Section 3. However, the same symbol is used
for notational convenience.

In order to enhance the discrimininative capability of the esti-
mated sparse codes, an additional constraint is embedded in the ob-
jective function (7) as follows,

D,C,M = arg min |V — DC||% + AP — MC||F,

st flcjllo=K, Vj=1...,Nep 8)
where A; is a regularization parameter controlling the trade-off
between the reconstruction error |V — DC||% and the discrim-
inative sparse-code error |[P — MC||%. The columns of P =
[P1] - PN, ] € RZ*Ntr contain the discriminative sparse codes
of the training features V, while M € RZ*Z is a linear transforma-
tion matrix. In particular, P has a block-diagonal structure, where
each one of the S blocks is an m; x m; matrix of ones, Jm,xn;,
with m; and n; denoting the number of training feature vectors and
dictionary items, respectively, which share the same class label (that
is, correspond to the same speaker). In addition, M transforms the
original sparse codes C so as to increase their discriminative power
in the new (sparse features) space RZ. As a result, the discrimina-
tive sparse-code error promotes (class) label consistency in the new
(transformed) sparse codes by enforcing the features from the same
speaker to have similar sparse representation.

In the following, let Bc define a linear classifier, where B €
R5*Z denotes the classifier parameters, and ¢ is a column of the
sparse code matrix C. The output of the linear classifier will be an
S x 1 vector, whose largest element corresponds to the index 1 if the
sparse code c is related with speaker . Thus, in order to estimate the
linear classifier parameters B, we incorporate the classification error
|H — BC||%, related with all the sparse codes contained in C, into
the objective function (8) as follows,

DCMB—arg m1n HV DC||7 + \i||P — MC||%

+>\2||H— BC”F ) s.t. HCjHO = K, \V/] = 1..47Nt,,» s (9)

where A1 and A2 are regularization parameters controlling the trade-
off between the reconstruction error ||V —DC||%, the discriminative

sparse-code error ||P — MC]||%, and the classification error ||H —
BC||%. Matrix H = [hy|--- [hy,,.] € R¥*Nt contains the class
labels (or speaker index) of the training features V. The column
h; € RS*!, which corresponds to the training feature vector v, €
V of the i-th speaker, is defined as an all-zeros vector except for the
index corresponding to the true speaker label ¢ € {1,...,S}.

The K-SVD algorithm [17] is adopted in the proposed scheme
to estimate simultaneously the unknown parameters by solving the
reformulated optimization problem (9) of the form

DCMB_arg min

D,C,M,B
V 2
H Y D Y o I
\/EH V2B F
Vji=1...,Ns. (10)

After the solution of the optimization problem (10) the estimated
dictionary D and classifier parameters’ matrix B are exploited for
the final classification process. Given a test sample x; we first com-
pute its sparse representation by solving

¥ =argmin x; = Dy|z, st |[llo = K (an
through the OMP algorithm. Finally, the estimated linear classifier
Bis applied to estimate the class (or the speaker identity) of the test
sample by ﬁndmg the index of the maximum value of the class label
vector T = B'7 € R%*1 As in SRC, this classification process is
followed for each speech 51gnal s frame, where finally majority vot-

ing is performed for a predefined set of frames to find the unknown
speaker’s identity.

5. EXPERIMENTAL RESULTS

In this section, the identification performance of the proposed dis-
criminative K-SVD approach, described in Section 4, is evaluated
in terms of the correct identification rate, and is compared with the
SRC approach (discussed in Section 3) constituting the key part of
the recent classification approaches for speech signals mentioned in
Section 2. We also use the UBM-GMM [4] as the second method
for comparison. The speech signals used in the subsequent experi-
mental evaluations are obtained from the VOICES corpus, which is
available from OGI’s CSLU [18], consisting of 12 speakers (7 male
and 5 female).

The original signals are sampled at 22 kHz, and downsampled to
8 kHz. During the feature extraction step, an analysis window of 320
samples, with 50% overlapping between two consecutive frames,
is employed to compute a mel-frequency spectrogram of 2 = 40
bands, where a silence detector algorithm based on the short-term
energy and zero-crossings measure of speech segments is applied'.
The resulting 2 x T' mel-spectrogram, where 7' is the total num-
ber of frames on which mel-frequency analysis was performed, is
reshaped by vectorizing every ¢ consecutive columns, and thus the
new matrix is of size ¢Q x |T'/¢| = Q x T'. For the UBM-GMM
framework a diagonal covariance matrix was chosen during the sim-
ulations. We pooled all the target speakers training data using the
mel-scale frequency coefficients of order 2 = 40, where after ex-
perimentation we found that best results on average obtained when
used 64 number of mixtures.

Thttp://www.mathworks.com/matlabcentral/fileexchange/19298-
speechcore



Table 1. Average correct identification rates (%) for the discrimi-
native K-SVD, SRC and UBM-GMM for five different number of
SNR values and four noise types: white, speech babble, car engine
and factory floor. The duration of the training data is 10 sec.

Noise | SNR K-SVD SRC |UBM-GMM
B)[ 25 | 50
20 | 80.11 | 96.32 | 92.89 97.41
15 | 8624 | 97.43 | 87.15 98.42
White | 10 | 82.92 | 86.77 | 83.45 96.41
5 | 7475 | 7196 | 58.71 47.70
0 | 5704 | 51.57 | 31.50 34.67
Ave. 78.01 | 80.81 | 70.74 74.92
20 | 83.05 | 80.41 | 89.88 73.90
Speech | 15 | 88.05 | 81.18 | 86.28 55.99
babble | 10 | 80.23 | 83.25 | 70.06 30.76
5 | 6533 | 71.62 | 20.76 15.16
0 | 4643 | 4755 | 9.46 13.77
Ave. 72.79 | 72.80 | 55.28 37.91
20 | 8552 | 8645 | 83.29 61.55
Engine | 15 | 76.69 | 82.12 | 69.32 49.53
car | 10 | 50.92 | 64.84 | 65.74 3475
5 | 2475 | 4255 | 33.82 26.80
0 | 1355 | 27.65 | 17.36 17.85
Ave. 50.28 | 60.72 | 33.90 38.09
20 | 84.10 | 80.39 | 84.84 66.0
Factory | 15 | 78.32 | 79.92 | 73.16 49.39
floor | 10 | 73.10 | 75.64 | 63.92 11.69
5 | 4583 | 5941 | 16.87 8.34
0 | 18.12 | 44.18 | 833 8.33
Avg. 59.89 | 67.90 | 49.42 28.76

It is also important to point out that for the K-SVD and SRC-
based simulations ¢ = 13 following the same vectorizing strategy
as in exemplar-based techniques (ref. Section 2). In addition, ¢ = 1
during the UBM-GMM evaluation process as a consequence of a
more stable behaviour in capturing the discriminative statistics of
lower dimensional features corresponding to short training data as in
our study.

The duration of the training data was around 10 sec per speaker.
The average correct identification rate is computed as the percent-
age of the correctly identified segments over the total number of test
segments. For each speaker, the total number of test segments used
for the evaluation is approximately equal to 70, obtained by sliding
a window of 15.6 sec over the time interval of the last 10 utterances,
whose duration is about 60 sec.

The test utterances are corrupted by four different types of ad-
ditive noise: white noise, speech babble noise, car engine noise and
factory floor noise, where the SNR of the corrupted speech takes the
values of 0, 5, 10, 15 and 20 dB. The noise signals were taken from
the NOISEX-92 database [19]. In all cases, the data were trained
under the multicondition framework [5], where the training dataset
is enlarged by corrupting the clean speech training data with simu-
lated noise of different characteristics. Here, the clean speech data
are corrupted by white noise of SNR 10, 15 and 20 dB. The spar-
sity threshold K mentioned in Sections 3 and 4 was chosen exper-
imentally to be 10 during the SRC evaluation procedure, while for
K-SVD a sparsity threshold equal to 25 was found to give the best
performance. Besides, the regularization parameters A\; and A2 of

optimization problem (10) set equal to 0.25 and 2.25 on average,
respectively.

As we can see from the experimental results in Table 1, SRC
achieves at least 15% higher average identification rates compared
with the UBM-GMM with an exception in the case of white noise,
where UBM-GMM is about 4% better. The third and fourth col-
umn correspond to the identification rates obtained using a learned
K-SVD dictionary of size 25% and 50% (termed as KSVD-25 and
KSVD-50) of the initial training data matrix size, respectively. It
is obvious that the proposed discriminative K-SVD approach is on
average far better than that of the two methods used for compari-
son in both dictionary size schemes. A correct identification rate of
at least 60% is on average achieved with the KSVD-25 in the case
of the three out of the four noise types. In addition, KSVD-50 ac-
complishes at least approximately 70% in three of the four noisy
conditions, where in noisy conditions such as 0 and 5 dB SNR is
quite robust compared with the two methods used for comparison
that completely fail to achieve acceptable identification rates.

It is also important to notice how the identification rates are com-
pared between KSVD-50 and KSVD-25. In particular, we note that
KSVD-25 achieves almost similar identification rates in the case of
white and speech babble noise compared to KSVD-50 and it per-
forms lower than KSVD-50 (approximately 10% lower rates) in the
case of car engine and factory floor noise. Computational cost is
very crucial in real-time applications of speaker identification. In
such applications we would like to achieve as high as possible cor-
rect identification rates using small amount of data. Towards this
direction, KSVD-25 could be applied on 25% of the initial train-
ing data in order to achieve robust identification rates under adverse
noisy conditions.

6. CONCLUSIONS

In this paper, we proposed a method for noise robust text-independent
speaker identification using short training data based on a discrim-
inative dictionary learning approach. We compare it with a UBM-
GMM system, as well as with the sparse representation classification
(SRC) technique. It was shown through an experimental evaluation
that the proposed method performs better than the other two meth-
ods in the case of small amount of training data, and is very robust
to noisy conditions. As a future work, we intend to examine the pro-
posed approach with a larger set of realistic speech data. A further
investigation could be also conducted on the theoretical part of the
algorithm by introducing a non-linear classification error constraint
into the objective function of (9) to achieve higher identification
rates.
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