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Abstract

The field of computational ethnomusicology has drawn growing attention by re-
searchers in the music information retrieval community. In general, subjects are
considered that are related to the processing of traditional forms of music, often
with the goal to support studies in the field of musicology with computational
means.
Tools have been proposed that make access to large digital collections of traditional
music easier, for example by automatically detecting a specific kind of similarity
between pieces or by automatically segmenting data into partitions that are either
relevant or irrelevant for further investigation.
In this thesis, the focus lies on music of the Eastern Mediterranean, and specifically
on traditional music of Greece and Turkey. At the beginning of the thesis related
work, the task was defined which directed the aspects of the necessary research
activities.
The task was motivated by the geographical location of the author, the island of
Crete in Greece, but in the course of the thesis this task proved to have strong rel-
evance for a much wider musical context: Given a polyphonic recording of a piece
of Cretan traditional dance music, find a recording that is similar to it. Theory of
musicology provided us with the way to approach this task.
The traditional music encountered in Greece and in wide parts of the Balkan states
and Turkey as well, follows the logic of parataxis, which means that pieces are
constructed by temporally aligning short musical phrases, without the existence
of structures present in classical music or popular music. Thus, a system that is
designed to cope with the above mentioned task has to be able to estimate the
similarity of such phrases. As we deal with polyphonic audio signals of music that
has not been written to a score, at least not before the performance, we need to do
some simplification.
This is because the exact transcription of the main melody from a polyphonic
mixture into a score is still an unsolved problem. And on the other side, the tran-
scription of traditional music even by human experts is an extremely complex and
difficult process. For that reason, a system has been designed that considers aspects
of rhythm, timbre and melody for approaching the task.

The central aspect that has been considered in this thesis is rhythm. For this, a
point of major interest is the estimation at which time instances within an audio
signal a musical instrument starts playing a note. This estimation is referred to as
onset detection, and has been approached in this thesis using novel group delay and
fundamental frequency based approaches, and with a fusion of these characteristics



with an spectral amplitude criterion. With these findings in the field of onset de-
tection, improved beat trackers and rhythmic similarity estimation techniques are
developed. The proposed beat tracker applies the group delay based onset detec-
tion method in the context of a state-of-the-art approach for beat tracking. Results
show clear improvements when applying this method for beat tracking on a dataset
of traditional music.
The rhythmic similarity estimation is based on scale transformation, which avoids
the influence of tempo differences between pieces of music that are to be compared.
On datasets containing Greek and Turkish traditional music high accuracies in a
classification task are achieved, and the validity of the proposed measure as a sim-
ilarity measure is supported by the results of listening tests.

Apart from rhythm, also the aspect of instrumental timbre has been addressed. A
novel feature set based on Non-negative Matrix Factorization (NMF) is proposed
to describe the characteristic spectral bases of a piece of music. These bases are
modelled using statistical methods, and it is shown that these models describe the
spectral space of musical genres and instrumental classes in a compact and discrim-
inative way.
Finally, melodic aspects have been considered as well by combining state-of-the-art
approaches for cover song detection in popular music and fundamental frequency
detection from polyphonic signals. This combination is shown to tackle the central
task of the thesis work in a satisfying way on a small exemplary dataset. A mor-
phological analysis framework that combines the aspects of rhythm, timbre and
melody is proposed, which can be used to detect similarities in traditional music.

For the development of the algorithms presented in this thesis, evaluation data
had to be collected. This was a task of major difficulty and much effort has been
made by the author to understand well the musical context that is investigated in
this thesis. For many datasets, the ground truth was achieved in cooperation with
local musicians in time-consuming but very informative interviews. The knowl-
edge obtained in these interviews and the resulting datasets are another important
contribution of this thesis.
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PerÐlhyh

O tomèac thc Ypologistik c EjnomousikologÐac èqei proselkÔsei thn prosoq  twn
ereunht¸n pou drasthriopoioÔntai sthn perioq  thc An�kthshc Mousik c Plhrofo-
rÐac. Sthn Upologistik  EjnomousikologÐa exet�zontai jèmata pou susqetÐzontai
me thn epexergasÐa paradosiak c mousik c, suqn� me to stìqo gia na uposthrÐxoun
tic melètec ston tomèa thc mousikologÐac me upologistik� mèsa.
O stìqoc thc paroÔsac diatrib c eÐnai na orÐsei thn omoiìthta metaxÔ mousik¸n
kommati¸n. Gia par�deigma, lamb�nontac upìyh mia polufwnik  katagraf  enìc qo-
reutikoÔ kommatioÔ thc krhtik c paradosiak c mousik c, y�qnoume mia katagraf 
pou eÐnai parìmoia me aut n. H estÐash brÐsketai sth mousik  thc anatolik c Meso-
geÐou, kai sugkekrimèna sthn paradosiak  mousik  thc Ell�dac kai thc TourkÐac.
JewroÔme ìti h omoiìthta perigr�fetai apì treic diast�seic: rujmì, qroi� kai me-
lwdÐa.
H jewrÐa thc mousikologÐac parèqei ton trìpo na plhsi�soume autì to stìqo. H
paradosiak  mousik  pou sunant�tai sthn Ell�da, sthn eurÔterh Balkanik  qer-
sìnhso kaj¸c kai sthn TourkÐa, akoloujeÐ se pollèc peript¸seic th logik  thc
par�taxhc. Autì shmaÐnei ìti ta komm�tia kataskeu�zontai me sÔntomec mousi-
kèc fr�seic, qwrÐc thn Ôparxh dom¸n ìpwc sumbaÐnei sthn klasik  mousik    sto
Pop/Rock. Kat� sunèpeia, èna sÔsthma pou sqedi�zetai gia na antimetwpÐsei ton
parap�nw stìqo sthn paradosiak  mousik  prèpei na eÐnai se jèsh na upologÐsei
thn omoiìthta tètoiwn fr�sewn. Dedomènou ìti exet�zoume polufwnik� akousti-
k� s mata mousik c pou den èqoun katahrafeÐ se partitoÔra, toul�qiston ìqi prin
apì thn ermhneÐa, prèpei na k�noume k�poia aplopoÐhsh, lamb�nontac upìyh ìti h
akrib c katagraf  thc kÔriac melwdÐac apì mÐa polufwnik  mÐxh eÐnai akìma èna �lu-
to prìblhma. Apì thn �llh pleur�, h katagraf  se partitoÔra thc paradosiak c
mousik c, akìmh kai apì empeirogn¸monec, eÐnai mia exairetik� sÔnjeth kai dÔskolh
diadikasÐa. Lìgw twn parap�nw duskoli¸n, sthn paroÔsa diatrib  proteÐnetai èna
sÔsthma autìmathc ektÐmhshc rujmoÔ, qroi�c kai melwdÐac, ¸ste sth sunèqeia na
mporeÐ na orisjeÐ kai na elegqjeÐ h ènnoia thc omoiìthtac metaxÔ twn mousik¸n ka-
tagraf¸n.

Gia thn ektÐmhsh tou rujmoÔ eÐnai idiaÐtera shmantik  h ektÐmhsh twn stigm¸n stic
opoÐec xekin�ei mÐa nìta (onset detection). Sthn ergasÐa aut  proteÐnetai mia prw-
tìtuph teqnik  anÐqneushc ènarxhc qrhsimopoi¸ntac kajustèrhsh om�dac kai jeme-
li¸dh suqnìthta, en¸ exet�zontai jèmata sugq¸neushc aut¸n twn qarakthristik¸n
me qarakthristik� enèrgeiac (f�sma pl�touc). Me aut� ta sumper�smata ston tomèa
thc anÐqneushc ènarxhc, beltiwmènh parakoloÔjhsh rujmoÔ kai teqnikèc ektÐmhshc
rujmik c omoiìthtac anaptÔssontai.



Sqetik� me th qroi�, proteÐnetai èna nèo sÔnolo qarakthristik¸n basismèno sth pa-
ragontopoÐhsh me mh arnhtikoÔc pin�kec (Non negative Matrix Factorization, NMF)
gia na perigr�yei tic qarakthristikèc fasmatikèc b�seic enìc deÐgmatoc. Autèc oi
b�seic montelopoioÔntai qrhsimopoi¸ntac statistikèc mejìdouc, kai apodeiknÔetai
ìti aut� ta prìtupa perigr�foun to fasmatikì di�sthma twn mousik¸n eid¸n kai twn
kathgori¸n twn mousik¸n org�nwn me ènan sumpag  kai qarakthristikì trìpo.
H ektÐmhsh thc melwdÐac èqei exetasteÐ epÐshc me to sunduasmì proseggÐsewn pou
èqoun protajeÐ gia thn anÐqneush tragoudioÔ ermhneÐac (Cover Song Detection) kai
thn anÐqneush suqnìthtac apì polufwnik� s mata. Tèloc, èna morfologikì plaÐsio
an�lushc pou sundu�zei to rujmì, th qroi� kai th melwdÐa, proteÐnetai, to opoÐo
mporeÐ na qrhsimopoihjeÐ gia na aniqneÔsei tic omoiìthtec sthn paradosiak  mousi-
k .
Gia to sqediasmì, thn an�ptuxh, kai to èlegqo twn algorÐjmwn pou parousi�zon-
tai se aut  th diatrib , arket� mousik� dedomèna èprepe na sulleqjoÔn kai na
pro-epexergastoÔn (p.q. etiketopoÐhsh). Oi b�seic dedomènwn pou par�qjhkan a-
poteloÔn epÐshc mia shmantik  sumbol  thc ergasÐac sth melèth thc paradosiak c
mousik c.
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Chapter 1

Introduction

1.1 Scope of the Thesis

In the field of ethnomusicology, computer based methods can be used for simplifying musico-
logical studies, or even to make them feasible at all. Useful methods include the recognition of
intervals played by an instrument or determining the meter structure of a signal. Using such
methods, a search engine can be developed that can detect similarities between different pieces.
Such a tool is valuable for research in ethnomusicology, because it enables a faster access to
pieces that are interesting for a comparison due to similar structure in their compositions.
In this context, the scope of this thesis is to provide a set of approaches to determine sim-
ilarities between pieces of music, which are adapted to the context of traditional forms of
music. Traditional music makes some demands on the applied methods, which differ from the
demands of popular western music. These differences are caused by various aspects, such as
the morphology of the pieces, the instruments that are contained and parameters such as the
tempo and the tonal space of the melodies. As this thesis focusses on the rhythmic and timbral
properties, a general framework for the morphological analysis of traditional music is proposed
and the parts of the framework that are related to rhythm and timbre will be worked out in
detail. While the tools presented in this thesis are not restricted to a specific kind of music,
emphasis will be given to the traditional form of music encountered in the area of the eastern
Mediterranean.
In general, morphology of music is defined as the methodical description of the structure of
the form of musical works [148]. The word is derived from the German word Formenlehre.
According to the musicologist Hugo Riemann (1849-1919) [132], the technical and aesthetic
analysis of a musical opus is based on its morphological organization. The elements of this
organization are themes, phrases and motives, which themselves are made up of characteristics
of sound like tonal height, duration, intensity and timbre. The analysis aims at the discovery
of the sentence structure (Periodenbau) and the transformative structure of these elements.
This discovery is the core of morphological analysis. For example, the musicologist Hugo Le-
ichtentritt (1874-1951) emphasizes the antithesis between the forms of fuga and sonata, which
follow the schemes AA′A′′· and ABA, respectively. By considering the nominal form of an
opus, one can locate all the characteristics and particularities of the piece, by examining the
causal relations between the form and the particular opus. Another example would be the
analysis of the content of a pop song into chorus and verse and their variations, and analyzing
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possible deviations from usual composition schemes for pop songs.
Recently, the research presented in Sarris et al. [135] shed light on the difficulty of under-
standing traditional music in the eastern Mediterranean area: to a great extent, it is following
a different kind of morphology, the logic of parataxis. The term parataxis stems from the
field of linguistics, where it denotes a way of forming phrases using short sentences, without
the use of coordinating or subordinating conjunctions [113]. In music following this logic, the
tunes (skopos) are built from small melodic phrases which do not follow a specific morphologic
structure. This means, that there is no composed elaboration of a theme like for example
in a fuga, neither is there a clear periodic structure, according to which a musical theme is
repeated, like the repeating element of a chorus in popular western music. In the context of
traditional music of the island of Crete, Theodosopoulou [149] observes that the same motifs
are often found in different pieces. It is observed that in some traditional dances themes of
four bar length predominate, while in other dances themes of two bar length predominate.
Theodosopoulou [149] introduces a way of numbering motifs and a methodology of morpho-
logical analysis that can be applied to music of the same region, for example to specific forms
of dances from the island of Crete. Melodies from other regions like Dodekanes, Kyklades, or
from Thrace, Macedonia or Epirus could also be examined with this method. The extensibility
of this approach has also been underlined by Amargianakis in [2], and is supported by the
relations described by Baud-Bovy in [7]. At this point, it has to be clarified that the goal of
this work is not the achievement of research results in ethnomusicology, but the development
of computational tools that make such a musicological research feasible for experts. As men-
tioned in Theodosopoulou [149], it is a major effort to transcribe and analyze a big number of
pieces. The goal is to derive at least some conclusions about the content and similarity between
pieces in an automatic way. Thus, a concept is presented that is aimed to discover recurring
elements in a musical signal. These recurring elements are the melodic phrases that are the
characteristic themes of the music following the logic of parataxis. The recognition of these
phrases and their assignment to a specific dance by a human being appears to be a complex
task. In interviews the author conducted with local musicians, repeatedly the recognition of
a dance was connected with the recognition of a specific melodic phrase. This process is also
described similarly in Tsouchlarakis [156]. Also, in all listening test conducted in the course
of this thesis, it was observed that dancing teachers had memorized almost all melodies they
have been presented with. With this knowledge they were able to conduct e.g. assignments
to a class of dance much faster and with higher accuracy than their students. It is apparent
that the similarity estimation between the used motifs is important for a search engine for this
music. While further details concerning the structure and elements of Cretan music are given
in the dataset descriptions in Appendix A.3, we will now proceed in showing the problems in
developing such a system.

1.2 Problem of Transcription

Given the above description of the problem, the procedure that imitates the human expert
would proceed using the following steps. First, the polyphonic mixture of a signal has to be
analyzed and the instrumental sources have to be separated. Then, a decision has to be found
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about which separated signal contains the main melody. This signal has to be analyzed ac-
cording to its fundamental frequency, and these estimates have to be formed into a stream of
continuous frequency estimates that make sense in terms of their tonal steps and durations.
Then, this estimate has to be transcribed into a musical score. From this score, the motifs have
to be understood and located, and in the final step compared with each other. However, each
step of this imitation procedure, which is commonly referred to as transcription of polyphonic
music, is infeasible in this musical context. To clarify this, two publications that examine the
problem of transcription will be contrasted, one publication from the field of ethnomusicology
and one from the field of music information retrieval (MIR). This comparison is important es-
pecially because the problem of transcription is often considered as a solely technical problem,
while its complexity as a cognitive process is disregarded.
In this text, transcription will be understood as the process of transferring music as a sound
event into the symbolic form of a score [146]. In western music the score usually contains a
number of staves, one for each timbre present in the piece. The complexity of this problem,
for an algorithmic approach but to a certain extend also for a human being, depends on the
complexity of the musical sound event that we want to transcribe. The state of the art in MIR
will be outlined by referring to Klapuri [91], leading to the conclusion that current systems
deal fairly well with monophonic signals but face difficulties on polyphonic inputs. However,
even for the human expert, transcription can be a matter of high complexity. These problems
gained importance with the possibility of recording musical performances, because it became
possible to do field recordings of improvised music that has never been written in a score. In
Stockmann[146], the problems for musicologists in this context have been described in detail,
and this publication shall be outlined in order to clarify the existent gap between the state of
the art in MIR and the demands of the musical signals that will be considered in this thesis.
The problem of transcription in ethnomusicology origins from the fact that a big part of the
musical heritage is being passed from one generation to the next in oral form. A scientific in-
vestigation of these forms of music makes their transcription necessary. For this, the impact of
progress in recording and analysis technology has been very important throughout the last cen-
tury ([146],p.205): Before the availability of sound recording techniques, a transcription had to
be done either immediately when listening to a piece, or afterwards by transcribing from mem-
ory. This introduced a high grade of simplification and insecurity into the transcription. With
the development of recording techniques, complex styles of music could also be transcripted,
and the validity of the result could be evaluated by referring to the sound source ([146],p.207).
One of the first musicologists who observed the problem of notating music, which origins from
other countries but Europe, was Erich Moritz von Hornbostel, who suggested standard anno-
tations for transcribing exotic melodies into a stave [1] ([146],p.209). It can be observed that
many of these notational problems also appear for the traditional music of Crete. This can
be proved by examining the transcriptions of Samuel Baud-Bovy in [8], where for example in
transcription 53 of the dance tune Syrtos rethymniotikos many of these annotations appear
indicating deviations in pitch from the notes as written in the score.
The process of transcription is a process of abstraction, which transforms from a sensory to a
rational field of cognition. This transition does not completely transform the acoustic content,
or better the perceived content, to the symbolic representation in the score. This is due to
the limited expressiveness of the notational system, but also to the difficulty of transforming
a complex psychophysical process into a musical score ([146],p.210). Compared to the tran-
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scription of spoken text, the transcription of music is much more demanding, even though
the process is similar. This is because the diversity of the means and methods used for the
production of music is much larger than those for the production of speech ([146],p.211). As
well, the criteria for differentiating in phonological, morphological and syntactical levels, are
much more immanent in speech, and much more sparse in music. Because of that, there is no
existing symbolic system applicable to all different kinds of music, like it exists for example for
speech by phonetic annotation ([146],p.211).
In Stockmann [146],p.212, the author compares the process of transcription with a communi-
cation channel. The source is the musician and the receiver is the transcriber. In order for this
channel to work without big loss, it is not enough to establish an acoustic connection between
source and receiver, but also to have a common codebook of musical norms and rules, such as
scales and rhythmic patterns. The transcription can then be expressed as the transcoding into
another code, which is improved when the communication code between source and receiver is
well understood by the receiver.
Because of the high subjectivity of the transcription process, two transcriptions of the same
piece by two authors are very unlikely to be exactly the same ([146],p.213). This has been
examined in List [104] as well. There, problems appeared more often in the annotation of
duration than in the annotation of pitch, especially when no clear reference beat was present.
Nevertheless, the experiments in resulted in at least equivalent transcriptions in most cases
[104]. This variability can be considered as an equivalent to the variability in the interpreta-
tions of a piece of classical music. In the context of traditional music, the order of notating to
a score and performing a piece is exactly opposite, and thus the variability due to the subject
happens in the performance ([146],p.214). Another source of variation in the transcriptions is
the intention of the transcriber: when intending to describe the general form of a piece, a small
amount of details of the performance needs to be transcribed, while when emphasis is placed
on the personal style of a player, each ornament can be of importance. However, the decision
on what is an important detail is difficult and demands a familiarity with the examined musical
culture. Furthermore, it must not be forgotten, that the piece to be transcribed is always just
a snapshot of a socio-cultural development. As such, one must be careful in over-interpreting
details, and if possible, a big number of performances have to be considered in order to draw
valid conclusions. This is very time demanding for a human subject, and indicates an advan-
tage of applying computational methods in this fields of research. However, deciding about
the level of detail that is to be transcribed in an automatic procedure is an open problem.
In order to capture all details considered important, four different approaches are mentioned
([146],p.215):

1. The enhancement of the notational system, by using accents to indicate a deviation from
the pitch prescribed by the note. There have been many different proposals to do such
annotations, with little effort to form some kind of standard. Nevertheless, indicators like
↓or ↑ over the affected note to indicate a slight decreased/increased pitch are common.
Also for rhythmic deviations, there are different kinds of annotations available. Note
that for example in the context of classical ottoman music a system proposed by Arel [5]
is applied that uses additional accidentals for intervals different from a half note.

2. Technical analysis methods, which e.g. enable to replace the arrow symbols by exact
values of how many cent deviation a note has.
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3. Different notational systems, which make sense especially when the examined music dif-
fers strongly from European norms. Besides notational systems adapted to the particular
culture, also the verbal description of the music plays an important role here.

4. Improved recording systems, such as multichannel recordings or parallel video capturing.

In the following, Stockmann lists some important conditions and procedures for a meaningful
transcription result. Note that a part of these clues holds as well for computational approaches
of the transcription of music, as will be shown when examining the paper by Klapuri [91]. At
first, the tonal extension of an instrument must be known. Also, it is helpful if the transcriber is
familiar with playing the instrument. In performances with multiple voices, the exact number,
position and timbres should be known. The procedure of a transcription process is in general
as follows:

1. Establishing a general structure, e.g. A-B-A-B’...

2. Choosing a characteristic starting point for transcribing, which is typically NOT the
beginning.

3. Which is the tonal extension, which is the general morphology and metric structure

4. Pitch annotation:

(a) determining the central tone

(b) determine the transposition

(c) determine the key

(d) preliminary melody annotation

5. Determination of durations

6. Determination of structure:

(a) finding verses, pauses, accents;

(b) setting the bars

7. Analysis of performance characteristics

(a) Ornaments, dynamics, register changes etc.

(b) Decision if these elements are assigned to the performer or the structure of the music
performed

Given the above list, the central steps and problems of transcription by an expert are clarified
and a structure is build up, which would have to be followed by an automatic procedure.
Contrasted with the transcription from a musicological point of view, in [91] Klapuri gives an
overview of the transcription task as it is approached in MIR. Here, the task is constrained
to the transformation of harmonic sounds from the acoustic domain to a symbolic descrip-
tion like the MIDI note format. Thus, the pitch annotation task is simplified, because no
decision about the musical key or transpositions of the score annotation has to be made. In
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the paper, Klapuri refers to transcription as the detection of the recipe of a piece of music,
as he considers only music that has been composed in written form before performing. Even
though the author mentions the application of musicological analysis of improvised music, no
further comment about the differing demands of this task is made. It has to be noted, that in
general these problematics have not been addressed systematically by computer science yet.
Similar to Stockmann, also Klapuri points out the similarity to the task of speech recognition,
while denoting that transcription of music has not received comparable interest, yet. The tran-
scription of music by computational means is mentioned to be feasible only when constraining
sounds regarding polyphony and instrumental timbres. However, even the transcription of
a single singing voice is not perfectly possible, with the difficulty consisting in assigning an
estimated pitch to a note value. Klapuri divides the transcription problem into a multiple
fundamental frequency (F0) estimation task and a rhythmic parsing task. While physiological
representations in the human ear are mentioned, the highly subjective aspect of transcription
as mentioned by Stockmann remains unobserved. The systems that represent the state of the
art, are mostly pure signal processing systems, musicological knowledge about morphologies
has not been included in any way to such systems. In many approaches for the multiple F0
analysis, a sinusoidal model [141] is used for representing the tonal components of a signal
which are then grouped into streams based on the principles of Auditory Scene Analysis [21].
These principles include parameters like common onsets and modulations of components and
frequency proximity. Regarding the rhythmic parsing task, Klapuri points out the importance
of regular accents and stresses for the analysis of the meter structure, like it was mentioned by
Stockmann as well. As the author presented a state of the art system to tackle the problem
of beat detection in the MIREX 2006 beat detection contest, this system will be outlined and
used in this thesis in Chapter 5.
Summing up, the author states that the problem of transcribing polyphonic music is far from
being solved. He suggests the automatic generation of music in order to train transcription
systems. It has to be noted, that he assigns the difficulty of the task in the combination of
multiple sources, while he assumes that each of the sources has a complexity smaller than those
of speech sounds. This assumption clearly contradicts with the findings from musicology as
documented by Stockmann, which assign the higher complexity to the sound elements in music.

Concluding the summaries, it has to be stated that transcription of music is in general not
tractable using computational approaches. Apart from the difficulties already observed in the
MIR community, the confrontation of two important publications from the fields of MIR and
musicology sheds light on the following facts:

• Transcription of traditional music is more complex due to its non-written character

• Part of the complexity of the transcription task is due to the best possible presentation
in a staff, not just as a MIDI note

• Transcription is difficult not only because it has high demands in terms of signal pro-
cessing, but also because it is a highly subjective process

• There is a disagreement concerning the complexity of the elementary sounds encountered
in music and speech
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Due to these conclusions, in this thesis the task of transcription will be reduced in complexity
as outlined in Section 1.3.

1.3 Reducing Complexity

Regarding the types of recording that can be processed using the methods proposed in this
thesis, the goal is to be able to process polyphonic mixtures. This means that we want to
enable musicologists to use whatever kind of field recording, monophonic recordings of a single
instrument as well as polyphonic recordings of a lead instrument that is accompanied with var-
ious other instruments. In order to compute characteristics of a piece and to compare them to
other pieces, three aspects of the music are proposed to be taken under consideration: rhythm,
melody and timbre. These aspects are going to be connected in a way depicted in Figure 1.1.
The rhythmic properties of a piece are derived from an Onset Strength Signal (OSS), melodic

OSS RHYTHM

BEAT

MELODY

A B

C

D

TIMBRENMF
E

AUDIO

MELHIST

Figure 1.1: Characteristics computed from a music signal

descriptors will be derived from melody histograms (MELHIST), and timbre description is
based on Non-negative Matrix Factorization (NMF), as will be explained in Section 1.4. The
aspects contained in Blocks A to D in Figure 1.1 can be grouped together to a system of mor-
phologic analysis. The first aspect, rhythm, has to capture characteristic periodicities present
in the signal. It can be assumed that by taking rhythmic properties into account, it is likely
to get a more accurate description of the signal than by using melodic properties only. For
example such an improvement has been reported when measuring the similarity of symbolic
representations of folk melodies [161]. This assumption is also supported by the statements of
local musicians in interviews that have been conducted by the author, where beside the melody
the importance of the rhythmic intonation is underlined for the recognition of specific pieces.
The rhythmic similarity measure has to be capable of describing the rhythmic content of a
piece independent of its tempo. This is desirable because frequently in signals encountered in
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traditional music, little percussive content is present, which makes the accurate estimation of
meter properties a difficult task [92]. For that reason, it has been decided to approach this
problem in two ways. First, a tempo-robust description of the rhythm of a piece is desired even
if no accurate tempo estimation and beat tracking can be guaranteed. And, second, present
state of the art systems for beat tracking are to be evaluated on data exemplary for the tradi-
tional styles of music encountered in the eastern Mediterranean, and possible ways to improve
their performance should be indicated. As indicated in Figure 1.1, the estimated beat positions
can then be used to synchronize the rhythmic and melodic description of the piece. The second
aspect that has to be considered in a morphological analysis system is melody. It has been
shown that a beat synchronous computation of melodic content enables for an improved re-
trieval of cover songs of western pop music [46]. In Ellis and Poliner [46], chroma features have
been used as the descriptors of the melodic content. For that reason, these features are used
in this thesis as a baseline. However, it is likely that including methods for tracking the lead
melody in a mixture like the one presented in Klapuri [90] can further improve measurements
of melodic properties. For that reason, such an approach will be combined with a melody
histogram computation as proposed for example in Bozkurt [19], and results will be compared
with the reference system based on chroma features.
The last aspect, timbre, helps to understand about the differences concerning the used instru-
ments. This can help in categorizing music into various regions. For example in regions of
northern Greece the clarinet is the dominating lead instrument, while this instrument is not
used in the traditional music of the island of Crete, where the Cretan lyra is the dominating
lead instrument. While this aspect is helpful for understanding the instrumental content of a
mixture, it is not strictly related to the morphology of a piece.

1.4 Contributions

As mentioned above, the main focus of this thesis is to explore the rhythm aspects that are
needed for a computational morphological analysis of traditional music. Apart from that, the
timbre and melodic similarity has been be approached as well. The main contributions of this
thesis are:

1. Onset Detection
In order to get a description of rhythmical properties of music, a first processing step is a
computation of an onset strength signal (OSS) from the input sample. OSS are supposed
to have large values in the vicinity of a note onset. For their computation, different
aspects of the signal can be considered, such as magnitude changes, phase characteristics
or fundamental frequency changes. OSS can then be used for the deriving descriptors of
rhythmical properties of a piece, for the estimation of the time instances of note onsets,
or for beat tracking tasks. The contributions of this thesis concerning onset detection
are:

(a) The compilation of a dataset for the evaluation of onset detectors. This dataset
contains monophonic recordings of various pitched instruments, and it enables for
the first time to investigate the performance of onset detection in dependence of
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the chosen instrument type. It has been determined which kind of onset detector is
preferable for a specific kind of instrument.

(b) As another contribution of this thesis, a novel onset detection method based on
group delay is introduced. While previous approaches mostly use a time derivative
of phase, the frequency derivative of phase, i.e. the group delay, is shown to repre-
sent an interesting characteristic for onset detection. The usage of group delay for
onset detection is examined from a theoretical point of view as well as regarding its
detection performance on musical instrument signals.

(c) The output of a state-of-the-art F0 estimator is used to derive an OSS that has the
ability to detect onsets that are related to note changes with a constant excitation,
as encountered for example when changing the finger position on a violin while
constantly moving the bow.

(d) A fusion of magnitude, group delay and F0 information is proposed, and its perfor-
mance is shown to improve compared to using each characteristic individually.

During the course of the thesis, the work related to onset detection lead to the following
journal and conference contributions:

• Andre Holzapfel and Yannis Stylianou and Ali C. Gedik and Baris Bozkurt, “Three
dimensions of pitched instrument onset detection”, accepted for publication in IEEE
Transactions on Audio, Speech and Language Processing, 2009.

• Emmanouil Benetos and Andre Holzapfel and Yannis Stylianou, “Pitched instru-
ment onset detection based on auditory spectra”, Proceedings of ISMIR - Interna-
tional Conference on Music Information Retrieval, Kobe, Japan, 2009.

2. Rhythm similarity
Using the OSS, a method based on the scale transform is proposed for the description of
the rhythmic properties of a piece. As mentioned in Section 1.1, due to the difficulty of
the beat tracking task, the proposed method works without requiring beat tracking or any
tempo estimation. However, it is robust to tempo changes within one piece and between
different pieces of similar rhythmic content that are to be compared. The accuracy of
the proposed rhythm description has been evaluated on three datasets. Two of them
contain traditional music and one contains western ballroom dances. On these datasets,
the classification accuracy into a certain kind of rhythm class serves as an indicator of
the accuracy of a rhythm similarity measurement. Regarding rhythmic similarity, the
contributions provided in this thesis are:

(a) A rhythmic similarity measurement based on representations in the scale domain is
proposed.

(b) The compilation of two datasets of traditional music for the evaluation of rhythmic
similarity. One dataset contains audio samples of traditional Cretan dances, and
the other is made up of symbolic representations of traditional and classical Turkish
music.

9



(c) The evaluation of the proposed rhythmic similarity measure using the mentioned
datasets as well as its correlation with human perception has been determined in a
listening test.

During the course of the thesis, the work related to rhythmic similarity was documented
in the following journal and conference contributions:

• Andre Holzapfel and Yannis Stylianou, “Rhythmic similarity of music based on
dynamic periodicity warping”, Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, USA, 2008.

• Andre Holzapfel and Yannis Stylianou, “A scale transform based method for rhyth-
mic similarity of music”, Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Taiwan, 2009.

• Andre Holzapfel and Yannis Stylianou, “Rhythmic similarity in traditional Turkish
music”, Proceedings of ISMIR - International Conference on Music Information
Retrieval, Kobe, Japan, 2009.

• Andre Holzapfel and Yannis Stylianou, “Scale transform in rhythmic similarity of
music”, Accepted for publication in IEEE Transactions on Audio, Speech and Lan-
guage Processing, 2010.

3. Beat Tracking
Using a dataset of beat annotated traditional music samples the accuracy of beat tracking
using a state of the art approach is evaluated. By using the novel group delay based OSS
it is shown that the accuracy of the beat tracking system can be improved. Again, for
this evaluation a dataset of beat annotated Cretan dance samples has been compiled.
These achievements have been partly documented in

• Andre Holzapfel and Yannis Stylianou, “Beat tracking using group delay based onset
detection”, Proceedings of ISMIR - International Conference on Music Information
Retrieval, Philadelphia, USA, 2008.

4. Timbre Similarity
Timbre similarity bears a likeness to the task of music genre classification, as explained for
example in Li and Ogihara [97]. This is because at least for genres such as classical music,
rock or jazz, the musical content varies a lot in respect to the instruments contained in
the signals. For that reason, a standard set of timbre descriptors was compared with a
novel feature set in a genre classification task on two datasets, and the classifier found
to perform best on this data was evaluated in the classification of traditional music from
various regions of Greece and Turkey that vary regarding their instrumental content.
The contributions of this thesis regarding timbre similarity are:

(a) Introduction of a new feature set that is derived from spectrogram representations
by using Non-negative matrix factorization (NMF).

(b) Compilation of a dataset of traditional music of various regions of Greece and Turkey,
that differ by the instruments used in their traditional context.
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The work related to timbre similarity lead to the following journal and conference con-
tributions during the course of the thesis work:

• Andre Holzapfel and Yannis Stylianou, “Musical genre classification using Non-
negative Matrix Factorization based features”, IEEE Transactions on Audio, Speech
and Language Processing, vol. 16, nr. 2, pp 424-434, 2008.

• Andre Holzapfel and Yannis Stylianou, “Singer Identification in Rembetiko Music”,
Proceedings of SMC 2007, Conference on Sound and Music Computing, Lefkada,
Greece, 2007.

5. Melodic Similarity / Integration
A beat synchronous computation of melody histograms is shown to provide an approach
that is able to locate morphological similarities between pieces of traditional Cretan mu-
sic. An integration of the rhythmic similarity measures into this approach is proposed.
Even though the results related to melodic similarity and integration have been obtained
on a rather small dataset, the proposed method represents an interesting tool for inves-
tigating morphologic similarities in music following the logic of parataxis.
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Chapter 2

Related Work

2.1 Onset Detection

In this thesis, various ways to compute Onset Strength Signals (OSS) from a signal are com-
pared. As mentioned above, the OSS can be used for various tasks such as beat tracking,
rhythm description, or the detection of musical instrument note onsets. As a starting point,
the performance of various OSS for onset detection will be evaluated. Onset detection, the de-
tection of the starting instant of an event in a signal, is an extensively studied topic in various
domains of signal processing. Musical onset detection, the detection of the starting point of a
musical note transient [10], is one of the sub-domains with a large literature. Various methods
have been proposed, evaluations are taking place [110], and tutorials are available [10, 41].
The main challenge in a musical onset detection problem is to build a robust algorithm that
can detect onsets of various types of signals, i.e. the notes of the tune played by the violin
player as well as the accompaniment played by the guitar. Considering also the variations in
musical styles (classical, pop, jazz to folk musics, etc.) and performance styles (playing with a
pick, finger picking, ornamentation styles in folk musics etc.) the variability is so large that it
is problematic and time-consuming to collect a representative dataset and to evaluate various
methods comparatively. Two examples that display the difficulty of the task are shown in Fig-
ure 2.1. In the time signals Figures 2.1.a and 2.1.b, the onset time instances have been marked
with impulses. It can be seen that for the guitar signal the envelope of the time signal gives a
good clue about the position of the onsets. Also the spectrogram of the guitar signal in Figure
2.1.d is characterized by sudden increases in energy in the vicinity of all onsets. However, the
onsets of the cello signal are not so easy to spot. In the envelope of the time signal only the
second onset stands out, and the spectrogram shows even clearer that onsets for this bowed
string instruments differ in their characteristics from guitar onsets. In Figure 2.1.c it can be
seen that onsets in the cello signal are rather characterized by gaps in energy especially for
higher frequency bands. The time span of these gaps for the depicted example is symbolized
by rectangles of varying size. Thus, it is clear from these two simple examples that an onset
detection approach applicable for a wide variety of instruments has to be capable to detect
onsets that differ regarding their characteristics.
The algorithmic steps of an onset detection system are:

1. Pre-processing of the audio signal (the raw time-series data)
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Figure 2.1: Time signals of a cello and a guitar (a and b), and their spectrograms (c and d).

2. Computation of an onset strength signal (OSS), which is mainly the time-series of a
computed parameter at a sampling frequency lower than that of the audio signal. The
term OSS has been used in Ellis [47], while OSS is referred to as novelty function in
Foote [48] and as detection functions in Bello [10].

3. Detection of transients in the OSS typically by applying a peak-picking algorithm [10].

The pre-processing is an optional step as in many other signal processing applications. The
most common form of pre-processing used for musical onset detection is multi- band decom-
position. Most of the studies using multi-band processing, approach the problem in a similar
fashion: dividing the signal into several frequency bands, estimating OSS for each band, com-
bining either at the OSS level or the onset decision level to achieve a final decision for the
onsets [56, 136, 88, 43, 52]. It has been reported that the robustness of onset detection is
improved by using such a methodology [136].
The core of the design of the onset detection system is the OSS estimation part for which a large
variety of methods exist. Comprehensive reviews of these methods are available [10, 41, 28].
One type of approach for the OSS computation is the use of temporal feature variations such
as the time-domain amplitude envelope of the signal [137], or short-time energy [56]. These
relatively old approaches are successful for processing clean recordings of instruments with per-
cussive character; however, they have problems in processing, for example, bowed instrument
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sounds where musical note change does not always imply a sudden change in the energy or
amplitude. Another common approach for OSS computation is the use of spectral features
since spectrograms of recordings very often reveal clear visual clues of the onset locations. Due
to the difficulties involved in phase processing, amplitude processing is much more common
in spectral methods. Spectral flux, the amplitude spectra difference computed for consecutive
frames using various distance functions (L-1 norm, L-2 norm, Kullback-Leibler distance, etc.),
is used in many studies due to the simplicity of computation and robustness in detection of
onsets of pitched-percussive sounds, for example in [43, 62, 28, 41].
Although less common, phase processing is also used for OSS computation. In Bello and San-
dler [13] a phase-based OSS is presented for the first time. Their approach is based on the
segmentation of a signal into transient and steady-state (TSS) frames by detecting fast instan-
taneous frequency changes. In Bello et al. [11], the previous phase based approach is improved
by using a mean absolute phase deviation function or alternatively a difference function on the
complex Fourier coefficients from consecutive short-time frames. Phase-based OSS are used in
combination with energy-based detection functions in a number of other studies [43, 28, 41].
However, computing reliable phase deviation information (or similarly a complex Fourier co-
efficients deviation) from consecutive frames is problematic. The main problem is the phase
unwrapping operation or window synchronization [20]. It has been shown in various studies
([20, 165, 116]) that a large number of very high jumps in the phase slope (i.e. the negative
group delay function) of audio signals exist due to zeros of the z-transform closely located
around the unit circle. Steiglitz and Dickinson [145] have shown that the roots of the z-
transform of a short-time signal tend to be evenly distributed in angle and tightly clustered
near the unit circle as the degree of the polynomial (length of the time domain signal) increases.
Hence, zeros of the z-transform for 20-30ms short-time audio signals are clustered around the
unit circle resulting in many spikes in the phase slope [20]. This leads to the conclusion that
reliable phase processing is very difficult to achieve unless certain synchronization rules (such
as pitch synchronization in speech processing) are applied. The alternative to the direct usage
of phase information is the processing of either some modified version of the group delay [66]
or the average of group delay which can be used for detection of events like Glottal Closure
Instants (GCI) [144, 22]. The average group delay has been applied for other types of transient
detections as well, for example in the detection of clicks from marine mammals [83]. Because
detecting onsets in music is a transient detection problem as well, phase information can be
used in a similar way as in click or GCI detection.
In this thesis, a new onset detection method is proposed. This method is based on processing
the average of the group delay function which will be referred to as phase slope function. The
derivative of phase with respect to time is referred to as instantaneous frequency, and has been
used in Bello [13], among others, for onset detection. In this work, the usage of group delay
will be proposed, which is the derivative of phase with respect to frequency. It is interesting
to note that the observations made on phase plane plots in Lacoste and Eck [94] showed that
onsets appear more clearly when computing the derivative of the phase over frequency than
over time. However, these observations were not developed further into any onset detection
system. Recently, an onset detection method proposed by the author based on group delay
was shown to improve the performance of beat tracking in music with little percussive content
[71].
Another type of approach which specifically targets improvement of onset detection for non-
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percussive sounds is the usage of the fundamental frequency or pitch of the signal [29]. It
was shown that previously presented approaches based on spectral features perform worse for
pitched non-percussive than for pitched percussive sounds [28].
Onset detection can therefore be performed using spectral amplitude, phase, and pitch infor-
mation. These three features or cues therefore define a three dimensional space1. We suggest
that a human makes use of all these dimensions for onset detection and the importance of each
dimension (weight) depends on the type of musical signal. Thus, the second major contribu-
tion of this thesis, beside the usage of group delay for onset detection, will be an appropriate
combination of the information contained in these three dimensions. So far, only amplitude
and phase information have been combined in various studies (for example [12]), where the
phase information considers the instantaneous frequency changes and not the group delay as
proposed in this thesis. In Zhou and Reiss [166], depending on the type of signal, either an
energy based or a pitch based detector is applied. In Toh et al. [152], statistical models are
built for different features (Mel-frequency Ceptral Coefficients (MFCC), Linear Prediction Co-
efficients (LPC) and others), and the decisions derived from the different models are combined
to a single decision function. To the best of our knowledge, it has not been tried yet to com-
bine the three dimensions of pitch, spectral amplitude and phase in order to get an improved
onset detector. In this thesis, a combination of the decisions derived from the three individ-
ual dimensions (decision fusion) is proposed. This simple combination works without training
complex statistical models for the feature distributions like in Toh et al. [152], and can easily
be improved or extended by either changing one of the OSS or by adding a new one. Such a
late fusion concept was shown to improve onset detection accuracy for OSS derived from phase
and magnitude characteristics of a signal [39].
In order to determine the performance of different OSS, it is necessary to study the three fea-
ture dimensions and their fusion on a large enough dataset that is publicly available. The lack
of common databases of pitched instruments is an important obstacle for further improvement.
Thus, another major contribution of this thesis is the compilation of such a publicly available
database, and studying the above mentioned three dimensions on this dataset. Despite the fact
that signal characteristics (hence the onset detection performance) vary largely for different
types of instruments, very few studies include performance styles or instruments of traditional
forms of music in their databases (for example in the context of Irish instruments [85, 51]).
In the database compiled in the context of this thesis, traditional Turkish music instruments
have been included (ud, tanbur, ney and kemençe) to also study variations between western
and non-western music. As a result, a dataset containing a diverse set of pitched instruments
is available for the evaluation of onset detection systems. The dataset can be provided to
interested researchers on request to the author.

2.2 Rhythm Similarity

As a first step what is meant when using the term rhythm has to be clarified. In Cooper and
Meyer [32], rhythm is defined as the way one or more unaccented beats are grouped in relation
to an accented one. Furthermore, meter is defined as the measurement of the number of pulses
between more or less regularly occurring accents. The music encountered in the context of this

1we use the term “dimension” loosely without its formal definition
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thesis can be assumed to have meter, i.e. it has a hierarchical structure of levels at different
note values, such as half-note and quarter-note levels [96]. While it is possible to encounter
rhythm without the existence of meter this is not the case for the traditional forms of music
that are investigated in this thesis. In literature, various views exist regarding the different
aspects of temporal organization of music, such as grouping, meter and rhythm. But it can
be concluded that the form of meter is one important aspect of the rhythmic characteristic
of music. Meter is an hierarchical structure with the beat level, the tempo which the human
listener is likely to tap his/her foot to, somewhere in the middle. An example is shown in
Figure 2.2. The shown piece has a 2

4
time signature, and the beat level is positioned at the

next level (1
4
). The smallest inter onset interval in the shown piece is related to 1

32
notes. This

lowest meter level is usually referred to as tatum [17]. Note that the number of levels between
measure, beat and tatum level depend on the piece of music, for example a piece in 4

4
time

signature would have one more intermediate level between measure and beat level.
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time/s
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1/2: measure
1/4: beat
1/8
1/16
1/32: tatum

Figure 2.2: Example for the hierarchical structure of meter in music

Another aspect of rhythm is tempo, which is divided in Berry [16] into the frequency of
pulsation (i.e. the pulse-tempo) and the eventfulness of music. While the first aspect is not
of importance for rhythmic similarity within certain boundaries, because a rhythm or theme
will be recognizably the same whether played faster or slower [32], the second aspect has to
be taken into consideration when measuring rhythmic properties. Another important aspect
is the rhythmic grouping, which is organized hierarchically like the meter structure. The basic
level of this hierarchy is made up of rhythmic motives [96], which are grouped together on the
higher level to form longer rhythmic themes. In the ideal case, an algorithmic approach for the
description of the rhythmic properties of music should be able to capture the characteristics of
this organization. As referred to in Lerdahl and Jackendoff [96], the phase relations between
the metrical organization and the grouping structure is an important aspect for the perception
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of rhythmic complexity. However, this understanding is a highly difficult task even when a
symbolic representation of music is available, as it is a complex cognitive procedure that differs
widely and depends highly on the musical education of the listener.
There have been various approaches for the estimation of rhythmic similarity using compu-
tational means. In Foote et al. [49], a self similarity measure is used to derive beat spectra.
These beat spectra exhibit high energy at periodicities that appear in the signal. The beat
spectra are compared by using a cosine distance. This measure is shown to work well within
a narrow range of tempo variation only. Other approaches do work in presence of different
tempi [125, 124], but for this either the tempo or meter characteristics have to be estimated.
As indicated in Klapuri [92], this type of estimation is not very reliable for music signals with-
out strong percussive content or with complex rhythmic structure, such as Folk or Jazz. The
findings in Holzapfel and Stylianou [71] indicate that these type of estimation is difficult on
traditional forms of music. Furthermore, state of the art meter tracking approaches have not
been applied yet to music forms with time signatures unusual in Western popular music, such
as 9

8
rhythms frequently encountered in Greek and Turkish music. In [59, 121, 100], some

features are presented that do not need any tempo estimation, such as periodicity histograms,
inter onset interval histograms or temporal modulation patterns. The common shortcoming
of these descriptors is that they cannot be directly compared in presence of tempo differences,
and for that reason characteristics of the descriptors such as their flatness or energy have to
be used. To improve the robustness to tempo changes in a music signal, in Holzapfel and
Stylianou [73] periodicity spectra have been computed from onset strength signals [47] and
have been used in a method referred to as Dynamic Periodicity Warping (DPW). There, a
matrix of point wise distances between periodicity spectra is computed, and a minimum cost
warping path through this matrix is found. This path is compared to an ideal warping path to
get a distance measure. In Antonopoulos et al. [4], warping with different kind of step criteria
than in Holzapfel and Stylianou [73] is applied to periodicity representations derived from self
similarity measures; thereafter simply the cost of the warping is taken as distance.

In the case when a discrimination between different rhythm classes that differ regarding their
time signature (i.e. 4

4
, 7

8
) is desired, the problem can be reduced to a time signature identifi-

cation task. This will be of significance as one of the datasets used in this thesis for rhythmic
similarity has this characteristic. In Toiviainen and Eerola [154], an approach was presented
to estimate the time signature of a piece of music based on symbolic descriptions (MIDI).
This approach uses autocorrelation coefficients (ACF) derived from the annotated onsets. For
audio signals a time signature estimation system was proposed and evaluated on a set of per-
cussive music in Uhle and Herre [158]. The system estimates the tatum [17] of the signal using
inter-onset intervals (IOI) and in parallel, ACF are computed from the amplitude envelope of
the signal. Beat and bar length are chosen from the peaks of the ACF, taking into account
the estimated tatum. In Gouyon and Herrera [60], the determination of musical meter was
reduced to a classification into either binary or ternary meter. Beat indexes are extracted in a
semi-automatic way and then ACF on a chosen set of features are used to decide on the meter
type.
As the next contribution of this thesis, a novel method for the measurement of rhythmic similar-
ity in music is presented. In Western music, tempo changes appear within certain boundaries,
as observed on the example of dance music [125]. In traditional dances the tempo of the
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performance usually varies between different performances but also within the duration of the
piece [105, 3]. Thus, in order to compare dance music that accompanies the same dance but
is performed in different tempo, a similarity measure robust to these changes is necessary.
Apart from traditional dances, other forms of traditional music are also characterized by wide
tempo changes. An example is classic Ottoman music, where compositions are categorized by
their melodic scheme, the makam, and their rhythmic scheme, the usul. As these rhythmic
categories are not in general connected to a certain form of dance, they can vary widely in
tempo. Furthermore, the usul can have complex or compound time signatures.
For types of music signals with varying tempo, we recently proposed a rhythmic similarity
measure [75] which is based on the scale transform [27]. Scale transform is scale invariant,
or equivalent in music, is not sensitive to tempo changes. In Holzapfel and Stylianou [75], it
was shown that it can be applied in rhythmic similarity of music without previous tempo or
meter estimations, which makes its usage for music with compound and complex time signa-
tures feasible as well [74]. Until now, the scale transform has been applied in various fields of
signal processing in order to compare signals that have been changed by a scale factor. For
example, the scale transform has been applied to vowel recognition in speech [159]. The usage
of the scale transform is motivated by the fact, that between two speakers uttering the same
vowel there is a scaling in frequency domain due to the different vocal tract lengths (VTL).
Similar observations can be found in Irino and Patterson [79], where the scaling of the impulse
response of the vocal tract due to different VTL’s is shown to disappear when applying a
Mellin transform. Apart from these speech processing applications, the scale transform was
applied in order to estimate the speed gaps between mechanical systems, which are assumed
to cause the related signals to be different by a scale factor [30]. To the best of our knowledge,
scale transform has been applied to music signals only for audio effects [138]. However, two
studies have observed improvements when including a scale invariance into their approaches.
In Saito et al. [134], scale invariance helped to investigate multiple fundamental frequencies
with common harmonic structure. In terms of rhythm, the authors of [81] presented a method
to compensate for tempo changes between two pieces of music by applying a logarithmic scale,
which is closely related to the relation between the scale transform and the Fourier transform
as will be denoted in Section 4.1.1.
In this thesis, scale transform is applied for the analysis of music signals, by using autocorre-
lation sequences as descriptors for the rhythmic content of a piece of dance music. When the
same piece of music is performed at a different tempo, its autocorrelation is scaled in time.
Thus, the scale transform magnitudes of the autocorrelations remain essentially the same and
can be compared in a straightforward way. In this thesis, this method will be detailed and
extended so that it can be used for different types of signals. Signals are used that are different
regarding their musical content, and audio signals are used as well as MIDI files. In order to
allow for a well-founded evaluation of the proposed method, three datasets will be used. The
first dataset is a set of ballroom dances that was used in the rhythm classification contest in
the ISMIR conference 2004 [80]. The other two datasets have been compiled by the author in
the course of the work on this thesis. One of these datasets contains Turkish traditional music
which is available in a symbolic description format (MIDI). The other dataset contains audio
data of traditional dances encountered in the island of Crete. The influence of critical system
parameters will be analyzed in detail and insights into the characteristics of the obtained scale
transform descriptors will be given. The scale transform based methods proposed in this thesis
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will also be compared to the Dynamic Periodicity Warping based rhythmic similarity measure
that was presented by the author [73], in order to clarify the advantages of using scale trans-
form to achieve robustness to tempo changes.

2.3 Beat Tracking

The task of estimating the times at which a human would tap his foot to a musical sound is
known as beat tracking [47]. This periodicity, which is also referred to as tactus, finds itself in
the somewhere in the middle of the meter hierarchy of the piece of music, see Figure 2.2 for an
example. All state-of-the-art approaches ([47, 92, 40, 34]) for this task first conduct an onset
detection. The signal used for onset detection, as explained in Chapter 1.4, is an onset strength
signal (OSS) with a lower time resolution than the input signal, which has peaks at the time
instances where a musical instrument in the input started playing a note. Usually, this OSS
is derived from the amplitude of the signal [47, 92, 40]. Less frequently, phase information
is considered, by computing the phase deviation between neighboring analysis frames [34].
As can be seen in the results depicted in Davies and Plumbley [35] (Table II), the state-of-
the-art approaches for beat tracking decrease significantly in accuracy, when applied to folk
music. These music signals contain weaker percussive content than music of rock or disco
styles. This problem is of particular importance when dealing with traditional dances as well,
as they are often played using string or wind instruments only [73]. Based on the results
obtained in Davies and Plumbley [35], it is necessary to improve beat tracking on music with
little percussive content. While a decrease in the case of jazz and classical music can partly
be attributed to rhythmic complexity, meter structure of folk music is simpler, and thus the
decrease in this forms of music may be attributed solely to the problem of detecting onsets.
Thus, in this thesis improved beat tracking results on musical signals with simple rhythmic
structure and little or no percussive content is achieved by using the phase slope based OSS
as outlined in Section 2.1 and detailed in Section 3.2.1. This OSS has been combined with the
state of the art beat tracking approach presented in Klapuri [92]. This way, a beat tracking
approach is proposed that is more sensitive to instrument onsets of non-percussive sounds,
and the beat tracking performance for polyphonic recordings of traditional music is shown to
improve compared to the state-of-the-art approach as described in Klapuri [92].

2.4 Timbre Similarity

The musical instruments encountered in traditional music vary depending on the area where
the music is being played. For example, in Cretan traditional music the most popular lead
instrument is the Cretan lyra, while on the Greek mainland clarinet is a widely used instru-
ment. It is considered useful to include an automatic way to capture this kind of differences in
a system for a morphological analysis, in order to recognize the regional context of the piece
of music based on the contained instrument timbres. This task bares similarity with the task
of musical genre classification, in the case when musical genres differ regarding their charac-
teristic timbres, as it is the case when for example discriminating between classical music and
rock or disco music. The notes contained in the signals are reproduced by organs with char-
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acteristic frequency structures, which is referred to as the formant structure of an instrument
[129]. These sounds have all been processed individually and/or together in a studio environ-
ment, thus changing their spectral characteristics. In Music Information Retrieval (MIR) this
is often referred to as the timbre of music. Unlike rhythm, which is a structure that develops
in time and is a characteristic of the horizontal structure of a music score, timbre is an instant
characteristic which is observable in the vertical structure of the sound. Experimental results
lead to the conclusion that, apart from timbre, musical style is a characteristic found in the
vertical structure as well. For example in Perrott and Gjerdingen [126], listeners were able to
assign a piece of music to a style given an excerpt of duration less than one second. Recently
Li and Ogihara [97] received improved results in a genre classification task by using only spec-
tral descriptors and neglecting temporal information. This can be interpreted as a supporting
result for Perrott and Gjerdingen [126], since a musical genre is defined as a category of pieces
that share a certain style [160]. Therefore, a system to automatically retrieve information
about the vertical structure of music will be capable of describing style, genre, and timbre of
the composition. In many publications the vertical dimension of music has been described by
using a feature set consisting of Mel Frequency Cepstral Coefficients (MFCC). These features
have been successfully applied to the task of speech recognition [36]. They have also found
wide application in the classification of music into genres or in developing measures for the
similarity of musical pieces [119]. In Pachet and Aucouturier [119] it has been shown that
systems following the general model of using MFCC based features are upper bounded in their
recognition performance.
An aspect that has not been considered in the development of the previously reported rep-
resentation approaches is the fact that the characteristic timbre of the recordings is usually
created by mixing several instruments into a single signal. Thus an approach to derive de-
scriptions of these components from the mixture signal could provide a more versatile feature
set for the genre classification task. In Casey [24], a method for the classification of sounds
has been presented, where the spectral space of a signal is described using techniques based
on Independent Component Analysis (ICA, [31]) applied to the spectrogram of the signal.
Considering musical signals, methods based on a Non-negative Matrix Factorization (NMF,
[95]) have recently shown success in separating instruments from a mixture [143, 162]. NMF
has been used as well for the classification of sounds [14, 86, 26]. The classification approaches
based on these techniques follow a deterministic path by first defining a set of spectral bases
for the sounds and then projecting new sounds into these spaces.
In Holzapfel [69], NMF is shown to yield a compact representation and, compared to ICA,
superior results in a mean squared error sense for some selected sound samples. In this thesis,
these results are confirmed systematically using large datasets. Thus, a signal spectrogram
is described with the spectral space spanned by the vectors computed by this factorization
approach. For a given musical genre, a Gaussian Mixture Model (GMM) is built on all the
spectral base vectors that have been computed for the spectrograms of the training data for a
particular class. In this way we get a description for the spectral base of the particular genre.
The classification is based on the Maximum Likelihood (ML) considering all the spectral base
vectors from a test signal. Extended classification tests were conducted on two widely used
datasets for music classification (Tzanetakis et al. [99] and from the ISMIR 2004 contest2)

2http://ismir2004.ismir.net/ISMIR Contest.html
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comparing the performance of the proposed NMF based features and that of MFCCs. The
proposed NMF based features constantly outperformed the MFCCs in terms of classification
score. The proposed classification system was also compared to reference systems [99, 120, 15]
for the task of music genres classification. The proposed classification system achieved higher
classification score compared to these systems, in most of the conducted experiments, although
Li and Tzanetakis [99] employs features that model both the vertical and horizontal structure
of music. For that reason, the NMF based features are evaluated on a dataset of traditional
music of various regions of Greece, resulting in a method to discriminate traditional music
based on the musical instruments that are used in the specific regions.
Note that for the classification of instruments contained in a mixture methods exist that are
likely to further improve the performance compared to the approach presented in this thesis.
For example, in Heittola et al. [67] a method is proposed that complements the usage of NMF
with a multiple fundamental frequency estimation and a source filter model. This way, the
search space for the spectral bases is reduced. A recognition of the instruments is then per-
formed on the separated signals using MFCC. However, in Heittola et al. [67] artificially mixed
signals are used, while in our case the estimation of the necessary polyphony (i.e. the number
of synchronous notes) could not be addressed using this method. This is because the accompa-
niment in the used samples consists of string instruments at some time instances play chords
with an unknown number of contained notes. A different kind of source separation based on
graph theory was presented in Martins et al. [109] that avoids the polyphony determination
by using a different kind of source separation based on graph theory.
A problematic issue for the instrument classification in traditional music is the difficulty of
obtaining a sufficient amount of data. In order to get a sufficient amount of data, it has
been proposed to use data that has been synthesized from MIDI files using sample banks of
the instruments under consideration [63]. However, for traditional music neither such sample
banks nor MIDI files of the pieces are available. For that reason, realistic experiments will
have to use original recordings, which makes the compilation of datasets a time consuming
and expensive task. As it was shown in Fuhrmann et al. [50], the usage of such real world
recordings in combination with a pattern recognition system without any source separation
yields sufficiently good results in instrument recognition, given a sufficient amount of data.
Thus, it will be evaluated if the NMF system proposed in this thesis shows comparable or
improved accuracies to the ones obtained using a standard MFCC representation.

2.5 Melodic Similarity

Recently, similarity in folk song and traditional melodies has drawn increasing attention of
the Music Information Retrieval research community. Most of the related publications inves-
tigate symbolic transcriptions of melodies. Juhász [82] proposed a system for the recognition
of characteristic phrases from melodies of various musical cultures. He shows that by learning
characteristic melody contours conclusions about the relation between various musical tra-
ditions can be drawn. In Kranenburg et al. [161], it was shown that by aligning folk song
melodies using criteria derived from pitch, rhythm and segmentation-based scoring functions
good retrieval of similar melodies can be achieved. One difficulty in the retrieval of melodic
similarity in traditional music is that the same song can differ widely from interpretation to
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interpretation, as pointed out by Bohak and Marolt [18]. For a set of symbolic representations
of folk music samples they propose using various statistics derived from the melodies to get a
retrieval that is robust to these changes. However, it is pointed out that the achieved accu-
racies are not sufficient to result in a fully automatic variant classification system. Statistics
derived from symbolic representations of melody are also used by Toiviainen and Eerola [153]
in order to provide an analysis tool based on Self Organizing Maps (SOM) [93]. These two
dimensional representations enable for a comparison of various songs according to their dis-
tance on the map. In Grachten et al. [61] an approach is proposed for the symbolic similarity
between melodies, which is based on measures derived from the Implication/Realization model
[117]. Even though their approach performed well on non-traditional music and the Implica-
tion/Realization model has been used to analyze folk music by Thompson and Stainton [151],
to the best of the author’s knowledge it has not been applied to similarity tasks in folk music.
An overview of methods for symbolic melody similarity is given by Typke [157], who proposes
the usage of transportation distances.
The concentration of research on symbolic representation can lead to loss of valuable informa-
tion, as pointed out by Müller et al. [115]. There, the authors propose a system that is able
to segment folk song recordings into its constituent stanzas and to visualize their contents.
For this, chroma features [46] are derived both from the available symbolic representation and
from the monophonic audio, and Dynamic Time Warping [130] techniques are used to get
alignments. On audio signals, Moelants et al. [111] and Bozkurt [19] derive pitch histograms
from monophonic recordings, the former using African music and the latter in the context of
Turkish music. Both methods are aimed towards the recognition of underlying tonal concepts
(i.e. scales or makams, respectively), and stress the importance of a finer frequency solution
than the one provided by the chroma features. Cabrera et al. [23] investigate the estimation of
melodic similarity on a set of mainly monophonic vocal Flamenco recordings. They use pitch
and note duration estimations as proposed by Gomez and Bonada [54], and use them to derive
e.g. displays of similarity relations based on phylogenetic trees, which were previously pro-
posed by Daz-Banez et al. [37] for the analysis of relations in the rhythmic aspect of Flamenco
music.
The focus in this thesis will be the comparison of polyphonic audio signals of traditional music.
To the best of the author’s knowledge, this task has not yet been approached in literature.
However, it bears similarity of a well known task for popular music, which is the detection of
cover songs. This means that given two songs we would like to determine the likelihood that
one is a different interpretation of the other. This task has been approached by Ellis and Po-
liner [46] using beat-synchronous chroma features, which are compared using two dimensional
correlation between the feature matrices. A different signal representation has been chosen for
the task of cover song detection in [140], and instead of beat tracking a dynamic programming
procedure was chosen to get similarity estimations. However, in Liem and Hanjalic [103] it is
shown that the chroma features enable for higher accuracies in cover song detection.
In Chapter 7 of this thesis, the system presented by Ellis and Poliner [46] will serve as a baseline
system for the detection of melodic similarity in traditional music. It will be evaluated if usage
of a finer frequency resolution and the estimation of the fundamental frequency of the main
melody can lead to an improved similarity measure on a dataset of polyphonic recordings of
traditional music. Furthermore, the integration of melodic and rhythmic similarity measures
into a system for the estimation of morphological similarity will be proposed.
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Chapter 3

Onset Detection

3.1 Dataset

In order to evaluate the performance of a musical instrument onset detector an annotated
dataset is necessary. Although in recent years many publications have treated the problem of
onset detection, experiments are usually performed on small datasets with uneven class distri-
butions [10], or on datasets containing samples with several instruments playing at the same
time. No sufficiently large onset annotated dataset of different pitched musical instruments is
publicly available. Such a dataset would make fundamental research on the accuracy of onset
detection techniques feasible. For this thesis, a dataset has been compiled, which is described
in the Appendix A in more detail. Non-pitched percussive instruments, such as drums and
percussion, have not been included in this dataset as their onsets can be considered easy to
detect, for example by using criteria derived from their energy envelope [10]. Since for on-
set detection the characteristic of the excitation is a crucial point, the instruments have been
grouped into the following classes according to this aspect: pitched-percussive instruments,
wind instruments and bowed string instruments. All samples are monophonic. Effort has been
made, such that each of the above classes is represented by a similar number of samples and
instruments. Furthermore, besides the choice of instruments commonly used in western music,
also instruments of Turkish music are included. This enables to compare the influence of the
musical style on the accuracy of onset detection systems. As detailed in Appendix A, for
annotating new samples a supervised procedure was adapted [33], in which each annotation
is cross-checked by a second person. For the annotation the wavesurfer1 software was used.
Spectrogram, waveform and the F0 curves were used simultaneously to locate the onsets that
were perceived in the sample.
As depicted in Tables A.2 and A.3, the dataset is divided into a main set (MS) and a devel-
opment set (DS). MS contains 1829 annotated onsets in 57 files of 11 musical instruments, 21
more samples of the instruments guitar, ud, piano and violin are contained in the DS. These
files were used for parameter evaluations and development, and therefore this dataset will be
referred to as development set (DS) in the following Sections. DS contains 674 onsets, see
Table A.3 for details.
Note that the focus lies on evaluating onset detection methods on monophonic pitched musical

1http://www.speech.kth.se/wavesurfer/
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instrument sounds, in order to determine performance of onset detectors at a basic level using
simple signals. Therefore, we recall that all the 78 collected samples of MS and DS contain only
one instrument each. The datasets used in Daudet et al. [33] and in Bello et al. [10] contain
samples with several instruments playing together, which is referred to as complex mixture
in Bello et al. [10]. In order to get a broader perspective, the complex mixture samples from
these two publications were combined to a dataset of thirteen complex mixture samples with
an overall number of 498 onsets. This data will be referred to as complex mixture dataset
(CMS).

3.2 Onset Strength Signals

As detailed above, it is the goal of this chapter to evaluate three characteristics of musical
instrument signals for their efficiency in onset detection: phase spectra (in terms of the phase
slope function), magnitude spectra, and fundamental frequency contour. For this, the audio
waveforms at a sampling frequency of 44.1kHz are used to derive onset strength signals (OSS),
which are expected to have local maxima at the samples which are related to musical onsets in
the waveform. These OSS are computed using the sampling frequency of fons = 175Hz (5.7ms).
This sampling frequency guarantees a temporal solution which is equal to the minimal distance
at which two sound events can be perceived separately, which was found to be at most 10ms
[112].

3.2.1 Phase Slope

A signal x[n] can be described in frequency domain by its Fourier transform X(ω) = A(ω)ejφ(ω),
with ω denoting frequency and A(ω) being the amplitude spectrum and φ(ω) being the phase
spectrum. The basic motivation for using the phase spectrum φ(ω) of a signal for onset
detection arises from properties of the group delay which is defined as

τ(ω) = −dφ(ω)

dω
(3.1)

The group delay of a delayed unit sample sequence x[n] = δ[n− n0] is τ(ω) = n0. This holds
because x[n] has the Fourier Transform X(ω) = e−jωn0 with the phase component φ(ω) =
−ωn0. Computing its derivative regarding frequency (i.e. the group delay) results in τ(ω) =
n0, ∀ω. This means that computing the average value of the group delay results in a value
equal to the temporal distance between the center of the analysis window (at zero) and the
position of the impulse (at n0). This holds in general for the output of a minimum phase system
excited by a delayed unit sample sequence as shown in Smits and Yegnanarayana [144]. Two
simple examples are depicted in Figure 3.1. The upper two panels (a) and (b) show the delayed
unit sample sequence and its group delay, respectively. In the lower two panels in Figure 3.1,
the sequence shown in panel (a) is convolved with a minimum phase system, resulting in the
signal shown in (c) and the corresponding group delay shown in (d). Note that in (d), the
average of the group delay is again equal to the displacement between analysis window and
the delay of the unit sample sequence. The peaks that appear in (d) are caused by the poles of
the minimum phase system. Computing the average group delay, the influence of these poles
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Figure 3.1: (a) A unitary sample sequence delayed by 200 samples. (b) The group delay
function of the signal in (a). (c) A minimum phase signal with an oscillation at π/4. (d) The
group delay function of the signal in (c).

dissapears. This basic observation leads to the assumption that the onset of a note played by
an instrument can be determined using group delay, because an instrument can be sometimes
considered as a minimum phase system excited by an impulse. This impulse can be caused by,
for example, a hammer, a bow, the finger of a guitar player. An exception to this model is for
example a violin player changing the left hand position while not changing the excitation, i.e.
the movement of the bow. It is important to note that it has been shown that impulses can be
detected with little impact of their actual amplitude by using group delay [83]. Furthermore,
it has been shown, that onset (click) detectors based on the group delay are robust to additive
noise as well [71, 83]. This means that even onsets that cannot be observed at all in magnitude
can be detected using group delay.

In order to get a meaningful descriptor for onset strength from group delay as depicted in
(3.1), the negative of its average is determined at each position of the analysis window. This
value corresponds to the negative of the slope of the phase spectrum of the examined signal,
and will thus be referred to as the phase slope τ̃ . In Figure 3.2, the dashed lines show sequences
of phase slopes obtained when shifting analysis windows over the depicted signals. It can be
observed that at all points where the center of the analysis window coincides with the position
of an impulse, the phase slope has a positive zero crossing. In Figure 3.2 changing the length of
the analysis window from signal period (long window) to a length shorter than the signal period
(short window) does not affect this property of the phase slope. Also, as it was mentioned
before, the efficiency of the phase slope function is not affected by the amplitude of the onset
as it is clearly shown in 3.2b. Thus, the fundamental idea is to detect the onsets of musical
instruments by determining the positions of the positive zero crossings of the phase slope.
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Figure 3.2: (a) A sequence of impulses of constant amplitude and the associated phase slope
function using long (dashed line) and short (dash-dotted line) window (b) A sequence of im-
pulses with linearly time varying amplitudes and the associated phase slope function using
long (dashed line) and short (dash-dotted line) window.
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Figure 3.3: Block diagram of the PS OSS computation

Details on the computation of the slope function can be found in Kandia and Stylianou [83].
As observed by the author in [71], group delay cannot be used in such a straightforward
way when dealing with music signals. Specifically, it was found that the group delay had to
be computed in several frequency bands separately, while a selection of zero crossings was
necessary [71]. In this work, parameters like the number of bands or criteria for the zero
crossing selection are determined using only the development dataset DS described in Table
A.3.
The block diagram in Figure 3.3 shows the processing steps for the computation of the phase

slope onset strength signal (PS OSS). The first processing block consists of the computation
of the Short-time Fourier Transform (STFT) of the signal x[n]

X(ω, k) =
N−1∑
m=0

x[m+ kh]w[m]e−jωm (3.2)
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where hop size h is set to 5.6ms in order to achieve the sampling frequency fons = 175Hz. The
window length N of the applied Hanning window w[n] has been set to 0.1s. In order to apply
the FFT algorithm the signal is zero padded. Note that in the context of the beat tracking task
presented in Holzapfel and Stylianou [71], the analysis window length had been set to 0.2s.
It was found that reducing the window size to 0.1s leads to detecting more of the annotated
onsets, while the number of false positive detections slightly increased. Thus the accuracy of
the detection is increased using the smaller window, while for beat tracking a cleaner OSS is
preferable that can be obtained by using a larger analysis window. The second processing block
contains the computation of group delays. To avoid the problems of unwrapping the phase
spectrum of the signal for the computation of group delay, it is computed as in Oppenheim et
al. [118]:

τ(ω, k) =
XR(ω, k)YR(ω, k) +XI(ω, k)YI(ω, k)

|X(ω, k)|2 (3.3)

where
X(ω, k) = XR(ω, k) + jXI(ω, k)
Y (ω, k) = YR(ω, k) + jYI(ω, k)

are, respectively, the STFT of x[n] and nx[n] in analysis frame k, respectively.
In the third processing block, each frequency bin in the group delay vector τ(ω, k) is median-
filtered in time: τ(ω, k) = µ1/2(τ(ω, k − i)) for i = [−4,−3, ..., 4]. This 9-th order median
filtering is necessary due to the presence of many instruments with soft onsets in the dataset.
It has been observed that especially for bowed string instruments onsets have a temporal
extent of up to 50ms, which is about the length of the median filter at the sampling period of
tons = 5.6ms (observe e.g. the cello signal shown in Figure 2.1). Thus, this value represents
an upper bound for the precision achievable on this dataset. Next, the group delay vectors are
divided into 21 non overlapping frequency bands, as proposed in Klapuri [88]. This transition
to bandwise processing is indicated by dashed lines in Figure 3.3. In each band the negative
of the median of the group delay values is determined, resulting in [b = 1...21] phase slope
values τ̃(b, k) for each frame k. The exact number of bands was found to be uncritical, if this
is chosen to be bigger than 5. Also, dividing the bands as proposed in Klapuri [88] leads to a
linear division for low frequencies. This was found to be crucial, because choosing for example
logarithmic frequency bands causes the group delays of the lower bands to contain too few
coefficients, and the medians are too noisy in these bands.
As mentioned by the author in [71], in each band the selection of zero crossings is necessary. In
Figure 3.4 the phase slope computed in the third band of a guitar signal is shown, along with
the manually annotated onsets depicted as impulses. It can be observed that the phase slope
has some spurious zero crossings, for example short after sample 100. It was observed that
accepting only the positive zero crossings that are surrounded by large oscillations improves the
accuracy of the detection. Such oscillations can easily be detected by thresholding, as shown
by the dotted lines in Figure 3.4. The positive threshold was determined by the mean of the
absolute values of the phase slope for a whole sample; the negative threshold was simply the
negative of this value. A positive zero-crossing is selected if the minimum and the maximum
amplitude of the phase slope function, before and after the zero-crossing, respectively, pass the
corresponding thresholds. Note that this way in the example shown in Figure 3.4, there is no
false positive detection. There are two missed onsets (at samples 384 and 609), because the
phase slope has no peaks before and after these zero-crossings that cross the dotted threshold
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Figure 3.4: Phase slope computed from the third band of a guitar signal

line. Different values of the threshold and the usage of adaptive thresholding have been tried,
but the presented method was found to be sufficient.
The next processing block in Figure 3.3 is the goodness computation: for each of the above
selected positive zero crossings, a value is assigned that denotes how much confidence can be
given that this zero crossing coincides with an onset. In the context of speech excitation a
method was proposed that measures the deviation of the computed phase slope from an ideal
one (i.e., straight line) [144]. This approach was evaluated but a simpler solution was found:
the confidence value is set to the value of the derivative of the phase slope in the vicinity of the
zero crossing. High value of this derivative signifies high confidence. The output of this final
block for the k-th analysis window is the confidence level vector cb(k), that contains either the
value zero in the b-th band, when no zero crossing was selected, or the computed confidence
value for this zero crossing. The final onset strength signal PS OSS is then computed by
summing c(b, k) over the 21 bands: PS OSS(k) =

∑21
b=1 cb(k). It has been considered to use

different weighting schemes for this summation as proposed for example in Klapuri et al. [92].
However, no weighting scheme could be determined that lead to consistently improved onset
detection performance.

3.2.2 Spectral Flux

Spectral Flux (SF) is based on the detection of sudden positive energy changes in the signal
which indicate attack parts of new notes. Mainly there are two kinds of spectral flux OSS
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based on L1-norm and L2-norm as presented below:

SF OSSL1(k) =
∑
ω

H(|X(ω, k)| − |X(ω, k − 1)|) (3.4)

SF OSSL2(k) =
∑
ω

H(|X(ω, k)| − |X(ω, k − 1)|)2 (3.5)

where H(x) = x+|x|
2

is the half-wave rectifier function, and X(ω, k) is the STFT of the signal
with 5.6ms hop size and a window length h of 46ms. For the experiments in this thesis,
the L1-norm SF is used, because it was shown that L1-norm outperforms L2-norm [41]. The
accuracy of onset detection using SF OSS and its computational simplicity were presented in
[10, 41].

3.2.3 Fundamental Frequency Change

Considering the fact that note onsets are often difficult to observe in the amplitude in the case
of pitched non-percussive instruments, it was decided to evaluate an additional onset strength
signal. When playing for example a bowed string instrument, it is possible to create a new note
onset by changing the position of the finger on the fingerboard while keeping the excitation
caused by the bow constant. Because of the constant excitation, these onsets will be difficult
to be observed in the phase slope as well. The only clear change is then the fundamental
frequency (F0). Thus, it was decided to compute an OSS using the F0 estimations produced
by the YIN algorithm [38].
At first, F0 estimations were calculated every tons = 5.6 ms. It is common practice to use the
cent unit (obtained by the division of an octave into 1200 logarithmically equal partitions) for
musical F0 analysis. Most of the musical pitch perception studies use this logarithmic measure
of relative pitch which can be easily computed by:

F0c = H(1200 log2(F0Hz/cref )) (3.6)

where the reference frequency, the frequency of note lowest-C, is cref = 440·2−69/12 ≈ 8.1758Hz
and H(x) is again the half wave rectifier as introduced in (3.4). The application of the rectifier
sets all values smaller than cref to zero, including the points were the YIN estimator did not
compute any pitch (F0Hz = 0Hz). The computed sequence of pitch values is checked at the
points where no F0 has been computed by YIN (i.e. F0c = 0). This is either the case in
silence parts, or at unstationary parts of the sound like instrument onsets. For this, a simple
silence detector was applied. Whenever missing pitch values coincide with silence, the pitch
was set to the pitch of the previous frames. Otherwise, the missing pitch values were set to
the next computed pitch. This way, the robustness to silence parts and the accuracy of the
onset estimation was improved. An example for this improvement is shown in Figure 3.5: a
typical example of the F0 estimation in the proximity of an onset for a cello signal. In this
Figure, the F0 change at sample 245 is related to an onset, but the pitch estimator gives a
correct F0 just after sample 260. In this example, samples 245 to 260 are non-silent frames
and the pitch estimation is corrected, as shown by the dotted line, avoiding one false detection
at sample 260. The final onset strength signal F0 OSS is computed from the silence-filtered

31



200 220 240 260 280

3185

0

6370

4778

1593

Samples

F0
/c

en
t

Figure 3.5: F0 estimation for a cello sample before (bold) and after (dashed) silence filter,
onsets at positions marked with arrows (samples 202, 245 and 288, respectively)

F0 estimations F0 as

∆F0(t) = min

{
mod1200(|F0(t)− F0(t− 1)|)/600
mod1200(−|F0(t)− F0(t− 1)|)/600

(3.7)

This difference curve will have positives peaks at the instants of F0 changes. The magnitude
of the peak depends on the change of F0. The modulo operator was applied to prevent from
octave errors (note that 1200 cent is equivalent to an octave). The division by 600 normalizes
the range of the F0 OSS from zero to one.

3.2.4 Fusion

It can be assumed that using each of the three OSS, it is possible to detect different types
of onsets: SF captures onsets that are observable in magnitude change (hard onsets), F0 can
detect note changes that happen in presence of a constant excitation, and PS can detect onsets
that are characterized by the start of an excitation but that are not detectable in amplitude
(soft onsets). As it is desirable not to select the optimal detector manually depending on the
signal, a fusion of the three OSS can combine their advantages. In experiments combining the
features to a three dimensional space was tried (feature fusion), as well as the linear combination
of the features to a single dimensional descriptor. Both approaches were not successful due to
the following reasons: The sparseness of the OSS (many zero values) causes problems when
trying to train classifiers in the three dimensional space. Apart from that, the onsets are not
exactly aligned in the three OSS: the beginning of an excitation is detected by PS while the
maximum change in energy will be detected by SF, which happens typically with a temporal
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Figure 3.6: Example for the decision fusion using a ney sample. Dotted lines with arrow
markers show reference onset annotations, above the FUSE OSS the positions of the onsets
determined by F0 OSS, SF OSS and PS OSS are marked.

delay. A simpler solution that avoids these traps is the fusion at the decision level: Using
each OSS separately onsets are determined. This results in three vectors: for each OSS, one
decision vector with sampling frequency fons is obtained that has value one at the detected
onsets and zero value elsewhere. By first summing these three vectors and then smoothing
with a 75ms Hanning window a fusion onset strength signal (FUSE OSS) is obtained. Onsets
can then be defined by a peak picking on FUSE OSS. An example FUSE OSS is shown in
Figure 3.6. The dashed impulses show the reference onset annotations. The positions of the
onsets determined by F0 OSS, SF OSS and PS OSS are also marked. It can be seen that the
resulting FUSE OSS has the largest maxima when all three OSS detect an onset close to this
point. When only one OSS detects an onset this leads to a small amplitude in the FUSE OSS,
as for example at samples 370 and 390, where the onsets have only been detected by SF OSS
and F0 OSS, respectively. In the example shown in Figure 3.6 there is an improvement by using
the FUSE OSS for onset detection. The general performance of FUSE OSS will be provided
in Section 3.5.

3.3 Evaluation Methods

In the MIREX onset detection evaluation, the F-measure of the detection is computed as the
main criterion. F-measure is defined as

F =
2PR

P +R
(3.8)
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with Precision, P , and Recall, R, being computed from the number of correctly detected onsets
(Ntp), the number of false alarms (Nfp), and the number of missed onsets (Nfn) as

P =
Ntp

Ntp +Nfp

, andR =
Ntp

Ntp +Nfn

(3.9)

According to the MIREX specifications, onsets are counted as correct detections when they
are within a window of ttol = ±50ms around the onset annotation. If there are several onset
detections in this tolerance window, only one is counted as true positive, the others are counted
as false positives (double detections). If a detection is within the tolerance window of two
annotations one true positive and one false negative are counted (merged onsets).
In order to get a more detailed description of the accuracy of an onset detector, the threshold
δ applied to the OSS in the peak picking process (see Section 3.4) can be varied in small steps.
This way precision P and recall R values can be obtained for different threshold values, and
P/R-curves are created by putting R values on the abscissa and P values on the ordinate. This
representation has been proposed in the MIREX 2007 onset detection evaluation as well. In
P/R-diagrams, the best onset detector, in terms of F-measure, is the one whose P/R-curve is
closer to the upper right corner of the diagram. Furthermore, given a fixed threshold δ for
the peak picking, the F-measures can be computed for varying time tolerances ttol, to get an
impression of how close the true detections are to the annotation in time. This gives a second
representation besides the P/R-curves: plotting the F-measures over different tolerances in ms,
which will be referred to as F/T-curve.

3.4 Peak Picking

In order to determine the time instants of onsets from the OSS described in Section 3.2, the
salient maxima in the OSS need to be detected. As mentioned in [10], this process is of major
significance for the accuracy of the result. In Figure 3.7 the basic blocks, as described in Bello
et al. [10], of a peak picking process are depicted. In order to smoothen the onset strength
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Figure 3.7: Schematic of peak picking

signals they were filtered using a Hanning window of short length. Normalization refers to
the subtraction of the means and the division by the variance of the OSS (z-score). The low
pass filter is a simple third order FIR filter with a cutoff frequency at fons/5. The adaptive
threshold is computed by applying a moving median filter to the OSS. This threshold is then
subtracted from the OSS to cancel dynamic changes. The length of the moving median filter
was set to 17 samples (97.1ms). The peak picking is a simple selection of local maxima. The
performance of the OSS depends on the setting of a parameter δ, that defines the threshold
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that a local maximum has to excess in order to be selected as an onset. Threshold δ can be
varied in small steps in order to create the P/R-curves described in Section 3.1. An optimum
threshold for an OSS can be obtained from the corresponding P/R-curve by determining which
threshold leads to the best F-measure. Using this optimum threshold, the F/T-curves can be
generated by changing the desired tolerance.
For each of the three OSS, the peak picking has been optimized by evaluating its accuracy
according to the F-measure described in (3.8) on the development set. The resulting optimum
peak picking procedure for the SF OSS and F0 OSS are the same as described in Bello et
al. [10], except of the additional computation of a smoothing (first block in Figure 3.7) which
is not mentioned in [2] as crucial; however, we found that this smoothing improved our results
and therefore it was decided to include it. The length of the applied Hanning window was
51ms. This degrades the possible resolution in time, but as detailed in Section 3.1 the required
resolution is 100ms because of the temporal extent of onsets of non-percussive instruments.
Furthermore, the locations of the peaks can be preserved by applying zero-phase filtering.
For PS OSS the application of an adaptive threshold (fourth block in Figure 3.7) computed
using a moving median filter was found to degrade the accuracy. This is due to the different
characteristic of this OSS: it is not immediately derived from the temporal change of a signal
property, but it is a time series of confidence values at some candidate onset instants, and
contains more zero values than the other two OSS. Applying a moving median leads to the
removal of too many onset candidates. Apart from that, the adaptive thresholds compensates
changes in the strength signals due to changes in signal amplitude. These changes obviously
do not affect the PS OSS.
Thus, while for the peak picking in SF OSS and F0 OSS all blocks of the diagram in Figure
3.7 are active, for PS OSS the fourth block (adaptive threshold) was left out.

3.5 Results

The performance of the OSS on the main dataset is shown in the P/R-curves in Figure 3.8.
Figure 3.8.(a) shows the performance on the complete MS as described in Table A.2. Regarding
their optimum F-measure, all three single OSS perform almost equally well, which can be seen
from the fact that they cross the diagonal in the graph at almost the same point. The PS OSS
achieves higher precision values, while the SF OSS is able to achieve higher recall rates. This
means that when a low false alarm rate is of importance, as for example in beat tracking tasks,
PS is superior to SF, which confirms the findings in Holzapfel and Stylianou [71]. Combining
the decisions of the three OSS leads to a clear improvement of the performance. This can be
seen from the large distance of the corresponding P/R-curve in Figure 3.8.(a), and from the
best F-measures on the main set as listed in Table 3.1. Here, the F-measure of the decision
fusion (82.1%) improves the best single OSS F-measure (74.1%) by 8.0%. It is important
to note that the three thresholds δ used in F0 OSS, SF OSS and PS OSS for the decision
fusion are the ones that resulted in the best F-measure on the main dataset MS. No significant
difference was observed when these threshold values have been derived from either DS or the
data from Bello et al. [10]. The three threshold values were left unchanged in the experiments
conducted on the various subsets of the data (wind instruments, Turkish instruments, etc.)
and on other datasets, in order not to present over-optimistic results for FUSE OSS.
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Table 3.1: F-measures of the OSS, along with threshold values δ

OSS F0 SF PS FUSE

F-measure 74.1% 73.9% 73.7% 82.1%

δ 0.012 0.051 0.027 7.78

All the plots in Figure 3.8 were produced using a ±50ms tolerance window. In Figure 3.9,
the F-measures are shown as a function of the tolerance value ttol. This plot was generated
using the MS dataset, and the threshold values that produced the optimum F-measures as
listed in Table 3.1. It can be seen that for bigger tolerances, PS and F0 are superior to SF,
but their performance decreases when demanding higher accuracy in time. For PS OSS, this
is due to the usage of the time median filtering in the phase slope computation, as described
in Section 3.2.1. The accuracy of PS OSS can be improved by using a shorter median filter,
which is possible when only hard onsets are considered. The decision fusion results in F-
measures that are clearly superior for all desired tolerance values. The decreasing F-measures
for F0 OSS for low tolerance values is caused by the uncertainty of the pitch estimation close
to the onsets. However, when considering subfigures (b) and (d) in Figure 3.8 the advantages
of using a fundamental frequency estimation for onset detection can be observed: for both
wind and bowed string instruments, F0 OSS achieves clearly improved F-measures compared
to SF OSS and PS OSS; It is characterized by a curve that is closest to the upper right
corner in both cases. Furthermore, for both wind and bowed string instruments the decision
fusion can improve onset detection. The best F-measures of FUSE OSS are higher than the
best F-measures achieved with any single OSS. Moreover, FUSE OSS improves the maximum
precision. Note that for both instrument groups, using FUSE OSS best precision values of
more than 90% are reached. This leads to a very low false alarm rate when missing a number
of onsets is accepted, which is typically desired in a beat tracking task as in Holzapfel and
Stylianou[71]. For percussive onsets a well-known finding is confirmed: Because these types
of onsets can be captured well from the magnitude spectrum, SF OSS performs very well.
Nevertheless, including also the information of the other OSS in the decision fusion leads to
further improvement of the F-measure. The marginality of the improvement can be assigned to
the bad performance of F0 OSS on this type of instruments. It was observed that the Yin F0
estimator had problems on these types of instruments, which are characterized by estimation
errors especially in the vicinity of onsets.
As the dataset presented for onset detection evaluation in this chapter contains some western
instruments and some Turkish instruments, experiments could be conducted to judge the
influence of the style of performance on the onset detection. For this, a set of instruments
was chosen which contains only western performance styles (clarinet, guitar, piano, trumpet).
The Turkish performance style is represented by the instruments: kemençe (bowed string),
ney (wind instrument), ud and tanbur (both plucked string instruments). Note that both
groups contain two instrument types with percussive and two types with soft onsets. Thus,
the influence of the instrument types in this comparison is small, as the differences affect only
the instrument timbre and not the type of onset. Decision fusion produced clearly superior
results for both western and Turkish performance style. The resulting P/R-curves for the
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Figure 3.8: Performance of the onset detection, Precision/Recall values in % are plotted on
Ordinate/Abscissa, respectively. Curves have been obtained by changing threshold δ in small
steps.

decision fusion are shown in Figure 3.10. It can be seen that onset detection on the Turkish
instruments is much more difficult. While similar maximum precision values can be achieved,
the curve decreases rapidly when lowering the threshold of the detection (i.e. moving to
higher recall rates). This coincides with an observation made in the onset annotation process:
Turkish playing consists of many ornamentations which are difficult to annotate. These less
salient onsets appear in the lower amplitudes of the OSS, and lead to the fall-off of the P/R-
curve. This form of the curve causes a decrease of the F-measure from 89.8% for the western
instruments to 77.8% for the Turkish instruments. This shows that not only the type of
instrument but also the style of performance affects the accuracy of an onset detection system.
However, in order to specify exactly how much of this decrease is caused by playing style,
comparative studies with the same instruments played in both styles must be conducted. This
decrease in the performance is likely to be encountered in other improvised forms of music as
well, such as the folk tunes investigated in Collins [29].

For the complex mixture files in the CMS set described in Section 3.1 F0 OSS completely
failed. This has to be expected since the Yin algorithm has been developed for F0 estimation
from single sources. When complex mixtures are considered, an OSS will have to be derived
from a multiple F0 estimator like the one described in Klapuri [89]. On CMS, the PS and
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the SF onset strength signals were compared. Results show that about the same accuracy is
obtained by using either of the two OSS. The obtained best F-measures on the data were 78.3%
for the SF and 77.6% for the PS onset strength signals. The computed P/R-curves did not
differ significantly. A decision fusion of only those two OSS resulted in a small improvement
to an F-measure of 80.1%. Using a decision fusion of all three OSS for the CMS data results
in an F-measure of 78.3%, i.e. the same F-measure as for SF OSS alone. This shows that the
proposed fusion method is robust even if one OSS completely fails. The influence of applying
all subsets of OSS for decision fusion was evaluated on MS and all separate instrument groups,
and the results are shown in Table 3.2. CMS data represents the only case in which decision
fusion using all three OSS does not improve the detection performance. For all monophonic
signals using all OSS leads to the best F-measures.
The dataset presented in Bello et al. [10] was used for experiments as well. As this dataset

Table 3.2: F-measures when using all combinations of OSS for decision fusion

MS P.PERC WIND BOWED CMS

ALL 82.1 90.1 80.2 76.3 78.3

SF+PS 76.0 88.4 70.1 66.6 80.3

F0+PS 75.8 83.6 74.8 68.4 70.5

F0+SF 76.5 84.2 74.8 69.0 69.7

contains only 23 samples, it is difficult to use it for comparison with the results obtained
on single instruments in this work. This is because out of the 23 samples only one is a
bowed string instrument, while wind instruments are not contained in this dataset. It was
decided to determine the average performance using all samples, and to exclude F0 OSS in
these experiments. This is because there are seven complex mixture files and six non-pitched
instrument files, and thus the usage of F0 on this data would be meaningless. On this data
PS OSS was slightly superior to SF OSS in the sense of F-measure (90.4% compared to 89.0%).
A fusion of these two OSS was not found to further improve results on this data.

3.6 Conclusion

In this chapter a novel phase slope based onset strength signals (PS OSS) was introduced.
PS OSS is able to reach good performance when considering soft onsets, while high precision
values can be reached using this descriptor. The proposed F0 OSS performs very well for soft
onsets in the sense of F-measure, but has problems for hard onsets due to inaccuracies of the
F0 estimator. Because of that, and in order to use F0 OSS on complex mixtures as well, an
appropriate F0 estimator must be used. The decision fusion of the onset detections derived from
SF OSS, F0 OSS and PS OSS was shown to improve independently from the type of signal.
Thus, it constitutes a method to detect onsets from pitched musical instruments without the
necessity of choosing any signal dependent parameters.
Considering the dataset, it can be concluded that a diverse dataset of pitched instruments is
now available for the evaluation of onset detection systems. Requests can be addressed to the
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author of this thesis. Comparing the best F-measures of the presented dataset using single
OSS (73.3%) with the best F-measure of 90.4% achieved with a single OSS on the dataset
presented in Bello et al. [10] it can be concluded that the dataset compiled for this work is
more difficult and we expect it to be a valuable tool for researchers working in this area.

40



Chapter 4

Rhythm Similarity

As described in Section 2.2, the task of rhythmic similarity of music is approached in this
thesis by using scale transform based descriptors. These descriptors are widely tempo invariant
and enable to compare two pieces of music regarding their rhythmic content even when their
differences in tempo are large. Furthermore, the proposed approach has no need of estimating
meter properties of the piece such as the tempo or the beat, which is an advantage whenever
music is encountered for that such properties are difficult to estimate. This holds especially
for various forms of traditional music. This is because in many cases the absence of percussive
instruments makes beat tracking an error-prone procedure for these signals, and for compound
meters, which frequently occur in the music of the eastern Mediterranean, there is currently
no reliable procedure available to perform this task. This chapter is organized in the following
way: Section 4.1 introduces the proposed method, by giving a general overview in Section 4.1.1.
The methods for computing the scale invariant rhythm descriptors for audio signals and for
MIDI signals will be presented in Sections 4.1.2 and 4.1.3, respectively. In order to facilitate a
better understanding of the proposed scale domain descriptors, in Section 4.1.4 some of their
characteristics are detailed. In Section 4.2.1, the music collections will be described that have
been used for evaluation. The characteristics of these datasets will be outlined, and their
different demands to a rhythmic similarity measure will be described. Section 4.2.2 describes
previously proposed measures that will serve as a baseline for comparison, and the evaluation
method is detailed in Section 4.2.3. The experimental results are discussed in Section 4.3
and the chapter is concluded in Section 4.4. Note that in this Chapter, to a wide extend
the accuracy of rhythmic similarity measurements will be evaluated in classification tasks on
the presented datasets. In order to confirm the validity of relating the obtained classification
results with the subjective term of rhythmic similarity, also listening tests have been conducted
and their results will be shown in Section 4.3.

4.1 Suggested Rhythm Descriptors

In this section, first we provide general background of scale transform. Then, we describe the
suggested method of measuring rhythmic similarities in music by distinguishing the cases of
music representation by an audio waveform and by the MIDI format. More specifically, the
necessary background will be provided in Section 4.1.1, and thereafter in Sections 4.1.2 and
4.1.3 the different demands of the waveform and the MIDI data will be addressed. Section
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4.1.4 gives further information about characteristics of the proposed features.

4.1.1 Scale Invariant Rhythm Descriptor

AC

1. 2.

TRANSF.

SCALE
3.

OSS

o(t) S(c)r(t)sample

Figure 4.1: Computational steps of scale invariant rhythm descriptors

In Figure 4.1, the three steps in the computation of scale invariant rhythm descriptors
are shown. As a pre-processing step towards a scale invariant description of rhythm, onset
strength signals (OSS) at a sampling frequency of fons = 50Hz are computed. This sampling
period ensures that only frequencies related to the perception of rhythm are contained in the
OSS, and was found to be sufficient compared to the higher sampling frequency of 175Hz that
has been used for the OSS evaluations in Chapter 3. OSS have salient peaks at the instants
where a musical instrument starts playing a note. For example, in Ellis [47] OSS have been
computed from audio signals by using a method based on spectral magnitude differences, and in
Parncutt [123] a method to compute OSS from a MIDI file was proposed. From the computed
OSS, salient periodicities that are characteristic of the rhythm of the sample have to be found.
In Holzapfel and Stylianou [73], STFTs of the onset strength signals were computed, referred
to as periodicity spectra. If X(ω) is the Fourier transform of x(t), then it is well known that:

√
ax(t) �

1

a
X(ω/a) (4.1)

In Figure 4.2, a periodicity spectrum of a Cretan dance sample of the class Siganos is shown
in bold lines, while the periodicity spectrum of its time scaled version is depicted in dotted
lines. The scaled version was obtained using the audacity1 software, by applying the included
plug-in for changing tempo of an audio file with a scale factor of a = 1.1. The scaling in the
frequency domain representation can be recognized in Figure 4.2. The immediate computation
of a point wise distance between the depicted periodicity spectra is affected by the time scaling
caused by the different tempi.
In this work, the use of the scale transform is suggested to overcome the tempo differences
between music pieces that are similar in terms of their rhythm. The scale transform is a special
case of the Mellin Transform, defined as [27]:

X(c) =
1

2π

∫ ∞
0

x(t)e(−jc−1/2) ln tdt (4.2)

1http://audacity.sourceforge.net/
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Figure 4.2: Periodicity spectra of original (bold) and time scaled (dashed) Cretan dance sample,
Time scale factor: a = 1.1

and it can be shown to be scale-invariant, which means that the magnitude distributions of
the scale transforms of signals x(t) and

√
ax(at) are equal [27]. Although the scale transform

is scale invariant, it is not shift invariant. This means that x(t) and x(t − a) have different
scale transform magnitudes. Instead of using OSS, as usually suggested in this context (i.e.,
[73] and references there in), and motivated by the approach described in Combetet al. [30],
we suggest to use the autocorrelation function r(t) of OSS as a descriptor for the rhythm.
It is worth noting that the autocorrelation function of a scaled signal is equal to the scaled
(by the same scale factor) version of the autocorrelation of the original signal. By using the
autocorrelation function of OSS we overcome the shift-variant property of the scale transform.
Therefore, the suggested approach is scale (or tempo) and shift invariant. Throughout the
chapter, the computed autocorrelations were normalized, so that their value at the zero lag
equals to one. In Figure 4.3, the scale magnitudes for the same examples used in Figure 4.2
are depicted. It is evident that their scale magnitudes are essentially the same and they can be
compared by a point to point distance measure in a straightforward way, avoiding the dynamic
programming procedure proposed by the author of this thesis in [73].
The computation of the scale transform can be performed efficiently by using its relation to

the Fourier transform [139]:

R(c) =

∫ ∞
0

r(et)e1/2te−jctdt (4.3)

which is the Fourier transform of the exponentially warped signal weighted by an exponential
window. Since the autocorrelation computed from OSS is a real signal, this relation to the
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Figure 4.3: Mean scale transform magnitudes of original (bold) and time scaled (dashed)
Cretan dance sample, Time scale factor: a = 1.1

Fourier transform clarifies that negative scale values need not to be considered since the mag-
nitude spectrum is an even function of frequency. While in Holzapfel and Stylianou [75] the
implementation of the scale transform based on (4.3) was used, in this chapter the algorithm
for computing the discrete scale transform (DST) as presented by Williams and Zalubas in
[163] was applied. DST is derived from (4.2), by approximating the integral in (4.2) as follows:

R(c) ≈
∑∞

k=1[r(kTs − Ts)− r(kTs)](kTs)1/2−jc

(1/2− jc)√2π
(4.4)

where Ts denotes the minimum lag size of r(t), which is equal to the sampling period of the
OSS. Compared to the implementation presented in De Sena and Rocchesso [139], the way of
computation depicted in (4.4) avoids the interpolation that is necessary to get exponentially
spaced samples from signal r(t). The highest scale value C computed in (4.4) will be determined
in the experiments shown in Section 4.3. The scale resolution ∆c, which defines at which scale
values the scale transform in (4.4) is computed, was not found critical. In Combet et al. [30],
a value of ∆c = 1 was referred to be sufficient for their application. In general, ∆c is related
to the time domain as:

∆c =
π

ln Tup+Ts

Ts

(4.5)

where Tup is the maximum retained lag time of the used autocorrelation [30]. For example,
if Tup = 8s and Ts = 0.02s then a value of ∆c = 0.52 is obtained, which means that the
n-th scale coefficient is computed for c = n∆c. In this chapter (4.5) will be applied for the
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computation of ∆c. The scale resolution was found to be of minor importance for the accuracy
of the system.

4.1.2 Computation from Audio Signals

The datasets used for the evaluation of the rhythmic similarity measure in this chapter contain
complex mixture signals of various musical instruments. For that reason, meaningful OSS can
be computed using either spectral flux or phase slope based methods, SF OSS and PS OSS,
respectively. The third OSS that was introduced in Chapter 3 is based on a fundamental
frequency estimation derived from monophonic inputs and can not be applied to complex
mixtures as shown in the experiments in Chapter 3. For that reason, SF OSS and PS OSS
as described in Section 3.2 are computed at a sampling frequency of 50Hz. The difference
regarding their performance for a rhythmic similarity task will be evaluated in Section 4.3. As
the next step after the computation of the OSS, the sample autocorrelation ra is computed
from the OSS, o(t), as

ra(t, k) =

Twin−t−1∑
n=0

o(n+ t+ khrth)o(n+ khrth) (4.6)

where Twin denotes the length of the rectangular analysis window in seconds, k denotes the
index of the analysis frame, and hrth the analysis hop size, which was set to 0.5s. The maximum
lag Tup of the autocorrelation was set equal to Twin. For each analysis frame k the sample
autocorrelation is transformed into scale domain by applying the DST as denoted in (4.4),
and only the magnitude values for scales c < C are kept. This way, slight tempo changes
within the piece are compensated, as they cause a scaling between autocorrelations computed
in different analysis windows, which does not affect the scale transform magnitudes. To get a
single description vector for a song i, the mean of the scale transform magnitudes is computed,
which will be denoted by SCi . In Figure 4.3, the mean scale transform magnitudes (STM)
computed using the described method are depicted.

4.1.3 Computation from MIDI data

For MIDI data, there are mainly two differences in computing the STM:
First, the onset times and the note durations are exactly known as they can be read from a
MIDI file. For that reason, tools from the miditoolbox [44] could be used to derive the sample
autocorrelations. As will be described in the following, two types of ACF computation will be
considered. The first is described in Section 4.1.3 and uses the tempo information included
in the MIDI file to get rid of the scaling in the ACF that is caused by varying tempi. The
second way of computing ACF is described in Section 4.1.3 and ignores this information and
thus shows the scale changes caused by tempo differences.
The second difference compared to audio is that the windowed computation of the autocor-
relation as defined in (4.6) has been found to cause problems. This is related to two facts:
OSS derived from MIDI data are much more sparse than OSS derived from waveform data,
as the onsets are discrete impulses of varying height. Furthermore, the tempo of pieces in
MIDI format remains absolutely constant. No noise is induced by the way humans play mu-
sical instruments, which can cause the peaks in OSS to deviate from the position determined
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by the meter. Because of that, one sample autocorrelation is obtained using the whole onset
strength signal as input. The autocorrelation is then transformed into scale space by using
(4.4), resulting in the STM descriptor for a MIDI signal.

Tempo-invariant ACF

In order to describe and compare the content of the samples in D3, an autocorrelation based
method as presented in Toiviainen and Eerola [154] has been applied. The onset times are
read from the MIDI files and each onset is assigned a weight. In Toiviainen and Eerola [154],
different methods to set the weights were evaluated, and in this thesis the three most successfull
weighting schemes have been applied: the weight of an onset can either be related to the note
duration [123], to characteristics of the melody [150], or all onsets are assigned the same
weight. The best weighting scheme will be determined in Section 4.3. In the method presented
in Toiviainen and Eerola [154], an onset strength signal (OSS) is generated at a sampling
frequency related to the eighth note of the piece. This OSS has an impulse of height according
to the assigned weight at the positions related to the onset time. From an OSS o(n) an ACF
rc(m) can be derived

rc(m) =

∑
n o(n)o(n−m)∑

n o(n)2
(4.7)

Note that the autocorrelations are not affected by tempo differences, when the OSS are com-
puted at a sampling frequency that changes with the tempo (eighth note). Because of this,
changing the tempo will result in constant ACF, which will be denoted as rc. These represen-
tations will not be transformed into the scale domain, and they can be compared immediately
using a point to point distance measure. In this thesis, for comparing two rc the cosine distance
measure will be applied which was shown to achieve better results in similar cases [49, 72].
Similarity measures obtained this way represent a valuable tool to estimate the influence of
scale transform in the computation described in the next Section.

Tempo-variant ACF

As mentioned in Toiviainen and Eerola [154], beat tracking is a necessary step when applying
the above described approach to audio. It is necessary to correctly estimate all metric levels in
order to determine the eighth note pulse of the piece. When dealing with compound rhythms of
different type as they are commonly encountered in the music of Turkey and the whole eastern
Mediterranean, no method has been presented yet to perform this task. For that reason, the
MIDI data contained in the data set as described in Section 4.2.1 is used to compute OSS using
a constant sampling frequency of fs = 50Hz. From the OSS autocorrelations are derived. For
two pieces having the same time signature but different tempi, their autocorrelations will differ
by an unknown scaling factor, as can be seen in Figure 4.4 for an autocorrelation sequence
derived from a MIDI file. This is particularly critical for the type of music encountered in this
thesis due to the large tempo deviations (see Section 4.2.1 for details). In order to overcome
this scaling problem, typically the beat tracking would be necessary in order to estimate the
tempo difference between the pieces. However, in this thesis the usage of the scale transform
is proposed to avoid the intractable problem of beat tracking in the presence of complex and
compound time signatures. In Figure 4.5, the two scaled autocorrelations from Figure 4.4 have
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Figure 4.4: Autocorrelations ru derived from two MIDI samples belonging to the same class of
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been transformed to scale space. Due to the scale invariance property they are aligned and can
be directly compared, like for the examples derived from audio as described in Section 4.1.1.

Thus, in this thesis OSS will be computed from the MIDI files using a constant sampling
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Figure 4.5: Two STM derived from the two aksak examples shown in Figure 4.4

frequency of fs = 50Hz. Then, scale transform magnitudes (STM) are computed from the
autocorrelations ru using the discrete scale transform algorithm proposed in Williams and
Zalubas [163]. This results in a STM vector that describes the rhythmic content of the signal.
The accuracies on the MIDI dataset when using either scaling free autocorrelations rc or the
STM derived from ru will be compared. The results will indicate if by using a scale transform,
the unsolved problem of meter estimation in complex time signatures can be avoided and the
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similarity between pieces could be determined by using this method.

4.1.4 Some Properties of STM

In order to enable better understanding of the features in the scale domain, some more details
about the scale transform will be provided in this Section. Two autocorrelation sequences of
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Figure 4.6: Two examples of autocorrelation vectors for waveform (panel (a)) and MIDI data
(panel (b))

OSS computed from audio (a) and MIDI data (b) are depicted in Figure 4.6. Note that both
autocorrelations show a periodicity that is related to the tatum, i.e., the smallest metrical unit
in the piece [92]. Especially the autocorrelation sequence computed from MIDI data shows a
similarity with a pulse train of the tatum period. Considering a pulse train

∑∞
n=1 δ(t − nt0)

with period t0 > 0, the scale transform pair of this pulse train is given by [128]:

∞∑
n=1

δ(t− nt0)⇐⇒ t−jc−0.5
0 ζ(jc+ 0.5) (4.8)

where ζ(s) denotes the Riemann Zeta function [131]. In panel (a) of Figure 4.7, the magnitude
of the Riemann Zeta function ζ(jc+ 0.5) is depicted. In panel (b) of Figure 4.7, two STM de-
rived from autocorrelations of samples from two traditional Turkish songs represented in MIDI
format are shown. It is apparent that these STM have similarities with the envelope of the
Riemann Zeta function. Note that for the STM computed on the autocorrelation sequences
obtained from audio waveforms (see an example in Figure 4.3) depicted in Figure 4.3, this
similarity is not so distinct. This is because, as it was shown in Figure 4.6, the autocorrelation
sequences derived from waveform data are less spiky than the corresponding sequences com-
puted from MIDI data. Note that the magnitude of the transform in (4.8) does not depend
on period t0, and thus leads to a similar shape of the STM envelope for pieces with different
tempi. In practice, one more problem we have to face is the energy compensation between
scaled signals. In theory, because of the energy normalization factor

√
a the scale transform
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magnitude remains the same for scaled signals. However, in our case, the autocorrelation func-
tions cannot easily be normalized since they are derived from different signals, with unknown
scale relation. This infeasibility of correct normalization in the time domain would lead to
a constant factor change in scale magnitude. For that reason a Euclidean distance measure
between STM is not applicable. As the appearance of t0 in the scale transform of a pulse train
constitutes a constant factor in magnitude, instead of measuring Euclidean distance we suggest
to measure the angle between two STM.
It is worth to clarify the effect of choosing some range of scale coefficients c < C at this point.
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Figure 4.7: Comparison of the Riemann Zeta function in panel (a) and two STM computed
from two autocorrelations of MIDI samples in panel (b)

As mentioned above, autocorrelation sequences derived from musical signals are typically char-
acterized by the period defined by the tatum of the piece. In Figure 4.8, three pulse trains,
as a simplified model for such type of autocorrelation sequence, are reconstructed using the
complex scale coefficients smaller than C = {50, 100, 200}. The pulse train has a length of
5s and a period length of 100ms, and it was sampled at a sampling period of Ts = 20ms. It
can be seen that by using more scale coefficients for the reconstruction, the approximation of
samples at large time values gets improved. This is caused by the type of the base function
applied in the scale transform as denoted in (4.2): functions e(−jc−1/2) ln t are chirp functions
for which the period is increasing as time increases.. This increment is realized faster for small
scale values. Thus, the base functions of c1 will match the period of the pulse train earlier
in time than the base function of c2, if c1 < c2. This leads to an interesting interpretation:
Fixing the maximum lag Tup of the autocorrelation results in a vector of a given length, and
increasing the number C in the STM descriptors equals to giving more weight to higher lag
values within this vector.

49



0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/s

 

 

C=50

0  1  2  3  4  5  
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/s

C=100

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/s

C=200

Figure 4.8: Reconstruction of an impulse train by filtering in scale domain
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4.2 Experimental Setup

4.2.1 Evaluation Data

For the evaluation of the proposed rhythmic similarity measure, three different datasets are
used: The first dataset, which will be referred to as D1, is a set of ballroom dances that was
used in the rhythm classification contest in the ISMIR conference 2004 [80]. It has been used
for the evaluation of dance music classification for example in [125, 59]. In Peeters [125], it was
found that a classification accuracy of 78% can be achieved given the true tempo of the pieces
as the only input to the classifier. Because there is a small overlap in the tempo distribution
of the classes, this dataset can be considered as simple and it was chosen in order to prove the
general validity of the approach presented in this chapter. The second dataset, D2, is a dataset
of traditional dances encountered in the island of Crete in Greece, and the third dataset, D3,
consists of samples of traditional Turkish music. The latter two datasets were compiled by the
author of this thesis. The distribution of tempi per dataset is provided in Table 4.1.
Dataset D2 was used previously by the author of the thesis in [75] and contains samples of
the following six dances: Kalamatianos, Siganos, Maleviziotis, Pentozalis, Sousta and Kritikos
Syrtos. Each class contains thirty instrumental song excerpts of about ten seconds length. As
shown in [75], there are large overlaps between their tempo distributions. In the case of tempo-
halving and doubling errors in a tempo estimation pre-processing step, these overlaps would
become even larger. Thus, a similarity measure that does not rely on tempo information is
necessary to achieve a good classification in that dataset. Regarding their rhythmic properties,
all traditional dances from the Greek islands share the property of having a 2

4
time signature

([7], page 32). Only the dance class Kalamatianos in D2 has a 7
8

time signature. For a more
detailed description of the data refer to Appendix A.3.
The dataset of Turkish music, D3, consists of six different classes of rhythm, but unlike the
other two datasets, the classes are not related to specific dances. The musicological term used
for the different types of rhythm in this music is usul. Each usul specifies a rhythmic pattern
that defines the temporal grid for the composition, see Appendix A.4 for more details. The
six usul in D3 have lengths from 3 up to 10: Aksak (9

8
), Curcuna (10

8
), Düyek (8

8
), Semai (3

4
),

Sofyan (4
4
), and Türkaksagi (5

8
). According to Table 4.1, the tempo variances within each class

are much bigger than in D1 and D2. This is because samples in D2 are connected to specific
dance movements which puts a natural constraint to the range of tempo variations. Most of
the samples in D3 are not dance music and as such, their tempo can vary in a much wider
range. Thus, features for the description of the rhythmic content have to be robust to these
changes. Furthermore, as all usul have different lengths, the recognition of the usul can be
reduced to a recognition of its length. This is closely related to the task of time signature
recognition and motivates a comparison with systems for time signature recognition. In order
to acquire the samples, the teaching software Mus2okur [84] was used, resulting in a collection
of 288 songs, distributed among the six usul as shown in the last row of Table 4.1. The soft-
ware gives a list of songs for a chosen usul, which are then exported to a MIDI file. Thus, the
data in D3 is available in form of symbolic descriptions, which means that their onset times
can be read from the description. The MIDI files contain the description of the melody lines,
usually played by only one or two instruments in unison, and the rhythmic accompaniment
by a percussive instrument. As this content is separated into different voices, the rhythmic
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accompaniment can be excluded. This enables to focus on the relation between the melody of
the composition and the underlying usul. To the best of our knowledge, such a study on usul
has not been conducted before.

Table 4.1: Statistics of the tempo distributions

D1

CLASS CHA JIV QUI RUM SAM TAN VW WAL

MEAN 122 166 201 100 102 127 178 86

STD 5.6 14.5 11.5 11.2 18.0 4.0 2.2 4.4

NSongs 111 60 82 98 86 86 65 110

D2
CLASS KAL SIG MAL PENT SOUS SYRT
MEAN 128 98 147 145 123 68
STD 8.7 4.5 8.8 10.8 8.7 5.9

NSongs 30 30 30 30 30 30

D3
CLASS AKS CURC DUY SEM SOF TURK
MEAN 87 96 76 133 83 67
STD 27.7 13.6 18.8 26.0 14.9 18.8

NSongs 64 57 47 22 60 38

4.2.2 Similarity Measures

Because of the scale invariance property of STM, a simple point wise distance can be applied
to get a (dis)similarity measure between two STM. As shown by Foote et al. [49] and Holzapfel
and Stylianou [73], the cosine distance outperforms the Euclidean distance. Furthermore, as
described in the previous Section, measuring the angle between two STMs is to be preferred
from using Euclidean distance due to the unknown normalization factor. Because of that,
the rhythmic dissimilarity between songs i and j can be measured by computing the cosine
distance between their mean STMs SCi and SCj

dsc(i, j) = 1− SCi · SCj
|SCi ||SCj |

(4.9)

In order to confirm the superiority of the cosine distance compared to the Euclidean distance,
also the Euclidean distance between two mean STM, deucl(i, j) will be used. For reasons of
comparison, some previously proposed measures of rhythmic similarity will be used as well. As
shown in [49, 73], the cosine distance denoted in (4.9) is a good measure for rhythmic similarity
directly applied to periodicity spectra if the tempi do not differ widely between the pieces that
are compared. Because of that, such measures can be expected to perform well on D1 with
its small tempo variations while it should decrease in performance on the other datasets. The
cosine measure will be denoted as dcos(P ) when directly applied to periodicity spectra, and
dcos(R) when directly applied to the autocorrelation sequences derived from OSS.
Recently, a dissimilarity measure based on a warping strategy was introduced [73]: periodicity
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spectra as shown in Figure 4.2 are computed from OSS, and then the periodicity spectrum of
one song is warped in order to be aligned with the periodicity spectrum of another song, a
process referred to as Dynamic Periodicity Warping (DPW). The linearity of the warping path
derived in DPW serves as a measure of rhythmic similarity: the more linear the warping path,
the more similar the two pieces are considered. This dissimilarity measure will be denoted as
dDPW .
For D3, the note durations in the usul sequences can be described as a string, as for example
the Aksak pattern shown in Figure A.4 can be described as the string xoxxxoxox, where x

symbolizes the start of a note and o metric unit without note [155]. Note that this representa-
tion is a further simplification of the one shown in Figure A.4, because no differentiation of the
intonation strength is contained. However these representations can be used for estimating the
similarity between rhythms of same lengths by computing a chronotonic distance [155]. It will
be evaluated in the experiments if such a distance measure between the theoretical patterns
shows some correlation with the similarities estimated using the proposed measure between
the MIDI samples of D3. It will be interesting to observe if samples from usuls with patterns
that are found to be theoretically similar are confused in the classification experiments.

4.2.3 Evaluation Procedure

For a given dataset, all pairwise dissimilarities between songs are computed using the measures
described in Section 4.2.2. This results in dissimilarity matrices, having values close to zero
whenever two pieces are found to be similar. In order to determine the accuracy of the proposed
rhythmic similarity measure, the accuracies of a k-Nearest Neighbor (kNN) classification will
be determined. For this, each single song will be used as a query for which a classification into
one of the available classes is desired, i.e., a leave-one-out cross validation is performed using
the computed dissimilarity matrix as an input. The value kknn that determines the number of
neighbors is varied in the interval [2...30], and the best accuracy achieved by varying kknn is
then reported. In order to determine if these accuracies are over-optimistic, the kNN accuracies
will be compared with results achieved using a Fisher LDA classifier and an SVM classifier
with a linear kernel. For SVM, the implementation included in the WEKA software [164] has
been used without any parameter changes. Both LDA and SVM classifiers are evaluated using
leave-one-out cross-validations, using the STM of the songs as input features.
In Section 4.3, the accuracy of the proposed STM features for the discrimination of different
rhythms will be discovered. Therefore, it is necessary to evaluate the optimum set of scale
coefficients for each dataset. In the first experiments, the accuracy depending on the choice of
the highest included scale coefficient will be determined. In Section 4.3.4 it is evaluated if a
maximum relevance feature selection as proposed in Markaki and Stylianou [108] can provide
us with a consistent way to derive a compact set of features that is optimal for the classification
task. For this, the relevance to the target class c of each feature xi in a training set is computed
by determining their mutual information:

I(xi, c) =

∫ ∫
p(xi, c) log

(
p(xi, c)

p(xi)p(c)

)
dxidc (4.10)

In practice, the integration in (4.10) is problematic for continuous valued features as the scale
coefficients in our case. For that reason, each feature has been discretized by using an adaptive
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quantization as proposed by Markaki and Stylianou [108], using b = 5 bins. In order to select a
set of relevant features all mutual information values between the single scale coefficients and
the target class have been computed. Then, a threshold has been applied to the computed
mutual information, which for a value of 100% chooses all features and for a value of 0% only
the one feature with the maximum relevance for the training set. Changing this threshold
continuously from 0% to 100% leads to choosing a subset of features regarding their individual
relevance for the classification. The influence of varying this threshold will be determined in
Section 4.3.
For the data in D3, an usul can be expressed in a simplified way as a string, as explained in
Section 4.2.1. In Section 4.3, for some usul their string representations will be used to estimate
their similarity using a method proposed in Toussaint [155]: From the string representations
chronotonic chains can be computed, by breaking down the rhythm into its smallest time unit
on the x-axis and assigning to each element a height on the y-axis according to the beat-to-beat
interval. This results in the chronotonic chain [2, 1, 1, 2, 2, 1] in case of Aksak. As proposed
in Toussaint [155], in order to compare two such chronotonic chains, then a discrete form of
the Kolmogorov Variational Distance (DKVD) can be applied. Given two chronotonic chains
g and f of same length L, this distance can be computed as

K =
L∑
i=1

|f [i]− g[i]| (4.11)

and is equal to the 1−norm distance between the chains. Thus, by depicting an usul pair as two
strings of same length, their rhythmic similarity can be estimated. This method will be applied
to pairs of usul for that samples frequently were confused in the classification experiments.

4.3 Experiments

For the proposed similarity measure dsc there are mainly two critical parameters: the length
of the maximum lag Tup considered in the autocorrelation and the numbers of coefficients
C of STM in (4.9). The influence of these parameters will be explored by computing the
accuracies in a grid search of these two parameters. For each dataset the optimum number for
the maximum lag will be determined, and the effect of varying the number of scale coefficients
will be explored. For all experiments on D3, the OSS have been computed using durational
accents and the STM have been derived from tempo-variant ACF, as described in Section
4.1.3. The influence of using other accents and using the tempo-invariant ACF as features will
be explored separately in Section 4.3.3.

4.3.1 Optimum upper scale and maximum lag

On both waveform datasets D1 and D2, the optimum maximum lag Tup found in the grid search
was 8s. The accuracies for D3 improved until a maximum lag of 14s is reached. It was observed
that further increase does not lead to a decrease in accuracy on this dataset, as it is the case on
the waveform data in D1 and D2. In Figure 4.9, the accuracies of kNN classifiers are depicted
when changing the number of scale coefficients C. The optimum maximum lag was used for
each dataset, for D1 and D2 the SF OSS has been used as an input to the autocorrelation
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computation. It can be seen that the accuracy of the classification depends on the number of
chosen scale parameters in a different way for each dataset. The highest classification accuracy
was achieved for D1. More specifically, the classification accuracy increases up to 88.1% at
c=170. In general, an area of almost constant accuracy is reached for C > 80, as can be seen
from Figure 4.9. A similar behavior can be observed for D3, where the best accuracy using kNN
is achieved at C = 140 (78.1%). On D2, a maximum is reached at c = 30 with an accuracy of
76.1%. Unlike for D1 and D3, when further increasing C on D2 the accuracy decreases. Similar
results are obtained using the SVM classifier: while on D1 and D3 a saturation is reached just
like for kNN, for D2 this does not hold. The LDA classification could not be evaluated for very
large values of C, as the increasing dimensionality causes numerical problems. It is worth to
note that these accuracy values are close to the accuracies achieved by human listeners on the
same data (75.6%), as will be detailed in Section 4.3.5. In Table 4.2, the best accuracies for all
three classifiers using the proposed features are depicted along with the value of C at which
this accuracy is reached. It seems that for higher scale values on D2 the STM contain more
noise than for the other two datasets. As shown in Section 4.1.4, higher scale values lead to a
more accurate reconstruction at larger autocorrelation lags. Thus, regarding Figure 4.8, for D2
a stronger weighting for lags smaller than one second is optimal, while for D1 this weighting
is extended to about two seconds. This behavior will be further explored in Section 4.3.4.
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Figure 4.9: Accuracies on the three datasets for varying number of scale parameters, using
SF OSS

When using the PS OSS instead of the SF OSS as an input to the STM computation from
D1 and D2, a similar behaviour regarding the number of scale parameters can be observed.
The related accuracies are depicted in Figure 4.10 and are characterized by a similar shape as
the curves shown in Figure 4.9 for these datasets. However, it must be noted that the best
accuracies achieved on D2 are lower when using PS OSS. The best accuracy of 71.1% is reached
at C = 30 (compared to 76.1% for SF OSS). On the other hand, a decrease is not observed for
D2. On D2, the highest accuracy is slightly better when using PS OSS (89.7% at C = 120)
than when using SF OSS (88.1% at C = 170). It is important to note that both differences
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Table 4.2: Classification Accuracies at C using STM features

kNN SVM LDA

D1 88.1(C = 170) 91.7(C = 160) 89.5(C = 120)
D2 76.1(C = 30) 76.1(C = 35) 77.8(C = 25)
D3 78.1(C = 140) 82.3(C = 140) 77.1(C = 40)

are statistically not significant. The confidence intervals are 2.4% for D1 and 6.2% for D2,
both at a level of confidence = 95%. Thus, based on the currently available datasets no clear
conclusion about the preferable OSS can be drawn. However, for reasons of computational
simplicity, the SF OSS might be preferred.
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Figure 4.10: Accuracies on D1 and D2 for varying number of scale parameters, using PS OSS

4.3.2 Comparison of distance measures

Table 4.3 shows the classification accuracies on the datasets, using the measures as described
in Section 4.2.2 and kNN classification. Similar to the results presented by the author in [73],
the direct cosine measures between the periodicity spectra, dcos(P ), and between the auto-
correlation sequences, dcos(R), work well on D1. The proposed scale method, dsc achieves a
slightly improved accuracy of 88.1%. However, this improvement is not significant regarding
the confidence interval, which is 2.4% (level of confidence = 95%). Comparing these results
to the highest accuracy, without the usage of the tempo annotations, of 85.7% [42] on the
same dataset D1, the accuracy presented here using dsc appears to be a satisfying proof of
concept. The improvements in comparison to our previous results in [73] and [75] must be
assigned to the changed sample rate of the onset strength signal which in general improved
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results throughout the experiments, and to the different computation of the scale transform.
For D2, Table 4.3 shows a considerable advantage for the proposed scale distance measure

Table 4.3: kNN-Classification Accuracies for various distance measures

dcos(P ) dcos(R) dDPW deucl dsc

D1 86.1 86.0 83.5 86.1 88.1
D2 54.3 44.7 60.9 73.9 76.1

D3mel 53.1 56.2 50.5 75.7 78.1
D3all 63.5 66.7 71.0 83.7 86.0

dsc, which achieves an accuracy of 76.1% with a confidence interval of 6.2%: on this dataset
it outperforms the cosine measures dcos(P )/dcos(R) by 21.8/31.4 percentage points. This clear
improvement can be assigned to the robustness to tempo changes of the scale transform.
The accuracies for the dataset of Turkish MIDI files are listed in the third and fourth row of
Table 4.3. The third row gives the accuracies when using the melody lines only for the onset
computation as described in Section 4.1.3. Using the dissimilarity measure dsc proposed in this
chapter leads to the best results: an optimum accuracy of 78.1% is reached at C = 140, with
a confidence interval of 4.8%. Direct comparisons of either periodicity spectra or autocorrela-
tion sequences are clearly inferior due to the large changes in tempo for each usul. The DPW
approach we presented in [73] does not lead to good results on D3. This must be assigned to
the large standard deviation of the tempi in one class since DPW assumes that there are no
differences in tempo larger than 20% between two songs. When tempo differences exceed this
threshold, the whole procedure is becoming unreliable [73].
The fourth row of Table 4.3 (i.e., for D3all) shows the accuracies that can be achieved when
the tracks containing percussive accompaniment are also included in the computation of OSS.
The accuracies are then in general improved, since the percussive accompaniment is typically
the same for one specific usul. The relatively high values in the third row, D3mel, clarify the
information about the usul that is contained solely in the melody line of the composition. As
the difference between the best accuracy in the third row and the best in the fourth row is
only 7.9 percentage points, it can be concluded that this relation between the melody and the
usul is very strong.
Comparing the measures based on the scale transform (i.e., deucl using Euclidean distance and
dsc using cosine distance) we see that dsc indeed outperforms deuc. This was expected, be-
cause of the normalization factor in (4.1) (i.e., a) is unknown, and this affects the magnitude
of vectors being compared, but not their angle. Compared to dDPW , the distance derived
using Dynamic Periodicity Warping [73], the advantage of dsc regards accuracy as well as
computational: while in DPW there is the need to compute a warping path using dynamic
programming, the most time consuming operation in the scale distance measure is the scale
transform which is performed using a matrix multiplication.
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4.3.3 Further exploring MIDI

Comparison with Scale-free ACF

Three different weighting schemes for the OSS computation from MIDI data in D3 have been
evaluated in the experiments: the duration accent [123], the melodic accent [150], and the
flat accent (i.e., using the same accent weight for all onsets). Using the rc autocorrelations
computed using these three accents distance matrices have been computed. Applying a kNN
classifier in the same way as described in Section 4.2.3 resulted in the best accuracies for the
duration accent, as documented in Table 4.4. This contradicts with the findings in Toiviainen
and Eerola [154], where the melodic and flat accents were found to be preferable. Furthermore,
using a selected range of autocorrelation coefficients could not further improve results on this
data set, while in Toiviainen and Eerola [154] using the coefficients of longer lags and leaving
out the coefficients of short lags was found superior. This must be assigned to the differences
between the data sets.

DURATION MELODY FLAT
80.2% 68.1% 72.9%

Table 4.4: Time signature recognition accuracies when using scale free rc representation

In Table 4.5 the confusion matrix for the best classification in Table 4.4 is shown. The
biggest confusion happens between the 8

8
time signature usul and the 4

4
usul (Düyek and

Sofyan, respectively). The pieces in the 8
8
-usul could be equivalently annotated in a 8

4
time

signature by changing their degree, referred to as mertebe, to four. The second biggest confusion
happens between Curcuna and Türk Aksaği. The time signatures are related by a factor of
two as well (10

8
and 5

8
). These types of errors have been denoted as typical as well in Toiviainen

and Eerola [154]. Still, the confusion between between Düyek and Sofyan is larger. This can
be attributed to the different degree of similarity of the usul, which can be estimated using
the approach proposed in Toussaint [155]: In Table 4.6, the symbolic descriptions for the
two confused usul -pairs are depicted as vectors of same length. From these descriptions the
chronotonic chains have been derived that are depicted in Table 4.6. Note that Sofyan would
be typically denoted as [2, 1, 1] as its smallest beat-to-beat interval is a fourth note. In order
to get chains of equal length, the eighth note has been chosen as smallest unit. Computing

Predicted
9/8 10/8 8/8 3/4 4/4 5/8

Notated

9/8 62 0 1 0 1 0
10/8 0 50 0 0 1 6
8/8 1 4 24 0 18 0
3/4 0 0 0 20 2 0
4/4 2 0 12 0 46 0
5/8 0 9 0 0 0 29

Table 4.5: Confusion matrix for rc using duration accent
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Symbolic Description
Düyek : xxoxxoxo Curcuna: xoxxoxoxox
Sofyan: xoooxoxo Türk Aksaği : xoooxoooxo

Chronotonic Chains
Düyek : 12212222 Curcuna: 2212222221
Sofyan: 44442222 Türk Aksaği : 4444444422
Normalized DKVD betw. Chronotonic Chains

10/8=1.25 18/10=1.8

Table 4.6: Computing chronotonic distances between confused usul

Predicted
9/8 10/8 8/8 3/4 4/4 5/8

Notated

9/8 51 3 3 1 3 3
10/8 0 52 2 0 0 3
8/8 1 1 30 2 11 2
3/4 3 0 3 15 1 0
4/4 0 2 8 1 48 1
5/8 2 4 3 0 1 28

Table 4.7: Confusion matrix for STM at C = 140 and maximum lag of 14s

the Kolmogorov Variational Distances between the chronotonic chains, and normalizing by the
length of the vectors it can be seen that the usul Düyek and Sofyan are more similar than the
other pair. This is reflected in the higher confusion in Table 4.5. Thus, it can be concluded
that the applied autocorrelation method is not only suitable for determining time signatures,
but can as well capture rhythmic similarities contained in the piece.
In Table 4.7, the confusion matrix obtained from the kNN experiment depicted in Table 4.2

(accuracy of 78.1%, C = 140) is shown. Comparing it with the confusion matrix shown in
Table 4.5 reveals very similar structure. The decrease in accuracy from 80.2% seems to be
caused by some misclassification that cannot be justified by a similarity of the usul, as for
example the 9

8
-time signature, which for the STM descriptor is randomly misclassified. Thus

it appears that transforming autocorrelations to scale domain in the proposed way introduces
some noise to the rhythm descriptors. However, the performance is only 2.1% lower than for
using the scale-free autocorrelations (78.1% instead of 80.2%). This clarifies that using the
tempo-variant ACF in combination with the scale transform as described in Section 4.1.3 does
not lead to a significant decrease in accuracy compared to the tempo-invariant ACF. Hence, by
including scale transform the currently infeasible step of beat tracking in this kind of meters is
avoided and time signature estimation is made feasible even on audio signals, when presented
with arbitrary types of music signals having a compound or complex meter.
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Manipulating MIDI

Two more experiments have been conducted to evaluate the robustness of the proposed method.
For these experiments the SVM classification that resulted in the best accuracy of 82.3% on
the MIDI data has been used, which means that all scale coefficients until c = 140 have been
used in the STM (see Table 4.2). Again, only the melody lines have been included in the OSS
computations, while the percussive instruments have been left out.
The first experiments explores the influence of tempo deviations within the classes. Since for
the MIDI files the tempo information is given, experiments could be conducted with the tempo
of the pieces changed in a deterministic way. For this, from the data in D3 the global tempo
mean value has been computed. Then, all pieces have been assigned this tempo mean plus a
uniformly distributed noise. This noise has been varied in steps of 5% from 0% up to 85%.
For 0% noise all pieces share the same tempo, and no scaling effects the autocorrelations. At
85% noise level noise level the global mean of about 87 bpm results in a possible tempo range
from 13 to 161 bpm. In order to compensate for the noise introduced by the randomly changed
tempo for each noise level the experiment has been rerun ten times, and the mean accuracies
of the ten runs are reported. Computing the mean SVM-accuracy for the noise free case leads
to an accuracy of 82.9%. The small difference to the accuracy of 82.3% (as shown in Table
4.2) in presence of the original tempo variance of the data proves the robustness of the pro-
posed method to this variance. Increasing the noise level leads to an almost linear decrease in
classification accuracy. However, at the largest tempo noise level of 85% the accuracy is still
73.2%. This confirms that the theoretical properties of the scale transform make the features
robust to large tempo changes in practice as well.
The second experiment explores the way accuracy might get affected when dealing with real
audio signals of Turkish music instead of the MIDI signals as contained in D3. For that pur-
pose, the functionality of the MIDI toolbox [45] for the synthesis of an audio file from a MIDI
has been used. The synthesis locates Shepard tones [142] of constant intensity wherever an
onset is listed in the MIDI file. Thus, computing an OSS from the signals synthesized in this
way results in almost constant onset strengths amplitudes at the locations of the note onsets.
The accuracy clearly decreased to 63.5% (from 82.3%), again using SVM on STM features
at C = 140. It was investigated if this decrease is caused by the flat characteristic of the
OSS that does not allow the differentiation between strong and weak onsets. For this, the
durational accent type used in the OSS computation from the MIDI files was replaced by flat
accents. This means that impulses of constant height were positioned at the location of all
note onsets. Indeed, removing the information about the intensity of the onset leads to the
accuracy of 68.7%, and it can be concluded that the weighting of an onset according to its
strength is a crucial information. Thus, it can be expected that the accuracy values obtained
from real audio files of this music will be superior to the ones computed from the synthesized
files, because the onsets cause varying amplitudes in the computation of OSS.

4.3.4 Mutual information based feature selection

In order to find a way to obtain an optimal set of features for classification independent of the
dataset, various criteria based on the coefficient energies or the scale bandwidth [27] have been
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evaluated without success. We decided then to compute the mutual information, MI, between
each scale coefficient and the class label as this was described in Section 4.2.3 in order to select
the best features for our task from a given STM based on information theoretic criteria. This
was further motivated by the fact that for D1 and D3 classification accuracies improve, when
low scale coefficients are left out. Thus, for each dataset different scale coefficients appear to
be relevant for classification. It was decided to use the SVM classifier, which achieved the
highest accuracies in Table 4.2, and to vary the mutual information threshold as described in
Section 4.2.3 on the set of features obtained for C = 200 for all datasets. The classification
accuracies are depicted in Figure 4.11. It can be seen that from an MI threshold value of about
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Figure 4.11: SVM classification accuracies on the three datasets for varying mutual information
threshold

60% upwards for all three datasets a saturation effect is reached. These saturation levels are
about the same as the best classification accuracies depicted in Table 4.2. Thus, it can be
concluded that using mutual information criteria a common way to get to an optimal feature
set can be defined. From Figure 4.11 it is clear that the number of samples in a dataset affects
the way the accuracy changes when increasing the threshold. Increasing the threshold leads to
an increasing dimensionality of the feature vector, which leads to problems especially on the
smallest dataset, D2.
It is interesting to compare the compression achieved using mutual information thresholds for
the three datasets. Table 4.8 shows the number of coefficients corresponding to an MI threshold
value of 60%. It can be seen that for D2, a much higher compression is achieved than for D1.
It was observed that for D2 scale coefficients for low scales (c < 50) are the most relevant,
while for D1 the relevant scales were found among the whole scale range. This phenomenon is
not related to the size of the datasets, but only to the different musical characteristics of the
contained data. We recall from Figure 4.8 that the scale coefficients until c = 50 allow for a
reconstruction of the autocorrelation for lags up to one second. This means that small lags are
more important for this type of music than the others.
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Table 4.8: Compression values for mutual information threshold of 60%

D1 D2 D3

Nfeat 249 27 98
Compression 34.7% 92.9% 76.5%

4.3.5 Listening Test

In order to evaluate the relation between the proposed distance measure and the way human
subjects perceive rhythmic similarity on the used data, listening tests were conducted. For the
first test, subjects were asked to judge the similarity measurements performed on D2 which
lead to the optimum classification performance for this dataset in Section 4.3.1 (C = 35 for
LDA). Each subject was asked to decide which of two comparison samples was rhythmically
closer to a reference sample. A total amount of 25 reference samples were randomly chosen
from D2 and presented to each subject. One of the comparison samples was the closest to
the reference according to the proposed rhythm similarity measurement, while the other was
the sample which was positioned in the middle of the ranked list of samples produced by the
suggesting method as being similar to the reference sample. The subjects could decide for
one of the two samples being closer, or they had the possibility to state that both comparison
samples are equally close to the reference. They were informed that all music will be tradi-
tional Cretan dances, but not exactly which type of dances. Furthermore, they were asked
not to restrict their judgement on the recognition of the class, but to concentrate on judging
rhythmical similarity, independently of the class affiliation. They had the possibility to listen
to the samples as many times as they like.
This listening test was conducted with three groups of people. The first group consisted of
two experienced teachers of traditional Cretan dances. The second group consisted of 9 ex-
perienced dancers, all subjects in this group had practical experience in all style of dances
present in the dataset (Cretan dances). The third group consisted of 11 university students
who all had stayed for some years in the island of Crete and are familiar with the sound of
Cretan music, but did not learn the traditional dances. The results for the groups are shown
in Table 4.9. The right column depicts the percentage of trials in which the sample perceived

Table 4.9: Results of listening test for D2

CONTRADICTION NEUTRAL CONSENSUS

TEACHERS 14% 12% 74%
DANCERS 16% 21% 63%

NON-DANCERS 28% 18% 54%

more similar to the reference was indeed the sample which was estimated to be more similar
by the method proposed in this thesis. The middle column depicts the percentage of the cases
in which the subject did not make a decision, and the left column contains the contradictions
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between proposed measure and human subject. The first row shows the results obtained for
the dance teachers, and the second row for their students. It can be seen that especially for
the teachers a high correlation exists between the proposed measure and the listening test
results. In 74% the teachers agree with the measure, the students do so in 64% of the cases.
The number of disagreements stays low for both teachers and students (14% and 16%, respec-
tively). These results prove that apart from the objective verification of the proposed method
in the classification task, the method is characterized by a high correlation of the way subjects
perceive rhythmic similarity. The third row in Table 4.9 shows the results obtained with the
group of non-dancers. While for this group the amount of neutral samples stayed almost the
same as for the dance students, the proportion of consense decreases by 9 percentage points,
while the amount of contradiction with the proposed measure increases by 12%. This difference
is even larger compared to the teachers. This result shows that the perception of rhythmic
similarity in this kind of music depends strongly from the familiarity of the subject with the
music. It has been observed that the teachers came to a decision much faster than their stu-
dents and the non-dancers. For them it was often not even necessary to listen to the samples
in their whole duration, because they recognized them after a few notes. The unexperienced
non-dancers needed much more time, listening several times to each sample, and trying to get
to their decision. This shows that memorizing the melodic phrases plays indeed a key role in
the perception of this music.
One more listening test was conducted in order to evaluate the ability of a listener to correctly
categorize the dances. Six subjects were asked to classify each piece in the dataset after lis-
tening to it one time. All subjects are dancers familiar with each of the dances. A randomly
chosen subset of D2 which contained 90 songs was presented to the listeners. The average
correct classification by the listeners per class and overall is depicted in the first row of Table
4.10. It can be seen that some of the classes are particularly difficult and the overall accuracy

Table 4.10: Listeners’ Mean Classification Accuracies, compared with accuracies of kNN clas-
sification

Kal. Sig. Mal. Pen. Sous. Chan. Mean
Listeners 93.3 88.9 79.2 45.6 58.3 88.5 75.6

kNN 80.0 100.0 73.3 46.7 76.7 80.0 76.1

is far from being perfect. The class-wise accuracies of the kNN classification on D2 as shown in
Table 4.2 are depicted in the second row of Table 4.10. It is particularly interesting to observe
the correlation between the classification accuracies shown in Table 4.10. Also, the type of
misclassifications are the same: the class that is the most difficult to classify (Pentozalis) gets
confused with the class Maleviziotis in most cases, both for the listening tests and for the au-
tomatic classification. The same holds for Maleviziotis, which is almost always misclassified as
Pentozalis. However, for the automatic system there exists a confusion between Kalamatianos
and Sousta, which was never observed in the listening tests. Note that the listeners were able to
avoid this confusion by differentiating between the 7

8
rhythm of Kalamatianos and the 2

4
time

signatures of all other dances, something in which the automatic approach does not succeed in
such a degree. In general, this listening test is one more supporting result for the hypothesis
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that the proposed system indeed detects rhythmic similarity.

4.4 Conclusions

A description of the rhythmic content of a piece of music based on the scale transform was
proposed. This description is robust to large tempo variations that appear within a specific
class and to large tempo overlaps between classes. Using simple distance measure and classifier
techniques, the descriptor vectors can be used to classify the samples with high accuracies. The
approach is computationally simple and has no need of any tempo or meter estimation which
might be desirable for certain kinds of music signals. Based on mutual information criteria, a
method was proposed for choosing a feature set that is optimal for the classification task. The
relation between autocorrelations sequences and the Riemann Zeta function in scale domain
was explored, while a discussion of the signal reconstruction by applying inverse transform
enabled to gain valuable insight into the relation between variables in scale and in time domain.
The inclusion of the traditional Turkish dataset provided us with a potential starting point
for a detailed study of rhythmic characteristics of Turkish traditional music. The suggested
measure provides a simple and efficient tool for the description and comparison of rhythm
content, especially applicable to music with little or no percussive content and strong tempo
variations. Its validity was confirmed in two listening tests as well.
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Chapter 5

Beat Tracking

In this chapter, the potential of the phase slope onset strength signal (PS OSS) for the usage of
beat tracking especially in the context of traditional music will be evaluated. The computation
of PS OSS follows exactly the description given in Section 3.2.1. The important changes
comparing the content of this chapter with the content presented by the author in [71] are
related to the refined computation of the PS OSS, and to the dataset of beat annotated Cretan
dances. For this chapter, the dataset of Cretan music used in [71] has been enlarged from 20
to 41 samples in order to guarantee for the significance of the presented results. Furthermore,
the dataset of western popular music has been created by combining the development data
and test data from [71] to a unique dataset containing 48 samples. On these datasets, the
performance of a beat tracker will be evaluated, that has been implemented according to a
method described in Klapuri et al. [92]. The differences between the implementation used in
this thesis compared to the method in Klapuri et al. [92] will be explained, and it will be
investigated if the usage of PS OSS for a beat tracking task can improve in some way the
accuracy compared to the original implementation used in [92].

5.1 Method for beat tracking

5.1.1 Onset detection using group delay

The onset detection using group delay follows the concept explained in Section 3.2.1. The
optimum value N of the analysis window of the onset detector when applied to a beat tracking
task has been evaluated on a development dataset of periodic artificial signals like those de-
picted in Figure 3.2, with periods from 0.3s to 1s, which is related to the typical range for the
tempo of musical pieces (60bpm-200bpm). This dataset, which will be referred to as BD1, is
also useful in evaluating the robustness of the suggested approach against additive noise. For
this purpose, a Transient to Noise Ratio (TNR) is defined in the same way as the usual Signal
to Noise Ratio (SNR):

TNR = 10 log10

1
L

∑L−1
n=0 x

2[n]

σ2
u

(5.1)

where x denotes a signal of length L and σ2
u denotes the variance of the noise. The artificial

signals have been mixed with white noise at different TNR. For each artificial signal a corre-
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sponding text file has been created containing the onset times of the impulses.
As it is indicated by Kandia and Stylianou [83], a large phase slope analysis window is ap-
propriate for detecting major sound events in an audio signal while shorter windows may be
used in case additional sound events are needed to be detected. The optimum length of the
analysis window has been determined by trials and errors on the artificial development data
using various TNR levels, and will be compared to other window lengths again on real music
data in Section 5.3. The optimum analysis window was found to be 0.2s, thus slightly shorter
than the shortest considered signal period in BD1 (i.e., 0.3 s). Figure 5.1 shows the phase
slopes from a short excerpt of a music sample computed with three different analysis window
lengths. It can be seen that for the short analysis window of 0.05s length, many spurious zeros
crossings exist. On the other hand, the long analysis window of 0.8s leads to a small number
of positive zero crossings. It can be expected that the estimation of the beat impulses (dashed
impulses) from the positions of the zero crossings will be difficult. The middle figure, however,
indicates a high correlation of zero crossings and beat impulses, and has been derived using an
analysis window of 0.2s. This change in window length compared to 0.1s as applied in Chapter
3 was found crucial throughout all experiments on artificial and music signals. Except of this
change, the PS OSS has been computed with the same papameters as found optimal for onset
detection in Section 3.2.1. In order to measure the correlation between the artificial signals
and the positive zero crossings Equation 5.5 (see Section 5.3.2) has been used.

The way of performing a multi band analysis for the PS OSS computation differs between
our previous applied method [71] and the multiband analysis performed for optimum onset
detection in Section 3.2.1. In general, dividing the spectrum into a number of bands has been
shown to be meaningful for beat tracking [136, 55]. In [71], the spectrum was divided into
four equally sized bands on logarithmic frequency scale. In each band, an onset strength signal
using the phase slope method was computed. In order to get a single vector representation,
the four band-wise onset signals, cb[n], b = 1...4, have been fused in the same way as in Klapuri
et al.[92]:

PS OSS[n] =
4∑
b=1

(6− b)cb[n] (5.2)

giving more weight to lower bands. On the other hand, the onset detection procedure described
in Section 3.2.1 proposes a division into 21 bands and no weighting as in (5.2) is included. It
will be examined in the experiments in Section 5.3 if this different multiband processing causes
differences in the beat tracking performance.
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Figure 5.1: Influence of the analysis window length on the phase slope of a music sample (x-axis:
samples, y-axis: phase slope amplitude, onsets: bold peaks with circle markers, annotation:
dashed peaks with triangle markers, threshold for zero crossing selection: dotted lines)
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5.2 Beat tracking

For the estimation of beat times from the band-wise onset signals an algorithm based on the
method proposed by Klapuri et al. in [92] has been used. The algorithm had to be adapted
to the type of onset signals that are obtained using the phase slope function. This modified
beat tracker will be referred to as PS/M-KLAP in the rest of the chapter. The beat tracking
procedure can be divided into two parts. At first, for each time instance of a signal a beat period
is determined. This can be compared with the determination of the fundamental frequency
from e.g. a speech signal. Afterwards, given the period estimations, an optimum alignment of
an impulse train having this time varying period with the signal is found. Again, a comparison
with speech processing might be the determination of glottal closure instances.

5.2.1 Beat Period

For beat period estimation, Klapuri et al. suggest the computation of comb filter responses on
each of the four bands separately, and summing afterwards. In PS/M-KLAP, the band wise
confidence level vector cb(k), for b = 1...21 referring to the frequency band and k being the
sample index, are simply summed without the weighting in (5.2) as proposed in Section 3.2.1.
As for the onset detection task, the obtained PS OSS has been temporally smoothed using a
51ms Hanning window. Afterwards, the obtained onset vector can be weighted with the sum
of the spectral flux at each sample n:

PS OSSflux[n] = PS OSS[n]
∑
ω

HWR(|X(ω, n)| − |X(ω, (n− 1))|) (5.3)

where HWR denotes a half wave rectification and X(ω, n) denotes the (short time) Fourier
transform of the signal as used in the group delay computation in (3.3). This weighting was
found to improve previously [71], and results with and without this weighting will be depicted
in the experimental section of this chapter.
The sample autocorrelation of the vector PS OSSflux[n], or PS OSS[n] when not applying
the weighting in (5.3), is then computed in a rectangular window of tbeat = 8s length with a
step size of one second. The maximum lag considered is 4s× fons, which is equal to 700, since
fons = 175Hz. The centers of the analysis windows are positioned at times k = [1s, 2s, ..., TN ],
where TN = bL/fonsc, zero padding has been applied. In the following, the beat periods β
have been estimated using a Hidden Markov Model(HMM) as described in Klapuri et al.[92],
where the beat period is referred to as tactus period. This results in a sequence of beat period
estimations β[k]. The HMM simultaneously estimates periods at three different levels of the
meter: the tatum, the beat and the measure period. The tatum refers to the smallest duration
at which a period is encountered in the musical signal. The beat is related to the period.
a human being would most probably tap his foot when listening to the music. The measure
period is related to the positions of the bars in the musical score (see Figure 2.2 for an example).
The only change in the HMM is the use of flat priors for all three estimated periods. These
priors only restrict the three periods to ranges that are likely to be encountered in music. The
chosen ranges are 100...700 bpm for the tatum period, 60...160 bpm for the beat period, and
15...90 bpm for the measure period. The exact values for these ranges have not been found to
be critical. This way, the present implementation has no priors that have to be adjusted using
some example dataset as in Klapuri et al. [92].
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5.2.2 Beat Phase

In the phase estimation of the beat pulse ((27) in [92]), the computation of the likelihood of a
phase Φ[k] in analysis frame k has been changed to

P (r̂ỹy|Φ[k] = l) =
21∑
b+1

8fons∑
n=0

ỹk[n+ l]cb[kfons + n− 4fons] (5.4)

where ỹk is a reference pulse train of tbeatfons + 1 samples length. Thus using the given values
of tbeat = 8s and fons = 175Hz this pulse train has a length of 1401 samples. It has an impulse
at the middle position and a period equal to β[k]. Thus, just like in the estimation of the
beat period, an eight second length window has been used. Note that, as for the PS OSS
used for the beat period estimation, each band wise goodness signal cb has been temporally
smoothed using a Hanning window of 51ms length. The sum of the band wise correlations
as computed in (5.4) is then used in an HMM framework as suggested in Klapuri et al. [92].
Again, incorporating spectral flux as in (5.3) has been examined. The influence of multiplying
each cb in (5.4) with the magnitude will be explored in the experimental Section of this chapter.
Note that the accuracy of measure and tatum periods [92] have not been evaluated, as the focus
is the derivation of the beat information and this information has not been annotated in the
used data sets.

5.3 Experiments

This Section compares the performance of the system as suggested by Klapuri et al.[92], denoted
as KLAP, with the performance of our own implementation, which uses phase slope detected
onsets as input to the modified beat tracker. This system will be referred to as PS/M-KLAP.

5.3.1 Test data

Two datasets of beat annotated pieces of music have been used for evaluation. For the first
dataset, two datasets previously used by the author in [71] have been combined to a single
collection of 48 pieces of western popular music, which will be referred to as BT1. One of
the datasets that has been merged into BT1 has been used as a training set for the MIREX
2006 Audio Beat Tracking task1, and consists of twenty 30 second excerpts from popular music
songs. Each song has been beat annotated by several listeners, who were asked to tap the beat
of the piece of music. The other dataset that has been used to compile BT1 is a collection of
28 song excerpts of 30 seconds length, again all samples have been taken from popular music
songs. These samples have been beat annotated by the author. The second dataset, (BT2),
consists of 41 excerpts OF 30s length from pieces of traditional Cretan music, downloaded from
the Institute of Mediterranean Studies2. Again, the beat for these pieces has been annotated
by the author. In contrast to BT1, none of the songs contain percussive instruments, but only
string instruments and vocals. In contrast to [71], the larger number of samples in the datasets
will enable for a well-founded comparison between the two beat trackers.

1http://www.music-ir.org/mirex/2006/index.php/Audio Beat Tracking
2http://gaia.ims.forth.gr/portal/
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5.3.2 Evaluation method

For the evaluations in this chapter, the two datasets have been used that are described in
Section 5.3.1. For these datasets beat annotations are available. From these annotations, a
unit sample sequence, a[n], may be obtained with pulses located at the annotated onset or
beat time instance. In the same way, a unit sample sequence y[n] may be generated from the
estimated beat pulses. The quality of a beat tracking was judged based on the function used
in the MIREX 2006 Audio Beat Tracking contest3:

Amir =
1

Nann

Nann∑
s=1

1

Nmax

W∑
m=−W

Npt∑
n=1

y[n]as[n−m] (5.5)

where Npt is the length of the two pulse trains in samples, Nann is the number of different beat
annotations per sound sample, Nmax is the maximum number of impulses in the two pulse
trains, Nmax = max (

∑
y[n],

∑
as[n]), and W is equal to 20% of the average distance between

the impulses in as[n] in samples. This function represents an estimator, of how much two pulse
trains are correlated, accepting some inaccuracy regarding the placement of the beat impulses.
The accuracies as computed by (5.5) will be shown, denoted as Amir, in order to be able to
compare with scores achieved at the MIREX contest. Furthermore, for finding the optimum
length of the phase slope analysis window in Section 5.1.1, the correlation between the onset
estimations and the impulse locations in the artificial data in BD1 has been determined using
(5.5) as well.
Motivated by the findings in Goto and Muraoka [57], one more method will be used for the
evaluation of the beat tracing. This method has been used in Klapuri et al. [92] as well. As
mentioned in Goto and Muraoka [57], the most appropriate estimator for the performance of
a beat tracking system is the length of the longest continuous correct estimated section of
the song, divided by the duration of the whole song. For example, for 30s duration of a song
and 12s to be the longest continuously correct beat estimation duration, the accuracy is 40%.
Furthermore, the beat estimation is judged as correct when its period is half or double the
period of the annotation as well. A deviation of 0.175 times the annotated period length is
tolerated. Note that a beat pulse train with the same period as the annotation pulse train is
considered as incorrect whenever it has a half period offset (off-beat). Accuracies measured
with this method will be referred to as Acont.
Apart from the above described beat tracking approaches KLAP and PS/M-KLAP, also the
beat tracking algorithm used in Ellis and Poliner [46] will be evaluated as another state-of-
the-art approach. This algorithm, just as KLAP, has been used without any changes to the
original parameters, and it will be referred to as ELLIS.

5.3.3 Proof of concept

In this Section, the KLAP and PS/M-KLAP beat trackers are applied to BD1, the develop-
ment set containing artificial signals. For each TNR level, computed as depicted in (5.1), the
accuracies of the two beat tracking systems have been computed using (5.5) for all the signal
periods in D1 (0.3s to 1s). Then the mean values and the standard errors have been computed

3http://www.music-ir.org/mirex2006/index.php/Audio Beat Tracking
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Figure 5.2: Accuracies Amir of the beat tracking using the proposed method (PS/M-KLAP)
and the algorithm of [92] (KLAP), on artificial signals of varying TNR

for each TNR level. The mean accuracy values along with their corresponding standard errors,
shown as error bars, are depicted in Figure 5.2. Without the addition of noise both approaches
estimate a beat pulse train that is perfectly correlated with the position of the impulses in the
signal. When the TNR decreases, the presented approach PS/M-KLAP is persistently more
accurate. This proves the hypothesis, that using the proposed approach, beat tracking will be
more robust against noise which is important if an audio recording is noise corrupted. Also the
presence of noise makes some of the possible percussion components found in music to soften.
Based on the above results we expect the proposed approach to be also appropriate for musical
signals without strong percussive components.

5.3.4 Results

The accuracies of the beat trackers applied to the music datasets BT1 and BT2 are depicted
in Table 5.1 for the accuracy measures Acont and Amir, respectively. There are four different
results for PS/M-KLAP: the first row shows the results when no spectral flux weighting is
performed, the second shows the results when weighting is performed for the period estimation
as depicted in (5.3), the third row depicts the accuracies when using spectral flux weighting
only for the beat phase estimation in (5.4), and the fourth row shows the combination of
spectral flux weighting of period and phase. The conclusions differ depending on the dataset.
On BT1, the dataset containing popular music, including spectral flux weighting for the beat
phase estimation clearly improves the results. It has been observed that without this weighting
most errors are related to a wrong beat phase estimation. However, the same weighting leads
to a strong decrease in accuracy for the Cretan music dataset BT2. Thus, it appears that for
the type of signals in BT1, the spectral flux can give information about the correct phase of the
beat. This is likely to be related to the different magnitude characteristics of onsets at on- and
off-beats, such as a strong bass drum, which is positioned at the start of a measure and leads to
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a maximum in spectral flux. On the other hand, due to the absence of percussive instruments
in BT2, on this dataset no spectral flux weighting should be applied. In general, the spectral
flux weighting for the beat period estimation does not lead to statistically significant changes
in the beat tracking accuracies.
The comparison with the beat tracking accuracies achieved by the original beat tracking code
by Anssi Klapuri reveals an interesting conclusion. These accuracies, shown in the part of Table
5.1 labeled KLAP, are about the same (Amir) or better (Acont) for BT1. However, for BT2
the beat tracking accuracy of KLAP is very low (28.3%/23.5%). This leads to the conclusion
that the usage of PS OSS is clearly superior to the usage of the comb filter signals in KLAP.
Furthermore, the lower accuracies Acont that are achieved on BT1 using PS/M-KLAP can be
ascribed to the implementation of the beat tracker: Computing the comb filter signals using
the code of Klapuri et al. [92], and using them as an input to our modified M-KLAP beat
tracker leads to accuracies of 62.7%/54.1% for BT1 and 20.6%/20.3% for BT2. Comparing the
results achieved with the ELLIS system also confirms the validity of the proposed method. The
difference between the accuracies of the proposed method and the ELLIS system is particularly
large for BT2. But also for BT1, both accuracies achieved using the ELLIS system are lower
than the ones achieved using KLAP and PS/M-KLAP. Summing up, it can be concluded
that the PS OSS leads to similar accuracies for popular music when the phase alignment is
supported using a spectral flux weighting, and PS OSS is clearly superior for the beat tracking
in the dataset of Cretan music.

Table 5.1: Beat tracking accuracies: Acont/Amir, with and without spectral flux weighting for
PS/M-KLAP, and for KLAP

PS/M-KLAP

BT1 BT2
no SF weighting 47.1/40.4 70.8/50.8

Period only 47.0/41.5 74.1/50.8
Phase only 67.5/56.7 52.9/42.3

Period & Phase 66.2/56.7 51.1/38.9
KLAP

BT1 BT2
77.6/58.4 28.3/23.5

ELLIS

BT1 BT2
44.7/35.3 30.3/34.9

In Table 5.2, the accuracy of the beat tracking of PS/M-KLAP are depicted when varying
the length of the phase slope analysis window N from 0.1s to 0.3s. The optimum window length
of 0.2s for beat tracking has been determined in Section 5.1.1 by measuring the correlation
between estimated onsets and impulse locations in the dataset of artificial signals BD1. As
can be seen from Table 5.2, this finding can be justified by the accuracies obtained from music
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signals as well. The shown accuracies have been computing using the spectral flux weighting
for the beat phase alignment for BT1 and without any spectral flux weighting for BT2, as it
was found optimal in Table 5.1. Regarding the way of summing the content in the various
frequency band, no improvement was observed when using a weighted summation as depicted in
(5.2). For that reason, all PS OSS have been obtained using a simple summation. A weighted
summation did not lead to significant changes neither in the beat period estimation nor in
the summation for the beat phase alignment in (5.4). This confirms the results obtained for
the onset detection evaluations in Chapter 3, where a simple summation has been proposed as
well.

Table 5.2: Beat tracking accuracies of PS/M-KLAP for varying analysis window length

PS/M-KLAP

BT1 BT2
0.1s 67.3/56.1 32.6/30.2
0.2s 67.5/56.7 70.8/50.8
0.3s 48.2/43.2 53.3/39.6

0%  

50%

100%

(a)

0%  

50%

100%

(b)

Figure 5.3: Acont values for BT1 in increasing order, (a): KLAP (mean accuracy: 77.6%), (b):
PS/M-KLAP (mean accuracy: 67.5%)

Let us now have a closer look at the type of errors that are encountered in the two beat
trackers KLAP and PS/M-KLAP for the two datasets. In Figures 5.3 and 5.4 the accuracies
Acont are depicted in increasing order for BT1 and BT2, respectively. As can be seen, especially
for BT2 there are a number of files for that the accuracy is very low. For that reason it was
decided to have a closer look at the nature of the beat tracking errors on both datasets for both
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Figure 5.4: Acont values for BT2 in increasing order, (a): KLAP (mean accuracy: 28.3%), (b):
PS/M-KLAP (mean accuracy: 70.8%)

beat trackers. On BT1, both beat trackers suffer from period errors and phase errors in almost
the same amount. A completely different picture was obtained for BT2. On this dataset,
almost only phase errors occur. This means that for both beat trackers, the beat period has
been estimated correctly in almost all cases. But especially the KLAP algorithm suffers from
putting the beat impulse trains to the off-beat, which means that it is characterized by 180◦

phase errors. These errors occur more rarely for PS/M-KLAP, where the errors are mostly
caused by the phase estimation being unstable in some part of the signal. Note that this type
of error is likely to be closely related to the type of music. As stated by Baud-Bovy in [6], at
least the most popular Cretan dance syrtos is characterized by many occurrences of syncopes,
i.e. stresses on the off-beat. As these stresses affect mainly amplitude changes in the signal,
the usage of phase slope as an input of a beat tracker appears to avoid such off-beat errors.

5.4 Conclusions

In this chapter the phase slope based method to detect onsets was evaluated in a beat tracking
framework. For this, a state-of-the-art approach has been adapted to the different character
of the input signal (goodness signals derived from phase slope instead of comb filter outputs).
It was shown that for a dataset of popular western music the proposed method is able to
achieve comparable results to a state-of-the-art approach. An observed decrease in accuracy
could be ascribed to problems in the beat tracker implementation. It was shown that for these
type of signals, which include a reasonable amount of percussive sounds, a weighting of the
phase slope signals with spectral flux is necessary to get rid of errors in the phase alignment
of the beat estimation. For a dataset of traditional Cretan dances, the proposed method was
clearly superior due to the better estimation of the beat phase. It appears that the off-beat
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times in these signals carry a larger amount of energy. This might be to some amount due
to the absence of percussive instruments, and appears to have a relation with the frequent
occurrence of syncopes in this kind of music. This result coincides with the observation of the
author that listeners in a concert audience tend to clap the off-beat especially for slow pieces.
The usage of phase slope was shown to solve this problem and it results in an applicable
beat tracker for this type of musical signal. This means that when facing problems in beat
tracking due to syncopes in the music signal, by using phase slope instead of magnitude derived
characteristics for beat tracking off-beat errors can be avoided. This is because syncopes cause
large magnitude changes on off-beats, while the phase slope without any amplitude weighting
is not sensitive to these changes.
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Chapter 6

Timbre Similarity

The goal in this chapter is to describe the timbre of music in a compact and salient way. Such
a description should cluster sounds that are similar regarding their timbre into regions that
can be discriminated using classifiers. We suggest to obtain these descriptors from a tempo-
ral/spectral description of the sound using a Non-negative matrix factorization (NMF). These
NMF features will be compared to the standard features for such a task, the Mel-frequency
Cepstral coefficients (MFCC), in two tasks. The first task will be the classification of a piece
of music into a specific genre, such as Rock or Pop. The second task is the recognition of the
lead instrument in a musical mixture signal. If the NMF features give us information about
the instruments that have been mixed together in the musical sound, they have to perform
better than standard MFCC in this task.

6.1 Matrix Factorization

Let’s assume a real signal to be stationary within a temporal window of length tfft (s). After
sampling the windowed signal at a frequency fs, its Discrete Fourier Transform (DFT) will
provide Nfft = tfftfs coefficients if no zero padding is used. Let x be an Nc dimensional
column vector containing the magnitudes of the Fourier transform of the signal for frequencies
up to the Nyquist Frequency, where Nc = Nfft/2 + 1. Assume that x has been produced by
linearly combined components as:

x = Wh =
d∑
i=1

wihi (6.1)

with W being an Nc × d matrix containing the description of the spectral content of the d
mixture components in its columns wi, and h being a d dimensional weighting vector. Then,
the problem of finding these components can be described in a Blind Source Separation [65]
context. We consider the value of d in the present problem to be smaller than the number of
the frequency bins, Nc, as we want to get a compact representation of the signal. Taking K ob-
servation vectors (x1, ...,xK) a matrix X ∈ RNc×K , containing the observations in its columns,
may be constructed. This matrix is usually referred to as spectrogram, and it describes the
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spectral content of the signal in a temporal range denoted by tT imbre in this thesis1. Setting
the number of mixture components to a value d � Nc we will usually not achieve equality
as in (6.1) because of the time varying spectral content of the initial components throughout
the spectrogram. From a mathematical point of view, every column of X would have to be
representable as a linear combination of the columns of W, which is unlikely to happen for a
non artificial signal and d� Nc. Thus (6.1) in matrix notation becomes

X ≈WH (6.2)

with the matrix H ∈ Rd×K containing the weighting vectors for time instances 1...K in its
columns. We can pursue this approximation task with a number of error functions and as-
sumptions on the variables.
One approach is to choose a statistical famework. In this framework H contains random vari-
ables (in Rd) in its columns that are statistically independent. Then, given X, we have to
search for a matrix W−1 that minimizes the mutual information between these independent
components. This approach is based on Independent Component analysis and has been pre-
sented as Independent Subspace Analysis (ISA) [24]. A necessary condition in this framework
is that the distributions of the d sources that are to be estimated remain stationary throughout
the length tT imbre of the spectrogram under consideration. It is worth to note that the values
for tT imbre range from 0.25s up to 10s, according to Casey [24].
Without considering a statistical framework the Non-negative Matrix Factorization (NMF)
minimizes an error function like

D(X||WH) =
∑
i,j

(
Xi,j log

Xi,j

[WH]i,j
−Xi,j + [WH]i,j

)
(6.3)

and constrains all the values in W,H and X to be non-negative [95].
For NMF and ISA, experiments considering the influence of the length of the input spectrogram
ttimbre and the number of components d on the Mean Squared Error (MSE)

MSE(X||WH) =
Nc∑
i

K∑
j

(Xi,j − [WH]i,j)
2/(NcK) (6.4)

of the approximation in (6.2) have been conducted on a small number of sound samples in the
author’s master’s thesis [69]. There, it was shown that constraining the number of observations
K causes X to span a vector subspace of RNc that can be spanned by a small number of d
columns of W. In terms of musical content, due to a shorter duration ttimbre less different
instrumental sounds will be present in the spectrogram, which causes its columns to span a
more compact subspace.
In this thesis, both ISA and NMF are evaluated on a set of music samples taken from a dataset
used by Li and Tzanetakis in [99]. The set consisted of twenty musical pieces of thirty sec-
onds length each, two pieces randomly chosen from each of the ten classes contained in the
dataset. The software for evaluation was taken from the MPEG-7 reference software [107].
This includes the fastICA algorithm [78] for the calculation of ICA. The reference software was

1The term timbre is used here since within this window the description of the spectral space of the signal
will be derived
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expanded by including an implementation of NMF without sparseness constraint as imple-
mented in Hoyer [77], that minimizes the cost function shown in (6.3). The choice of this cost
function has been motivated by Klabbers and Veldhuis [87], where it was found to be subjec-
tively superior to a squared error function in measuring spectral distances. This is assigned to
the property of (6.3) to emphasize differences in regions with high energy, representing there-
fore a weighted contrast function. The block diagram of the evaluation algorithm is shown in
Figure 6.1. The power spectrum is estimated through the DFT of the signal, computed on
a 40ms Hamming window with 50% overlap. The next step is a conversion from the linear
frequency abscissa to a logarithmic axis. Using eight bands per octave ranging from 65.5 Hz to
8 kHz results in Nbands = 56 coefficients for each DFT window. This conversion is following the
AudioSpectrumEnvelope descriptor (ASE) of the MPEG-7 standard. It enables a more com-
pact description of the signal, i.e. it reduces dimensionality from the number of coefficients Nc

on linear scale to Nbands . The choice of eight bands per octave has been motivated by the equal
tempered musical system of western music, in which the most common tonal scales contain
seven steps from the fundamental tone until its octave. Having computed the ASE vectors for
a whole sample, a spectrogram representation is then obtained. This is segmented into smaller
non-overlapping sub-spectrograms that represent K ASE descriptors, a step denoted as timbre
windowing in Figure 6.1. Note that the number of observation vectors, K, defines the length
of the timbre window (ttimbre). Varying the length of the timbre window ttimbre as well as the
number of components d, while fixing the number of bands, Nbands = 56, we may determine
the MSE of the factorizations produced by ISA and NMF. The samples of 30 seconds length

Figure 6.1: Computation of spectral bases in the MPEG-7 reference

were splitted into NB = [1, 2, 4, 8, 12, 16, 20, 30] segments of equal size. Spectrograms computed
from these partitions were factorized with d = [3, .., 30] components. For example, for NB = 4
segments, each segment is 7.5 seconds long (segments were obtained without overlap), resulting
in K = 7500ms/20ms = 375, where a frame rate of 20ms is assumed. For a given choice of
splitting (i.e. NB = 4) the corresponding MSE was computed as the sum of MSE from all
segments. The number of components as well as the length of the input spectrogram influ-
ences the quality of the approximation provided by the two considered factorization methods
(NMF and ISA). Increasing the number of components improved the approximation in both
methods. This is, because with d increasing, the columns of W are more likely to construct a
basis for the subspace of RNbands spanned by the columns of X. Two example error functions
averaged over the parameter d are depicted in Figure 6.2, showing that NMF is superior to
ISA in the mean squared error sense for all numbers of partitions. This was consistently the
case for all the songs in the set of music samples. Additionally, it can be seen that for shorter
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Figure 6.2: Example of error curves of NMF and ISA for two pieces of music. Approximation
by NMF has generally a smaller error than approximation by ISA

spectrograms (i.e. more partitions) the error gets smaller for NMF while it increases for ISA.
Indeed for shorter timbre windows the value of K gets closer to d and in the extreme case of
K = d, NMF will reach a perfect result by setting W = X while H being the K ×K identity
matrix. On the other hand, the updates in fastICA use sample means in order to estimate
expectation values, and because of this a short timbre window leads to worse approximations
(see [78] for a description of the algorithm).
We conclude that computing NMF on short spectrograms leads to more adequate spectral rep-
resentations for the signals under consideration. The optimal length and number of components
in the classification task will be determined in Section 6.3.4.

6.2 System Description

6.2.1 Feature Calculation

Figure 6.3: Calculation of the features used for the statistical model of musical genres

The features describing the spectral space are calculated as shown in Figure 6.3. The
preprocessing steps avoid the influence of recording conditions which are not significant for
classification. They include removal of mean values and normalization to an average sound
pressure level of LSPL = 96dB. The next step is the computation of the AudioSpectrumEnve-
lope descriptors (ASE), as described in Section 6.1 above. Then the timbre window is applied
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to segment the spectrogram of the audio signal into non-overlapping sub-spectrograms of size
Nbands×K, with Nbands = 56 and K represents the number of descriptors per sub-spectrogram.
Each sub-spectrogram is then factorized using NMF providing a spectral base consisting of d
vectors in the columns of matrix W in (6.2), with d� K. The next step transforms the energy
values of the spectral bases into decibel scale, which has been shown to be crucial for an audio
description task [101]. The final step of the feature calculation is a Discrete Cosine Transform
(DCT) on the dB -scale spectral base vectors; the size of the used DCT matrix is 20 × 56,

containing the first 20 cosine bases
√

2
56

cos[ (2j+1)iπ
2·56

], j = 0...55, i = 1...20, in its rows. This

helps to reduce the dimensionality of the space from 56 to 20. The resulting 20 dimensional
vectors v1, ...,vd represent the features of the presented system, and describe the spectral base
of a sub-spectrogram in a compact way. The spectral space of the audio signal is described
by the feature vectors computed from all its sub-spectrograms. Since the length of the timbre
window is fixed, the number of sub-spectrograms computed from every song depends on its
duration.

Psychoacoustic Model

Instead of using a logarithmic frequency axis in the log F axis box of Figure 6.1 the introduction
of a psychoacoustic model was evaluated as well. It consists of three elements:

1. Outer ear model: At each time instance a weighting is applied to the spectrum that
adapts the calculated coefficients to the actually perceived loudness of the signal. The function
presented by Terhardt [147] has been used:

LTH = {3.64f−0.8 − 6.5 exp
[−0.6(f − 3.3)2

]
+ 10−3f4}dB (6.5)

where LTH represents the sound pressure level at hearing threshold and f denotes frequencies
in kHz. It has the effect of emphasizing frequencies around 3kHz and damping low frequencies,
as depicted in Figure 6.4.

Figure 6.4: Loudness function

2. Bark scale: The linear frequency scale is converted to the Bark scale or critical band
rate scale. This scale describes best the critical bandwidths of the human ear that lead to
spectral masking when two frequencies are close enough to stimulate the same region of the
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basilar membrane. For an exact definition of this terminology see Zwicker and Fastl [167]. The
critical bandwidths remain constant for frequencies below 500Hz and grow then in a non linear
fashion, thus being different from the logarithmic frequency axis used in the experimental setups
above. This leads to a conversion from frequencies in kHz to Bark which can be calculated as

z/Bark = 13 arctan(0.76f) + 3.5 arctan(f/7.5)2 (6.6)

Using (6.6), the lower and upper frequency limits of critical bands smaller half the sampling
frequency have been calculated. Because the sampling frequency of all used data is 16kHz,
the number of critical bands to be considered is 22. The values of the power spectrum within
the frequency limits of the i-th critical band, zi, have been summed up for all bands to get the
representation on the Bark scale.

3. Inner ear model: The model estimates the spread of masking between the critical
bands caused by the structure of the ear’s basilar membrane. The basilar membrane spreading
function used to model the influence of the j-th critical band on the i-th band was derived by
Schroeder in [114]:

10 log10B(zi, zj) = 15.81 + 7.5((zi − zj) + 0.474)

−17.5(1 + ((zi − zj) + 0.474)2)1/2dB (6.7)

A function for a specific Bark band is steeper to the side of low frequencies which indicates
that spectral masking is more present towards higher frequencies. For each of the 56 bands a
function was computed using (6.7), resulting in a 22× 22 matrix that was multiplied with the
power spectrum on Bark scale. For all steps of the psychoacoustic model the implementation
of Pampalk [120] has been used.
If the NMF based features used in this chapter have some connection to the characteristics
that are used by humans to categorize sounds, a further improvement by this alternative
preprocessing procedure may be expected.

6.2.2 Statistical Model and Classification

In this thesis, the sounds described using the method detailed in Section 6.2.1 belong to a
specific class. This class is either related to its musical genre or its instrumental content. In
order to construct the models for these classes we calculate the features for all audio signals
of a dataset, i.e. the features v1, ...,vd are computed for each sub-spectrogram, and then the
features are stored for each class separately regardless their temporal order in the samples. This
is referred to as a bag of frames model in Mandel and Ellis [106]. Then, a Gaussian Mixture
Model (GMM), θi, for each class is built (i.e., with i = 1...G, where G denotes the number of
genres or instrument classes), using a standard Expectation Maximization (EM) algorithm [9].
The EM algorithm is initialized by a deterministic procedure based on the Gaussian means
algorithm presented in Hamerly and Elkan [64]. A new song is assigned to a class by applying
a maximum likelihood criterion: For this, for all S feature vectors v1, ...,vS collected from
the sub-spectrograms of a test song the likelihoods p(vj|θi), with i = 1...G and j = 1...S, are
computed. Summing up the log-likelihood values for each class, the song is assigned to the
class γ that has the maximum score:

γ = argmax
i

S∑
j=1

log p(vj|θi) (6.8)
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The principle of the model training and classification is depicted in Figure 6.5. Our classifi-
cation method differs from Mandel and Ellis [106] as we do not build a statistical model for
the song to classify. In this way detailed information contained in the features is preserved.
Design parameters of the GMM are provided in Section 6.3.4.

Figure 6.5: Model estimation and classification of data

6.3 Performance Evaluation

The performance of the presented system for timbre similarity is evaluated in two different
ways. At first, its classification accuracy is compared with the accuracy achieved by two
alternative features sets, one using MFCC, and the other using randomly chosen spectral
bases. Furthermore, a stability measure is used for the evaluation as suggested in the author’s
master’s thesis [69]. This measure is based on the distances between the statistical models
built on the datasets.

6.3.1 Two alternative feature sets

In order to evaluate the performance of the proposed classification approach based on NMF
it is necessary to compare with some kind of standard procedures used in many recent pub-
lications. For this purpose a baseline system was implemented that is as close as possible to
our classification system except of the feature calculation approach. The form of the baseline
system was motivated by Pachet and Aucouturier [119] which presents a frequently applied
system for capturing the vertical structure of music. The model estimation and classification
follow exactly the procedure depicted in Figure 6.5. However, in the baseline system MFCC
are used instead of the NMF based features. Note that in contrast to [106] and [119] no model
is constructed for a song to be classified. Every feature vector is considered in the same ML-
classification approach as described for NMF in Section 6.2.2.
The second system to compare with differs from the NMF system only in the choice of spectral
bases. These are simply d randomly chosen columns from each sub-spectrogram, which con-
tains k columns as described in Section 6.2.1. Comparing accuracies between this system, that
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will be referred to as random base system, and NMF based system should clarify the impact
of the matrix factorization in the whole classification concept.

6.3.2 A Measure of Stability

In addition to comparing the performance of the proposed classification system with those of
baseline and random base system, in the author’s master’s thesis [69] a method to quantify
the quality of the classifiers was suggested, which is based on a measure that estimates their
sensitivity (or stability).
In order to judge the stability of the trained GMM, a method based on Kullback Leibler di-
vergence (KLD) was implemented. The Kullback Leibler divergence between two distributions
p1 and p2 is given by

KL(p1||p2) =

∫
p1(x) log

p1(x)

p2(x)
dx (6.9)

Since there is no closed form expression for KLD in a GMM context, a possible way to get
a distance measure in this case is by generating M samples x1, ..., xM from p1(x) and then
approximate KLD, by [106]:

KL(p1||p2) ≈ KL(p1||p2) =
1

M

M∑
t=1

log
p1(xt)

p2(xt)
(6.10)

Based on (6.10) a symmetric distance measure is constructed as:

DKL(p1, p2) = KL(p1||p2) +KL(p2||p1) (6.11)

Let’s assume that our dataset consists of G classes. Performing an n-fold cross validation, we
will get a set of n × G GMMs described by their parameters θji , 1 ≤ i ≤ n, 1 ≤ j ≤ G. For
convenience, this set is shown as an n × G matrix in Figure 6.6. We can now determine the
distances between the GMMs of different classes using (6.11) for each of the n cross validation
runs separately. For example for the first run we would consider the mixture models marked
by the horizontal ellipse. The minimum of these values throughout the cross validation runs
gives us the least distance, Dinter, between two different classes. Then the distances within
the classes throughout the different cross validation runs are computed, for example for the
first class the mixture models marked by the vertical ellipse would be considered. The biggest
value along all classes, Dintra, gives us a measure of how much the model differs throughout
the cross validation due to diversity of the dataset. We can now define a condition measure
for a specific feature set, computed by:

Condθ =
Dinter

Dintra

(6.12)

Obviously values for Condθ smaller than 1 for a specific feature set imply that a classification
with this feature set might be unreliable. This is because there is a high variability between
models built from a different set of data for a specific class, while at the same time there is a
relatively small distance between the models for different classes. Note that using minimum
and maximum values for Dinter and Dintra is a rather pessimistic approach. It penalizes a
single outlier in the distances. For the intra class distance, this outlier could be the result of
a single song that differed from the others in the training set and caused the model to vary
strongly once it was moved from the training to the test set.
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Figure 6.6: Resulting GMMs from an n-fold cross validation

6.3.3 Datasets

For the experiments three different datasets have been used. All the audio files of the datasets
have been converted to monaural wave files at a sampling frequency of 16000 Hz quantized
with 16 bits.
The first two datasets have been widely used for the evaluation of musical genre classification
systems in Western music. The first dataset (TS1) consists of ten classes2, each containing
100 subsections of musical pieces of 30 seconds length. The dataset was collected by George
Tzanetakis [99] and has been used for performance evaluation also by other researchers [15].
The second dataset (TS2) was downloaded from the website of the ISMIR contest in 20043,
where it served as training set for the genre classification contest. The songs had been selected
from the magnatune4 collection. TS2 consists of six classes5. It contains 729 songs that are
not equally distributed among the classes as they are in TS1. Also the pieces are full musical
pieces and not snapshots as in TS1; therefore the lengths of the pieces in TS2 differ.
The third dataset, TS3, contains samples of traditional music from different regions of Greece
and Turkey that vary regarding their instrumental content. Thus, in contrast to TS1 and TS2,
the proposed timbre similarity estimation will be evaluated not in the context of musical genre
classification, but rather in the context of instrumental content recognition. There are four
classes in TS3, all containing polyphonic sounds as for TS1 and TS2. For the samples in the first
class the main melody is played by a clarinet, in the second class by Cretan Lyra, in the third
class by the Turkish wind instrument ney, and in the fourth class by a violin. While classes two
and three contain samples from specific regions (Crete and Turkey, respectively), the other two
classes contain samples that are both from Turkish and Greek traditional music. Furthermore
in some of the clarinet samples in class 1 also violin is contained as accompaniment. Big

2Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae, Rock
3http://ismir2004.ismir.net/genre contest/index.htm
4www.magnatune.com
5Classical, Electronic, Jazz, Metal/Punk, Rock/Pop, World
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effort has been made to avoid containing the same instrument player several times or using
samples from the same album, which might cause album or artist effects. For this reason, TS3
is rather small with 20 samples per class. In all samples parts containing singing voice have
been removed by hand as well as instrumental solos by other instruments.
As proposed for the MIREX 2005 evaluation6, a 5-fold cross validation has been used. The
whole dataset has been used, while stratified cross validation has not been applied. All shown
classification accuracies are results of cross validations. For TS3, due to the small size of the
dataset, five repetitions of 5-fold cross validations have been performed, with each of the cross
validations using randomly determined train and test partitions.

6.3.4 System Parameters

For classification purposes, the optimum values for the temporal length, tT imbre, of the timbre
window and the number, d, of spectral base vectors to compute, should be defined. Values for
tT imbre from 0.25 seconds to 3 seconds have been tested. A value for d is computed by varying
the values of ratio φ defined as:

φ ≤
∑d

j=1 σj∑Nbands

i=1 σi
(6.13)

from 0.9 to 0.6, where σi denotes the i-th singular value of the Singular Value Decomposition
(SVD) of the spectrogram to be factorized. Therefore, d provides an estimation of the minimum
number of components necessary for preserving the amount of variance in the spectral basis
as defined by φ.
These two system parameters have been defined using a subset of four classes (classical, disco,
metal, rock) from the first dataset. A subset was chosen for computational efficiency and in
order to avoid overfitting the system parameters to the whole dataset. The subset contains two
classes that revealed to be easily classified in preliminary experiments (classic and metal), as
well as two problematic classes (rock and disco). A mixture of Gaussians with five components
using full covariance matrices has been built for each genre (see Section 6.2.2 for details).
Figure 6.7 depicts the accuracies depending on φ and d. The optimum length of the timbre
window is half a second while the rising accuracy for reduced values of φ implies that further
decrease may provide even better results. However, this often leads to a value for d equal to
one, especially when tT imbre takes a small values. Indeed, in this case one eigenvector of the
sample covariance matrix XTX describes a sufficient amount of the data variance (according
to (6.13)). Setting d to one leads to numerical problems in the EM algorithm because some
covariance matrices are close to be singular. From this we conclude that we have to assure
that d > 1, taking therefore into account also directions of additional eigenvectors. We did
experiments on the same dataset fixing tT imbre to 0.5s and set d = [2, 3, 4]. We found that
the classification accuracies were best for d = 3. This result is supported by considering the
values listed in Table 6.1, which are the mean values of d determined using (6.13) to achieve
the results displayed in Figure 6.7. In Table 6.1, the value of d corresponding to the best
classification accuracy score (φ = 0.6, tT imbre=0.5s) in Figure 6.7 is close to 3. Therefore, in
the following tT imbre was set to 0.5s and d was set to 3. In this way, a meaningful representation
of the signal space is achieved while the stability of the EM algorithm is assured.

6http://www.music-ir.org/mirex2005/index.php/Audio Genre Classification
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Figure 6.7: Classification accuracies for varying timbre window length and value of φ

Table 6.1: Mean Values for the number of spectral base vectors

φ
0.9 0.8 0.7 0.6

tT imbre(s)

0.25 5.38 3.60 2.62 1.96

0.5 8.01 5.06 3.55 2.60

1 11.30 6.95 4.76 3.41

3 15.92 9.90 6.71 3.77

6.3.5 Classification results

Table 6.2 shows the classification accuracies on the three datasets in percentages. The rows
marked with NMF contain results achieved with the system presented in Sections 6.2.1 and
6.2.2, while rows marked with MFCC contain results achieved with the baseline system as
outlined in Section 6.3.1. The values in parentheses denote the number of Gaussians used in
the mixture models. Full covariance matrices have been used for all experiments. We observed
covariance matrices to have strong diagonals but we estimate full matrices in order to model
possible covariances between the variables. For both feature sets (MFCC and NMF) the num-
ber of Gaussians had been varied in steps of five from 5 to 40. In the following Tables results
that do not provide additional information have been left out to improve comprehensibility of
the representation (i.e. for instance MFCC with 15 Gaussian components). For the fields with
missing values for TS1 and TS3 training was not possible, because of the high compression
performed by NMF on the training dataset. Using the bigger dataset TS2, it was possible
to increase the number of components without serious estimation problems. In this case, the
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influence of the number of Gaussians on the classification accuracy may be observed.
The results for musical genre recognition show that our system outperforms the baseline sys-

Table 6.2: Classification Accuracies (%) after 5-fold cross validation

TS1 TS2 TS3

NMF(5) 71.7 75.7 76.5

NMF(10) 74.0 83.5 79.3

NMF(15) 73.9 77.7 77.5

NMF(20) 73.2 78.6 79.3

NMF(30) - 78.5 -

NMF(40) - 78.4 -

MFCC(10) 70.3 60.0 80.5

MFCC(20) 71.6 61.1 78.8

MFCC(30) 73.0 67.7 81.3

MFCC(40) 72.3 67.3 78.8

tem on both datasets TS1 and TS2. However, on TS1 the NMF based system outperforms the
baseline system slightly, and the confidence interval is 2.7%, thus larger than the performance
advance. But only 10 Gaussian components are necessary to reach optimum performance for
the presented system, while the baseline performs best using 30 mixture components. For
TS2 the performance superiority of the NMF system is clear. Also here, the proposed sys-
tem achieves best results using 10 components while for the baseline system (MFCC) this is
achieved using 30 components. The decline of the classification accuracy with the increased
number of Gaussians may be attributed to overfitting. The dependency of the classification
accuracy on the number of Gaussians for MFCC agrees with the findings in [119]. There, for
20 MFCC the best performance of the system was reached with 50 components, with slightly
decreasing results when exceeding this value. Probably the lower number of components used
in the baseline system for achieving the highest score can be assigned to the usage of full co-
variance matrices that capture correlations not extincted by the orthogonal basis of the DCT
matrix used in the MFCC calculation. For the NMF features the optimum number of Gaus-
sians is 10. This shows that more complex models do not capture significant structure in the
data anymore. Thus, the usage of NMF simplified the densities of the data while keeping the
significant differences between the classes. The results obtained for the instrumental content
recognition on TS3 differ from the results obtained for the genre recognition datasets. From
Table 6.2, it can be observed that there is no statistically significant difference between the
accuracies achieved using GMM based on NMF or MFCC. Also, on this data a number of
Gaussian components larger than 10 does not lead to further improvement for MFCC. Thus,
it has to be concluded that there is no clear advantage for the usage of NMF features on this
dataset. It is worth to point out that in the experiment a different way to train the models used
for the instrument recognition has been tried as well: models have been trained on samples
that contain only the lead instrument without accompaniment, while the test files contain the
complex mixtures in TS3. However, also these experiments did not show any structures in the
NMF features that could indicate that some of the spectral bases computed from the mixture
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signals are strongly related to particular instrument sounds contained in the mixture.
The accuracies of the random base system have been extremely low for all used number of
Gaussians. When comparing to the best performing systems for TS1 and TS2, i.e. NMF(10),
the random base system with ten Gaussian components achieved accuracies of 20.2% (com-
pared to 74.0%) and 22.8% (compared to 83.5%) on TS1 and TS2, respectively. This proves
the importance of using of NMF in the computation of the spectral bases.
It is worth to note that the NMF system is trained very fast. The data reduction performed
by the matrix factorization reduces a spectrogram of half a second length (25 DFT-coefficient
vectors using a frame rate of 20ms) to three spectral base vectors. This yields a data com-
pression of 88%. This is advantageous regarding training times: training a 20 component
model on the first dataset took about twenty times longer using the baseline system (MFCC)
instead of the NMF based system. The computation of the features for NMF took longer than
computing MFCC because of the rescaled gradient descent algorithm used in NMF (about
2.3 times longer). However, summing up times for feature calculation and training, the NMF
based system is still about 6 times faster than the MFCC based system. This difference in
time grows non linearly with the number of Gaussians.

Even though the system suggested in this chapter captures only information about the ver-
tical characteristics of music it also performs well in comparison with approaches incorporating
more versatile feature sets that partly include both vertical and horizontal directions. On TS1,
Li and Tzanetakis [99] report an accuracy of 71% using a feature set containing MFCC and
FFT derived characteristics as well as information about beat and pitch, and Linear Discrimi-
nant Analysis as classifier. The first author of [99] presents a score of 79.5% using DWCH7 as
best performing feature and SVM as a classifier, while using GMM with three Gaussian com-
ponents an accuracy of 63.5% is reported [98]. Lidy and colleagues [101] report an accuracy of
74.9% on TS1, using an SVM classifier on features describing spectral and temporal structure
of a song. Pampalk and colleagues presented an accuracy on TS2 of 81% using a combination
of spectral descriptors and a descriptor for modulations present in the signal, which are referred
to as fluctuation patterns [122]. Using the training and development set of the ISMIR 2004
Audio description contest as a dataset, the system presented in [101] was reported to achieve
an accuracy of 80.3%.
For sound classification approaches that are based on spectral projections and HMM, as for
example [86] and [26] , no results on the presented datasets are known to the authors. Nev-
ertheless, the approach presented in [86] has been implemented by the authors and tested on
TS1, resulting in an accuracy of 50% in a five-fold cross validation. This indicates the superi-
ority of the approach presented in this chapter to the mentioned projection based approaches,
at least in the context of musical genre classification.
Another important conclusion can be drawn by comparing the results of the baseline system
on TS2 with the results of [122], where MFCC have been used as an alternative feature set
as well. The baseline system presented in this work does not build a statistical model of a
song, but considers each MFCC vector separately by calculating its likelihood given the class
models. In [122] songs have been modeled by Gaussians. This leads to an improvement in the
classification accuracy of about 17% compared to our baseline system. Thus, it seems that

7Daubechies Wavelet Coefficient Histogram
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by modeling the feature distribution for a song using GMM, results are improved, a finding
confirmed in Mandel and Ellis [106] in an artist identification task. Based on the above obser-
vations it would be interesting to check if such a modeling approach will be also beneficial for
the NMF based system, although such an approach is computationally quite expensive.
Confusion matrices using NMF based features are provided in Tables 6.3 and 6.4 for TS1 and
TS2, respectively, using 10 Gaussians (NMF(10)). The columns contain the actual genres of
the test data and rows contain the predicted classification. Apart from illustrating the above
referred results and observations, Table 6.4 can be contrasted with the matrices shown in the
ISMIR 2004 genre classification contest8. In most cases misclassifications have musical sense.
For example, the genre Rock in TS1 was confused most of the time with Country, while a Disco
track is quite possible to be classified as a Pop music piece. In TS2 the Rock/Pop genre was
mostly misclassified as Metal/Punk. Genres which are assumed to be very different, like Metal
and Classic, were never confused. The worst classification performance for the proposed system
was: Rock in TS1 (57%, NMF(10)) and World in TS2 (63.3 %, NMF(10)). It is worth to note
that this behavior in performance is similar to other systems as well (see ISMIR genre contest
results). The low performance for these genres may be assigned to their large intra-variance
of music style (at least for the analyzed data).
For TS3, the confusion matrices for NMF(10) and MFCC(30) are shown in Table 6.5. The mean
values from the five cross validation repetitions are shown. Both NMF and MFCC features are
not only characterized by similar accuracies, but also the confusion between the instrument
classes is similar. As it was expected considering the character of the classes as outlined in
Section 6.3.3, the instrument classes violin and clarinet are harder to classify due to their wide
variation in musical style. On the other hand, the most compact class in terms of musical
style (lyra) is classified almost without errors. Thus, the conclusion can be drawn that both
MFCC and NMF features are well capable of classifying signals according to their instrumental
content. However, valuable insight can only be gained if a larger dataset is available.

Table 6.3: Confusion matrix for dataset 1, using NMF based features (NMF(10))

Bl Cl Co Di Hi Ja Me Po Re Ro

Bl 68 1 3 0 1 4 0 1 8 3

Cl 0 94 0 0 0 4 0 0 0 0

Co 12 1 73 6 0 2 1 7 5 16

Di 3 0 10 69 8 5 4 6 2 11

Hi 0 0 0 6 69 2 1 2 12 2

Ja 1 2 0 0 1 79 0 1 1 0

Me 2 0 2 1 2 2 83 0 0 5

Po 1 0 4 10 3 1 0 79 2 2

Re 3 0 0 2 13 1 0 2 69 4

Ro 10 2 8 6 3 0 11 2 1 57

8http://ismir2004.ismir.net/genre contest/results.htm
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Table 6.4: Confusion matrix for dataset 2, using NMF based features (NMF(10))

cl el ja mp rp wo

cl 300 1 0 0 0 10

el 0 103 0 1 8 24

ja 0 0 25 0 0 0

mp 1 0 0 32 16 2

rp 6 7 0 10 69 8

wo 13 4 0 2 7 76

Table 6.5: Confusion matrices for dataset 3, using NMF(10) and MFCC(30)

NMF(10) MFCC(30)

clar lyra ney viol clar lyra ney viol

clar 11.2 0 2.2 4.2 clar 13.0 1.2 2.0 4.6

lyra 1.0 20.0 0 0.2 lyra 1.2 18.8 0.0 0.0

ney 5.0 0.0 17.0 0.4 ney 3.6 0.0 18.0 0.2

viol 2.8 0.0 0.8 15.2 viol 2.6 0.0 0.0 15.2

Psychoacoustic Model

The psychoacoustic processing described in Section 6.2.1 was included into the feature calcula-
tion as depicted in Figure 6.1 in the place of the simple log frequency conversion rule. All the
other components of the system have been left as before and the results of the classification
have been compared with the best performing NMF systems, i.e. NMF(10) in all cases. Clas-
sification results are shown in the first row of Table 6.6. For convenience, the best scores from
Table 6.2 for log frequency rule are repeated in the third row. For TS1 and TS2, the introduc-
tion of the psychoacoustic preprocessing deteriorated the performance of the system noticeably.
Experiments have been conducted in order to evaluate the influence of the individual steps of
the preprocessing, i.e. the outer ear model, the Bark scale and the inner ear model. On TS1
using only Bark scale without inner/outer ear models performed best. On TS2, Bark scale used
together with the outer ear model slightly outperformed the complete psychoacoustic model.
The accuracies of these two settings are denoted in the second row of Table 6.6. For TS3, the
usage of the full psychoacoustic model lead to an improvement compared to the usage of the
simple log frequency conversion. However, in order to confirm the improvement of about 5%
as statistically significant, the dataset would have to contain at least 200 samples, which is
not possible to achieve with the music collection available to the author. Thus, it has to be
concluded that neither a partial nor complete usage of the psychoacoustic preprocessing leads
to significantly improved performance. If the psychoacoustic model efficiently describes the
perception system, we would expect the classification results to be better than in the case of
using the simple log frequency conversion rule. Therefore, either the model does not describe
the perception process efficiently, or the features as input to the system have nothing to do with
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the cues used by humans for classifying a musical piece. Note that in Lidy and Rauber [101]
the influence of the particular parts of psychacoustic preprocessing on the accuracy in a genre
classification task has been analyzed. The result is the outer ear model being a crucial part
of the preprocessing, which is contradictory to our results. As the psychoacoustic model used
in Lidy and Rauber [101] is similar with the one used in this thesis, a reason for the bad per-
formance of the psychoacoustic model could be the combination of this specific preprocessing
with NMF. In any case, the results show that the usage of psychoacoustic models is not a
guaranty for a performance improvement, and it has to be evaluated for the task and data
representation at hand.

Table 6.6: Performance with and without a psychoacoustic model (%), NMF(10)

TS1 TS2 TS3

Psychoacoustic Model 68.1 72.1 84.3

Best Psychoacoustic 72.8 77.1 84.3

Log frequency scale 74.0 83.5 79.3

6.3.6 Stability Measures

As described in Section 6.3.2, the stability of a given GMM based classifier is estimated based
on distances between the models for the particular classes according to (6.12). Table 6.7 shows
these condition numbers for all different configurations that had been depicted in Table 6.2.
For the first two datasets, the condition numbers are always bigger for the proposed NMF
based model than for the MFCC based model. Only for 5 components the NMF based features
have a condition number less than 1. This can be attributed to the existence of components
with large variance. Moreover, with more than ten components, the condition numbers for
the NMF features are consistently bigger than one. For the baseline system all the condition
numbers are smaller than one on the first two datasets. This indicates that for the NMF
based features the smallest inter class distance is always bigger than the biggest intra class
distance; this is not always the case for MFCC. This provides a further proof of the superiority
of the proposed feature set compared to MFCC. Only for the very small data set TS3 the
condition numbers for MFCC are larger than one. This indicates that this dataset results in
relatively compact and well separated models for each class, independent of the feature that
is applied. It has to be discovered how increasing the number of samples per class and the
number of instrument classes will affect the condition measure and the accuracies achieved.
Only then a conclusion can be drawn, if either MFCC or NMF are superior for the task of
musical instrument recognition.
As an example, we show a graphical representation of the inter class distances for NMF(10)

model on TS1 in Figure 6.8. The mean values of the inter class distances from the 5-fold cross
validations have been calculated; dark areas indicate a low distances and light areas indicate
higher distances. It is evident that there is a high correlation between the confusion matrix in
Table 6.3 and the distances depicted in Figure 6.8 (computed using (6.11)). Similar correlations
can be observed for the other two datasets as well.
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Table 6.7: Condition Numbers

Dataset 1 Dataset 2 Dataset 3

NMF(5) 0.85 0.69 1.62

NMF(10) 1.33 1.27 1.79

NMF(15) 1.62 1.29 1.78

NMF(20) 1.53 1.37 1.93

NMF(30) - 1.20 -

NMF(40) - 1.15 -

MFCC(10) 0.88 0.56 1.92

MFCC(20) 0.86 0.55 2.12

MFCC(30) 0.89 0.64 2.02

MFCC(40) 0.92 0.52 2.15

Note that for the NMF based features on the larger datasets TS1 and TS2 there is also a

Figure 6.8: Inter class distance matrix for NMF(10) on TS1

high correlation between the condition numbers in Table 6.7 and the classification accuracies
in Table 6.2: The condition numbers of the NMF based system rise until a certain number
of Gaussians that is bigger than the optimal in the classification accuracy sense (15 instead
of 10 for TS1, 20 instead of 10 for TS2, compare with Table 6.2). Beyond this maximum the
condition numbers decrease. A similar pattern may be observed for the classification score in
Table 6.2. However, this structure is not clear for the MFCC based system.
Taking a detailed look at all the measured inter and intra class distances reveals a more
informative insight into the different characteristics of the feature space modeling. Sorting
all the intra class distances in increasing order gives the plots shown in Figure 6.9 for TS1,
in Figure 6.10 for TS2 and in Figure 6.11 for TS3. The total number of computed distances
in Figures 6.9 and 6.10 is given by C n(n−1)

2
where n = 5 is the number of cross validations

and C is the number of classes (C = 10 for TS1 and C = 6 for TS2). For Figure 6.11 this
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number has to be multiplied by 5, because the cross-validation has been repeated 5 times.
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Figure 6.9: Sorted intra class distances for TS1, NMF: solid line, MFCC: dotted line
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Figure 6.10: Sorted intra class distances for TS2, NMF: solid line, MFCC: dotted line

As a common difference between the two feature sets we can recognize that the intra class
distances between the NMF based models are more evenly distributed. This is indicated by a
less steep gradient of the corresponding curves in Figures 6.9 to 6.11. In these figures we show
the intra class distances for the number of components that provided the best classification
score for both features; 30 for MFCC and 10 for NMF based features. A similar behavior for
both features has been observed for other numbers of components. However, on TS1 and TS2,
for 5 components in the case of NMF-based features the steepness of the corresponding curve
was high, which caused the condition number to be smaller than one.
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Figure 6.11: Sorted intra class distances for TS3, NMF: solid line, MFCC: dotted line

6.4 Conclusion

A feature set based on NMF of the spectrogram of a music signal has been proposed for the
description of the timbre of music. It has been evaluated for the task of automatic musical genre
classification and automatic instrumental content classification. Extended experiments on two
widely used datasets and a newly presented dataset showed the superiority of the proposed
features compared to the standard feature set of MFCC in the task of genre recognition, while
for musical instrument recognition both approaches perform equally well. By using Kullback
Leibler based distance measures, we were able to connect the superiority of the NMF based
features in the classification task with more uniform, compared to the MFCC case, intra class
distances. In addition the proposed feature extraction algorithm has the advantage of low
training times of the mixture models due to the data compression and the lower number of
Gaussians necessary to reach the optimum classification accuracy. Tests with a psychoacoustic
preprocessing did not improve the classification accuracy. It should be evaluated in future
work if the different conclusions for the instrument recognition task change when the size of
the dataset is increased.
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Chapter 7

Morphological Similarity: Integration

In this chapter, a preview is given for the integration of the system elements shown in Figure
1.1 to a system for morphological analysis of traditional music. Let us shortly sum up again
what has been said in Chapter 1 about the morphology of the music under consideration. The
traditional music of Greece often follows the logic of parataxis, that is it made up of small
melodic phrases that are stringed together in a way that the musician considers beautiful. As
mentioned in Chapter 1, these phrases appear in more or less the same form in different pieces.
Thus, it would be interesting and helpful for the understanding of this music to automatically
discover phrases that are similar. This is particularly interesting in the case when the amount
of samples is large and, as it is usually the case for traditional music, when there is no tran-
scription. By automatically discovering this similarity one could locate similar phrases from
a large collection without the necessity of first transcribing the melodies into a score. Also
music from different regions could be explored in the context of a comparative musicological
study. An integration of rhythmic and melodic similarity for such a task is meaningful: It has
been repeatedly confirmed by local musicians, that not only the melody is of importance for
recognizing a specific dance, but also the way the instrument player puts emphasis on partic-
ular notes of the melody. On the other hand, the performed dance music classification might
be improved by including melodic characteristics as well, because some of the dances (e.g.
Pentozalis and Sousta) traditionally differ in the tonal extension of their melodic phrases.

7.1 Dataset

For the evaluation of a computational morphological analysis system a small dataset was
compiled that is described in further detail in Appendix A.3.4. It contains 40 polyphonic
samples of the Cretan dance Sousta, with the instrumentation being Cretan lyra and Cretan
lute and will be referred to as MS1 in the following. For each of the 40 samples there exists a
“partner” within the dataset that has been found to contain the same motif in the main melody
according to an analysis by an expert. Thus the dataset contains a set of 20 morphologically
related pairs that have been found in different recordings by different artists. For that reason,
even though they share the same motif, they differ in terms of interpretation.
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7.2 Evaluation methods

Two different tasks can be performed: First, only the 40 short samples are used to compute
their mutual similarity regarding melodic and rhythmic content. The quality of the obtained
similarity measure can be evaluated using the Mean Reciprocal Rank (MRR)

MRR =
1

|Q|
Q∑
i=1

1

ranki
(7.1)

where Q is the number of queries. For our data set this means that each sample is used as a
query once, i.e. Q = 40. If e.g. the correct partner is found on place 3 of the most similar
samples, the reciprocal rank is 1

3
. This means that the closer the MRR is to the value 1, the

better the similarity measurement.
Another test is using a sample from MS1 as a query and computing similarities for the whole
duration of the piece that contains its partner motif at some time instance. If this similarity
measure shows a peak at the position of the true partner, the goal of locating it in a continuous
piece is achieved.

For the computation of similarity a baseline system that regards melodic content only will
be used. This system was presented in Ellis and Poliner [46], and uses beat synchronous
chroma features to describe the melodic content. This system was proposed for the detection
of coversongs in western pop music, and it will serve as a starting point for the studies of
detecting morphological similarity in traditional music. The first computational step in this
approach is a beat tracking that uses a spectral flux like OSS as an input, and derives the beat
time instances using dynamic programming. Then, for each beat time a 12-dimensional chroma
feature is computed. These chroma features record the intensity associated with each of the
12 semi-tones of the well-tempered tonal system. In order to determine, how well two songs
match, the cross-correlations between two feature matrices are computed for each possible
transposition. In the following, this system will be referred to as BASE-MEL-SYS.
It will be evaluated if the usage of the rhythmic similarity measure detailed in Chapter 4 shows
promising results for the given data. For this, SF OSS will be computed with a sampling
frequency of 50Hz as described in Chapter 4. From these OSS autocorrelations are derived in
a beat synchronous approach. For that, the center of an analysis window is positioned at a
time instance where the beat tracker located a beat. The length of the analysis window is set
to eight beat impulses, which means that if the analysis window is centered at the n− th beat,
its width will be starting from beat n− 4 and ending at beat n+ 4. The reason to decide for
this width is that the used beat tracker estimated a tempo about two times higher than the
correct one for all samples (tempo doubling). As the time signature of the music contained
in the samples is 2

4
, such an analysis window length is related to two measures. This is the

usual length for a melodic pattern in this dance (Sousta). For each analysis window, the signal
inside the window is zero-padded to a length of 3 seconds, and an autocorrelation sequence is
computed. The reason for the zero padding is the necessity to use patterns of constant length
in our implementation of the scale transform according to (4.4). For each analysis window, a
scale transform is applied to the autocorrelation sequence of the window, in the same way as
described in Chapter 4. This way, for each song a feature matrix is obtained, with its number
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of columns determined by the number of beat instances, and each column contains a scale
transform magnitude. These matrices have been compared using the same method as applied
in Ellis and Poliner [46] to the chroma features, with the exception that the correlation does
not need to be computed in two dimensions, but only in the time dimension. In the following
experiments this system will be referred to as RHYTHM-SYS.
As the sound files are complex mixtures, both melodic and rhythmic similarity are degraded
by the other instruments contained in the mixture. Thus, a lead melody extraction using a
method as the one proposed in Klapuri [89] could be included as a pre-processing at least for
melodic similarity. Furthermore, instead of using chroma features, in the context of traditional
music melodic histograms of a finer resolution have been found useful for the classification
of melodic content [19]. In order to determine if such approaches can be adapted to the beat
synchronous melody description framework, the lead melody will estimated using the algorithm
presented in Klapuri [89], which was provided by the author of the paper. The parameters
given as input to the algorithm are the desired number of fundamental frequency tracks to
be estimated from the signal (set to 1), and the fundamental frequency range of the desired
F0 tracks. This range was set to 60Hz...480Hz, after an analysis of the available scores of
the recordings. The obtained F0 tracks have been checked by resynthesizing the estimated F0
contours using a sinusoidal synthesis, and by playing these resynthesized samples in parallel
to the original. In general, despite some local problems in the estimations, all melodies can be
recognized from the estimation. An objective measurement of the quality of the estimations has
not been performed. The next step is the computation of beat synchronous melody histograms.
Motivated by the work presented in Bozkurt [19], the frequency resolution of these histograms
is set higher than necessary for music using scales of the well-tempered system. This is because
in Greek traditional music many modal scales are encountered which make use of tonal steps
different from the half tone of the well tempered system. For example, some of these scales have
their roots in the scales investigated in Bozkurt [19]. Scales like Hidzaz and Kurdi are examples
for this case, and because these scales are also used in Cretan music the finer resolution of the
histograms is theoretically justified. Thus, for a song a matrix is obtained with one column for
a beat instance which contains the melody histogram for this beat. Again, for matching two
samples the method proposed in Ellis and Poliner [46] has been used in the same way as for
the chroma features. The system that uses this kind of melody histograms will be referred to
as HIST-MEL-SYS.
A combination of the similarity measures derived from melody and rhythm can follow a simple
procedure: the computed correlation values obtained for melody and rhythm parts can simply
be added, as they have been derived in a (beat) synchronized way. Note that due to the limited
size of the available data, the results shown below can be only indicative.
In Ellis and Poliner [46], the features are computed beat synchronous. This means that a beat
tracking is necessary as a pre-processing step. For this, in Ellis and Poliner [46] OSS derived
from amplitude are used to perform the beat tracking. However, the results in Chapter 5
indicate that for the investigated type of music a beat tracking that uses phase slope based
OSS (PS OSS, see Chapter 3) gives more accurate results. Thus, it should be evaluated as well
if the accuracy of the beat tracking has some impact on the results of the matching experiments.
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7.3 Experiments

7.3.1 Setup 1: Matching pairs

In the first experiment, the BASE-MEL-SYS system was applied to the data set of 40 song
excerpts, MS1. Each song was used as a query and the mean reciprocal rank as defined in (7.1)
was computed, which resulted in a value of MRRBASE−MEL = 0.38, as shown in Table 7.1.
In the next experiment, scale transform based rhythmic descriptors have been computed in a
beat synchronous way, as described above in Section 7.2. As can be seen in the second row
of Table 7.1, the results obtained on the small sample dataset using RHYTHM-SYS are worse
than the results obtained using the melody baseline system BASE-MEL-SYS. However, such a
result had to be expected on the given data for the following reason: As mentioned in Section
7.1, all 40 samples are examples of the same dance Sousta. Furthermore, all recordings are
from the same region of Crete, the municipality of Rethymnon. For that reason, all samples
have a very high similarity in terms of rhythm. For that reason, the combination of rhythmic
and melodic similarity measures will have to be evaluated in future on a bigger dataset that
contains different kind of dances. In order to be able to obtain such a dataset, a large enough
analysis of a collection of recordings has to be performed by musicologists.

In the following it will be tried if the performance in terms of the mean reciprocal rank of

Table 7.1: Mean reciprocal rates (MRR)

BASE-MEL-SYS 0.38

RHYTHM-SYS 0.20

HIST-MEL-SYS 0.58

the BASE-MEL system can be improved by involving an estimation of the main melody from
the polyphonic samples and the usage of high resolution histograms in the HIST-MEL-SYS
system. In Bozkurt [19], a resolution of one Holdrian comma (Hc) is referred to as the smallest
interval considered in Turkish music theory, and the authors use a resolution of 1

3
Hc for their

histograms. One Holdrian comma is equal to 22.6415 cents, and the octave interval can be
divided into 53 Hc or 1200 cents. Various resolutions have been tried, but no clear result
regarding the optimum value could be obtained on the limited sized dataset. For that reason,
the resolution has been set to 2 Hc, thus 2.5 times higher than the resolution of well tempered
scales (5 Hc). As can be seen from the third row in Table 7.1, the obtained mean recipro-
cal rank of 0.58 is improved compared to the BASE-MEL-SYS system. This improvement is
present almost independently of the histogram resolution, which indicates that the sensitivity
to microtonal changes is not of importance at least for the present dataset. Again, as for the
rhythmic analysis, bigger and more diverse datasets have to be obtained to achieve more in-
sight into the parameter settings necessary for a good measurement of morphological similarity.
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7.3.2 Setup 2: Matching queries in whole songs

As described in Section 7.2, the second experimental setup is using one of the short samples
contained in MS1 as a query. For this experiment 10 phrases of two measures length have been
selected as depicted in the first column of Table 7.2. For example, the query file 13b42b:234

is the phrase 13b42b taken from the recording number 234 in the collection. It has been tried
to locate its appearance in the file its partner in MS1 has been extracted from using the HIST-
MEL-SYS method. This lead to the best pattern matching results as shown in Table 7.1.
The highest correlation measures in these files are depicted in the column titled max(Rpos) in
Table 7.2. In the column titled MATCH the success of this matching is judged. If the position
connected to this highest correlation measure is exactly the position where the partner file
in MS1 has been extracted from, the label EXACT has been assigned. If the position of the
correlation maximum is related to another appearance of the same pattern in the file, it has
been labeled as CORRECT. Finally, when a different pattern from the query pattern is located
at the position of the correlation peak, the label WRONG has been assigned. This evaluation has
been performed entirely by hand, by locating the time instance of the correlation maximum
of the melody histogram in the related musical score. It can be seen that only in one case the
matching gave a wrong result, while all the other 9 matches were related to an appearance of
the same melodic phrase in the target file. It has to be stressed again that all the target files
are different from the file that the query has been taken from. The target files used in the
column titled max(Rpos) are different samples which contain at one or more time instances a
melodic phrase that has been judged to be identical with the query by an analysis conducted
by musicologists.
The correlation between the F0 histogram of a query sample and the histogram of the whole

Table 7.2: Results of matching patterns from MS1 in whole song files

QUERY FILE max(Rneg) Rsource max(Rpos) MATCH

(1) 13b42b:234 0.5796 0.9200 0.6403 EXACT

(2) 4a31b:217 0.3602 0.9301 0.6741 EXACT

(3) 3a3b:027 0.5059 0.9297 0.6238 CORRECT

(4) 35a35b:196 0.5482 0.9416 0.6866 CORRECT

(5) 3a21b:051 0.4511 0.8549 0.7040 EXACT

(6) 89a46b:143 0.4881 0.6571 0.5451 EXACT

(7) 31a31b:035 0.4830 0.8989 0.6351 WRONG

(8) 6a72a:167 0.5535 0.8778 0.6578 EXACT

(9) 7a6b:008 0.5073 0.8242 0.5870 EXACT

(10) 62a62b:249 0.4484 0.8333 0.5869 EXACT

file it has been extracted from has been computed as well. This enables to determine how
good the matching works in the perfect case, where the pattern we are looking for is indeed
contained in the file exactly as found in the query. The resulting correlations are depicted
in the column entitled Rsource in Table 7.2. It can be seen that they are always larger than
the correlation depicted in max(Rpos), but never equal to 1. This is likely to be caused by
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slightly differing beat tracking and F0 estimation results on the small query samples and on
the whole file. Furthermore, the queries have been applied also to files, where according to
the annotation the phrase is not contained neither as a whole nor half of it. The correlation
maxima are depicted in the column titled max(Rneg), and these values are always smaller than
the correlation values computed in the other columns. This supports the assumption that
the proposed method is able to separate similar phrases from those that do not share a large
similarity with the query phrase.
In Figures 7.2 and 7.3, all Rpos vectors of the 10 queries shown in Table 7.2 are plotted. These
vectors have been obtained by computing the two dimensional correlations between the query
and the target histogram matrices, and the choosing the row in the correlation matrix, that
contains the maximum value. In all plots, maxima have been chosen and it has be evaluated
if at the related measures in the score indeed the query phrase is found. Maxima for which
this is the case have been marked with dashed boxes, while maxima which are not related to
the query pattern have been marked with dotted boxes. A first and important result of this
analysis is that in none of the cases an occurrence of the query pattern in the investigated audio
file has been missed, which means that in every case the occurrence of the pattern was related
to a maximum in Rpos. Also the overall number of true positives (dashed boxes) is 21 while the
number of false positives (dotted boxes) is only 7. However, as explained in Appendix A.3.4,
these false positives do not imply that there is no similarity between the query and the target
at the time instance of the false positive. The false positive only indicates that at this position
the phrase played by the lead instrument does not have exactly the same label. Taking a
closer look at the false positives reveals that for example all wrong detections for query (3) are
phrases which contain the pattern 3a which is also contained in the query sample (3a3b). A
closer look has been taken at the only case, where the maximum in Rpos is connected to a false
positive (query (7)). The query phrase and the phrases found in the dotted boxes in Figure
7.3.(7) are depicted in Figure 7.1. It is apparent that at least the first parts of the two phrases
share a big amount of similarity. Thus, at least in this case, the false positive is related to a
similar melodic phrase.
Another observation from Figures 7.2 and 7.3 is that maxima related to true positives seem
to be characterized by a strong oscillation. This oscillation has been observed to have the
frequency of exactly two measures. This means that the correlation shows a strong peak
whenever the beginnings of the query phrase and the related phrase in the investigated file
are aligned. This effect should be further investigated when a larger dataset is available, and
it is possible that a detection of such oscillations, beside high correlation envelopes, further
improves the result of the pattern retrieval.

(a) (b)

Figure 7.1: Two phrases found to be similar in query (7)
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(1)

(2)

(3)

(4)

(5)

Figure 7.2: Complete Rpos obtained for queries 1-5 in Table 7.2, positive matches in dashed
boxes, negative matches in dotted boxes
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(6)

(7)

(8)

(9)

(10)

Figure 7.3: Complete Rpos obtained for queries 1-5 in Table 7.2, positive matches in dashed
boxes, negative matches in dotted boxes
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Regarding the integration of the rhythmic similarity measure into this query experiment, the
approach of integration appears to be simple. As the features for melody (melody histograms)
and for rhythm (scale transform magnitudes) are both computed in a beat synchronous way, the
correlation values obtained for a query from these two aspects could be simply added, possibly
using some weighting that favors either melody or rhythm derived correlations. However,
as mentioned above in Section 7.3.1, the rhythmic similarity measure is sure to fail on this
dataset which is rhythmically very homogeneous. Indeed, the computed correlations using
the RHYTHM-SYS in the second experimental setup do not reveal the clear structure as
the correlations depicted for the HIST-MEL-SYS. Because of that, an integration of these
two aspects made no sense on the available data. However, it can be argued that such an
integration is very likely to improve results on a more diverse dataset. If, for example, such a
dataset would include several dances from Crete or another Greek region, it has been shown
in Chapter 4 that the descriptors used in RHYTHM-SYS are suitable to discriminate different
dances and to measure the rhythmic similarity between samples. It is apparent that the melody
histograms from samples of different dances can be very similar or even identical, while taking
the rhythmic aspect into account will help to differentiate between such samples.
Finally, the impact of the beat tracker has been evaluated. In order to determine, how large the
change in the matching procedures can be if the beat tracking and hence the synchronization
is optimized, all samples in MS1 and all complete samples used for the computation of Rpos in
Table 7.2 have been beat annotated by the author. However, rerunning all experiments in the
experimental setups 1 and 2 using these ground truth beat annotations did not qualitatively
change the results. The original beat tracker used in Ellis and Poliner [46] lead mainly to local
misalignments with the beat annotation, and it has to be concluded that these misalignments
have no impact on the systems used in this chapter, at least when applied to the limited size
of data that is currently available.
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7.4 Conclusion

In this chapter, methods have been evaluated that help to detect morphological similarity
in polyphonic recordings following the logic of parataxis. It has been shown that a method
based on histograms of the F0 estimation of the leading melody enables for an improvement
compared to a baseline system that uses chroma features. Furthermore, it has been illustrated
that the proposed method is capable of spotting appearances of small melodic patterns in a
whole audio file, even when both files are polyphonic mixtures and the query pattern has been
derived from a different recording. Such a method can be a valuable tool for research in the
field of musicology, where similar phrases in a large collection could be located without the
necessity of transcription, thus leading to a large saving of time. Furthermore, the integration
of melodic and rhythmic aspects have been proposed, for datasets in which different types of
rhythms are contained. This integration is straight forward and as a future goal it has to be
evaluated on a more diverse dataset.
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Chapter 8

Conclusions

This thesis had its starting point in the investigations of musical timbre, mainly related to the
classification of music regarding its genre. Then the question came up what would be necessary
to classify or to find similarities in the traditional music of Greece. After extended reading
of musicological studies related to the subject, it was clear that a system for the analysis of
this music would have to take into account characteristics distinct from the ones encountered
in western popular music. Concerning its morphology, it was clear that a system for the de-
tection of structures in Western music, such as a refrain, could not lead to meaningful results
on this music. Thus, the more general framework as shown in Figure 1.1 was designed. The
research activity then focussed on the part of rhythmic properties of the signal. First, it was
decided to take a careful look at the detection of instrument note onsets. On this field, a large
onset annotated dataset was compiled. Using this dataset for evaluation, the practical use
and the advantages of phase slope and fundamental frequency derived onset strength functions
was demonstrated. Especially promising results were achieved when combining spectral flux
and the former two characteristics in a decision fusion. An open issue is still the usage of a
fundamental frequency criterion for onset detection in polyphonic mixtures.
Datasets have then been developed for the evaluation of beat tracking and rhythmic similarity
tasks on traditional Cretan and also Turkish music. The beat tracking task appears to be espe-
cially demanding in the traditional music of Crete and other Greek regions. This is because the
signals often do not contain percussive instruments or electric bass, which causes weaker attacks
in amplitude than for popular music, and because Cretan dances are often characterized by
syncopes. It has been shown that in the context of beat tracking, the usage of the phase slope
for the computation of an onset strength function leads to an improved accuracy compared to
two state of the art approaches. For the task of rhythmic similarity, two approaches have been
proposed that aim to solve the problem of comparing the rhythmic content of two pieces of
music, when their tempo differs widely. This is necessary, because interpretations of even the
same piece can vary widely in tempo, and often the tempo is increased within the duration
of a piece. The proposed approaches do not need any beat tracking as pre-processing step,
which is too error-prone considering the beat tracking accuracies that were achieved on these
type of musical signals. The first approach developed in the course of this thesis was based on
a dynamic warping strategy, and the second is based on the usage of the scale transform. It
could be shown that in general the scale transform based method leads to superior results in
dance music classification tasks. The properties of the scale transform have been explored and
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a feature selection has been proposed to handle the problem of determining an optimum subset
of scale coefficients. Also, for the first time a computational study of rhythmic similarity in
traditional Turkish music was conducted.
Returning to the starting point of the thesis work, timbre similarity, a system based on non-
negative matrix factorization was proposed for a genre classification task and applied to the
classification of instrumental content of traditional music. In this classification task no ad-
vantage of the NMF system compared to MFCC features could be observed, while for genre
classification improved accuracies were obtained. In order to get a final conclusion in this
task, a larger dataset has to be compiled, and methods as the one presented in [67] should be
evaluated in order to combine the advantages of NMF and MFCC with the separation of the
lead melody in a piece.
Finally, the integration of the rhythmic similarity measure, beat tracking techniques and
melodic similarity was proposed in order to estimate the degree of morphological similarity
between samples of traditional music following the logic of parataxis. Regarding the melodic
similarity an improvement was observed when a state-of-the-art system for cover song detec-
tion was modified by the usage of a fundamental frequency tracking of the main melody in
the polyphonic mixture. Furthermore, a finer partitioning of the frequency axis was proposed
in order to cope with the usage of modal scales. This did not result into significant changes
on a dataset of Cretan music, but is likely to be important when dealing with music of other
regions in Greece, Turkey or other Balkan states. This system was shown to work given a
polyphonic mixture as a query. Thus it can be applied in the investigation of large datasets
of field recordings in the course of musicological studies in order to simplify the process of
locating morphologically related pieces of music. Furthermore, using the melodic similarity in
combination with the proposed rhythmic similarity is expected to improve results when differ-
ent kinds of traditional dances are considered in a dataset.
The possible applications of the developed methods are widely spread. Rhythmic similarity
measures and techniques for onset detection can be applied to any kind of music signal without
changes. Because the rhythmic similarity measure showed reasonable success on traditional
music of Turkey, focusing future research in this direction appears to be a reasonable direc-
tion. This is the case because beside the methods proposed in this thesis also methods for
the processing of the melodic content were developed recently by a research group that has a
cooperation with the author’s institution. Such a research direction would be of major com-
mercial interest also for the following reason: music in the Arabic world widely follows similar
principles regarding melody and rhythm as Turkish music, and tools could be applied to this
music without major changes. This is particularly interesting as Arabic music addresses a
much larger group of consumers than Turkish and Greek music together, and no systematic
research has been conducted in this field.
In order to make such research work feasible, sufficiently large datasets of the related forms
of music have to be collected and annotated. For this, a long term cooperation with experts
of musicology is necessary. In such a cooperation, possible applications of computational tools
can be defined, thus transferring the findings presented in this thesis into practical use by
musicologists.
Interesting development task include the beat tracking for complex meters, a problem which
has to be solved in order to automatically determine the temporal organization of many forms
of traditional music. Regarding rhythmic similarity it will be interesting to look at possible
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combinations of the proposed STM based description with other rhythm descriptors such as
the Rhythm Patterns, which have been shown to be applicable to traditional music in Lidy et
al. [102].
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adaboost for music classification. Technical report, Kluwer Academic Publishers, 2006.

[16] W. Berry. Structural functions in music. Dover, New York, 1987.

[17] J. A. Bilmes. Timing is of the essence. Master’s thesis, Massachusetts Institute Of
Technology, 1993.

[18] C. Bohak and M. Marolt. Calculating similarity of folk song variants with melody-based
features. In Proc. of ISMIR - International Conference on Music Information Retrieval,
pages 597–601, 2009.

[19] B. Bozkurt. An automatic pitch analysis method for turkish maqam music. Journal of
New Music Research, 37(1):1–13, 2008.

[20] B. Bozkurt, L. Couvreur, and T. Dutoit. Chirp group delay analysis of speech signals.
Speech Communication, 49(3):159–176, 2007.

[21] A. S. Bregman. Auditory Scene Analysis. MIT Press, 1990.

[22] M. Brookes, P. A. Naylor, and J. Gudnason. A quantitative assessment of group delay
methods for identifying glottal closures in voiced speech. IEEE Transactions on Audio,
Speech and Language Processing, 14:456– 466, 2006.

[23] J. J. Cabrera, J. M. D.-B. nez, F. J. Escobar-Borrego, E. Gómez, F. Gómez, and J. Mora.
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Appendix A

Datasets

The collection of datasets is an important and necessary starting point for any experimental
work. As the field of computational ethnomusicology is relatively new, there do not exist very
many data sources that can be used for experiments. For that reason, in the course of my thesis
work I was forced to compile a big number of data sets. While on the one hand this work is
very time consuming, on the other hand it enabled me to understand the musical context I was
about to examine in further detail. These datasets can provide facilitation for other researchers
concerned with the same or similar subjects. Thus, in this chapter the compiled datasets are
described in detail and researchers are invited to contact me if they are interested in obtaining
a specific dataset.

A.1 Singer recognition data

This dataset consists of 290 songs from 21 Rembetiko singers. Rembetiko as a musical style
can not be considered a traditional form of music in the strict sense. It has its roots mainly in
the area of Piraeus, but also in other cities, where in the beginning of the last century existing
urban musical underground culture came together with the music of refugees from Asia minor.
While most songs can be assigned to specific composers, there are also songs which stem from
older traditional melodies. For more details on the background of this music refer to [68, 127].
All songs contained in this dataset are polyphonic mixtures that contain, beside one or more
singing voices, musical instruments that are typical for this type of music. These instruments
are guitar, bouzouki (a plucked string instrument), baglama (plucked string instrument similar
to bouzouki, but much smaller), and sometimes accordion or violin. Thus, the whole dataset
is very homogeneous in terms of instrumental timbre. It has been used by the author in [70]
for the purpose of singer recognition. The number of songs per singer ranges from eight to 18.
Details of the data set are depicted in Table A.1. The numbers for musical activity list the
decades in which the artist recorded music. It was tried to cover a wide range of this period
with the contained pieces of music. Because of that, for some singers, as Sotiria Bellou, the
singer’s voice varies strongly. Note that the artist Xarmas represents a male/female duo, that
throughout the given period performed together.
From each singer four songs have been hand labelled with the following labels:

• INSTR : instrumental sounds without any voice
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Table A.1: Data set description

Singer male/female activity songs ID
Agathonas m 70-now 11 S1

Batis m 30 13 S2
Bellou f 40-80 18 S3
Dalkas m 30-50 14 S4
Delias m 30-40 8 S5

Genitzaris m 40-90 9 S6
Gkoles m 70-now 11 S7

Glykeria f 70-now 12 S8
Marika (Papangika) f 20-30 18 S9

Mario f 70-now 13 S10
Markos Bambakaris m 30-60 15 S11

Menidiatis m 60-now 17 S12
Nikolaidis m 60-now 11 S13

Rita Ampatzi f 30-50 13 S14
Roukounas m 30-50 14 S15

Roza Eskenazi f 30-60 15 S16
Stellakis Perpiniadis m 30-60 18 S17
Stratos Pagiumtzis m 30-60 16 S18

Tsaousakis m 50-70 16 S19
Tsitsanis m 30-70 13 S20
Xarmas m+f 40-50 12 S21

• VOICE : voice of target singer without second voice

• MIXED : voice of target singer with second voice

• OTHER : interjections

For singer S21 all vocal frames have been labelled as VOICE, as we want to recognize this
particular singer duo.
Another peculiarity of the data set is that some of the artists take part in the others’ recordings.
As such the artists Markos Bambakaris, Anestis Delias, Stratos Pagioumtzis, Giorgos Batis and
Stellakis Perpiniadis formed a group for many years. Because of that, in many songs of the
target singer, another singer, who is part of the data set, is featured as second singer. The
same holds for Vasilis Tsitsanis, who wrote many songs for Bellou and Tsaousakis, and sings
the second voice in some songs of Bellou. Similar relations exist for the currently performing
artists Gkoles, Glykeria and Agathonas.

A.2 Onset detection data

An onset-annotated dataset of monophonic recordings as described in Table A.2 has been
compiled for the evaluation of onset detection systems. Non-pitched percussive instruments,
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such as drums and percussions, have not been included in this dataset. The instruments
contained in the dataset can be grouped according to the characteristics of their excitation:

• pitched-percussive instruments (guitar, ud, piano and tanbur)

• wind instruments (clarinet, ney, saxophone and trumpet)

• bowed string instruments (cello, kemençe and violin)

Table A.2: Main dataset details (1)

Main Set (MS)

Instrument Number of Onsets Number of files

cello 150 5

clarinet 149 5

guitar 174 5

kemençe 186 5

ney 147 7

ud 211 5

piano 195 5

saxophone 148 5

tanbur 156 5

trumpet 140 5

violin 173 5

Sum 1829 57

Table A.3: Development dataset details (2)

Development Set (DS)

Instrument Number of Onsets Number of files

guitar 147 7

ud 207 5

piano 117 6

violin 203 3

Sum 674 21

Effort has been made, such that each of the above classes is represented by a similar number
of samples and instruments. Furthermore, besides the choice of instruments commonly used in
western music, also instruments of Turkish music are included (kemençe, ney, ud and tanbur).
The Turkish music examples were chosen in order to select samples that are representative
for the style of performance but that do not contain many notes at which hand annotation

125



would have been too error-prone. This restriction has been found to be necessary due to the
style of performance encountered in this music, which at some point complicates the differen-
tiation between onsets and vibrato or other effects. For annotating new samples the procedure
described in Daudet et al. [33] was adapted: the author of this thesis and the third author
of [76] did the annotations, while the fourth author of [76] corrected the results. Correcting
the annotations means that it was only possible to delete annotations, and not to add new
annotations. Each change in the correction process, except of a deletion, had to be discussed
with the annotator. In this way cross-checked annotations were compiled for all the dataset.
For the annotation the wavesurfer1 software was used. Spectrogram, waveform and the F0
curves were used simultaneously to locate the onsets that were perceived in the sample.
Beside the data as presented in Table A.2, 21 more samples of the instruments guitar, ud, pi-
ano and violin were onset annotated. These files were used for our parameter evaluations and
development in [76], and contain 674 onsets, see Table A.3 for details. In the overall number of
78 samples that are contained in the main dataset and in the development set, 8 samples from
the dataset used in Daudet [33] are included, which contained an instrument listed in Table
A.2 (one file for cello, clarinet, piano, saxophone, trumpet and violin, and two files for guitar).

A.3 Cretan music

A.3.1 General information

According to [25], Cretan songs can be separated into categories. First, there are songs tis
tavlas, which are sung with company while sitting at a table with company, and they are char-
acterized by a dialogue, in which one singer presents a new verse and the other people round
the table answer in unison. Second, there exist historical and heroic songs. They are often sung
using a free meter which has been characterized as giusto syllabique dichrone by Baud-Bovy
in [8]. Third, there are the dances, which will also be the main focus due to their wide variety
and availability in form of recordings. There exist more categories related to particular events
such as weddings or funerals as well. While the second category of pieces does not follow the
logic of parataxis (see Section 1.1), the first and the third class do. Note that while in this
thesis only Cretan dances are considered, traditional dances in other parts of Greece in general
follow this logic as well [6].
With the development of recording technology and the production costs reaching lower and
lower levels, an increasing number of Cretan musicians release their interpretations of tradi-
tional pieces or own compositions having a traditional appeal. The first musicians to release
their disks in the middle of the last century are the ones who are considered the masters
and their playing style represents a paradigm for many players today. However, a closer look
at related literature reveals that Cretan music, just as all musical traditions, is much more
characterized by local particularities that have been caused by the social life in widely isolated
small communities. Some examples are different styles to play the lyra, or different attitudes in
singing style [8]: while in a mountain region of central Crete lyra players were reported to use
mainly the lowest string, in Eastern Crete Baud-Bovy observed the players to use all strings.

1http://www.speech.kth.se/wavesurfer/
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He also observes that people in Western Crete considered a person a good singer when his voice
was good, while in Eastern Crete more emphasis was given to his abilities in improvisation.
Furthermore, while nowadays there mainly exists a set of 6 dances that are encountered in
the whole island of Crete, some decades ago each region had its characteristic dances. This
fact still influences the way, people from different regions tend to interpret music either as a
musician or as a dancer. In one interview a musician uttered the opinion that the music of
Eastern Crete is “sweeter”, while in the Chania area in Western Crete, the same dances are
in general played much faster. However, the related literature is very sparse, and currently, to
the best of my knowledge, there is no institution in Crete that performs research activity that
could give support in such questions. Thus a computational approach has to work with data
that simplify the nature of the task, for example by categorizing dances into a specific set of
classes. These classes necessarily simplify the problem but represent a first step to approach
the problem of similarity in this kind of music.

A.3.2 Dance classification data

This dataset contains short excerpts of six dances commonly encountered in the island of
Crete: Kalamatianos, Siganos, Maleviziotis, (fast) Pentozalis, Sousta and Syrtos. It should
be pointed out that each of these classes could be divided into subclasses, because the dances
differ within the same class due to different local origin. For example, in Chatzidakis [25] it is
stated that according to instrument players there are about 120 different musical phrases for
the dance Maleviziotis only. However, a study that considers all these variations cannot be
conducted because the number of samples is small and ground truth on the local differences can
only be obtained in the framework of a musicological study. The dance classes in this dataset
can be divided into three groups according to Chatzidakis [25]: Maleviziotis, Pentozalis and
Sousta are referred to as pidichti (i.e. dances connected with bouncing movements), the slower
Siganos and Syrtos are syrti dances (syrti are connected with slow movements), and finally the
Kalamatianos which is a dance commonly encountered in Crete but with its origin in another
part of Greece. Care has to be taken about the local differences in naming these dances. The
naming chosen by the author is following habits in the area of the capital of Crete, Heraklion.
In other regions of Crete the same or similar dances are referred to with different names, but
to the best knowledge of the author no study has been conducted to compare the different
namings yet. Note that confusion is an indicator of a still vital musical tradition, as these local
differences stem from habits in the regional communities. Each class contains 30 samples of
about 10s length each, resulting in an amount of 180 samples in the whole dataset. In Figure
A.1, the tempo annotations conducted by the authors have been modelled by Gaussians. The
rate of fourth notes has been taken as tempo. Comparing with Figure 1 in Gouyon and
Dixon [58], it can be seen that there are larger overlaps between their tempo distributions
as for the ballroom dance data used e.g. in Gouyon and Dixon [58] and in Chapter 4 in
this thesis. When considering that the dance Syrtos is often transcribed in notes of double
length, this overlap gets even larger with the tempo distribution of Syrtos moving from the left
part of the Figure to the right, creating a distribution overlapping with all dances except of
Siganos. Furthermore, all traditional Cretan dances have a 2

4
meter, only Kalamatianos as a

dance originating from a different part of Greece has a 7
8

meter. This makes the separation by
considering their meter impossible as well. Also, most of the pieces contain only two kinds of
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string instruments, while percussive instruments are not contained in most samples, creating
a very homogeneous data set considering instrumental timbre. The contained instruments are
mainly the Cretan Lyra and the Cretan laouto. The first is a three-string bowed instrument
used for playing the main melody. The latter is a plucked string instrument having four double
strings. Its timbre and appearance bear similarity to an ud, but it has a brighter tone and
it has movable frets. As has been observed in Baud-Bovy [8], these two instruments are the
most widely used instruments in Cretan music, and the laouto replaced the usage of historical
percussive instruments like the davul (in Crete referred to as daouli) and small bells placed on
the bow of the lyra player (gerakokoudouna). However, it is observed that throughout the last
years more players tend to use these and other instruments that had almost dissapeared from
musical practice.
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Figure A.1: Tempi of the Cretan dance dataset modelled by Gaussian distributions
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From a musicological point of view, the length of the excerpts, which is about 10s in average,
is sufficient to classify the pieces. As detailed in Theodosopoulou [149], Cretan dances are
characterized by small melodic phrases, which in the local context are referred to as Kontilies,
which extend usually over two or four bars. As such, in the given duration at least one such
element will be contained. Thus, the samples should be sufficient both for human listeners and
for a computational approach, to detect present similarities in their rhythm.

A.3.3 Beat Tracking data

For the evaluation of beat tracking systems a total sum of 69 polyphonic music samples of
30 seconds length each have been beat annotated by the author. Out of these samples, 41
samples have been downloaded from Crinno data of the Institute of Mediterranean Studies2,
and contain Cretan dance music. Various dances are contained in the dataset, the pieces
have been randomly chosen from the collection. None of these 41 songs contain percussive
instruments, but only string instruments and vocals. Note that these samples share the musical
characteristics with the data described in Sections A.3.2 and A.3.4.
The other 28 samples that have been beat annotated have been taken from the dataset TS1
(see Section 6.3.3). From TS1, the genres classic, country and jazz have been left out, and
from the remaining classes the first four samples of each class have been chosen.
The beat annotation has been performed using headphones and the audacity software. All
annotations have been acoustically checked by listening to the music on one stereo channel
and to a click signal synthesized from the annotations on the other stereo channel.

A.3.4 Morphological similarity data

In the course of this thesis a small dataset of polyphonic samples has been collected that
enables for a preliminary evaluation of a system for the detection of morphological similarity.
For this, samples from the Crinno dataset have been used, just like for the beat tracking data
in Section A.3.3. In the Crinno collection for some samples of the dance Sousta the lead
melodies have been transcribed by musicologists and then analyzed for their morphology. All
encountered phrases have been indexed, and using the list of these indexes it is feasible to
locate the morphologically identical phrases in different pieces. The way to index the phrases
follows the method described in Theodosopoulou [149]: the phrases have a length of either
one or two bars as shown in Figures A.2 and A.3. When beginning the analysis, the first
encountered two bar phrase will be titled 1a1b. If for example the next encountered two bar
phrase contains the second part of the first phrase in its second measure, while its first measure
is an unknown phrase it will be titled 2a1b, denoting the partial relation with the first pattern.
In Figures A.2 and A.3 the titles of the depicted melodic phrases are denoted above the score.
It is obvious that an exact partial or complete matching can be localized by using this way of
indexing the phrases. However, no conclusions can be drawn about the similarity of phrases
with different titles. As the amount of transcribed data is rather small (20 pieces), there are
not many phrases that appear several times in various pieces. However, it has been achieved to
compile a data set of 40 sound samples, each containing a complex musical mixture signal with
the instruments Cretan laouto and lyra and sometimes singing voice. Each of the 40 pieces has

2http://gaia.ims.forth.gr/portal/
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Figure A.2: Example of a one measure melodic phrase

Figure A.3: Example of a two measure melodic phrase

a “partner” within the dataset that contains a similar or equal musical phrase played by the
lyra, according to the analysis of musicologists. Thus, in this dataset exist 20 pairs of samples
that contain similar phrases. Please note that according to the musicological analysis these
phrases are exactly the same. However, the audio files differ because they are performed by
different artists and vary due to their different playing style.

A.4 Turkish traditional music data

Compositions in Turkish traditional music follow certain schemes regarding their melodic and
rhythmic content. Melodies are characterized by a modal system referred to as makam, and
it defines a melodic texture consisting of specific tonal segments, progressions, directionality,
temporal stops, tonal centers and cadences [84]. The rhythmic schemes encountered in tradi-
tional Turkish music are referred to as usul. An usul is a rhythmic pattern of certain length
that defines a sequence of strong and weak intonations. An example is shown in Figure A.4:
the usul Aksak has a length of nine beats. The notes on the upper line labelled düm have the

TE TEK TEKDUMDUM KE8
9

Figure A.4: Symbolic description of the usul Aksak
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strongest intonation while the notes on the low line denote weak intonations. In vocal music
practice, a student strikes his knees with his hands, the right hand for notes on the upper line
and the left hand for the notes on the lower line. When acquiring an usul, in parallel to the
hand strokes the verbal phrases denoted in Figure A.4 are pronounced, until the rhythmic flow
of the pattern is well understood by the student. As soon as the student has memorized this
movements (s)he starts singing the melody line of a song composed in this usul while (s)he
continues striking the pattern. The note durations in the sequence shown in Figure A.4 can
be described as the string xoxxxoxox, where x symbolizes the start of a note and o a metric
unit without note [155].
Unlike in Toussaint [155], the length of the usul varies. According to H. Sadeddin Arel (1880-
1955), the usul can be divided into minor and major usul. Minor usul have a length of up to 15
time units, while the major usul have up to 124 time units. As denoted in Bektaş [133], minor
usul are related to small musical forms, while larger musical forms employ the major usul in
most cases. Two examples of small musical forms are Sarkı and Türkü. The latter are folk
songs of unknown composers, while the former are short songs based usually on four lines of
text with known composer. Note that in a strict sense, Sarkı are elements of classical ottoman
music, which share rhythmic (usul) and tonal (makam) concepts with Turkish traditional mu-
sic to a great extent. Both forms have in common that a song follows a certain minor usul and
a certain makam, and both forms are vocal music. The most popular songs in Turkish music
are composed in these forms. Because of that, along with a system for the recognition of the
makam as presented in Gedik and Bozkurt [53], an approach for the recognition of the usul
represents an essential element in automatic retrieval of information from this music. Apart
from that, the relation between the melody and the usul has not been investigated and an
automatic approach like the one presented in this thesis can give valuable insight into the
relation between melody and usul.
As mentioned, the compiled data set of traditional Turkish music consists of songs of the forms
Sarkı and Türkü. They are following six different types of rhythmic schemes having lengths
from 3 up to 10: Aksak (9

8
), Curcuna (10

8
), Düyek (8

8
), Semai (3

4
), Sofyan (4

4
), and Türk Aksaği

(5
8
). As all usul in the data set have different length, the recognition of the usul can be reduced

to a recognition of its length. This is closely related to the task of time signature recognition.
In order to acquire the samples the teaching software Mus2okur [84] was used, resulting in a
collection of 288 songs, distributed among the six usul as shown in the last row of Table A.4.
The upper two rows in Table A.4, which is reproduced here from Chapter 4 for convenience,
depict the mean values of the tempi in bpm (beats per minute) and the standard deviation of
the tempi, respectively. The large standard deviations of the shown tempo values are visual-
ized in Figure A.5, where the mean and standard deviations are shown as probability density
function over the same bpm area as in Figure A.1. It is obvious that the overlaps are very
large even without halving or doubling errors in a tempo estimation. This is because most of
the samples in in this dataset are not dance music and as such, their tempo can vary in a much
wider range, because this music is not connected to a specific dance as it is the case for the
data described in Section A.3.
The Mus2okur software gives a list of songs for a chosen usul, which were then exported to a

MIDI file. Thus, the data in D3 is available in form of symbolic descriptions, which means that
their onset times can be read from the description. The MIDI files contain the description of
the melody lines, usually played by only one or two instruments in unison, and the rhythmic
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Figure A.5: Tempi of the Turkish music dataset modelled by Gaussian distributions

accompaniment by a percussive instrument. Due to the character of this music, there exists
no chord accompaniment. As this content is separated into different voices, the rhythmic ac-
companiment can be excluded. This enables to focus on the relation between the melody of
the composition and the underlying usul. To the the best of my knowledge, such a study on
usul has not been conducted before.

Table A.4: Statistics of the tempo distributions in Turkish music dataset

CLASS AKS CURC DUY SEM SOF TURK

MEAN 98.5 98.3 70.7 131.9 81.3 73.1

STD 27.9 13.5 12.6 26.3 16.7 22.3

NSongs 64 57 47 22 60 38

A.5 Instrument recognition data

This small dataset has been compiled for preliminary experiments with the timbre similarity
systems presented in Chapter 6 of this thesis. It contains four classes: clarinet, Cretan lyra,
ney and violin. Each class contains 20 samples of polyphonic sounds. In each class, the main
melody is played by the instrument that is in the class label. It was avoided to use two or
more samples of the same player or album. From each sample, sections containing singing
voice have been removed by hand. The first class, clarinet contains 13 samples from various
regions of the Greek mainland, 6 samples from Turkey, and one sample of a Tunesian player.
The instrumental accompaniment varies widely, some samples from northern Greece contain
various brass instruments (trumpet, trombone etc.), in some samples guitar and ud are part of
the accompaniment. Note that also in three samples a violin is part of the accompaniment. The

132



second class, Cretan lyra, is more homogeneous in terms of its local origin as well as the musical
accompaniment. The accompaniment is made up of one or two Cretan laouto for all files and
the origin of all samples is the island of Crete. The third class contains the Turkish traditional
instrument ney as main instrument. Note that in the context of Turkish traditional music
the term main instrument is not correct in all cases, as many of the samples are heterophonic
pieces composed on a specific makam (see Appendix A.4 for more detail), and for that reason
the instrumental accompaniment plays mainly the same melody line as the ney. The chosen
files are mostly instrumental parts of fasıl (suite) compositions of Ottoman classical music,
namely the first and last parts of the fasıl, called peşrev and saz semai, respectively. This
means that this class is again, similar to Cretan lyra, quite homogeneous regarding its timbre.
The usual accompaniment instruments in this music are kemençe, kanun and tanbur. The
kemençe is a string instrument smaller than a violin and is played with a bow, the kanun is a
string instrument similar to a zither, and tanbur is a long necked lute very different in timbre
compared to e.g. the Cretan laouto.
The fourth class, violin, is more heterogeneous, as it is made up of samples from various
regions. Basically, there are recordings from the Greek mainland as well as from the Greek
islands and from Asia Minor. The tracks from Asia Minor originate from the common music
tradition of Greek and Turkish population in the area of the western Turkish coast. However, it
differs from the music contained in the ney class regarding instrumental timbre. Accompanying
instruments in this class are guitar, accordion, oud, kanun and santour, which is a hammered
dulcimer stemming from Persia.
Furthermore, it should be pointed out that all classes with the exception of Cretan lyra contain
percussive instruments as well.
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