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Abstract—Internet-of-Things (IoT) aims at interconnecting
thousands or millions of smart objects/devices in a seamless way
by sensing, processing and analyzing huge amount of data ob-
tained from heterogeneous IoT devices. This rapid development
of IoT-oriented infrastructures comes at the cost of increased
security threats through IoT-based botnet attacks. In this work,
we present an IoT botnet attack detection method based on a
sparsity representation framework using a reconstruction error
thresholding rule for identifying malicious network traffic at the
IoT edge coming from compromised IoT devices. The botnet
attack detection is performed based on small-sized benign IoT
network traffic data, and thus we have no prior knowledge
about malicious IoT traffic data. We present our results on
a real IoT-based network dataset and show the efficacy of
our proposed technique against a reconstruction error-based
autoencoder approach.

Index Terms—IoT edge, botnet attack detection, sparse repre-
sentation, reconstruction error threshold, small-sized data

I. INTRODUCTION

The technology of IoT has emerged during the last
years [1] [2] [3] [4] as a milestone in advancing the con-
cept of Internet networking towards connecting data, users
and “things” (in the rest of the paper they are dubbed
as IoT devices) in a seamless fashion. IoT technology is
based on three pillars: highly heterogeneous IoT data are
captured through a gateway and are immediately accessible
to a wide range of applications via a secure networking
infrastructure. The type of IoT applications span from smart
homes [5] [6], smart cities [7] and wearables [8] [9] to
energy management [10], predictive maintenance [11] [12],
automotive driving [13], etc. However, the rapidly growing
use and realization of IoT-based technology comes at the cost
of resolving significant business and technical impediments as
reflected in dynamicity, scalability, heterogeneity and end-to-
end security/privacy [14] [15] [16].

More specific, a dynamically adaptive behaviour is followed
at the IoT infrastructure, at the IoT applications and at the
IoT devices, and thus it is important to promote a (semi)-
automatic behaviour within all IoT layers. This gives rise to the
pursuit of high scalability properties from the network layers
as well as from the IoT infrastructure. In addition, enhanced
heterogeneous behaviour as a result of the extensive use and
interconnection of a large volume of diverse IoT devices
should be addressed through the concept of efficient semantic
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interoperability within IoT applications and platforms. End-to-
end security is also a very crucial issue since [oT devices, IoT
applications and their enabling platforms could be vulnerable
to various attacks.

In the current work, the focus is given on the efficient, robust
and fast detection of botnet attacks at the IoT edge. More
specific, over the last few years, great research effort has been
carried on IoT security and IoT network intrusion detection. As
stated in [17] [18], the intrusion detection systems constitute
one of the most important core components of [oT systems,
and thus novel appropriate technologies should be introduced
in heterogeneous environments to ensure security and privacy.

Enhanced effort is needed to tackle the integration of
communication technologies and IoT in a secure middleware,
able to cope with the defined protection constraints as well
as with the IoT security in mobile devices. These challenges
should be considered both in centralized and distributed cases,
and as a result new security strategies have to be carefully
designed [19] [20]. In addition, the authors in [21] provide
a technical analysis and taxonomy of Distributed Denial of
Service (DDoS) attacks in IoT ecosystems indicating the
vulnerability of IoT devices in terms of conscription for
building huge botnet armies towards performing IoT-based
DDoS attacks. The study in [22] presents various challenges
and opportunities related with IoT and cloud anomaly detec-
tion providing a description of the prominent features and
application fields of IoT and cloud in terms of security and
privacy risks.

A defence architecture based on software-defined network-
ing (SDN) is studied in [23] for detecting and mitigating IoT
DDoS attacks under a Mirai botnet assumption based on a
scanning phase (and traffic) of bots to identify compromised
IoT nodes. The authors in [24] propose an IoT honeypot and
sandbox framework for attracting and analyzing Telnet attacks
against a wide range of IoT devices running on various CPU
architectures.

A game theoretic approach for lightweight anomaly detec-
tion in IoT networks is described in [25], where the concept of
Nash equilibrium is adopted to determine the equilibrium state
allowing the intrusion detection system to activate the anomaly
detection procedure in order to detect a new attack pattern.
A real-time hybrid IoT intrusion detection method based on
MapReduce architecture is introduced in [26] consisting of an
anomaly-based and a specification-based intrusion detection



module for detecting sinkhole and selective-forwarding IoT
attacks. A self-adapting, knowledge-driven intrusion detection
system for IoT able to detect attacks in real time across IoT
systems running different communication protocols is pro-
posed in [27]. The system autonomously collects information
about the features of the monitored network and entities, and
leverages such knowledge to dynamically configure the most
effective set of detection techniques.

In [28], the authors design, implement, and evaluate a novel
IoT intrusion detection system, focusing on the detection of
routing attacks such as spoofed or altered information, sink-
hole, and selective-forwarding. Besides, a deep autoencoder
botnet attack detection method is described in [29], where a
novel network-based anomaly detection method is proposed
based on extracting [oT network’s behavioral snapshots and
adopting deep autoencoders to detect anomalous network
traffic emanating from compromised IoT devices.

Contributions. We introduce a diagnosis mechanism for
instant IoT botnet attack detection, with the ultimate goal
of minimizing the attack’s impact by immediate isolation of
compromised IoT devices located at the IoT edge. As a result
of the limited computational capabilities which govern the
edge IoT devices, we are strongly interested in providing
an algorithmic procedure which uses as small as possible
amount of training and testing data towards implementing
an accurate IoT botnet attack detector. Here, we assume
that there is no prior knowledge of malicious IoT network
traffic data during the training procedure. The novelty of
the current paper is twofold. Firstly, a reconstruction error
thresholding rule based on a sparse representation framework
is employed for IoT botnet attack detection assuming that
only a very limited amount of both training and testing data
is used to deal with low computational constraints as well
as with fast reaction. Secondly, a greedy sparse recovery
algorithm, dubbed as orthogonal matching pursuit [30], is
adopted since it involves only two hyper-parameters tuning,
i.e., the thresholding constant and the sparsity level.

The rest of the paper is organized as follows: Section II
briefly overviews the dataset used for the algorithmic evalu-
ation and the corresponding feature extraction process, while
Section III describes the proposed sparse representation frame-
work along with a description of the reconstruction error
thresholding rule. An experimental evaluation is provided in
Section IV, where a comparative study is performed between
the proposed technique and a typical autoencoder. Finally, Sec-
tion V summarizes the main conclusions and gives directions
for future work.

II. DATASET AND FEATURE EXTRACTION

As it is mentioned in the introductory section, we are
interested in proposing an IoT botnet attack detector at the IoT
edge, and thus the use of real-data is of paramount importance.
Here, we used the N-BaloT dataset' which corresponds to real

1 http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_
BaloT

traffic data gathered from nine commercial IoT devices. For
the sake of completeness a short overview of the dataset is
provided next (a detailed description can be found in [29]).

The N-BaloT dataset contains the features extracted from
the raw IoT network traffic data. More specific, whenever
a packet is received, a behavioral snapshot of the protocols
and hosts that transmitted each packet is computed. Each
snapshot corresponds to the packet’s contextual information
as reflected in a set of statistical features, i.e., the arrival of
each packet invokes the extraction of 23 statistical features
from five time windows (100ms, 500ms, 1.5sec, 10sec and
Imin), and then five 23-dimensional vectors from each window
are concatenated into a single 115-dimensional vector (in the
rest of the text we will refer to the 115-dimensional vector as
instance).

For the performance evaluation, we used malicious instances
obtained during a BASHLITE botnet attack. Specifically, we
used the instances based on three BASHLITE attack types: (I)
COMBO: sending spam data and opening a connection to a
specified IP address and port, (II) Junk: sending spam data,
and (III) Scan: scanning the network for vulnerable devices.
The interested reader is referred to [29] for more details on
the feature extraction process. For the sake of clarity, it

TABLE I
COMMERCIAL IOT DEVICES USED TO CAPTURE THE BENIGN INSTANCES.

THE THIRD COLUMN CONTAINS THE ACTUAL NUMBER OF UPLOADED
BENIGN INSTANCES!.

Number of Number of

Device model benign instances uploaded benign

mentioned in [29] instances
Danmini 49,548 40,395
Ennio 39,100 34,692
Ecobee 13,113 13,111
Philips B120N/10 175,240 160,137
Provision PT-737E 62,154 55,169
Provision PT-838 98,514 91,555
SimpleHome XCS7-1002-WHT 46,585 42,784
SimpleHome XCS7-1003-WHT 19,528 -
Samsung SNH 1011 N 52,150 46,817

is important to notice that the uploaded N-BaloT dataset!
includes a different amount of benign instances (see Table I) as
compared to the dataset description in [29]. As a result, during
the performance evaluation we used the benign instances that
correspond to eight IoT devices as shown in the third column
of Table I.

III. SPARSE REPRESENTATION FOR IOT BOTNET ATTACK
DETECTION

A. Proposed sparse representation framework

In this section, we provide a description of the sparse
representation framework for IoT botnet attack detection using
a small amount of training and testing instances. Let .S be the
total number of IoT devices located at the IoT edge. Then, a
matrix V; can be constructed for each IoT device based on the

benign instances extracted from the i-th IoT device as follows
Vi = [Vi,lavi,Z; A 7Vi,n7;} S Rdxni, 1= ]., ey S, (1)

where v; ; € R¥! denotes the j-th d-dimensional instance of
the i-th IoT device, and n; is the number of benign training



instances obtained from the ¢-th IoT device. The total number
of benign training instances is N = ni + --- + ng. Let us
rewrite each vector v; ; in a columnized form

2

where v(; ;) € Réwxforw=1,...,W,d=dy+---+dw
and W denotes the number of windows used to compute the
statistical features as described in Section II. According to
the N-BaloT dataset description, W = 5 and d,, = 23 for
w=1,...,W, and thus the dimension d,, of each subvector
V(i,j). 18 constant and equal to 23 Vw =1,..., W (ie., d =
di+---+dw =di+---+ds =23+---+23 =5-23 = 115).
In IoT botnet attack detection, the ultimate goal is to detect
whether the IoT network traffic data corresponds to benign or
malicious behaviour given an observed instance y € R4*!,
Let us consider that y is an instance that corresponds to the
i-th IoT device. We are interested in deducing if y is benign,
emitted from a “healthy” IoT device, or not. The instance y
can be written as a linear combination of the benign training
instances associated with the ¢-th IoT device as follows

_ T T T dx1
Vijg =V Vigwl €RTY,

3)

where ¢; = {¢; j}}j, is the vector containing the representa-
tion coefficients of y in terms of the columns of V;.

The overall data matrix V contains the instances corre-
sponding to the benign instances extracted from all IoT devices
and it is defined as the concatenation of all the benign data
matrices V;,Vi=1,...,85,

vV = [V1,1,~~~7V1,n17V2,1,~~~,Vz,n2a~~

= [V, Vy,...,Vg] e RN |

Y =¢i1Vi1+ciavig+ -+ CinVin, = ViCi,

.. ,Vs'_’ns]
“)

By combining (3) and (4), y can be sparsely expressed in
terms of the overall benign training data matrix V, namely,
y = Vc, where

. 7VS,17 .

L, 0T e RVXE(5)

denotes the coefficients vector, hereafter called the sparse
code, whose elements are all zero except for those associated
with the i-th IoT device.

Given the overall data matrix V and the observed instance
y, the following optimization problem can be solved through
the orthogonal matching pursuit (OMP) [30] algorithm in order
to obtain an estimate of the sparse code c

c=1[0,...,0,¢1,¢i2, -\ Cing 0, .

(6)

¢ =arg mcin lly — Vellz, s.t. |lcllo < T,

where ||-||2 denotes the {5 norm, ||-||o is the £y (pseudo)norm,
which is defined as the number of non-zero elements of a
given vector and 7 denotes the sparsity level of the estimated
sparse code €. Algorithm 1 summarizes the steps followed
for estimating the sparse code c¢ given y and V. OMP is an
iterative, lightweight algorithmic process, where during each
iteration it selects a column of V to include in the current
support set Ay (contains the indices of the selected columns)
by maximizing the inner product between the columns of V
and the current residual r;_;. Once the new column has been

added to the support set, it solves a least squares problem
to fully minimize the error on the current support set. As a
result, the residual becomes orthogonal to the columns of V
corresponding to the current support set. Line 2 in Algorithm 1
indicates the stopping criterion: the iterative process stops
when a sparsity level 7 is reached or the residual’s ¢ norm is
below a given constant €. In the current work, we consider 7
as a hyper-parameter, while ¢ is fixed during the experimental
evaluation.

Algorithm 1 Orthogonal matching pursuit (OMP) used for
sparse code estimation.

Input: y, V, sparsity level 7

Output: estimated sparse code ¢
1: Initialization: k =1, rp_ =y, Ap_1 =0
2: while k < 7 or [[ry_1||, < € do

- T
s |t = ang max v/ il
4: ‘ A =Ap_1U*
5: ‘ Cp, = Vj\ky
6: Ty =Yy — VAkCAk
7: k=k+1

The fundamental assumption is that if the observed instance
y corresponds to a benign traffic behaviour, then we expect the
reconstruction error ||y — V¢||2 to be small since the indices
of the non-zero entries in ¢ will correspond to those columns
of V associated with the i-th IoT device. On the contrary,
we expect a high reconstruction error ||y — Vé||z when y
corresponds to an unseen (malicious) traffic behaviour since
the estimated sparse code ¢ cannot be sparsely expressed in
terms of V because the malicious IoT traffic information is not
included in the overall matrix V. As a result, the IoT botnet
attack detection thresholding rule can be written as

benign y, if [y —V¢|2 <0

. . X (D
malicious y, if |ly — Ve[[2 >0

detection(y) = {
where 6 is the decision threshold. The decision threshold can
be estimated offline given the overall data matrix V containing
only benign instances.

B. Decision threshold estimation and tuning of the hyper-
parameters

Algorithm 2 summarizes the main steps towards finding the
best combination of the hyper-parameters 7, 6 given V. In the
current work, we adopt the concept of proxy outliers [31] to
compensate for lacking malicious instances during the hyper-
parameters tuning. We assume that if the sparse codes are
computed only on benign instances, some of the reconstruction
errors might attain large values. As a result, choosing the
maximum reconstruction error as the threshold 6 could lead
in accepting most of the malicious instances as benign.

The concept of quartiles is adopted to remove a certain
amount of proxy outliers (attaining large reconstruction error
values) present in the benign instances. More specifically, the
sparse codes of all the benign training instances are computed
first, and then the corresponding reconstruction errors are



estimated. Given the computed reconstruction errors, the lower
quartile (Q1), the upper quartile (Q3) and the inter-quartile
range (IQR = Q3 — Q1) is estimated, and thus an instance
y that belongs to the benign training instances set is qualified
as a proxy outlier if

recon. error(y) < Q1 — p- IQR ox recon.error(y) > Qs + p- IQR, (8)

where p is the rejection rate reflecting the percentage of the
benign training instances which fall within the non-extreme
limits. Based on (8), the extreme values of the reconstruction
error that represents spurious training instances can be re-
moved, and thus the maximum of the remaining reconstruction
errors is selected as the threshold 6. Besides, the best p value
can be found through cross-validation (see Algorithm 2).

C. Majority voting for IoT botnet attack detection

As explicitly mentioned in the introductory section, the main
goal of the proposed approach is the efficient and fast IoT
botnet attack detection. Towards this direction, we examine a
real-life scenario using only one test instance y € R''°*1 in
order to detect the IoT network traffic behaviour as fast as
possible in a reliable manner.

Let us consider that y can be decomposed into five subvec-
tors of the form y',...,y® with each subvector y* € RZ3*!
reflecting the statistical features from five time windows,
100ms (w = 1), 500ms (w = 2), 1.5sec (w = 3), 10sec
(w =4) and 1min (w = b), respectively (see Section II). The
optimization problem (6) can be solved for each subvector y*
forw=1,...,5 as follows
—V¥ s, st. [[c¥o < T, 9)

¢" = argmin [y
where V¥ € R23*N corresponds to the benign training in-
stances of the w-th time window, and thus we end up with a set
of five sparse codes ¢!, . .., &°. Next, five reconstruction errors
of the form |ly* — V¥¢¥||; (w = 1,...,5) are computed
leading to five decision functions as expressed in (7). The
final decision about the existence or not of an IoT botnet
attack detection is provided via a majority voting scheme. It
is obvious that a different decision threshold 6,, is estimated
given V¥ according to the process described in Algorithm 2
(there are inner loops of the form “for w =1 to 5 do” within
the loops in Line 3, Line 15 and Line 30). Due to space
limitation, an extended description of Algorithm 2 including
a window-based hyper-parameters tuning pseudocode, will be
provided in an upcoming publication.

IV. EXPERIMENTAL EVALUATION

In this section, the IoT botnet attack detection performance
of the proposed sparse representation (SR) method based on
majority voting is compared against a single hidden layer
autoencoder (AE) [32], where the N-BaloT dataset (see Ta-
ble I) was used during the evaluation process. For each IoT
device we randomly select 100, 300 and 500 benign instances
from the first half of each dataset to estimate the decision
threshold and perform the tuning of the hyper-parameters
following a 3-fold (C'V = 3) cross-validation process, where

Algorithm 2 Decision threshold estimation and tuning of the
hyper-parameters for IoT botnet attack detection

Input: matrix 'V containing the benign training instances, set 7 of all
possible 7 values, set P of all possible p values, number of cross
validation folds C'V'

Output: estimated decision threshold 6, (best) tuned sparsity level 7 € T,
(best) tuned rejection rate p € P

1: for p € P do// loop over all possible values of p

2: for 7 € T do// loop over all possible values of T
3 for i=1to N do// loop over all columns of V
4 I={1,...,N}

5: b =V(;,i) // extract the i-th column of V
6: Z(i) =[] // remove the i-th index

7 /l matrix after removing the i-th column:
8 | | V=V(,1) B

9 | | &= argrrging—Vcﬂb, s.t. Jlcillo < 7

10: ‘ ‘ ‘ b =V¢; // reconstructed version of b
d R 1/2

1 ||| el) = ((l/d) S (b)) - b(l))) " )i rusE error
12: Compute the lower quartile Q1 of the reconstruction errors e.
13: Compute the upper quartile @3 of the reconstruction errors e.
14: Compute the inter-quartile range IQR = Q3 — Q1.
15: for i =1to N do// loop over all elements in e
16: ife(i) <Q1—p-IQR or e(i) > Q3+ p-IQR then
17: ‘ // i-th training instance in V is

| | | | #considered as proxy outlier:
18: | V(1) = V(;,4)
19: else
20: ‘ /I i-th training instance in V is

| | | | #considered as benign:
21: V(i) = V(1)
22: // e, contains the recon. errors of

| | | | #instances considered as benign:
23: | | en(i) =e(i)
24: For the current set of values (p, 7) compute the decision threshold

\ \ 6 as the maximum value of e,,.
25: for f =1to CV do // loop over cross val. folds
26: ‘ Current “test” cross validation fold f used to build the benign

| | | instances matrix for testing purposes: D.
27: | | | Current “training” cross valid. folds {1,...,CV}\ {f} used

\ \ \ to build the benign instances matrix for training purposes: D..
28: D: = [Dj Vin] // overall testing data
29: /I loop over all columns of matrix Dg:
30: for j = 1 to columns(D¢) do
31: y= D:(:,7) // select j-th test instance
32: §; —argmln”y D;sjll2, s.t. [|sjllo <7
33: y =D.§; // estimated version of y
34: /I RMSE error between y and its

| | | | //estimated version y:

d 1/2
s 11| rG) = (WD (v - 30))
1=1
36: ifr(j) <Q1—p-IQR or r(j) > Q3+ p-IQR then
37: /l instance y is considered benign:
38: a(j)=1
39: else
40: /l instance y is considered malicious:
41: a(j)=0
42: /I compute the geometric mean based on a:
43: g(f)=vTPR-TNR
44. // compute the average geometric mean:
cv

450 | | g=@/CV)) ()

=1
46: Select as the (best) tuned set (p, ), denoted as (p,7), the one corre-
sponding to the maximum value of the geometric mean g.

47: The estimated decision threshold is denoted as 6 and corresponds to the
best combination of hyper-parameters (3, 7).




TABLE II
CONFUSION MATRIX CORRESPONDING TO THE EVALUATION RESULTS ON
10T BOTNET ATTACK DETECTION.

Detected
etecte Malicious Benign
Actual
Malicious True Positive (TP)  False Negative (FN)
Benign False Positive (FP)  True Negative (TN)

7 is varied from 7 = {5,10,15,20,30}, p is varied from
P = {0.01,0.5,1,2,3}, and € is fixed and equal to 0.001.
For the AE hyper-parameters tuning we followed a similar
strategy as the one analyzed in Algorithm 2 (based on an AE
reconstruction error-oriented decision threshold estimation and
hyper-parameters tuning), where the number of epochs is fixed
and equal to 50, while the number of nodes in the hidden
layer is varied from {20, 30,40,50,60}. As a result, both
SR and AE have one hyper-parameter, the sparsity level and
the number of nodes, respectively. Here, an off-the-shelf AE
implementation was used?, where KerneScale parameter
was set to auto and Standardize to true, while the rest
of the parameters were kept to default values.

1 ISR, 00
e,
0.8 l:l SRSOO
A,
06 SR

AEs

0.4

Value

0.2

PPV Sensitivity F1-score ACC

Fig. 1. Performance evaluation results for the COMBO botnet attack.

The evaluation results on IoT botnet attack detection are
reported in the form of a confusion matrix as shown in Ta-
ble II, where TP indicates the quantity of malicious instances
correctly detected, TN shows the quantity of benign instances
correctly detected, FN indicates the quantity of malicious
instances incorrectly detected, and FP denotes the quantity
of benign instances incorrectly detected. Here, we calculated
the following metrics based on the confusion matrix in order
to assess the performance of the proposed framework: (I)
Positive Predictive Value (PPV) which indicates the proportion
of correctly detected malicious instances in the total instances
detected as malicious, (II) Sensitivity (detection rate) which
shows the proportion of correctly detected malicious instances
in the total number of actual malicious instances, (IIT) F1-score
corresponding to the harmonic mean of PPV and sensitivity,
(IV) Accuracy (ACC) denoting the fraction of correctly de-
tected instances in total detected instances.

To evaluate the performance of the two methods, we per-
formed five Monte Carlo runs. During each Monte Carlo
run we followed a leave-one-out-device-out cross validation

2http://www.mathworks.com/help/nnet/ref/trainautoencoder.html

(LOOCYV) strategy, where benign instances from S — 1 IoT
devices were used for tuning and threshold estimation, while
the current (under testing) IoT device’s benign and malicious
instances were used for testing/evaluation purposes. This pro-
cedure was repeated .S times and the total average performance

1 - SR 100
0.8
0.6
0.4
A
. |
PPV

AE
Sensitivity

ISRy,
I AE, ),
SR,y
0By,

Value

F1-score ACC
Fig. 2. Performance evaluation results for the Junk botnet attack.

metrics over all IoT devices and all Monte Carlo runs are
reported. This evaluation is IoT device independent and shows
the generalization capabilities as the IoT device which is being
tested is not included in the tuning procedure.

1 [ i
0.8
0.6
0.4
02
0
PPV

I AE
Fig. 3. Performance evaluation results for the Scan botnet attack.

[0SRy
AE,
SR,y
0By,

Value

Sensitivity ~ F1-score ACC

During the evaluation process, we used 100, 300 and 500
left-out benign instances (see LOOCYV description in the
previous paragraph), respectively, for testing as well as 200
malicious instances randomly selected from each IoT device’s
COMBO malicious dataset (1600 malicious testing instances
in total). In the case of Junk and Scan botnet attack we used
200, 600 and 1000 randomly selected instances from each IoT
device’s malicious Junk and Scan dataset, respectively (1600,
4800 and 8000 malicious testing instances in total during each
evaluation scenario). It is important to notice that we used the
malicious instances obtained from the eight IoT devices used
during the tuning process (see Table I). Figure 1 shows the
results corresponding to the COMBO botnet attack, Figure 2
depicts the performance in the case of Junk botnet attack
and Figure 3 corresponds to the Scan botnet attack results.
In all figures, the subscripts in the legend names indicate the
number of benign instances per IoT device used during the
hyper-parameters tuning and the decision threshold estimation
process. The vertical black lines indicate the error bars since
each experimental scenario is performed five (Monte Carlo
runs) by S = 8 (total number of IoT devices) times.



It is obvious that the proposed SR method achieves superior
performance in light of Sensitivity, F1-score and ACC, while
the AE technique achieves slightly better results in terms of
PPV. That means that SR is robust in accurately detecting
both malicious and normal behaviour in the IoT network (the
Sensitivity, F1-score and ACC error bars corresponding to AE
are wider as compared to the SR method’s error bars). Besides,
the time complexity between SR and AE is comparable and
low (due to space limitation, a more thorough computation
cost investigation will be provided in a future publication),
and thus SR can be applied for accurate and fast IoT botnet
attack detection.

V. CONCLUSIONS

In this paper, we proposed a method for fast IoT botnet
attack detection based on a very small amount of benign
training instances and using one instance during detection. The
proposed approach is based on a sparse representation frame-
work, where the decision threshold is estimated using only
benign training instances. The sparse representation method
is compared with a single hidden layer autoencoder. It was
shown through an experimental evaluation that the proposed
method performs better in terms of F1-score, detection rate and
accuracy than the autoencoder. As a future work, we intend to
examine the proposed approach using more IoT botnet attack
datasets as well as performing extensive comparisons with
additional IoT botnet attack detection methods.
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