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ABSTRACT

This paper addresses the problem of joint wideband localization

and acquisition of acoustic sources. The source locations as well

as acquisition of the original source signals are obtained in a joint

fashion by solving a sparse recovery problem. Spatial sparsity is

enforced by discretizing the acoustic scene into a grid of predefined

dimensions. In practice, energy leakage from the source location to

the neighboring grid points is expected to produce spurious location

estimates, since the source location will not coincide with one of the

grid points. To alleviate this problem we introduce the concept of

grid-shift. A particular source is then near a point on the grid in at

least one of a set of shifted grids. For the selected grid, other sources

will generally not be on a grid point, but their energy is distributed

over many points. A large number of experiments on real speech

signals show the localization and acquisition effectiveness of the

proposed approach under clean, noisy and reverberant conditions.

Index Terms— wideband acoustic sources, localization, acqui-

sition, off-grid sparse recovery

1. INTRODUCTION

In the current work, the focus is on joint acoustic source localization

and acquisition based on a set of microphones randomly placed in

the acoustic scene. Specifically, we cast the localization problem

as a sparse recovery problem [1] by discretizing the acoustic scene

using a grid of a certain size. We assume that the center of each grid

cell, termed a grid point, corresponds to a possible source position

leading to the sparsification of the problem since only a few grid

points will be non-zero due to the presence of sources. Here, we

assume that the acoustic sources correspond to speech signals, and

thus a time-frequency separability property can be adopted, i.e., the

sources do not overlap in each time-frequency region [2].

Sparsity-based localization emerged as an alternative approach

in solving the source localization problem compared to the tradi-

tional methods of beamforming [3], [4]. The motivation behind

sparsity enforcing techniques [1], [5], [6], [7], [8] was to allevi-

ate the problem of poor localization performance due to a limited

number of data snapshots, low signal-to-noise ratio (SNR) levels

and correlation between the emitted sources. Compressed sensing

(CS) [9], [10] was adopted in order to guarantee that under certain

conditions the sparsity-based localization problem can be solved ef-

ficiently.

The main hypothesis used in the sparsity-based localization

framework states that there is an exact match between the real phys-

ical model and the assumed one, reflected in the grid structure.

This work was supported by Google Inc.

This implies that the acoustic sources lie exactly on the grid points.

Based on this assumption, wideband acoustic source localization

is examined in [11] under no reverberation effects, while in [12]

the authors consider that the acoustic transfer functions are known.

In [13], [14] wideband acoustic source localization is extended to

source separation for speech recognition.

In contrast to the aforementioned assumptions we expect that

the grid points will not coincide with the actual source locations.

This causes energy leakage from the off-grid source position to the

neighboring grid points, leading to errors in the sparse solutions.

Many algorithms have been proposed to solve the off-grid problem

within the CS theory. In [15] a semidefinite program is used to

solve the line spectrum sparse recovery problem via atomic norm

minimization. An atomic norm-regularized least-squares problem

is adopted in [16], while an off-grid narrowband direction-of-arrival

estimation problem is studied in [17].

A second class of methods employs a Bayesian framework,

where the off-grid narrowband source localization task is exam-

ined in [18]. Another category of off-grid sparse optimization prob-

lems falls into the so-called perturbed matrix theory, which is based

on allowing some perturbation of the matrix corresponding to the

grid structure. Specifically, a perturbed version of adaptive match-

ing pursuit is examined in [19] for narrowband source localiza-

tion, while a perturbation-based orthogonal matching pursuit is pro-

posed in [20] and [21] for an imaging and radar application, respec-

tively. An additional subcategory of perturbed-based techniques us-

ing structured total least squares was considered in [22], [23] for

dealing with narrowband source localization and cognitive radio

sensing applications.

Contributions. We introduce a wideband joint acoustic source

localization and acquisition approach using a sparse optimization

framework based on a grid-shifting procedure. In particular, we are

interested in studying the effect of estimating the acoustic source

locations in a joint fashion with source acquisition in the presence

of misalignment between the grid points and the actual source lo-

cations. An orthogonal matching pursuit-based grid-shift scheme is

proposed to solve the problem. Since we cannot arbitrarily increase

the grid size in order to achieve a better coverage of the acoustic

scene (this will cause the violation of the restricted isometry prop-

erty as described in the next section), the core idea is to consider a

specific grid structure which is “shifted” across the acoustic scene.

It is expected that each source will be located close to a grid point

in at least one of the set of shifted grids. We then combine (based

on K-means clustering) the sparse solutions corresponding to the

(shifted) grids to obtain the source location estimates. The esti-

mated source positions are used as side information to obtain the

original source signals.
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The novelty of the current paper is twofold. Firstly, a more

realistic solution is employed by assuming that the sources are not

located near the grid points as compared to the majority of the off-

grid techniques, where typically it is assumed that the grid points

are close enough to the true source locations. Secondly, a greedy

sparse recovery algorithm such as orthogonal matching pursuit [24]

is adopted to obtain a method with low computational complexity.

2. BACKGROUND INFORMATION

Before proceeding to the description of the proposed approach we

provide a short overview of the sparse recovery framework. Let us

assume that a signal x ∈ C
N can be represented as x = Ψs, where

Ψ ∈ C
N×N is a transform basis and s ∈ C

N denotes the transform

coefficients vector. If s has only K ≪ N non-zero components,

then x is called K-sparse.

Let us also consider an M ×N matrix Φ corresponding to the

measurement process of signal x with M < N , where the rows

of Φ are incoherent with the columns of Ψ. It is possible to obtain

directly a compressed set of measurements y if the signal x is sparse

in Ψ, as follows:

y = Φx
x=Ψs
= ΦΨs

A:=ΦΨ
= As, (1)

where A ∈ C
M×N corresponds to the sensing matrix. In real

world applications the compressed measurements can be corrupted

by noise n ∈ C
M , leading to noisy measurements of the form

y = As+n. Given the compressed measurements y and the sens-

ing matrix A an ℓ1-minimization problem can be solved to recover

the sparse vector s as follows:

ŝ = argmin
s

‖s‖1 , s.t. ‖y −As‖2 ≤ ε , (2)

which provides a recovery consistent with the observed measure-

ments with an approximation error y −As up to the noise level ε.

The problem (2) is guaranteed to provide an accurate sparse solu-

tion with high probability if the restricted isometry property (RIP)

of order K

(1− δK)‖s‖22 ≤ ‖As‖22 ≤ (1 + δK)‖s‖22 (3)

is satisfied for sufficiently small values δK > 0 [25]. However, it is

computational intractable to explicitly verify the RIP as expressed

in (3) especially for large size matrices [26], and thus it is preferable

to use properties of the sensing matrix per se that are easily com-

putable towards providing recovery guarantees. The coherence [27]

of a matrix is one such property defined as

µ = max
1≤i,j≤N

|aH
i aj |

||ai||2 ||aj ||2
, (4)

where ai and aj denote the i-th and j-th column, respectively, of

the sensing matrix A. It is important to notice that the lower the

coherence the higher the probability to obtain a correct estimation

of the sparse vector s, which translates into linear independence

among the columns of A. However, it is obvious that a trade-off

exists between the sparse recovery accuracy and the coherence vio-

lation. In other words, if the sparsity level is increased by increas-

ing the dimension of the vector s (leading to a higher number of

columns in A), then the sparse recovery estimation is likely to pro-

vide decreased performance due to larger inter-column linear de-

pendence. In addition, as stated in the introduction, inadequate dis-

cretization of the acoustic scene can lead to spectral leakage phe-

nomena as a result of the so-called basis mismatch between the

continuous physical model and the discretized assumed model re-

flected in A. Next, we aim to efficiently tackle the aforementioned

issues by introducing the concept of grid-shift.

3. PROPOSED METHOD

As a first step towards joint wideband acoustic source localization

and acquisition we focus on computing the source positions. The

location estimation problem is formulated in terms of a sparse re-

covery problem as described in the previous section.

3.1. Source localization based on spatial sparse recovery

Let us assume M microphones and K acoustic sources, with K <
M , placed at random within an acoustic scene that corresponds to

a box-shaped room of arbitrary dimensions. Let us also denote the

position of the m-th microphone and the i-th source as qm ∈ R
3

and pi ∈ R
3, respectively. The physical model of the signal prop-

agation between source i and microphone m accounting for the re-

flections onto the walls can be expressed via the Green’s acous-

tic transfer function [28], [29], where the acoustic transfer function

for each source-microphone pair is estimated based on the Image-

Source model [28]. The time-frequency representation of the re-

ceived signal at the m-th microphone can be written as follows:

ym(t, ωl) =

K
∑

i=1

Am,i(ωl)xi(t, ωl) + nm(t, ωl) (5)

for all m = 1 . . . ,M , where t = 1, . . . , T and l = 1, . . . , F is

the time frame and angular frequency index, respectively. The to-

tal number of analysis frames and the number of frequency bins is

denoted as T and F , respectively. The acoustic transfer function be-

tween microphone m and source i for a specific angular frequency

ωl = 2πfl, with fl denoting the frequency in Hz, is Am,i(ωl). The

i-th source and noise at microphone m are given by xi(t, ωl) and

nm(t, ωl), respectively.

Let us assume that the area of interest is discretized into N ≫
K grid points, where each acoustic source could be possibly located

at one out of N grid points. Under the previous assumption, an

activation vector s(t, ωl) ∈ C
N can be introduced as

sn(t, ωl) =

{

xi(t, ωl), if source i is active at grid point n

0, otherwise (6)

indicating if an acoustic source is active at a specific grid point or

not. It is obvious that s(t, ωl) is a K-sparse vector. Using matrix

form notation, and combining (5)-(6), the observation vector can be

written as
y(t, ωl) = A(ωl)s(t, ωl) + n(t, ωl), (7)

where y(t, ωl) ∈ C
M denotes the complex-valued data vector

from the observations at the M microphones, s(t, ωl) ∈ C
N is the

unknown vector of the complex source amplitudes at all N grid

points of the grid of interest and n(t, ωl) ∈ C
M is the additive

noise error term. The sensing matrix

A(ωl) = [a(p1)|a(p2)| . . . |a(pN )] ∈ C
M×N

(8)

acts as a mapping between s(t, ωl) and y(t, ωl) whose columns are

the propagation vectors at all N grid points.

According to the description above, the acoustic source local-

ization problem can be translated into the recovery of the sparse

activation vector s(t, ωl) given the observation vector y(t, ωl) and

the sensing matrix A(ωl). In principle, only a few sources gener-

ate the acoustic field, and thus we can assume that K < M ≪ N
which means that problem (7) is underdetermined. Applying the

sparse recovery framework as described in the previous section (as

formulated in (2)), an estimate of the activation vector s(t, ωl) can

be obtained by solving the following sparse optimization problem

ŝ(t, ωl) = argmin
s

‖s‖
1
, s.t. ‖y(t, ωl)−A(ωl)s‖2 ≤ ε, (9)
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where ε is the noise threshold. Then, each source location can be

easily inferred by the index of each non-zero element in ŝ(t, ωl).
We adopt the orthogonal matching pursuit (OMP) [24] algorithm to

solve (9).

As stated in the introduction, we are interested in wideband

acoustic source localization as part of a generic joint acoustic source

localization and acquisition system. This led us to incorporate and

utilize the sparse recovery model under a real-time framework. As

a result, the RIP should not be violated through a large number of

grid points N , while at the same time the positions of the actual

acoustic sources are assumed to rarely be in close proximity to the

grid points especially in real-life scenarios (i.e., energy leakage will

be observed from the actual source locations to the neighboring grid

points).

Algorithm 1: Acoustic source localization using grid-shift

Input: y(t, ωl), t = 1, . . . , T , l = 1 . . . , F
grids Gr , r = 1, . . . , R, where R is the total number of grid-shifts
tolerance ε, number of sources K
Output: estimated source locations

1 for r = 1 to R do // loop over grid shifts

2 for t = 1 to T do // loop over time frames

3 for l = 1, . . . , F do // loop over frequency bins

4 build matrix Ar(ωl) using the current grid Gr according
to (10)

5 ŝ(t, ωl) =
argmin

s

‖s‖
1
, s.t. ‖y(t, ωl)−Ar(ωl)s‖2 ≤ ε

6 Lr(t, ωl, :)← ŝ(t, ωl)
T

7 end

8 end

9 Lr ∈ C
T×F×N

10 compute the magnitude of all T × F sparse solutions: |Lr|

11 compute the mean µ
r
∈ R

N×1 corresponding to all the T × F sparse
solutions |Lr|

12 find the indices {îr
1
, . . . , îr

K
} of the top-K (maximum) values of the

mean µ
r

13 find the current source position estimates

Q̂r = [Gr(:, î
r

1
), . . . ,Gr(:, î

r

K
)] ∈ R

3×K

14 end
15 stack all the estimated source positions into one matrix

Q̂ = [Q̂T

1
. . . Q̂T

R
]T ∈ R

3×RK

16 estimate source locations P̂ ∈ R
3×K by K-means clustering

To address the fore-mentioned problems, we introduce the con-

cept of grid-shift. In particular, let us assume that a sensing matrix

Ar(ωl) = [a(pr
1)|a(p

r
2)| . . . |a(p

r
N )] ∈ C

M×N
(10)

corresponds to the r-th grid

Gr =
[

pr
1|p

r
2| . . . |p

r
N

]

∈ R
3×N

, (11)

where pr
n ∈ R

3 (with n = 1, . . . , N ) are the coordinates of the grid

points corresponding to the r-th grid. The grid size N is defined a-

priori and a shifting procedure is followed to “scan” the entire box-

shaped room. The process is iterative, and during each iteration (9)

is solved for each grid Gr and for the time-frequency bin (t, ωl),
since we are dealing with wideband signals.

Algorithm 1 summarizes the wideband acoustic source local-

ization procedure solving the ℓ1-norm optimization problem as de-

fined in (9) using the concept of grid-shift to compensate for the

off-grid source locations. In line 6, Lr(t, ωl, :) denotes an N -

dimensional vector, for fixed t and ωl, in three-dimensional matrix

Lr, while in line 13 the notation Gr(:, î
r
k) corresponds to the îrk-th

column of the matrix Gr. To lower the source localization com-

plexity in our practical implementation, a peak picking algorithm is

applied to estimate the maximum spectral components of each time

frame during the grid-shift process. Finally, the source location es-

timates P̂, provided by the K-means clustering, are used as input

parameters during the source acquisition method.

3.2. Source acquisition based on estimated sparse solutions

After the estimation of the source locations we proceed with the

acquisition of the original sources. Towards source acquisition the

estimated source locations P̂ are exploited as side information (un-

der the sparsity model (6)) in combination with the time-frequency

separability property of speech signals [2]. As a result, we can ad-

dress the frequency bin assignment problem which occurs when for

example two different sources might be swapped at different fre-

quency bins leading to ambiguity during the separation process (the

interested reader is referred to [30]).

Specifically, to obtain the original source signals we need to

solve a sparse optimization problem of the form (9) for all the time-

frequency bins focusing on the estimated source positions P̂ which

were provided by the K-means clustering process in Algorithm 1.

During the first step, a grid of the same size N is built located in

the center of the room. The grid points that are closest to the esti-

mated source locations are replaced by the corresponding estimated

locations’ three-dimensional coordinates.

Algorithm 2: Acoustic source acquisition

Input: estimated source locations P̂
grid G of size N centered in the middle of the acoustic scene
tolerance ε, number of sources K
Output: separated sources (in the time domain)

1 find the indices g1, . . . , gK of the grid points in G which are closest to the

estimated source locations P̂

2 obtain a new grid G̃ (from grid G) by replacing the K grid points found in

the previous step with the source location estimates P̂
3 for t = 1 to T do // loop over all time frames

4 for l = 1, . . . , F do // loop over all frequency bins

5 build matrix Ã(ωl) using the grid G̃

6 ŝ(t, ωl) = argmin
s

‖s‖
1
, s.t.

∥

∥

∥
y(t, ωl)− Ã(ωl)s

∥

∥

∥

2

≤ ε

7 L(t, ωl, :)← ŝ(t, ωl)
T

8 end

9 L ∈ C
T×F×N

10 end
11 for k = 1, . . . ,K do // loop over each source

12 compute the inverse short-time Fourier transform (STFT) of L(:, :, gk)
to obtain the k-th source time-domain signal

13 end

Then, the optimization problem (9) is solved to obtain the esti-

mated short-time Fourier transform (STFT) representation of each

source. The inverse STFT is then applied for each source to com-

pute the corresponding time-domain signal. Algorithm 2 summa-

rizes the source acquisition process. The notation L(:, :, gk) denotes

the gk-th page of the three-dimensional matrix L.

4. EXPERIMENTAL RESULTS

In this section, we examine the localization performance of the pro-

posed method in combination with the source acquisition quality.

We used the Image-Source method [29] to simulate a box-shaped

room of dimensions 6×3.5×3 meters and produce signals of omni-

directional speech sources at a reverberation time of 259 msec. We

considered 10 microphones spread uniformly at random using all

the space of dimensions 1.2×0.7×0.6 meters located in the center

of the room. In each simulation, the acoustic sources were speech

recordings of 3 seconds sampled at 8 kHz and had equal power.

The speech recordings were randomly selected from the VOICES
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corpus, which is available from OGIs CSLU [31], consisting of 12

speakers (7 male and 5 female). To simulate different SNR values

we added white Gaussian noise at each microphone, uncorrelated

with the noise at other microphones and the source signals. During

the localization/acquisition process a grid of size 7×5×6 was used.

The step size between each pair of neighboring grid points equals

∆p = [0.75, 0.58, 0.42] meters along x-axis, y-axis and z-axis,

respectively. This specific step size satisfies the need of appropri-

ate coverage of the room as well as achieving low computational

complexity without coherence violation. Towards this threefold di-

rection the total number of grid-shifts R was set to eight during the

localization.

We considered three scenarios of two, three and four sources

placed uniformly at random within the acoustic scene. For process-

ing, we used frames of 640 samples with 50% overlap and an FFT

size of 1024. During the localization procedure we applied a peak

picking process to estimate the ten maximum spectral components

of each time-frame. First, we aimed at showing the effectiveness

of the proposed grid-shift (GS) approach in terms of localization

accuracy compared to the perturbed OMP (POMP) [21] method un-

der the off-grid CS assumption. POMP adapts the signal dictionary

to the actual measurements by performing perturbations of the pa-

rameters governing the signal dictionary. Here, we extended the

POMP to a wideband version for anechoic acoustic source local-

ization but due to lack of space we omit the details. Under these

assumptions, in this experiment, we allowed for a large deviation in

the off-grid offset of each source, where each off-grid distance was

drawn from a uniform distribution over the range [0.05∆p, 0.5∆p].
It should be noted that the off-grid source locations are considered

with respect to the non-shifted grid placed with regard to the center

of the room. Table 1 depicts the localization root mean square error

(RMSE) for both the GS and the compared POMP approach in the

case of an anechoic environment, where white Gaussian noise of 5,

10, 15, 20 and 25 dB SNR is added at the microphones. It is obvi-

ous from the results that the proposed GS approach performs better

in most cases.

Table 1: RMSE localization errors (in meters) for the grid-shift (GS)

and perturbed-OMP (POMP) in the case of an anechoic environ-

ment.
SNR two sources three sources four sources

(dB) GS POMP GS POMP GS POMP

5 0.2727 0.3864 0.4804 0.5519 0.3526 0.6528

10 0.3526 0.5626 0.6642 0.6067 0.4023 0.7309

15 0.3017 0.3908 0.3742 0.4963 0.4440 0.5609

20 0.3517 0.2828 0.3675 0.3775 0.3797 0.4385

25 0.3244 0.2464 0.3414 0.3744 0.3560 0.6497

In the second experiment, we are interested in examining the lo-

calization efficiency of the proposed GS method under reverberant

conditions against an MVDR-based beamformer1 described in [32].

The beamformer is based on the computation of local angular spec-

tra applied to each microphone pair and the resulting contributions

(of all microphone pairs) are then aggregated following a pooling

process. It is important to notice that the emergence of virtual

sources is expected under a reverberant scenario. As a result, the

energy leakage from the off-grid source locations to the neighbor-

ing grid points in combination with the emergence of virtual sources

should lead us to develop a more careful analysis of the off-grid

sparse recovery problem when large off-the-grid distances appear,

and thus we choose that the off-grid offset of each source will be

drawn from a uniform distribution over the range [0.05∆p, 0.2∆p].

1http://bass-db.gforge.inria.fr/bss locate/#mbss locate

It is also important to notice that GS can provide an estimate of the

radius of each estimated source location, while the MVDR beam-

former gives an estimate only of the azimuth and elevation level

of each source. Table 2 depicts the localization efficiency of the

proposed GS approach against the MVDR beamformer in terms of

angle-of-arrival error achieving better results in all noisy and rever-

berant cases.
Table 2: RMSE angle-of-arrival errors (in degrees) for the grid-shift

(GS) and MVDR in the case of a reverberant environment.
SNR two sources three sources four sources

(dB) GS MVDR GS MVDR GS MVDR

5 3.5230 4.8109 4.3875 6.5245 5.1718 6.1696

10 3.7004 4.7953 3.8504 5.1604 5.7962 6.1664

15 3.8226 5.7409 4.2013 5.8668 4.9736 7.4858

20 3.7263 5.0382 5.0752 6.5678 4.7431 7.1989

25 3.2619 4.8438 4.4231 6.5934 4.4616 7.4194

Source acquisition performance is evaluated using the Signal-

to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR) and

Signal-to-Artifacts Ratio (SAR) of the separated signals with the

BSSEval toolbox [33]. As it is mentioned in Section 3.2, all the

frequency bins are used during the acquisition process. Here, we

also assumed a reverberant framework, and thus the off-grid offset

of each source was drawn from a uniform distribution over the range

[0.05∆p, 0.2∆p]. Table 3 shows the separation quality results in

the case of a noisy and anechoic environment achieving good results

especially in terms of SIR. Figure 1 depicts the BSSEval metrics in

Table 3: Separation performance: no noise, no reverberation.
metric (dB) two sources three sources four sources

SDR 5.7017 2.9224 2.1949
SIR 18.6001 13.7273 11.0495

SAR 6.3163 4.3916 3.9460

0
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10

BSS Eval metrics

15

20
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2
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Figure 1: Separation performance: added white noise (SNR 5, 10,

15, 20 dB), reverberation time 259 msec.

the case of a noisy and reverberant environment which can be seen

that the proposed approach is promising for source separation under

the off-grid sparse recovery assumption even in adverse acoustic

conditions.

5. CONCLUSIONS

In this work, we considered the joint problem of wideband acoustic

source localization and acquisition in a microphone array of ran-

dom arrangement under a sparse recovery framework. The con-

cept of grid-shift was introduced to compensate for the displace-

ment of the actual source positions with respect to the assumed grid

point locations. An orthogonal matching pursuit-based method was

adopted to speed up the location estimation process. Then, each

acoustic source was acquired based on the microphone data and the

estimated sparse location vectors. It was shown, through an exper-

imental evaluation on real speech data, that the proposed method

achieves an effective joint source localization and acquisition.
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