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Abstract—Reconstruction of missing features promotes robust-
ness in speaker recognition applications under noisy conditions.
In this paper, we aim at enhancing the reliability of speech
features for noise robust speaker identification under short
training and testing sessions restrictions. Towards this direction,
we apply a low-rank matrix recovery approach to reconstruct
the unreliable spectrographic data due to noise corruption. This
is performed by leveraging prior knowledge that the speech
log-magnitude spectrotemporal representation is low-rank. Ex-
periments on real speech data show that the proposed method
improves the speaker identification accuracy especially for low
signal-to-noise ratio (SNR) scenarios when compared with a
sparse imputation approach.

I. INTRODUCTION

Speaker recognition is a very challenging task especially in
environments dominated by noise. This is even more difficult
in the case where a limited amount of training and testing data
is available in order to take correct decisions. The quality of
speech features plays a key role for acquiring good recognition
results. As a consequence, it is of high importance to provide
a classification system with features which are as reliable
as possible. However, the reliability of speech features is
inversely proportional to the level of environmental noise,
enhancing low recognition accuracy.

Missing data techniques (MDT) overcome this limitation
by enabling the computation of reliable speech features under
adverse noisy conditions. They assume that a noisy speech sig-
nal can be decomposed into speech-and noise-dominated time-
frequency components. The speech-dominated components are
considered reliable and can be directly exploited for further
use, while the noise-dominated elements are categorized as
unreliable, and labeled as missing spectrotemporal data. MDT
have been extensively applied in the context of robust auto-
matic speech recognition (ASR) as a solution to performance
degradation due to noisy speech features, and they are dis-
tinguished in two main categories, namely, marginalization
and imputation. In marginalization [1]–[3], speech decoding
is based on the reliable components of a noisy time-frequency
representation, while the unreliable components are eliminated
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or marginalized up to the observed values. The imputation
approach [4]–[10] is associated with the estimation of the
missing data, so that decoding can be performed in a conven-
tional manner. These methods exploit various speech signals
properties to estimate the missing features, from the data
correlation expressed through statistical models to sparsity-
based estimation where the features are sparsely represented
in a given dictionary. It is of high importance to notice that
the estimation of a reliability mask plays a key role during the
discrimination between reliable and unreliable spectrotemporal
components. The interested reader can find an overview of
MDT for ASR in [11].

Recently, a lot of research has been carried out in the field
of speaker recognition wherein the MDT strategy has been
followed to minimize the side effects caused due to noise
presence in speech signals. In specific, speaker identification is
examined in [12]–[14], while in [15], [16] speaker verification
is studied in the light of missing feature theory for improve-
ment of recognition performance, while in [17] both tasks are
evaluated. In all these works, the main steps include the use
of a time-frequency binary mask to distinguish the reliable
from the unreliable spetrographic data which in most cases
is followed by a marginalization procedure to compensate for
the missing spectrotemporal information.

In the current paper, we are interested in extending our
previous work [18], where a novel imputation scheme based on
matrix completion [19] is proposed for recovering the missing
log-scale speech magnitude spectrographic data. This method
exploits the low-rank behaviour of the speech spectrotemporal
representation and proposed in the context of noise robust
text-independent speaker identification under the assumption
of short training and testing sessions restrictions examined
in our previous work [20]. Here, we compare our low-rank
based approach with a deterministic imputation method which
is heavily based on sparsity assumptions as a consequence of
verifying the missing-feature reconstruction efficiency of low-
rank matrix recovery techniques. Thus, during performance
evaluation we conduct a large number of simulations compared
to our previous work [18] on a small-sized corpus revealing
the efficiency of the proposed method compared to the sparse
imputation technique which has been shown to achieve or even
to exceed the state-of-the-art accuracy regarding ASR [8].



The remainder of this paper is organized as follows. Sec-
tion II describes the low-rank matrix completion problem,
while in Section III is analysed the proposed scheme for
missing-feature recovery applied in robust speaker identifi-
cation. A brief overview of the sparse imputation approach
is given in Section IV. An experimental evaluation of the
proposed technique is presented in Section V. Finally, Sec-
tion VI summarizes the main conclusions and gives directions
for future work. Regarding the notation, we use ‖ · ‖0, ‖ · ‖1
and ‖ · ‖2 to denote the `0, `1 and Euclidean vector norms,
respectively. The Frobenius matrix norm is denoted by ‖ · ‖F .

II. LOW-RANK MATRIX RECOVERY

Matrix completion (MC) enables the recovery of a low-rank
or approximately low-rank matrix M ∈ Rn1×n2 from at least
O(nrν ln2 n) entries selected uniformly at random (with ν
corresponding to the so-called degree of incoherence) [21],
where n = max{n1, n2} and r = rank(M). Throughout the
rest of the paper we will assume that all the scalars, vectors and
matrices are real-valued. The original matrix can be recovered
from the partially observed matrix by solving the following
convex optimization problem

min
X

‖X‖∗
s.t. Xij =Mij , (i, j) ∈ I ⊂ {1, . . . , n1} × {1, . . . , n2},

(1)
where k = |I| ≥ Cnr ln2 n denotes the number of observed
entries (C is a positive constant), X ∈ Rn1×n2 is the
decision variable and the nuclear norm is defined as ‖X‖∗ =∑min{n1,n2}
q=1 σq with σ1, . . . , σmin{n1,n2} ≥ 0 corresponding

to the singular values of X .
In the following, let the standard matrix completion lin-

ear map A : Rn1×n2 → Rk. The constraints Xij =
Mij , ∀ (i, j) ∈ I in (1) can be represented by using the linear
map AI as follows

min
X
‖X‖∗ s.t. AI(X) = b, (2)

where b := AI(M) contains the sample values extracted from
M . Each row of AI(M) corresponds to the sampling of a
single (i, j) element of M .

The equality constraint in (2) can also be written in matrix
form

AI(X) ≡ Ax, x := vec(X) ∀X ∈ Rn1×n2 , (3)

whereA ∈ Rk×n1n2 and vec(·) : Rn1×n2 → Rn1n2×1 denotes
the vectorization mapping; any vectorization mapping (e.g.,
row major order or column major order) is acceptable as long
as it is fixed. In matrix completion, each row of A contains
exactly 1 non-zero entry.

We also make use of the adjoint of AI which takes a vector
and maps it to a sparse matrix with the nonzero entries of the
sparse matrix corresponding to I. Specifically,

A∗I(·) : Rk×1 → Rn1×n2 with k = |I| ≤ n1n2,

and we have the property

h = AI(A∗I(h)) ∀h ∈ Rk×1.

Singular value thresholding (SVT) [22] algorithm can be
used for solving MC problems since SVT is efficient and can
be successfully applied in solving large-scale matrix problems
arising in speech features enhancement. Specifically, SVT
minimizes the following constraint optimization problem

min
X

τ ‖X‖∗ +
1

2
‖X‖2F s.t. AI(X) = AI(M), (4)

where the positive constant τ is a trade off between the nuclear
and Frobenius norm. The solution to problem (4) converges
to that of (1) as τ → ∞. SVT comprises the two following
iterative steps{

Xt = Dτ (A∗I(yt−1))
yt = yt−1 − δ(AI(Xt)− b).

(5)

In the above equation the shrinkage operator Dτ , also known
as soft-thresholding operator, is denoted as Dτ = UΣτV

T

where U and V are matrices with orthonormal columns and
Στ = diag(max{σi− τ, 0}) with {σi}min{n1,n2}

i=1 correspond-
ing to the singular values of the decomposed matrix. The step
size of the iterative algorithmic process is given by δ.

III. MISSING-FEATURES RECOVERY USING LOW-RANK
MATRIX COMPLETION

As it was mentioned in the introduction, in the current
paper our goal is to enhance the reliability of speech features
degraded due to environmental (ambient) noise, which are
used in speaker identification by adopting the MC framework
as described in the previous section. Thus, it is crucial to
reduce the noise effects after the feature extraction process
by following a missing-feature reconstruction approach.

In particular, the observed speech data can be represented
in the time-frequency domain as Y (f, ρ) = S(f, ρ)+N(f, ρ),
where Y ∈ RF×P , S ∈ RF×P and N ∈ RF×P is the
log-magnitude short-time Fourier transform (STFT) of the
observed (noisy) speech signal, the clean speech signal and
the contaminating noise, respectively. The discrete frequency
index is denoted by f and ρ is the frame number.

The first step of spectrotemporal reconstruction is to apply a
binary reliability mask in order to distinguish the reliable from
the unreliable (or missing) spectrographic speech data. We
assume that reliable time-frequency (T-F) units are dominated
by speech, while unreliable T-F units contain mostly noise.
The ideal (oracle) binary mask is computed as follows

W (f, ρ) =

{
1 := reliable, 10 log10

(
|S(f,ρ)|
|N(f,ρ)|

)
> λ

0 := unreliable, otherwise
(6)

where W ∈ BF×P with B = {0, 1} and λ is a pre-
defined threshold expressed in dB. We recover the missing
spectrotemporal data W � Y , where � denotes the element-
wise product of the two matrices by solving the optimization
problem (2) as follows

Ŷ = argmin
X
‖X‖∗ s.t. AI(X) = AI(W � Y ). (7)



The linear map AI in (7) is related with matrix A as defined
in (3), where the set of indices I corresponds to the non-zero
entries of the binary mask W

I = {(i, j) |W (i, j) 6= 0}, ∀(i, j) ∈ {1, . . . , F}×{1, . . . , P}.

Optimization problem (7) can be rewritten as

Ŷ = argmin
X

τ ‖X‖∗ +
1

2
‖X‖2F

s.t. AI(X) = AI(W � Y )
(8)

adopting the SVT algorithmic framework.
In order to examine the low-rankness of the original data

matrix Y , we use speech data obtained from the VOICES
corpus, which is available from OGIs CSLU [23]. The speech
database is comprised of 12 speakers (7 male and 5 female),
where 50 utterances per speaker of duration around 4 sec
each were recorded under quiet conditions. We take the
first 3 utterances per speaker to compute the log-magnitude
STFT. The ordered singular values spectra of all the speakers
corresponding to an FFT size of 1024, i.e., the number of
STFT matrix rows is F = 513, are depicted in Fig. 1. We
observe that they attain very low values, where the 98% of the
energy concentration is manifested around 50. Thus, we can
assume that the approximate rank of the original data matrix
Y is 50, and thus MC can be potentially applied to recover the
missing data of the incomplete matrix W �Y . The estimated
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Fig. 1. Ordered singular values spectra of the log-magnitude STFT spectro-
grams. The concentration of 98% of the energy is around 50.

log-magnitude STFT matrix Ŷ is further used to compute
the mel-frequency spectrographic representation, which will be
termed as mel-spectrogram. This representation corresponds to
a matrix whose columns consist of mel-frequency log spectral
vectors, each of which represents the frequency warped log
spectrum of a short speech frame

Q = 10 · log10
(
B · 10Ŷ /10

)
∈ Rd×P , (9)

where the matrix B ∈ Rd×F contains the mel-spaced filter-
bank amplitudes and d is the number of mel-filters1. The mel-
frequency cepstral coefficients are given by

D = ΨQ, (10)

where Ψ denotes the d × d discrete cosine transform (DCT)
matrix. The features in D are then used for the text-
independent noise robust speaker identification task.

1The matrix B is computed using the VOICEBOX toolbox.

IV. MISSING-FEATURE RECOVERY BASED ON SPARSE
IMPUTATION

In this section, we briefly describe the sparse imputation
(SI) method [8] previously applied in the context of missing
data imputation for robust speech recognition. The core idea
in SI is that a given signal can be represented as a sparse linear
combination of basis elements.

If we combine the log-magnitude STFT of the clean speech
data S with (9) and (10) the obtained mel-frequency cep-
stra are given by the matrix DS ∈ Rd×P . By following
a “concatenate-then-shift” process the d × P mel-frequency
cepstra matrix DS is transformed into a new matrix of
size (dT ) × (b(P − T )/ξc + 1), where T is the number
of columns used in each iteration during the concatenation
procedure and ξ is the sliding amount. Here, we assume that
ξ = 1, i.e., we shift by one column at a time. The rescaled
matrix is denoted by D̃S with the i-th column being equal to
d̃S,i ∈ RdT×1. Each input test sample d̃S,i can be expressed
as a sparse linear combination of an overcomplete matrix, the
so-called dictionary, whose columns consist of a set of basis
elements, usually referred to as atoms or exemplars. The linear
combination is written as

d̃S,i =

β∑
l=1

αl,i gl = Gαi, (11)

where αi is an β-dimensional coefficients vector and G is an
overcomplete dictionary of size dT × β with β � dT . Due
to the sparsity coefficients vector’s assumption, only a few
exemplars are active and contribute to the representation of
d̃S,i.

The focus is given on estimating reliable speech features
further used for speaker identification under noisy conditions.
We make the assumption that a set of speech data coming
from the same speaker will have a similar sparse representation
given the dictionary G which contains the training speech
data of all speakers belonging to a database. In specific,
G is formed by concatenating all the rescaled training mel-
frequency cepstra matrices Gi, i = 1, . . . , J ,

G = [g1,1| · · · |g1,m1
|g2,1| · · · |g2,m2

| · · · |gJ,1| · · · |gJ,mJ
]

= [G1|G2| · · · |GJ ] ∈ RdT×β , (12)

where J is the total number of speakers in the corpus and
β = m1+m2+ . . .+mJ . If αi is a sufficiently sparse vector
then the solution of the following optimization problem

α̂i = argmin
a
‖a‖1 s.t. d̃S,i = Ga. (13)

gives a unique solution to (11). Efficient ways to solve the
convex optimization problem in (13) have been studied exten-
sively. One way is to recast (13) as an `1 norm constrained
least squares problem of the form

α̂i = argmin
a

∥∥∥Gα− d̃S,i∥∥∥
2
+ λ ‖α‖1 , (14)

where the least absolute shrinkage and selection operator
(LASSO) algorithm [24] can be applied to compute its so-
lution.



The mel-frequency cepstra matrix DY ∈ Rd×P corre-
sponds to the noisy speech data Y . By following the same
“concatenate-then-shift” procedure as before, we obtain the
rescaled versions W̃ ∈ R(dT )×(b(P−T )/ξc+1) and D̃Y ∈
R(dT )×(b(P−T )/ξc+1) of the maskW and noisy mel-frequency
cepstra DY , respectively. Then, the element-wise multiplica-
tion D̃r

Y = W̃ � D̃Y gives a rough estimation of the reliable
features. The reliable elements d̃

r

Y,i of the i-th column can be
used to approximate the corresponding elements of d̃S,i by
solving the problem

α̂i = argmin
a

∥∥∥Grα− d̃
r

Y,i

∥∥∥
2
+ λ ‖α‖1 , (15)

where Gr correspond to the rows of G associated with the
reliable features. The obtained sparse representation α̂i can be
used to estimate the clean observation vector aŝ̃

dS,i = Gα̂i. (16)

It is important to note that by solving (15) the reconstruction
error will not be zero in general, thus we only impute the
unreliable elements

̂̃
dS,i =


̂̃
d
r

S,i = d̃
r

Y,î̃
d
u

S,i = Guα̂i,

(17)

where Gu and ̂̃duS,i corresponding to the rows of G and ̂̃dS,i
for which the i-th column w̃i of W̃ equals zero.

If we apply (15)-(17) for all columns of the features matrix
D̃r
Y we end up with a set of (dT )×(b(P−T )/ξc+1) solutions

of the form {̂̃dS,i}i. In matrix form notation the set {̂̃dS,i}i
can be denoted by ˆ̃DS which reflects a reliable estimation of
the noisy speech features. A reshaped d×P version of ˆ̃DS can
be considered denoised version of the mel-frequency cepstra
matrix D̂S of the underlying speech signal, which can be used
directly for speaker identification.

V. EXPERIMENTAL RESULTS

In this section, we show that the proposed low-rank matrix
completion approach is an efficient method to reconstruct
the missing T-F components of speech signals used during
speaker identification. First, the reconstruction performance
of the SVT algorithm is evaluated and compared with other
matrix completion methods. Then, we demonstrate the supe-
rior reconstruction performance of the SVT algorithm against
the SI method, in terms of achieving an increased correct
identification accuracy over the VOICES corpus.

A. Evaluation of SVT matrix completion on missing data
imputation for speaker identification

In this section, we compare the reconstruction performance
of the SVT [22] algorithm with the performance obtained
by reconstructing the missing data matrix using LMaFit [25]
and ScGrassMC [26]. The experimental set-up, also used
in our previous work [18], is adopted for the SVT perfor-
mance assessment. More specifically, we are interested in

achieving noise robust speaker identification, where noisy
speech features are processed under a missing data imputation
framework [8] towards reducing the effects of noise in order to
enhance the speaker identification accuracy. In the subsequent
experimental evaluations we use UBM-GMM2 [27] as the
main classification process after feature enhancement through
missing data imputation.

The original speech signals are sampled at 22 kHz, and
downsampled to 16 kHz. During feature extraction, an analysis
window of 40 msec (equivalent to 640 samples), with a step
size of 20 msec (corresponding to 320 samples), is employed
to compute a mel-frequency spectrogram of 30 bands. For
the UBM-GMM classifier a diagonal covariance matrix of 16
Gaussian mixtures was chosen during the simulations, where
10 sec of clean speech training data (per speaker) were used.
We selected the last five utterances as testing data per speaker.
Speech babble noise and factory floor noise were used to
additively corrupt the test utterances. The SNR of the distorted
speech is set to -15, -10, -5, 0, 5, and 10 dB, while the noise
signals belong to the NOISEX-92 database [28]. For each
combination of noise type and SNR level, the sampling ratio
of the observed matrix W � Y is defined as

Sampling ratio =
number of observed values (k)

matrix size (F × P )
. (18)

We note that the sampling ratio (18) is inversely proportional
to the number of zeros in the binary mask W as defined
in (6), i.e., for smaller SNR values the amount of unreliable
features increases, and thus the number of observed values k
corresponding to the reliable features decreases.

The performance evaluation follows the strategy described
in [20]. In particular, having solved (7) each completed matrix
Ŷ corresponds to a sequence of feature vectors (columns)
{ŷt ∈ RF×1}Pt=1 of the form

ŷ1, ŷ2, ŷ3, . . . , ŷP−1, ŷP .

Each sequence of that form is divided into overlapping seg-
ments of Q feature vectors, where the segments have the
following form

ŷ1, ŷ2, ŷ3, . . . , ŷQ︸ ︷︷ ︸
1st segment

ŷQ+1, . . . , ŷP−1, ŷP

ŷ1, ŷ2, ŷ3, . . . , ŷQ, ŷQ+1︸ ︷︷ ︸
2nd segment

, . . . , ŷP−1, ŷP

...
ŷ1, ŷ2, ŷ3, . . . , ŷQ, ŷQ+1, . . . , ŷP−Q, ŷP−Q+1, . . . , ŷP−1, ŷP︸ ︷︷ ︸

P−Q+1th segment

(19)
The segment length Q is set to 400 during the testing simula-
tions, which corresponds to approximately 8 sec. The correct
identification rate (CIR) of the j-th speaker is computed as

2Universal Background Model for Gaussian Mixture Model



the percentage of the correctly identified segments of length
Q over the total number of segments

CIRj =
# cor. identified segments

total# of segments
· 100%, (20)

where the total number of segments equals P −Q+ 1. The
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Fig. 2. Mean correct identification rates (%) for the SVT, LMaFit,
ScGrassMC and no MC for six different number of SNR values, where
speech babble noise is added. The numbers inside the parentheses represent
the sampling ratios (18).

total mean correct identification rate is used as an evaluation
metric during the test simulations, which is given by

mean CIR =
1

R

R∑
r=1

(
1

J

J∑
j=1

CIRrj

)
, (21)

where R and J denote the total number of Monte Carlo runs
and speakers, respectively. The correct identification rate CIRrj
of speaker j during the r-th Monte Carlo run is given by (20).
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Fig. 3. Mean correct identification rates (%) for the SVT, LMaFit,
ScGrassMC and no MC for six different number of SNR values, where
factory floor noise is added. The numbers inside the parentheses represent
the sampling ratios (18).

The average correct identification rates, computed as the
percentage of the correctly identified segments over the total
number of test segments, for 10 Monte Carlo runs are depicted
in Figures 2 and 3. The SVT algorithm is compared with
LMaFit and ScGrassMC, as well as with the no matrix
completion (no MC) technique where the missing data matrix
W � Y is used explicitly for the speaker identification task.
Fig. 2 shows the results corresponding to the speech babble

noise, while Fig. 3 corresponds to the correct identification
rates in the case of factory floor noise. The vertical bars
indicate the 95% confidence intervals. It is clear that the
SVT matrix completion algorithm outperforms substantially
the other three evaluated methods across all the SNR noise
levels. In particular, we can see that in both noise cases at -10
dB SNR, i.e., when approximately 80% of the data is missing,
the speaker identification accuracy is around 80%. For all other
cases, where the SNR is at least -5 dB the achieved correct
identification rates are above 87%.

B. Evaluation of SVT against sparse imputation

In this section, we examine the reconstruction performance
of the proposed low-rank matrix completion method as de-
scribed in Sections II and III, with respect to the resulting
correct identification rates compared with the SI approach
overviewed in Section IV. Fig. 4 and Fig. 5 show the identifica-
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Fig. 4. Mean correct identification rates (%) for the SVT vs. SI for eight
different number of SNR values, where speech babble noise is added.

tion accuracy corresponding to speech babble and factory floor
noise, respectively. In this simulation, we consider six different
SNR values (-16, -12, -8, -4, 0, 4, 8 and 12 dB). Specifically,
we focus on examining the reconstruction performance of
SVT matrix completion compared with SI mainly in noisy
conditions, i.e. for values of SNR below -4 dB.

In Fig. 4.(a) and Fig. 5.(a) the solid line corresponds to
the identification rates achieved by the proposed SVT matrix
completion approach, while the dotted line represents the
performance of the sparse imputation method. In all cases,
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Fig. 5. Mean correct identification rates (%) for the SVT vs. SI for eight
different number of SNR values, where factory floor noise is added.

the vertical bars indicate the 95% confidence intervals. The
difference in performance between the two methods especially



in low SNR values appear more clearly in the bar plots as
depicted in Fig. 4.(b) and Fig. 5.(b). It is important to address
that low-rank matrix recovery performs better than SI for SNR
values below -4 dB for both noise types, especially in the
case of speech babble noise where SVT achieves 30% and
15% higher identification rates than SI for -16 dB and -12
dB, respectively. Similarly, SVT achieves an increase of 10%
in the identification accuracy when compared with SI, for the
factory floor noise at -16 dB. Clearly, for all the SNR values
greater than -4 dB, SVT is slightly better than SI except for
the case of 0 dB and 4 dB wherein SI slightly outperforms
SVT.

As an overall conclusion, our experimental evaluation re-
vealed that low-rank matrix recovery can compete other
state-of-the-art missing data imputation methods like SI even
without exploiting the a priori knowledge of training data
as extra information which could enhance the identification
performance.

VI. CONCLUSION

In this paper, we proposed a method for missing-feature
reconstruction applied in the context of robust speaker iden-
tification using short training and testing data. The low-rank
behaviour of the log-magnitude spectrotemporal speech data is
exploited in the framework of data imputation. We compared
its performance with the recently introduced sparse imputation
technique showing that the proposed method achieves an
improved performance in terms of higher correct identification
rates. As a future work, we are interested in extending the
SVT matrix completion approach to a dictionary-based version
which will take into consideration the training data of all
speakers. A further experimental investigation could be also
conducted by applying simulations in data with a wider range
of noise types and by comparing with other statistical-based
imputation methods using estimated reliability masks.
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