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ABSTRACT

SINUSOIDAL CODING OF SPEECH

FOR VOICE OVER IP

Yannis Agiomyrgiannakis

University Of Crete

Doctor of Philosophy

It is widely accepted that Voice-over-Internet-Protocol (VoIP) will dominate

wireless and wireline voice communications in the near future. Traditionally,

a minimum level of Quality-of-Service is achieved by careful traffic monitoring

and network fine-tuning. However, this solution is not feasible when there is no

possibility of controlling/monitoring the parameters of the network. For exam-

ple, when speech traffic is routed through Internet there are increased packet

losses due to network delays and the strict end-to-end delay requirements for

voice communication. Most of today’s speech codecs were not initially de-

signed to cope with such conditions. One solution is to introduce channel

coding at the expense of end-to-end delay. Another solution is to perform

joint source/channel coding of speech by designing speech codecs which are

natively robust to increased packet losses.

This thesis proposes a framework for developing speech codecs which are



robust to packet losses. The thesis addresses the problem in two levels: at

the basic source/channel coding level where novel methods are proposed for

introducing controlled redundancy into the bitstream, and at the signal rep-

resentation/coding level where a novel speech parameterization/modelling is

presented that is amenable to efficient quantization using the proposed source

coding methods. The speech codec is designed to facilitate high-quality Packet

Loss Concealment (PLC). The speech signal is modeled with harmonically re-

lated sinusoids; a representation that enables fine time-frequency resolution

which is vital for high-quality PLC. Furthermore, each packet is encoded in-

dependently of the previous packets in order to avoid a desynchronization

between the encoder and the decoder upon a packet loss. This allows some

redundancy to exist in the bit-stream.

A number of contributions are made to well-known harmonic speech mod-

els. A fast analysis/synthesis method is proposed and used in the construction

of an Analysis-by-Synthesis (AbS) pitch detector. Harmonic Codecs tend to

rely on phase models for the reconstruction of the harmonic phases, introduc-

ing artifacts that effect the quality of the reconstructed speech signal. For

a high-quality speech reconstruction, the quantization of phase is required.

Unfortunately, phase quantization is not a trivial problem because phases are

circular variables. A novel phase-quantization algorithm is proposed to ad-

dress this problem. Harmonics phases are properly aligned and modeled with

a Wrapped Gaussian Mixture Model (WGMM) capable of handling parame-

ters that belong to circular spaces. The WGMM is estimated with a suitable

Expectation-Maximization (EM) algorithm. Phases are then quantized by ex-

tending the efficient GMM-based quantization techniques for linear spaces to

WGMM and circular spaces.



When packet losses are increased, additional redundancy can be introduced

using Multiple Description Coding (MDC). In MDC, each frame is encoded

in two descriptions; receiving both descriptions provides a high-quality recon-

struction while receiving one description provides a lower-quality reconstruc-

tion. With current GMM-based MDC schemes it is possible to quantize the

amplitudes of the harmonics which represent an important portion of the infor-

mation of the speech signal. A novel WGMM-based MDC scheme is proposed

and used for MDC of the harmonic phases. It is shown that it is possible to

construct high-quality MDC codecs based on harmonic models. Furthermore,

it is shown that the redundancy between the MDC descriptions can be used

to “correct” bit errors that may have occurred during transmission.

At the source coding level, a scheme for Multiple Description Transform

Coding (MDTC) of multivariate Gaussians using Parseval Frame expansions

and a source coding technique referred to as Conditional Vector Quantization

(CVQ), are proposed. The MDTC algorithm is extended to generic sources

that can be modeled with GMM. The proposed frame facilitates a compu-

tationally efficient Optimal Consistent Reconstruction algorithm (OCR) and

Cooperative Encoding (CE). In CE, the two MDTC encoders cooperate in or-

der to provide better central/side distortion tradeoffs. The proposed scheme

provides scalability, low complexity and storage requirements, excellent perfor-

mance in low redundancies and competitive performance in high redundancies.

In CVQ, the focus is given in correcting the most frequent type of errors; single

and double packet losses. Furthermore, CVQ finds application to BandWidth

Expansion (BWE), the extension of the bandwidth of narrowband speech to

wideband.

Concluding, two proof-of-concept harmonic codecs are constructed, a single
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description and a multiple description codec. Both codecs are narrowband,

variable rate, similar to quality with the state-of-the-art iLBC (internet Low

Bit-Rate Codec) under perfect channel conditions and better than iLBC when

packet losses occur. The single description codec requires 14 kbps and it

is capable of accepting 20% packet losses with minimal quality degradation

while the multiple description codec operates at 21 kbps while it is capable of

accepting 40% packet losses without significant quality degradation.
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Chapter 1

Introduction

It is widely accepted that Voice-over-Internet-Protocol (VoIP) will dominate the wire-
less and wireline voice communication market in the near future. A large percentage
of voice traffic in conventional telephony networks is already routed through private
IP networks. As the bandwidth cost of IP networks decreases, the cost savings become
substantial when voice is routed through IP networks. Routing voice traffic through
the Internet is a possibility that has the potential of changing the landscape of tele-
phony today. The traditional “Messenger” software has evolved from a text-based
chatting tool to a cost-free voice communication terminal that is able to link conti-
nents. There is an increasing number of voice communication messengers that provide
completely free PC-to-PC phone-calls, like Skype1, Google Talk 2, Yahoo Messenger
Voice Chat3, VoIPBuster 4, MSN Messenger 5 and others. Most of these messengers
offer the possibility of calling conventional and mobile telephony networks at a cost
that is comparable to the cost of local phone-calls. Hardware makers are introducing
smart phones that directly link to these VoIP messengers through a broadband In-
ternet connection without the necessity of a PC. It seems that there is a momentum
towards VoIP telephony.

The main obstacle in VoIP telephony arises from the fact that voice communi-
cation has strict end-to-end delay requirements while Internet provides no widely
adopted mechanism for real-time communications. In Internet, a voice packet can
be lost or delayed beyond its playback time, rendering it useless. Therefore, under
the spurious network congestions and drop-outs that occur in a packet’s path, speech
codecs have to deal with increased packet losses. Unfortunately, most of the dominant
speech codecs today cannot cope with increased packet loss conditions because they
were developed for private over-provisioned networks where the Quality-of-Service
was guarantied by the owner of the network. This has recently re-spurred the interest

1http://www.skype.com
2http://www.google.com/talk/
3http://messenger.yahoo.com/
4http://www.voipbuster.com/en/splash.html
5http://get.live.com/messenger/overview
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in speech coding; particularly in speech coding that is robust to packet losses. This
problem usually identified as “Speech Coding for VoIP” can also be formally stated as
“joint source/channel coding of speech” as opposed to the traditional “speech coding”
problem.

1.1 Quality-Of-Service in VoIP

Before getting into the details of VoIP Quality-of-Service (QoS), it is important to
clarify the notion of quality in speech communication and to provide a small overview
of the factors that affect QoS.

1.1.1 Measuring Speech Quality

The quality of speech can be measured with subjective tests where listeners rate
the quality of the communication. There are two categories of subjective tests: the
conversational tests where two people talk to each other and rate the quality of the
conversation, and the listening tests where a single person listens to speech signals
processed by the transmission system and rates them for their quality. Conversa-
tional tests are expensive and time-consuming, but evaluate the effect of factors that
listening tests cannot address, like the end-to-end delay and interactivity. Listening
tests are easier to devise and they are widely used in speech quality assessment.

There are several types of listening tests, depending on the purpose of the exper-
iment. The most common type of subjective test is the Absolute Category Rating
(ACR) test, where the listeners are asked to evaluate the quality of speech stimuli ac-
cording to the 5-point scale presented in Table 1.1. The sample average of the ACR
test is often referred to as Mean Opinion Score (MOS). The perception of quality
depends on many factors (for example, listening conditions, stimuli, persona) dif-
fers from listener to listener, and MOS ratings are usually not directly comparable.
A comparison though can be made using reference stimuli which are speech utter-
ances processed by standardized speech codecs or a Modulated Noise Reference Unit
(MNRU) at 5, 10, 15, 25 dB [1] (pg. 484).

Another type of subjective testing, the Degradation Category Rating (DCR) test,
is more suitable for coding purposes. In DCR, the listeners rate the degradation of a
speech signal according to a reference signal, using the scale presented in Table 1.2.
The DCR test is more sensitive to degradations introduced by the speech codec and
doesn’t need the evaluation of reference stimuli. The sample average of DCR is
sometimes referred to as Degradation Mean Opinion Score DMOS [1] (pg. 477).

More systematic feedback to the codec designer is provided by other types of sub-
jective tests. The most common are the Diagnostic Acceptability Measure (DAM)
which measures the difference in quality between two signals [2], the Diagnostic
Rhyme Test (DRT) test which evaluates the intelligibility of speech [3] and the MUl-
tiple Stimuli with Hidden Reference and Anchor (MUSHRA) test that is suitable for
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medium-rate speech and audio coding systems [4].
The subjective quality can also be evaluated using sophisticated algorithms that

predict objectively the MOS score using psychoacoustic criteria. The most widely
used algorithm is the Perceptual Evaluation of Speech Quality (PESQ) which has
been standardized at the ITU Recommendation P.862 [5].

Description Rating

Excellent 5
Good 4
Average 3
Poor 2
Bad 1

Table 1.1 ACR test scale.

Description Rating

Degradation is not perceived 5
Degradation is perceived but not annoying 4
Degradation is slightly annoying 3
Degradation is annoying 2
Degradation is very annoying 1

Table 1.2 DCR test scale.

1.1.2 Factors that affect Quality-of-Service

The QoS in VoIP is determined by several factors which are related to the communi-
cation system and to the network conditions.

System-related Degradations

The speech codec is a vital part of a VoIP system because it defines an upper bound
to the quality of speech when there are no other degradations. The robustness of the
speech codec to packet losses, tandeming, transcoding, echo and other degradations
has a major impact to the QoS in VoIP. Furthermore, the speech codec defines the
bandwidth of the speech signal that is transmitted. The bandwidth of the speech
signal extends up to 12 kHz and the corresponding frequency bands are not equally
important. Most of the speech codecs encode only narrowband speech which corre-
sponds to the first 4 kHz of the spectrum, but narrowband speech has a “muffled”
character while the first 8 kHz of the spectrum are necessary for a high quality trans-
mission of speech [6]. Therefore, the trend currently is towards wideband speech
codecs which encode the first 8 kHz of the spectrum.



4 Chapter 1 Introduction

A speech codec is traditionally evaluated in terms of subjective quality (i.e. MOS
score) and bitrate. Depending on the application, other criteria may also become
important like the computational complexity of the codec which is vital for low-power-
consumption portable devices, the algorithmic and the encoding delay that influences
the total end-to-end delay and the quality of the conversation, the sensitivity of the
codec to bit-errors which is important for wireless applications, the ability of the
codec to transmit DTMF (Dual Tone Multi-Frequency) signaling tones [7], and the
quality of audio encoding.

Tandeming and transcoding are two sources of quality degradation that occur
when speech is encoded with one codec, decoded, and then recoded with the same or
another codec, respectively. This situation is common when a phone-call is directed
through two or more different networks that use different codecs, for example from a
GSM mobile network [8] to a CDMA2000 mobile network [9].

Another source of degradation is caused by an echo effect where an attenuated
version of the speech signal returns back to the original speaker after some time which
is called echo path delay. One source of echo is the acoustic feedback from the speaker
to the microphone, while another source of echo is often caused by a mismatched hy-
brid (2-to-4 wire) convertor on the analog part of the telephony connection [10]. Echo
can cause a serious degradation to the perceived quality of speech and its suppression
is the subject of specialized echo cancelation algorithms [11], [12].

Finally, the quality of speech communication is affected by the characteristics of
the terminals, like the frequency response of the microphone and the speakers, the
background noise of the environment and the size of the so-called jitter buffer. The
jitter buffer is a buffer that is used to compensate the various delays and potential
reorderings of the packets that may occur in the packet network. The size of the
jitter buffer is usually adapted according to the network conditions. A large jitter
buffer reduces the packet loss rate because most of the packet losses are caused by
packets that are delayed beyond playback time, but it also increases the end-to-end
delay. Advanced VoIP systems offer adaptive jitter buffer resizing by making time-
scale modifications to the speech signal during playback [13], [14], [15]. Time-scaling
allows rapid adaptation to changing channel conditions, therefore, a good tradeoff
between delay impairments and packet losses [16].

Network-related Degradations

The network introduces delay to the transmission of the packets. ITU (Interna-
tional Telecommunication Union) studies recommend a maximum end-to-end delay
of 150 ms [17] when there is no echo. Delays over 150 ms are perceived as an im-
pairment for highly interactive conversations. For delays above 300 ms, there is a
noticeable degradation to the quality of the conversation [17], [18], and the speakers
tend to engage into double talking and mutual silence. But, in normal conversa-
tion talks, delays of 400-500 ms can be tolerated without significant degradation [19].
However, large delays make echo control harder and echo-related degradations more
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evident [16].
In IP networks, a packet can be lost, damaged or delayed beyond its playback

time. In either case, the packet is considered to be lost and the decoder uses a Packet
Loss Concealment (PLC) algorithm to fill the gap of the lost speech samples. The
PLC algorithm is usually tightly integrated with the speech codec. The impact of a
packet loss and the effectiveness of the concealment depends heavily on the speech
codec, because in some codecs the loss may cause a desynchronization between the
encoder and the decoder, with catastrophic result to the quality of speech.

Measurements have shown that packet losses in IP networks have a bursty nature.
Thus, it is more probable to loose a packet after a packet loss than after a packet
arrival [20], [21], [22]. The statistics of the loss process can be captured by Markov
Models [22], [21]. The second order Markov Model (also referred to as the Gilbert-
Elliot model) provides a good compromise between simplicity and effectiveness, and it
is frequently used for theoretical analysis of the tradeoffs that arise between quality,
redundancy and loss rate [23], [24]. The channels where a packet is either lost or
received are referred to as Erasure Channels.

Concluding, the QoS in VoIP depends on many factors which are interrelated. An
attempt to model the relationship between subjective quality and all these parameters
is made with the ITU E-model [25]. The E-model provides the means for a systematic
approach to the study and the fine-tuning of VoIP systems [24].

1.2 Speech Coding

Speech coding is the process of reducing the bitrate of digital speech signals. The
bitrate reduction is achieved by minimizing the transmission of redundant and irrel-
evant information that exists in the speech signal. Redundant information is the in-
formation that exists between correlated parameters of a representation of the speech
signal. Irrelevant information is the information that is not perceptually important.
The typical speech coding process splits the waveform of speech in small intervals of
10 ms to 30 ms called frames and encodes one or two consecutive frames into a single
packet.

The continuous speech signal is digitized through the process of sampling and
quantization. Sampling rates of 8 kHz and 16 kHz are commonly used. The speech
signals with bandwidth less than 4 kHz are called narrowband (NB) while the speech
signals with bandwidth around 7-8 kHz are called wideband (WB). The speech sam-
ples are digitized using 16-bit uniform quantization, a representation that is called
Pulse Code Modulation (PCM). The rate can be reduced to 8 bits/sample (64 kbps for
narrowband speech) with companded PCM which uses non-uniform quantization to
reduce the expected error, (ITU Recommendation G.711) [26]. Further rate reduction
can be obtained with Adaptive Differential PCM (ADPCM, ITU Recommendation
G.726 [27]) which takes into account the correlations between the speech samples in
time. ADPCM quantizes narrowband speech with rates between 16 kbps and 40 kbps.
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Figure 1.1 Source-Filter model of the speech signal

Speech codecs encode PCM quantized speech to more compact representations,
suitable for transmission over wireline and wireless networks. Speech codecs can be
classified into two broad categories: the parametric codecs and the waveform ap-
proximating codecs. Parametric codecs use a model of the speech production process
and quantize its parametric representation. They are very efficient in lower bit-rates
but cannot provide high-quality speech in higher bit-rates. Waveform approximat-
ing codecs produce a reconstructed signal that converges to the original waveform
with increasing bit-rate. PCM, companded PCM and ADPCM encodings belong to
the class of waveform approximating codecs, since they encode the speech waveform
sample-by-sample.

1.2.1 Waveform-approximating codecs

Sophisticated waveform-approximating algorithms use a source-filter representation
to decompose speech in two parts: an “excitation signal” (source) that roughly corre-
sponds to the output of the vocal chords, an AR (Auto-Regressive) filter that roughly
resembles the effect of the vocal tract to the excitation signal and a differentiator L(z)
that models the effect of the lips. The source-filter model of speech production is il-
lustrated in Figure 1.1. An important class of waveform-approximating codecs is the
Linear-Prediction based Analysis-by-Synthesis (LP-AS) algorithms which compute
the AR filter using Linear Prediction (LP) methods [28] and quantize the excita-
tion by minimizing a perceptually weighted mean square error between the original
waveform and the reconstructed waveform [29].

LP-AS codecs have proven to be quite successful in providing medium to high-
quality speech at rates between 5.3 kbps and 16 kbps for narrowband speech and
6 kbps to 23.85 kbps for wideband speech. LP-AS codecs differ mainly on the way that
they encode the excitation. In Multi-Pulse LPC (MP-LPC) and Code-Excited Linear
Prediction (CELP) the excitation is whitened with a filter that removes pitch-related
inter-sample correlations and quantized using two codebooks; an adaptive excitation
consisting of past-frame excitation signals and an innovative excitation consisting
of pulse sequences. In Multi-Pulse LPC (MP-LPC), the innovative excitation is
encoded with a series of pulses. The location and the gain of the pulses is explicitly
quantized. The ITU G.723.1 codec [30] (narrowband, 5.3 kbps to 6.3 kbps) and
the ETSI (European Telecommunication Standards Institute) GSM FR (GSM Full-
Rate) codec are two standardized MP-LPC codecs. In CELP codecs, the innovative
excitation is constructed using a specially designed codebook with pulses. CELP
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technology has proven to be quite successful and it is used in most standardized and
widely adopted speech codecs, like the ITU G.729 [31] codec, the ETSI GSM EFR
(Enhanced Full Rate) codec [32], the AMR [33] codec and the wideband AMR-WB
codec [34].

The dominating CELP codecs are also used for VoIP applications. However, in
VoIP, the nature of the IP networks and the strict end-to-end delay requirements
for communication result to increased packet losses. These codecs were not initially
designed to cope with such conditions. For example, G.729 degrades rapidly from
a 3.9 MOS score at 0% packet losses to a 2.75 MOS score at 5% packet losses [35].
AMR falls from a PESQ-MOS score of 3.98 at 0% packet losses to 3.31 at 2.3%
packet losses [36]. In general, the speech quality of CELP codecs is unacceptable for
packet losses higher than 3%. CELP codecs were designed to operate in a circuit-
switched manner mainly for wireless communications where each phone-call occupies
pre-allocated channel bandwidth. Therefore, the focus was given to reduce the bit-
rate and to introduce channel coding capable of correcting bit-errors that may occur
in a wireless transmission. Packet losses occurred only due to excessive bit-errors.
The voice stream was transmitted through a private over-provisioned network that
assured the QoS; the fact that the end-to-end delay requirements and the bit-error-
rate specifications were met. However, strong control of the network conditions is not
always possible in IP networks.

The rapid quality degradation that CELP codecs suffer upon packet losses can be
attributed to the desynchronization that occurs between the encoder and the decoder.
The desynchronization of the decoder buffers damages the adaptive excitation code-
book for several subsequent frames. A number of enhancements have been proposed
within the CELP framework. In [37], [38], for example, the AMR-WB encoder is
modified in order to reduce the contribution of the adaptive excitation codebook to
the decoded excitation, biasing the decoder towards a faster recovery at the expense
of coding efficiency. In [39], late frames (frames arriving after playback time) are used
for faster resynchronization of the AMR decoder. However, a single packet loss can
still cause severe degradation. This has led some researchers to develop iLBC (inter-
net Low Bitrate Codec), an LP-AS codec that encodes each packet independently of
the other (previous) packets [40]. iLBC completely avoids the desynchronization at
the cost of a higher bitrate: 13.33 kbps for the 30 ms version and 15.2 kbps for the
20 ms version for quality equivalent to the 8 kbps G.729.

iLBC is more robust than CELP codecs because it does not remove inter-packet
redundancy. The excessive redundancy can also be introduced with channel coding
techniques over the highly efficient CELP encodings. In fact, experimental evaluations
in [25], as well as theoretical evaluations based on the E-model in [35], report that
G.729 encodings with redundancy introduced via Forward Error Correction (FEC)
techniques outperform iLBC. FEC techniques introduce redundancy to the bitstream
in order to compensate packet losses. The simplest form of FEC is to repeat the
information of a packet to the next packet. The comparison however does not take
into account the effect of an improved PLC algorithm. Packet independent coding
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facilitates the design of highly efficient PLC algorithms which are fine-tuned to the
specifics of the speech signal. Furthermore, redundant side-information bitstreams
can provide a substantial improvement to PLC, as Global IP Sound (GIPS) claims
that it has achieved with the GIPS RCU (Redundant Coding Unit) [41]. The com-
bination of iLBC 13.33 kbps with the 1.33 kbps RCU bitstream provides a relatively
high MOS score of 3.4 for 15% packet losses. Clearly, the dilemma between efficient
source coding of speech in combination with channel coding and redundant source
coding with fine-tuned PLC is not an easy one to answer and further investigation is
required.

1.2.2 Parametric codecs

Parametric codecs use a model of the speech signal and quantize the parameters of
the model. The perceptual quality of parametric codecs is bounded by the intrinsic
quality of the model. Parametric codecs outperform CELP codecs at low bit rates be-
low 4.8 kbps, but cannot match the quality of CELP technology at higher rates above
8 kbps. Therefore, the application of parametric codecs is usually limited to satel-
lite and military communications where a minimal payload is protected with strong
channel coding. Two important classes of codecs can be identified as parametric: the
LP-based codecs where a sequence of pulses resembling the glottal excitation is fed
into an LP filter and the sinusoidal codecs. The military 2.4 kbps FS1015 codec [42]
and its successor, the 2.4 kbps MELP (Mixed Excitation Linear Prediction) [43] are
two standardized codecs of the first class. These codecs provide intelligible speech
(useful in battlefields) but their perceptual quality is low for commercial applications.

Sinusoidal codecs model the speech signal x(n) with a series of harmonically re-
lated oscillators of fundamental frequency ω0, according to formula

x̂(n) =
K∑

k=1

Ak cos(kω0n + φk), (1.1)

where K is the number of harmonics, Ak and φk are the amplitudes and the phases
of the harmonically related sinusoids. The most notable technologies of sinusoidal
codecs are the Multi-Band Excitation (MBE) family of codecs, the Sinusoidal Trans-
form Codec (STC) and the Waveform Interpolation (WI) codecs. MBE codecs group
the sinusoids in spectral bands and classify each band as voiced or unvoiced. Sinusoids
that belong to voiced bands are synthesized with an impulse like (zero-phase) exci-
tation, while sinusoids of unvoiced bands are synthesized with random phases. The
MBE family of codecs [43] has many standards in satellite telecommunications, like
the IMBE (Improved MBE) and the AMBE (Advanced MBE) codecs which are em-
ployed in satellite telecommunication systems like Inmarsat, Iridium and others [44].

STC-like codecs use a strategy that is similar to MBE and split the narrowband
speech spectrum in two bands [45], [1]. The lower band is considered to be voiced
while the upper band is considered to be unvoiced. As in MBE, voiced harmonics are
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synthesized using a zero-phase excitation, while unvoiced harmonics are synthesized
using random phases. WI codecs use a different approach. The speech signal is
considered to be a process generated by evolving waveforms that describe a single
pitch-cycle. The evolving waveforms which are referred to as characteristic waveforms
(and in early versions of the WI concept as Prototype Waveforms) are decomposed
to a slowly evolving harmonic part called Slowly Evolving Waveform (SEW) and a
fast evolving stochastic part called Rapidly Evolving Waveform (REW). The SEW
component is modeled using a sinusoidal representation while the REW is synthesized
using colored noise [1]. WI codecs require longer algorithmic delays for the extraction
of the characteristic waveforms but provide good perceptual quality at bit-rates below
4 kbps as reported in [46], [47], [48].

Sinusoidal codecs have not found their way to VoIP applications. This can be
partially attributed to the fact that the rival CELP technology was already widely
adopted in commercial cellular telephony networks when VoIP emerged, and par-
tially to the fact that sinusoidal codecs cannot reach the perceptual quality of CELP
codecs at higher bitrates because of their poor waveform-approximating capability.
The expectations of end-users in VoIP are much higher than in satellite telephony
systems. However, sinusoidal codecs are well posed for VoIP, namely, for the following
factors: first, the sinusoidal representation facilitates high-quality PLC because it is
well suited for interpolation and extrapolation of speech [49]. Second, the sinusoidal
representation allows high-quality time-scaling [50], [15], useful for on-the-fly resiz-
ing of the jitter buffer. Adaptive jitter buffer mechanisms are a vital part of VoIP
systems [16].

There are a few experimental sinusoidal codecs proposed for VoIP in the litera-
ture [51], [52]. The quality of sinusoidal codecs is bounded by the fact that the phases
of the harmonically related sinusoids are reconstructed according to a phase model
rather than quantized. Many authors argue that for higher perceptual quality, phase
information must be incorporated to sinusoidal codecs [53], [51], [54]. In [54], a vari-
able rate wideband sinusoidal codec that explicitly encodes phases is proposed and
evaluated for VoIP. The codec encodes each frame independently of the others (like
iLBC) and is capable of accepting packet losses of 10% with slight degradation while
it provides acceptable quality even at 20%-30% packet losses. However, the average
bitrate of the codec is relatively high, around 21 kbps, which brings up the aforemen-
tioned dilemma between efficient source coding with channel coding and redundant
source coding with fine-tuned PLC.

1.3 Source/Channel Coding

This section discusses the VoIP problem using arguments driven from information
theory. Lets assume that we seek to transmit an encoded representation of the speech
signal through a communication channel with fixed capacity. The typical approach,
motivated by the Shannon Separation Theorem, is to remove the redundancy of the
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source using source coding techniques and then to apply channel coding techniques
to increase the robustness to channel errors.

Source coding techniques are optimized to minimize the average quantization dis-
tortion for a fixed rate. Techniques that encode each source vector x with a fixed
number of bits are referred to as resolution-constrained (or level-constrained) quanti-
zation (RCQ) [55]. Techniques that encode a sequence of source vectors with variable
number of bits per vector but a fixed rate on average are referred to as entropy-
constrained quantization (ECQ) [55] (pg. 295). In ECQ, the source is quantized with
a uniform quantizer and the resulting indices are coded with an entropy-coder like a
Huffman code or an arithmetic code [55]. ECQ is widely used in image, video and
audio compression but rarely used in speech coding, mainly because ECQ reduces
the resilience of the code to bit-errors, secondarily due to the increased complexity of
ECQ and thirdly because ECQ of speech would result in variable-size speech packets.
Therefore, speech coding is typically made using RCQ methods, but exceptions also
exist [56].

Channel coding techniques introduce redundancy to counteract the losses intro-
duced by the network. Since we consider only erasure channels, a packet can either
be lost or received. The possibility of losing the contents of a packet can be reduced
using FEC (Forward Error Correction) schemes which can be implemented with error
correcting block codes. The Reed-Solomon (RS) codes are typical block codes used
for erasure correction in VoIP. An (N, K) RS code stores K packets of speech in N
packets (N > K). If any K of these N packets are received, the payload is perfectly
reconstructed. If less than K packets are received, the payload is lost [57]. Typical
Reed-Solomon codes used in VoIP are the (3, 2) RS and the (4, 2) RS which encode 2
packets in 3 and 4 packets, respectively. The main disadvantage of such FEC schemes
is that they introduce additional delay [24], [58], [35].

A common approach to VoIP is to use efficient CELP codecs with FEC [24].
These schemes are similar to the source/channel separation strategy where source-
coding and channel-coding are optimized separately and operate in tandem. This
approach, which is motivated by the Shannon Separation Theorem (also known as
the Channel Coding Theorem) [59] pg. 198, is justified only when we encode suf-
ficiently long sequences of data, thus, when we can afford to have large encoding
buffers. An alternative is to jointly optimize source-coding and channel-coding with
respect to the reconstruction distortion at the decoder. Intuition can be obtained
from the examination of simple paradigms. For example, Lim in [60] shows that joint
source/channel coding outperforms separated source/channel optimization in trans-
form coding when the acceptable coding delay is below a threshold. Since speech
coding has strict delay requirements, we could expect that joint source/channel cod-
ing of speech should outperform cascaded source/channel coding. However, due to
the complexity of the subject this is merely an educated guess rather than a fact.

Multiple Description Coding (MDC) is a plausible framework for joint source/cha-
nnel coding in erasure channels [61]. A schematic representation of MDC is shown
in Figure 1.2. MDC encodes each data vector in two descriptions I1, I2. Each of
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Figure 1.2 Multiple Description Coding

the descriptions is routed through a different channel. When both descriptions are
received, the central decoder is used to provide a high quality reconstruction of the
source. When only one description is received, an intermediate quality reconstruction
is made by the corresponding side decoder. The quantization distortion related to the
central decoder is called central distortion while the quantization distortion related to
the side decoders is referred to as side distortion. If the two channels are independent,
the probability of loosing all information regarding a speech frame is substantially
reduced compared to the single channel case. The MDC framework provides a formal
mechanism to trade central distortion for side distortions. A comparison between FEC
and MDC for memoryless Gaussian sources in terms of Shannon’s Rate-Distortion
theory shows that MDC is better than FEC even when the two descriptions are
routed through the same channel [23].

An insightful description of the MDC and its history is provided by Goyal in [61].
Although the first appearance of the MDC concept was made for speech coding appli-
cations in 1970s at Bell Labs, even now, three decades later, efficient MDC of speech
remains an open problem with unresolved aspects. Most publications on MDC of
speech encode the waveform in a sample-by-sample manner, namely in three ways:
scalar MDC of PCM samples, scalar MDC in a predictive coding scheme and even-odd
separation schemes. The first and the second approach use scalar MDC quantizers
to encode the PCM samples [62] or a prediction residual, for example the DPCM
(Differential PCM) or the ADPCM residual, [63], [64]. Even-odd separation schemes
split the waveform in two descriptions consisting of the even and odd indexed samples,
respectively. When a description is lost, the lost samples are either interpolated [61]
or reconstructed using side information carried in the received description [65], [66].

Sample-based schemes are inefficient in terms of bitrate. Some researchers pro-
pose to modify CELP codecs to operate in a multiple description mode. A simple
solution is to use dithering in waveform-approximating codecs [67], [68]. In this ap-
proach, each description encodes a dithered version of the signal. When more than
one descriptions are received, the decoded signals are averaged to a reconstruction
with less quantization noise than the reconstruction made using a single description.
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Other researchers construct the two descriptions by distributing the bits of a single
CELP description in two descriptions [69], [70], [71]. Some bits are replicated in both
descriptions and consist a “base” layer of information. The aforementioned methods
are based on heuristics that do not guarantee that the selected excitation vectors are
optimal for specific central/side description tradeoffs. The main obstacle in CELP-
based MDC is the construction and the optimization of the excitation vectors in a
way that is optimal for predefined central/side distortion tradeoffs.

Another approach is to use the inherent redundancy that exists between the au-
ditory channels in order to improve the resilience of the transmission. In [72], [73]
the speech signal is analyzed into several frequency bands that resemble the auditory
channels of the human hearing process. The analysis process is viewed as a frame
expansion operation and it is implemented using a filterbank. The output of each
channel is independently encoded and transmitted through the network. If some
channels are lost through the transmission, an appropriate reconstruction is still pos-
sible. The overall system operates at a fixed central/side distortion tradeoff point
using a fixed amount of redundancy. Furthermore, several aspects remain in blind;
the employed over-complete transform is justified from an auditory point of view
but little justification is provided from a joint source/channel coding aspect. Note,
however, that an optimization with respect to the auditory principles as well as the
source/channel considerations is not a trivial task.

1.4 Summary of Contributions

This thesis proposes a framework for developing speech codecs that are specially
designed for the VoIP conditions. The thesis attacks the problem in two levels: at the
basic source coding level where novel methods, that introduce controlled redundancy
into the bitstream, are proposed, and at the speech modelling/coding level where a
novel speech parameterization, that is amenable to efficient quantization using these
methods, is proposed. Figure 1.3 has a diagram of the contributions of the thesis.

The speech signal is modeled with a high-quality sinusoidal Harmonic Model
(HM). The parameters of the Harmonic Model, namely, the amplitudes and the phases
of the harmonically related sinusoids, are quantized using single description quanti-
zation and multiple description quantization. A single description and a multiple
description Harmonic Coder are then constructed, along with a high-quality sinu-
soidal Packet Loss Concealment (PLC) algorithm. The designed codecs are scalable,
variable rate and robust to packet losses. Compared to the well known iLBC codec,
that is also designed for VoIP applications, the 14.8 kbps variable rate single descrip-
tion codec has similar perceptual quality at similar bitrates while it is more robust to
packet losses. The 20.8 kbps variable rate multiple description codec (with channel
diversity) can accept 30% packet losses with a perceptual degradation that is not
annoying and 40% packet losses with a slight perceptual degradation.

Chapter 2 presents the Harmonic Model of speech which approximates the speech
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signal with harmonically related sinusoids. A very fast analysis method for the es-
timation of the amplitudes and the phases of the sinusoids is proposed along with a
fast harmonic synthesis algorithm. A robust analysis-by-synthesis pitch detector that
is based on these methods is then proposed. The chapter also reviews an algorithm
that fits the harmonic amplitudes to a real cepstrum spectral envelope. This spectral
envelope provides a fixed dimension parameterization of the harmonic amplitudes.

Chapter 3 reviews an efficient high-rate quantization algorithm that uses Gaussian
Mixture Models (GMM) to model the source statistics. The theoretical background
and the algorithm is thoroughly discussed because it forms the basis of the quantiza-
tion methods that are proposed in this thesis.

Chapter 4 is about the quantization of the phases of the harmonically related
sinusoids. The harmonic phases are decomposed into a scalar translation term and
a vector of “dispersion phases”. The dispersion phases are treated using circular
statistics which are suitable for variables with modulo-2π behavior. A mixture model
referred to as “Wrapped Gaussian Mixture Model” (WGMM) consisting of multi-
variate wrapped Gaussian pdfs is then presented and the corresponding estimation
algorithm is provided. The algorithm uses Expectation-Maximization to maximize
the likelihood of the model. WGMM is then used to construct a quantizer for phases.
The WGMM-based quantizer uses scalar quantization of wrapped Gaussian random
variables. However, the design of such a quantizer is not trivial and two solutions
with different complexity/performance tradeoffs are proposed. Finally, the designed
WGMM-based quantizer is used to quantize the dispersion phases of speech.

Chapter 5 proposes a novel Packet Loss Concealment algorithm for Harmonic
Models of speech. The algorithm uses the jitter buffer to interpolate speech when a
future frame is available while it extrapolates speech when the jitter buffer is empty.
The sinusoids within a frame are classified as “voiced” or “unvoiced” and a different
procedure is used for each case. Sinusoids classified as voiced are interpolated and ex-
trapolated with respect to phase coherence (continuity over time) while the unvoiced
sinusoids are synthesized with random phases. The algorithm proves to be effective
in concealing packet losses.

Chapter 6 reviews and proposes multiple description coding techniques. Focus is
given to GMM-MDSQTC , a GMM-based MDC quantizer suitable for the quantization
of spectral envelopes. GMM-MDSQTC uses transform coding based on the Multiple
Description Scalar Quantization (MDSQ) quantizers proposed by Vaishampayan [74].
Then, a novel WGMM-based MDC quantizer for phase data, that combines ideas from
GMM-MDSQTC and Chapter 4, is provided. Finally, a novel bit-erasure channel de-
coder for GMM-based MDC quantizers is proposed. The decoder uses the correlations
that exist between the descriptions to reduce the impact of bit-errors that occur in
one description. Experimental results show that the proposed decoder battles effec-
tively single and double bit-errors, but the complexity increases rapidly for more than
two bit-errors.

Chapter 7 contributes to the “Transform Coding” family of MDC quantizers. A
novel resolution-constrained Multiple Description Transform Coding (MDTC) algo-
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rithm for multivariate Gaussians is proposed and evaluated. The scheme is based on
a specially designed frame expansion. Then, a GMM-based MDTC (GMM-MDTC)
algorithm is proposed. GMM-MDTC is better than GMM-MDSQTC in lower packet
losses, slightly inferior in higher packet losses and features scalability, low complexity
and low storage requirements. Finally, the performance of MDTC (and GMM-based
MDTC) in higher packet losses is improved by a modification of the traditional MDTC
encoding procedure. The Gaussian encoders in the new scheme are cooperating in
order to minimize a total distortion measure that takes into account the central
distortion as well as the side distortions. The new encoding provides central/side
distortion tradeoff points similar to the tradeoffs provided by the more complicated
MDSQ-based quantizers.

Chapter 8 examines another way of introducing redundancy to the bitstream.
When the encoder does not remove the inter-packet redundancy, Coding with Side
Information (CSI) can be used to introduce redundancy that correct specific types of
errors, for example single and double packet losses. A codebook-based CSI framework,
referred to as Conditional Vector Quantization (CVQ) , is proposed and evaluated for
the purpose of recovering the lost spectral envelopes in single and double packet losses.
Then, CVQ is used to expand the bandwidth of narrowband speech to wideband. The
narrow-band spectral envelopes are used to reconstruct the 4-8 kHz spectral envelopes.
A high quality extension of narrowband speech to wideband can be obtained with a
minimal of 134 bps for the spectral envelopes using 33.3 Hz frame refresh rate. Full
quantization of the 4-8 kHz speech requires 1 kbps for 100 Hz frame refresh rate.

Chapter 9 combines some of the results of the previous chapters in two proof-
of-concept speech codecs referred to as “Harmonic Model Codecs” (HMC), a single
description version of HMC and a multiple description version. The codecs are nar-
rowband, variable rate, similar to quality with iLBC (yielding a PESQ-MOS score of
3.88 under perfect channel conditions) and robust to packet losses.
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Chapter 2

Harmonic Modeling of Speech

2.1 Overview

Some parts of the speech signal exhibit a quasi-harmonic behavior that is easily
observed in the time-frequency plane. Modeling these parts with a harmonic model is
a common practice that has led to high quality analysis/synthesis of speech [75], [76]
and to competitive speech coding algorithms [29], [1], [45].

Sinusoidal coders use a harmonic sinusoidal model for voiced speech and have
shown superior performance over the rival CELP codecs in lower bit rates (less than
4 Kbps) [29], [1], [45]. Harmonic speech coders rely on a magnitude spectral envelope
model and a phase model for the reconstruction of the amplitudes and the phases of
the harmonically related sinusoids, respectively.

The spectral envelope is usually obtained using auto-regressive filters or cepstral
envelopes [45]. In Sinusoidal Transform Coder (STC) [45], the phase model is based
on a voicing decision that effectively splits the speech spectrum into two bands; a
lower voiced band and a higher unvoiced band. The phases of the voiced band are
constructed by sampling the minimum-phase spectral envelope, while the phases of
the unvoiced band are considered random. In Multi-Band Excitation (MBE) [29],
the spectrum is split into a number of bands, and a voicing decision is made for
each band. Each band is encoded according to its voicing state and the phases
are determined by the minimum-phase spectral envelope and/or random noise. In
Waveform Interpolative (WI) coders [1], the voiced speech is decomposed into two
parts, a slowly evolving component that exhibits a harmonic structure and a fast
evolving component that consists of colored noise.

Harmonic speech coders are well posed for VoIP because it is easy to use the har-
monic model to interpolate and extrapolate speech for packet loss concealment [77], [54],
[51]. Furthermore, the harmonic representation allows efficient jitter buffer resizing
via on-the-fly time-scaling of the speech signals. However, sinusoidal coders do not
provide speech of high-quality at higher bitrates, mainly due to the fact the phases
are estimated and not encoded [45]. On the other hand, speech coders that explicitly
encode phases, tend to require increased bitrates [54].

17
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This chapter presents the harmonic sinusoidal model of speech and proposes a
very fast analysis/synthesis method. The harmonic amplitudes will be represented
by a spectral envelope based on cepstral coefficients and a suitable post-filtering
enhancement method will be discussed. A novel algorithm will be proposed that uses
the cepstral envelope to select the pitch among a list of possible pitch candidates.
The latter method will be used to construct an Analysis-by-Synthesis pitch detector.

2.2 Analysis/Synthesis using a Harmonic Model

The accurate measurement of phases is not of primary interest for sinusoidal coders
based on phase models. However, a high quality sinusoidal representation requires
accurate measurements of both harmonic amplitudes and phases [76]. The Harmonic
Model is a high quality parametric model used for signal analysis/synthesis. The
signal is represented as a weighted sum of harmonically related cosines and sines:

x̂(n) =
K∑

k=1

[ck cos(kω0(n − n0)) + sk sin(kω0(n − n0))] (2.1)

where N is the duration of the analysis frame in samples, n0 = N−1
2

is the center of
the analysis frame, ω0 is the fundamental frequency, K is the number of harmonics,
ck and sk are the cosine and sine coefficients describing the even and odd part of
the k-th harmonic sinusoid, respectively, and n is the time index. Equivalently, the
harmonic model can be expressed in terms of K harmonic amplitudes Ak and K
harmonic phases φk:

x̂(n) =
K∑

k=1

Ak cos(kω0(n − n0) + φk), n = 0, . . . , N − 1, (2.2)

The unknown parameters ck and sk are evaluated using a weighted least-squares
method that minimizes the square error criterion with respect to ck and sk:

ε =
N−1∑
n=0

w2(n)(x(n) − x̂(n))2, (2.3)

where x(n) is the original signal, x̂(n) is its harmonic representation and w(n) is the
analysis window. Using matrix formulation, we may rewrite (2.1) as

x̂ = B

[
c
s

]
(2.4)

where B is the N − by − 2K cosine/sine basis matrix

B = [C S] (2.5)
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and where C and S are the cosine and sine bases matrices, respectively, with size
N − by − K and elements that are defined by:

Cn,k = cos(kω0(n − n0)) (2.6)

Sn,k = sin(kω0(n − n0)) (2.7)

for n = 0, . . . , N − 1 and k = 1, . . . , K, while vectors c, s hold the parameters to be
computed:

c = [c1c2 . . . cK ]T (2.8)

s = [s1s2 . . . sK ]T (2.9)

The solution to the least-squares problem (2.3) is then given by the normal equa-
tions [78]:

(BTWTWB)

[
c
s

]
= BTWTWx (2.10)

where W = diag (w(0), w(1), . . . , w(N − 1)) is a diagonal matrix with the symmetric
window w for diagonal and x is a N − by − 1 vector that holds the original signal
x = [x(0), x(1), . . . x(N−1)]T . Note that (BTWTWB)−1BTWT is the pseudoinverse
matrix that projects the (weighted) signal into the subspace of the weighted harmonic
sines and cosines.

Using simple trigonometric algebra and the fact that the window w is a symmetric
one, we have that

BTWTWB =

[
CTWTWC CTWTWS
STWTWC STWTWS

]
=

[
Ac 0
0 As

] (2.11)

and

BTWTWx =

[
CTWTWx
STWTWx

]
=

[
bc

bs

]
(2.12)

where Ac and As are the K−by−K cosine and sine, respectively, weighted correlation
matrices, bc and bs are the cosine and sine K − by − 1 projection vectors, and 0 is
the K − by−K zero matrix. Therefore, from (2.10) we get the following two systems
to solve:

Acc = bc (2.13)

Ass = bs. (2.14)
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Matrices Ac = [ac
i,j] and As = [as

i,j], i, j ∈ {1, .., K} can be restated as [50]:

ac
i,j =

N−1∑
n=0

w(n)2 cos(iω0(n − n0)) cos(jω0(n − n0)) = τi−j + hi+j (2.15)

as
i,j =

N−1∑
n=0

w(n)2 sin(iω0(n − n0)) sin(jω0(n − n0)) = τi−j − hi+j (2.16)

where T = [τi−j] is a Toeplitz matrix and H = [hi+j] is a Hankel matrix:

τi−j =
1

2

N−1∑
n=0

w(n)2 cos((i − j)ω0(n − n0)) (2.17)

hi+j =
1

2

N−1∑
n=0

w(n)2 cos((i + j)ω0(n − n0)), (2.18)

therefore, Ac = T + H and As = T − H are Toeplitz-plus-Hankel matrices. Lin-
ear systems with Toeplitz-plus-Hankel coefficient matrices can be efficiently solved
with O(K2) complexity using Levinson-type and Schur-type algorithms [79]. An in-
teresting property of the Toeplitz-plus-Hankel matrices is that their inverses are the
so called Toeplitz+Hankel-Bezoutians : matrices that can be accurately reconstructed
with O(K2) complexity using only O(K) parameters [79].

2.3 A method for Fast Harmonic Analysis/Synthesis

Approximate solutions of the linear systems in equations (2.13) and (2.14) can reduce
the complexity of the analysis to O(K) with minor degradation to the quality of
the solution. The fact that Ac and As are band-diagonal is used in [80] (ch. 6) to
reduce the complexity to O(K). The latter method is using the observation that
the correlations between the sinusoids are influenced mostly by the main lobe of the
analysis window. Therefore, only the sinusoids that are close in frequency, in terms of
the effective bandwidth of the main lobe, are considered for the inversion. This results
to the inversion of a highly sparse system, and to a complexity of O(K) calculations.

This section proposes a novel method that also leads to a complexity of O(K),
but involves no inversion at all. The method is motivated by the observation that the
inverses of Ac and As are Toeplitz+Hankel-Bezoutians and can be accurately stored
using only O(K) parameters [79]. Furthermore, for the range of values that is in-
teresting for speech analysis and coding (analysis frame with 20ms or 30ms duration
and pitch frequency f0 between 60 and 400 Hz), the inverses A−1

c and A−1
s are ap-

proximately equal A−1
c ≈ A−1

s and share a structure that can easily be encoded with
a minimal set of parameters. The proposed method is not as accurate or generic as
the inverse reconstruction theorems in [79] that reconstruct the inverse matrix with
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Figure 2.1 Similarity measurement using Hamming window.

O(K2) complexity, but it offers significant computational advantages at the cost of a
minimal SNR (Signal-to-Noise Ratio) degradation.

Initially, it will be shown that A−1
c ≈ A−1

s for many interesting frame durations
(20ms and 30ms), sampling rates Fs = { 2 kHz, 8 kHz, 16 kHz } and for all integer
fundamental frequencies f0 between 60 Hz and 400 Hz. Then we will define A ≡ A−1

c

and present an encoding algorithm Q(·) that encodes A to Â = Q−1(Q(A)). Finally,
the quality of the approximation made by using the encoded matrix Â, for the cases
under examination, will be addressed.

2.3.1 Similarity between A−1
c and A−1

s

The similarity between the inverse matrices A−1
c and A−1

s was measured for all ex-
amined cases of sampling rates, frame durations and ω0, using the Hamming window.
As a distance measure we used the element-wise mean value of the absolute differ-
ence between the product of the first inverse matrix with the second matrix and the
identity matrix I:

d(A−1
1 ,A−1

2 ) = mean‖A−1
1 A2 − I‖ (2.19)

The results of the two measurements: d(A−1
c ,A−1

s ) and d(A−1
s ,A−1

c ) are similar, so
we chose to present only the former for clarity.

As shown in Figure 2.1, the distance d(A−1
c ,A−1

s ) is well below 10−3 for most of the
examined cases. Note that this corresponds to a mean relative error of 0.1% because
the elements of the product A−1

c As should approximate the identity matrix I. Similar
results were obtained for other commonly used windows like Hanning, Rectangular,
and Blackman. Therefore, for the rest of this section, the matrix A ≡ A−1

c ≈ A−1
s
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Figure 2.2 A and Â columns for Fs = 2kHz, f0 = 70Hz and 20ms frame.
Circled are the selected representative patterns.

will serve as an approximation of the inverse of both matrices Ac and As.

2.3.2 Encoding Algorithm

It is unrealistic to store one inverse matrix for every possible f0. The storage re-
quirements for A can be reduced if we can exploit the structure of the matrix. The
elements of A have a specific pattern of similarity in the columns of A. Each column
is similar to the other columns in accordance to a shift in row sense. Additionally,
the main pattern is symmetric. We developed an encoding algorithm that selects
representative patterns from the columns of A. These representative patterns are
used to create the decoded matrix Â.

The selection of the representative patterns is made using an energy criterion so
that the decoded columns retain 99.999% of the energy of the original columns. Since
the pattern of the center column is approximately symmetric, only half of it needs to
be stored. A variable number of patterns (1 to 4) may be extracted for each matrix A.
The patterns are extracted from columns 1,2,3 and �K/2�. The main representative
pattern, p0, is created from the �K/2�-th (center) column and it is always kept. Let
p1, p2 and p3 be the representative patterns from the 1st, the 2nd and the 3rd column,
respectively. From these three patterns, only those representing columns for which p0

does not satisfy the energy criterion are kept. Finally, all kept representative patterns
are extended to include as many elements as the longest one, and may be zero-padded
if they do not have enough elements. The encoded representation of A consists of
these patterns and requires only a few parameters per matrix.

An example of a matrix A and its compressed version Â is shown in Figure 2.2.
The figure plots the columns of A and the columns of the corresponding matrix Â. The
representative patterns in the leftmost matrix A are circled. The rightmost matrix
Â is constructed using only the circled representative patterns. It is evident that Â
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captures the coarse structure of A. The number of parameters required to encode all
matrices A(f0) for f0 = 60, 61, ..., 400Hz and the corresponding compression ratios
are shown in Table 2.1. Clearly, the memory requirements for the representative
patterns pi,i = 0, ..., 3 are quite low.

Fs(kHz) Frame(ms) Parameters Compression Ratio

2 20 1387 7.2
2 30 506 19.8
8 20 1833 103.2
8 30 504 375.4

16 20 2069 392.8
16 30 503 1616.0

Table 2.1 Number of parameters needed to encode all matrices for f0 =
60, 61, ..., 400Hz. A Hamming window was used.

The matrix Â is decoded from the stored representative patterns. The center col-
umn representative pattern is mirrored and concatenated to itself, to approximate the
original center column and is copied to all columns using the appropriate shift. The
representative patterns of the first, second and third column -whichever are kept- are
copied to their respective column, with the appropriate mirroring and concatenation
for the second and third pattern. These are also flipped and copied to the last, second
to last and third to last column accordingly.

The representative patterns pi evolve smoothly with respect to f0. Therefore, we
can interpolate the representative patterns for values of f0 that were not used at the
encoding stage. For example, the patterns pi for f0 = 100.5 Hz can be taken from
the linear interpolation of the nearest patterns at f0 = 100 Hz and f0 = 101 Hz:
pi(100.5) = 0.5(pi(100) + pi(101)).

The patterned structure of A is broken when the harmonic analysis includes sinu-
soids that are near the Nyquist frequency, Fs/2. Therefore, all the experiments in the
chapter were conducted with a maximum harmonic frequency that is lower than Fs/2.
In particular, the cutoff frequencies for Fs = 2 kHz, Fs = 8 kHz and Fs = 16 kHz
were 0.9 kHz, 3.7 kHz and 7.6 kHz, respectively.

The complexity of the decoding process depends on the number of harmonics K
and the size of the patterns. Since the size of patterns is bounded to a few coefficients,
the complexity of the proposed algorithm is linear, i.e. O(n). In fact, the decoding
process is just a multiplication of bc (or bs) with a sparse matrix generated by the
representative patterns.

2.3.3 Quality of the Approximation

The approximation made by the proposed encoding algorithm is evaluated with the
distance measure in (2.19). The distances d(Â,A−1

c ) and d(Â,A−1
s ) were measured for
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Figure 2.3 Encoding quality measurement using Hamming window.

f0 = 60, ..., 400Hz and several sampling rates, windows, frame durations. However,
the corresponding distances d(Â,A−1

c ) and d(Â,A−1
s ) are very close in a numerical

sense, therefore for clarity, we will present results regarding only d(Â,A−1
c ). The

results are depicted in Figure 2.3 where it is shown that distance d(Â,A−1
c ) is below

0.02 for the case of Fs = 2kHz and well below 0.01 for the rest of the examined cases.
Note that the measurements were made using a Hamming window and that similar
results were obtained for other windows.

2.3.4 Fast Harmonic Synthesis

The computation of the cosine and sine bases, used in (2.13) and (2.14), requires a
considerable portion of the complexity of the HM analysis. However, the cosine and
sine functions can be computed iteratively over time using the equations [81]:

cos(kω0(n + 1)) 	 (1 − α) cos(kω0n) − β sin(kω0n)
sin(kω0(n + 1)) 	 (1 − α) sin(kω0n) + β cos(kω0n)

where α = 2 sin2(0.5kω0) and β = sin(kω0). These computations need 2 MAC
(Multiply-Accumulate) operations for each cosine or sine evaluation. The complexity
can be further reduced if the recurrence is taken over the harmonic frequencies:

cos(kω0n) = 2 cos((k − 1)ω0n) cos(ω0n) − cos((k − 2)ω0n)
sin(kω0n) = 2 sin((k − 1)ω0n) cos(ω0n) − sin((k − 2)ω0n)

With proper implementation, these computations need only 1 MAC operation each.
Furthermore, the symmetry and antisymmetry of C and S over the rows can be
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Figure 2.4 Average segmental SNR degradation for several f0 intervals.

exploited to reduce the cost for the computation of the corresponding matrices. Note
that when N is odd, the central rows of C and S have constant values of 1 and 0,
respectively. We use the following combination of the presented recurrence relations.
Initially, we use the recurrence over the rows of C, S (time index n) to compute the
sine/cosines of the first harmonic. Then we use the recurrence over the frequencies
to compute the rest of the harmonics.

2.3.5 Experimental Evaluation

The performance of the proposed algorithm was evaluated in terms of segmental
SNR. Tests of analysis/synthesis of narrowband speech signals (Fs = 4 kHz) using
20ms frames weighted by a Hanning window were conducted. Estimation of pitch
was used for the voiced frames, while for the unvoiced frames, a constant funda-
mental frequency f0 = 100 Hz was used. The comparison was made using 512
narrowband utterances (256 males, 256 females). Let SNRinv be the segmental SNR
provided when Ac and As are typically inverted and SNRfast be the segmental SNR
provided by the proposed algorithm, as described in Section 2.3.2. The difference
dSNR = SNRinv − SNRfast was taken on a frame-by-frame basis. Figure 2.4, de-
picts the average dSNR for several f0 intervals. Note that the SNR degradation
is negligible for most frequencies. However, in lower frequencies (f0 < 70 Hz) the
degradation is more evident. That is to be expected, since as we showed in Fig-
ures 2.1 and 2.3 our algorithm doesn’t perform well for this range. This is not a
significant problem because such pitch values are very rare and the SNR is already
very high due to the dense frequency sampling. In order to reduce the SNR loss, the
number of representative patterns must be increased.

2.4 Modeling Harmonic Amplitudes using Cepstral

Envelopes

The amplitudes of the harmonically related sinusoids of voiced speech evolve slowly
over frequency and form a spectral envelope. The notion of the “spectral envelope” in
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speech signals is justified if the speech production is seen as a source-filter operation.
In this perspective, the spectral envelope resembles the effect of the vocal tract to
the excitation signal that is emitted from the vocal folds [45]. From the source
coding point of view, the spectral envelope provides a way to exploit the dependencies
between the harmonic amplitudes, as well as a way to remove an amount of perceptual
irrelevancy that exists in this source.

There is considerable work on the extraction of spectral envelopes from speech
signals [45], [1]. The methods can be roughly categorized to those that represent
the spectral envelope using an all-pole filter and to those that describe the spectral
envelope in terms of cepstral coefficients. The latter spectral envelopes resulting are
also called cepstral envelopes.

2.4.1 Mel-Scale Cepstral Envelope

Let Hs(f) be the spectral envelope of a speech frame. A parametric cepstral envelope
of order P is provided by formula:

log |Hs(f)| = c0 + 2
P∑

p=1

cp cos(2πfp), (2.20)

where c = [cp], p = 1, . . . , P are the P real cepstrum coefficients plus c0 which
states the energy of the signal. The cepstral envelope is a minimum phase spectral
envelope. In fact, the log-amplitude and the (minimum) phase spectrum have a
Hilbert transform relationship [1] (pg. 144):

∠Hs(f) = −2
P∑

p=1

cp sin(2πfp). (2.21)

The cepstral envelope approximates the log-spectrum harmonic amplitudes log(Ak) at
the corresponding frequencies by minimizing a least-squares error at the log-spectrum
domain:

ε =
K∑

k=1

‖ log(Ak) − log |Hs(kf0)| ‖2 (2.22)

In other words, the harmonic log-amplitudes are projected to a subspace generated
by the columns of M = [µi+1,j+1], i = 0, . . . , K, j = 0, . . . , P , where

µi,j = 2 cos(2πif0j) − δ(j). (2.23)

where δ(.) is the discrete delta function. The least-squares error solution is provided
by the pseudo-inverse of M:

c = (MTM)−1MTa (2.24)
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where a = [log(A1) log(A2) . . . log(AK)]T . However, this solution does not guarantee
a smooth cepstral envelope C(f). The rapid variations of the cepstral envelope can
be penalized by adding to the distortion criterion ε a term that expresses the energy
of the derivative of d

df
log |Hs(f)|; thus by minimizing a regularized criterion έ:

έ = ε + λ

∫ Fs
2

−Fs
2

(
d

df
log |Hs(f)|)2df (2.25)

where λ is a regularization parameter that controls the smoothness of the derived
cepstral envelope. The least-squares error solution in the regularized case can be
shown to be [82]:

c = [MTM + λR]−1MTa (2.26)

where R = diag([0 8π212 8π222 . . . 8π2P 2]).
The distortion criterion ε does not take into account the perceptual importance

of the lower frequencies. The modeling error at the lower harmonics can be reduced
if the cepstral envelope is computed using the Bark frequency scale instead of the
linear frequency scale [50]. There is considerable work in closed form expressions that
link Bark-scale to linear frequency scale. We used the Traunmüller formula with low
frequency and high frequency corrections [83]:

b =
26.81f

1960 + f
− 0.53 (2.27)

low frequency correction : if b < 2, b ← b + 0.15(2 − b) (2.28)

high frequency correction : if b > 20, b ← b + 0.22(b − 20.1), (2.29)

where b is in Barks and f is in Hz. When the cepstral envelope is computed in
Bark scale, a value of λ = 0.002 seems to provide an acceptable balance between
smoothness and modeling quality.

2.4.2 Adaptive Post-Filtering

The speech that is reconstructed using original phases and harmonic amplitudes sam-
pled from the cepstral envelope is usually of high quality when the model order is
adequate (i.e. P ≥ 20 for narrowband speech). However, for low-pitched speakers,
there is a slight loss-of-presence effect. This is usually perceived as a alternation
of the speech signal rather than a degradation. This type of degradation is closely
related to the muffling effect observed in sinusoidal coders which can be attributed
to the reduction of the dynamic range of a formant peak-to-null distance. Adaptive
post-filtering techniques can then be used to deepen the formant nulls. The technique
described in [1] (pg. 148) will briefly be reviewed.

Let Âk be the K harmonic amplitudes which are sampled from the cepstral enve-
lope. The energy R0 and the correlation coefficient R1 can be expressed in terms of
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Âk:

R0 =
K∑

k=1

Â2
k (2.30)

R1 =
K∑

k=1

Â2
k cos(kω0). (2.31)

The post-filter weight Wk associated with the k-th harmonic is provided by formula:

Wk = Âγ
k

[
K (R2

0 − 2R1R0cos(kω0) + R2
1)

R0(R2
0 − R2

1)

] γ
2

. (2.32)

where the factor in the brackets removes the tilt from the spectral envelope, and the
exponentiation by γ ∈ [0, 1] applies a root-γ compression rule to the tilt-removed
log-spectrum. In this thesis a value of gamma = 1

2
is used. A clipping rule is then

applied to the weights Wk in order to avoid excessive spectral shaping:

W ′
k =

⎧⎨
⎩

1.2, if Wk > 1.2
0.8, if Wk < 0.8
Wk, otherwise

(2.33)

Concluding, the post-filtered harmonic amplitudes are Â′
k = W ′

kÂk.
The post-filter reduces the loss-of-presence effect associated with the cepstral en-

velope and increases the PESQ-MOS [5] score about 0.1 units, on average.

2.5 A novel Pitch Detection algorithm

Pitch is the perceived tonality of an audio signal that is composed by one or more
tones. The pitch estimation problem has troubled speech researchers and engineers
from the beginning of the speech processing discipline. Pitch detection is also stated
as a fundamental frequency (f0) estimation problem. However, strictly speaking, the
fundamental frequency is a characteristic of the behavior of a signal, while pitch is a
characteristic of the human sound perception system. In this thesis, pitch detection
will be addressed as a fundamental frequency estimation problem. Therefore, a pitch
detector tries to find the frequency f0 that best describes the harmonic or quasi-
harmonic behavior of the signal.

The methods that perform pitch detection can be classified to those that use time-
domain criteria like the YIN estimator [84], the RAPT estimator [1] (ch. 14) and the
MBE pitch estimator [29] (pg. 242), and those that use frequency domain criteria like
the Harmonic Sinewave pitch estimator [45] (pg. 510), [50]. A detailed review of pitch
detection is beyond the scope of this thesis. An early guide to pitch detection can be
found in [85].
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Pitch halving and pitch doubling are common errors in pitch detection. The
following subsection presents a novel algorithm that corrects pitch halving/doubling
errors. Then, the fast analysis/synthesis techniques presented in section 2.3 will be
used to develop a novel pitch estimator that directly minimizes the harmonic modeling
error with high level of accuracy and affordable complexity.

2.5.1 Pitch Ambiguity Correction using Envelope Continuity
Constrains

Let F0 = {f0,i : i = 1, . . . , Lcand} be a set of Lcand candidate pitch values from the
output of a pitch detector. Such a set can be constructed either directly by the pitch
detector, or from a single pitch estimation f ′

0, by including pitch doubling/halving
candidates, for example F0 = { 0.5f ′

0, f ′
0, 2f ′

0 }. The aim of this method is to resolve
the ambiguity and choose the “best” f0,i with a memoryless approach. The selection
criterion is the segmental SNR between the original signal x(n) and the reconstructed
signal x̂(n; f0,i) defined as:

SNR(x, x̂) = 10 log10

( ∑N−1
n=0 x(n)2∑N−1

n=0 (x(n) − x̂(n))2

)
(2.34)

Signal x̂(n; f0,i) is created using the original phases and harmonic amplitudes Âk which
are sampled from a P -th order Bark-scale regularized (λ = 0.002) cepstral envelope.
For narrowband speech, the order P is set in the range of 16-20 coefficients.

This simple scheme is quite effective in resolving the pitch halving/doubling ambi-
guities. Let f0 be the true pitch, and SNR(f) be the SNR measured by the proposed
method using f as the fundamental frequency. Then, SNR(2f0) will be significantly
lower than SNR(f0) because half of the harmonics will be missing from the recon-
structed signal. Using a spectral envelope, SNR(0.5f0) will be lower than SNR(f0)
because an additional error will be introduced from fitting both higher amplitude
harmonics and lower amplitude interharmonics to the same cepstral envelope. The
interharmonics will drug down and ripple the cepstral envelope resulting in a poor
reconstruction of both harmonics and interharmonics in Âk.

An example of the penalty associated with bad fitting of harmonics and interhar-
monics to a fixed 20-th order cepstral envelope is depicted in Figure 2.5. The original
amplitudes Ak were used to generate a series of harmonic/interharmonic amplitudes

Bk =
(
1 − α 1+(−1)k+1

2

)
Ak, with α ranging between 0 and 0.9. SNR is measured be-

tween the signal synthesized using the Bk amplitudes and the signal synthesized using
the B̂k amplitudes sampled from the cepstral envelope. The rightmost plot shows the
SNR as a function of α. The SNR falls as the interharmonics become weaker. The
leftmost plot shows Ak, Bk and the corresponding spectral envelopes for α = 0.5.
The lower interharmonics cause the cepstral envelope to become rippled and lower; a
worse fit to both harmonics and interharmonics.
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Figure 2.5 Penalty from using interharmonics to fit a cepstral envelope

Table 2.2 MOS scores from PESQ evaluation

Method Males Females

Without pitch correction 3.954 3.659

With pitch correction 4.055 3.879

We evaluated the proposed pitch correction algorithm using PESQ-MOS [5] and
sinusoidal analysis/synthesis of a database consisting of 256 female and 256 male
utterances from TIMIT. In all cases, speech was reconstructed using OLA (OverLap-
Add) techniques and sinusoidal amplitudes sampled from the cepstral envelope. The
experiment was conducted twice, once for the output of a reference pitch detector and
once for the output of the proposed method. The reference pitch detector is based
on MBE [29] (pg. 242), [50].

The PESQ MOS results are shown in Table 2.2. It can be clearly seen that the
proposed method increases the PESQ MOS score by 0.1 and 0.2 for males and females,
respectively.

Further insight into the obtained results is provided by Figure 2.6, which shows the
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histogram of two differences. The first difference (solid lines) is DSNR,1 = SNR(f ′
0)−

SNR(0.5f ′
0) and shows when f ′

0 is better than 0.5f ′
0, while the second difference

(dashed lines) is DSNR,2 = SNR(f ′
0) − SNR(2f ′

0) and shows when f ′
0 is better than

2f ′
0. Only voiced frames were used for this evaluation. The histogram states that the

proposed post-processing method frequently reduces the estimated pitch f ′
0 to 0.5f ′

0,
which corresponds to a pitch doubling error if the correction is true. This is consistent
with our observation of frequent pitch doubling errors of the employed pitch detector.
Note however, that pitch halving is sometimes natural at the end of a phrase or a
word due to a phenomenon called “vocal fry” [45]. In vocal fry the interharmonics are
almost equally strong with the harmonics and the proposed method correctly states
that the pitch is halved (from a perception point of view).

2.5.2 Analysis-by-Synthesis Pitch Detection

The fast analysis/synthesis technique proposed in Section 2.3 enables an exhaustive
search for the f0 that provides the best SNR with tractable complexity. In fact, this
corresponds to an Analysis-by-Synthesis approach to the pitch detection problem.

Analysis-by-Synthesis (AbS) techniques have proven to be more robust than open-
loop techniques in CELP codecs [29] (ch. 6) because they take into account a wide
range of factors that influence the quality of the resulting speech. Open-loop pitch
detection is based on assumptions regarding the behavior of the signal which are much
weaker than the assumptions made by AbS pitch detection. Analysis-by-Synthesis
techniques are not well suited for Sinusoidal Coding when the harmonic phases are
derived from a voiced/unvoiced phase model, in the sense that the AbS distortion
criterion has to match two inevitably different waveforms. However, some researchers
reported an improvement when AbS techniques were used in minimum phase mod-
els [86]. In [87] AbS is made with measured phases only at the analysis stage of
the pitch detector while the synthesis stage is conducted with an STC-like phase
model [45] (pg. 523). On the other hand, AbS is well suited for high-quality/high-
rate sinusoidal codecs that directly encode the phases [54].

It is a common practice in sinusoidal AbS pitch detectors to estimate the harmonic
amplitudes by pick-peaking the spectrum [54], [87], in order to avoid the increased
complexity of solving the corresponding linear systems (2.13) and (2.14). Such an ap-
proach is optimal only under rather idealized conditions [45] (pg. 437) that decorrelate
the harmonically related sinusoids.

The proposed AbS pitch detection algorithm consists of the following steps:
Step 1: Coarse Search
An exhaustive search is made for a wide range of pitch values using a frame

of 30 ms. Let x = {x(n) : n = 0, . . . , N − 1} be the signal with sampling rate
Fs = 8 KHz and Fsearch be the set of f0 between f0,min = 70 Hz and f0,max = 400 Hz
with 1 Hz step. The search is made using a downsampled signal xlow = {xlow(n) : n =
0, . . . , Nlow − 1} which is obtained from the narrowband speech signal after removing
the DC component with a notch filter, lowpass filtering with a cutoff frequency of
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800 Hz and downsampling with a factor of 4 (sampling rate = 2000 Hz). A Hamming
window is applied to each of the 30 ms (Nlow = 60 samples) speech frames and fast
analysis/synthesis is made with the method proposed in Section 2.3. The evaluation
of each possible f0 is made using the SNR criterion (or equivalently the Mean-Square-
Error criterion). The result is a sampling of the function SNR(f ;xlow) that links SNR
to f0 when signal xlow is analyzed.

For a fixed frame size, the number of sinusoids that describe the spectrum in-
creases as f0 decreases. Therefore, the function SNR(f ;xlow) is biased to favor lower
fundamental frequencies. This bias is independent of the characteristics of the signal
and an intuitive way to compute it would be to take an expectation of the SNR over
all possible (energy normalized) signals xlow:

SNRbias(f) = Exlow
{SNR(f ;xlow)}, (2.35)

where Exlow
{·} denotes the expectation over the stochastic signal xlow. However,

the distribution of xlow is unknown and only the energy of xlow is known (i.e. it
is normalized to unit energy). In this case, a plausible choice is to use the distri-
bution that maximizes the entropy; to assume that xlow is a stochastic vector with
xlow(n) ∼ N(0, 1

Nlow
). Therefore, the bias can be computed with stochastic integration

of SNR(f ;xlow) using a white, gaussian noise model for xlow:

SNRbias(f ;xlow) =
1

L

L∑
l=1

SNR(f ;xlow, l) (2.36)

where L is the number of random realizations xlow, l that were used. Note that the
expectation is computed on the logarithmic domain. The coarse pitch detection is
made by peak-picking the normalized SNR function which is defined as:

SNRnorm(f ;xlow) = SNR(f ;xlow) − SNRbias(f ;xlow) (2.37)

The evaluation of the SNR bias is precomputed using L = 10000 realizations and
stored in a table for fast access.

An example of the SNR, the SNR bias and the normalized SNR for a voiced
speech frame lowpass filtered to 800 Hz and sampled at 2000 Hz is depicted in Fig-
ure 2.7. It is evident that SNR(f ;xlow) has a tilt which favors lower frequencies. This
tilt is well captured by formula (2.36) so that the normalized SNR reveals a struc-
ture with a single dominant peak. The step-like structure of SNRbias is associated
with by the changing number of sinusoids that describe the 1000 Hz spectrum. The
insertion/removal of a single sinusoid is quite evident because the total number of
sinusoids that fit into a 1000 Hz spectrum is small. Sampling a narrowband spectrum
or a wideband spectrum leads to much smoother SNRbias(f) functions.

After the computation of the normalized SNR, pick-peaking is used to get a num-
ber of pitch candidate values. The following rules are then used to select up to 3
pitch candidates:
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Figure 2.7 SNR, SNR bias and normalized SNR for a 30ms speech frame
(sampling rate = 2000 Hz).

• remove weak peaks which are closer than 30 Hz to a stronger peak

• remove peaks which are more than 15 dB weaker than the strongest peak

• select at most 3 strongest peaks

Step 2: Fine Search
Let F0 = {f0,i : i = 1, ..., Lcand} be the set of candidate pitch values estimated

from the previous step. The purpose of this step is to refine the estimations by
searching the full narrowband signal ±10 Hz around each pitch candidate f0,i, with
a step of 1 Hz. The analysis/synthesis is made using a 20 ms analysis frame and
a Hamming window. The “best” SNR peaks for the narrowband (4000 Hz) speech
signal are usually within 10 Hz of the corresponding peaks for the 800 Hz lowpass
speech signal. Therefore, a considerable complexity reduction is made when these
peaks are exhaustively located at the 800 Hz lowpass signal and then refined at the
full narrowband speech signal. Step 2 requires 21 analysis/synthesis operations.

Step 3: Super Fine Search
Let F ′

0 = {f ′
0,i : i = 1, ..., Lcand} be the set of refined candidate pitch values

estimated from step 2. The f ′
0,i has an accuracy of 1 Hz, corresponding to an 40 Hz

error at the 40-th harmonic. The purpose of this step is to reduce this error by
searching ±0.9 Hz around each pitch candidate f ′

0,i with a step of 0.1 Hz. Step 3
requires 19 analysis/synthesis operations per candidate.

Step 4: Ambiguity Correction
Let F ′′

0 = {f ′′
0,i : i = 1, ..., Lcand} be the set of refined candidate pitch values esti-

mated from the step 3. This step selects the most probable pitch candidate using the
method described in Section 2.5.1. The order of the cepstral envelope is set to P=16
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and the smoothness Lagrangian to λ=0.004. In fact, until this step, the estimation of
the fundamental frequency was treated as a generic signal analysis/synthesis problem.
This step introduces speech-specific knowledge to the pitch estimator by penalizing
non-smooth spectral envelopes per candidate.

Step 5: Pitch Halving Detection & Correction
The proposed pitch estimator is based on the assumption of “stationarity”, which

is fairly accurate in most voiced speech frames for an analysis interval of 20 ms.
However, some transitional voiced speech frames violate this assumption; for example,
when the time envelope of the signal rapidly ramps up or ramps down. The outcome
of this deficiency is a single pitch halving error that can be detected and corrected
with simple control logic using the past pitch values and the assumption that pitch
evolves smoothly.

Performance and Complexity
The proposed pitch detection algorithm performs an exhaustive search to find the

fundamental frequency that best describes the signal with a Harmonic Model. The
exhaustive search is made on a subsampled version of the signal for computational
efficiency. Then, a set of (maximum 3) peaks is refined in steps 2 and 3. A total of 40
full narrowband analysis/synthesis operations per peak. The cost of these operations
is significantly reduced with the analysis/synthesis method proposed in Section 2.3
and the overall complexity of the pitch detector is affordable for modern DSP chips.

On the other hand, the proposed algorithm is accurate and suitable for harmonic
models where it provides speech of high quality. Furthermore, we speculate that the
proposed AbS pitch detector can be made much faster without losing robustness. For
example, an autocorrelation criterion can be used to reduce the search space in step
1. Steps 2 and 3 can also benefit from a polynomial interpolation to reduce the search
space. Finally, step 4 can benefit from heuristics that reduce the number of candidate
pitch values.

2.5.3 Voicing Detection

The pitch detector allows the classification of speech frames in voiced frames and
unvoiced frames. A speech frame is considered unvoiced when one of the following
conditions hold for the 20 ms (160 samples) narrowband speech frame:

• the reconstruction SNR, when the harmonic amplitudes are sampled from the
cepstral envelope, is lower than 2 dB

• the normalized SNR, the number of zero-crossings ζ and the fundamental fre-
quency f0 satisfy one of the following conditions: (ζ > 70 and SNRnorm(f0;x) <
3 dB) or (ζ > 80 and SNRnorm(f0;x) < 5 dB) or (ζ > 90 and SNRnorm(f0;x) <
6 dB) or (ζ ≥ 100 and SNRnorm(f0;x) < 8 dB and f0 < 80).

The zero-crossings ζ is an integer that counts the number of times two consecutive
samples x[n] and x[n − 1] have different signs (x[n]x[n − 1] < 0) within the frame.
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The voicing decision is biased towards labeling frames as voiced. The biased decision
ensures that transitional frames and plosives are treated as voiced frames and it is
important for the robustness of the sinusoidal speech codecs described in Chapter 9.
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Chapter 3

High-Rate Quantization based on
Gaussian Mixture Models

Efficient vector quantization at high rates is a difficult problem that has troubled
source coding engineers for years. The main obstacle is that the complexity of the
quantizer increases rapidly with the number of dimensions. Reduced complexity so-
lutions are obtained by constraining the structure of the codevectors. For example,
by setting constraint to trained codebooks [55] (ch. 12) or by constructing code-
books with a highly regular structure using lattice vector quantization [55] (ch. 10).
Transform coding is a popular way to quantize multivariate data with very low
complexity [55] (ch. 8). However, it is not efficient because it is a product code
technique [55] (pg. 430) and the resulting codepoints fill empty regions of the P -
dimensional space.

An extension to transform coding is made with GMM-based quantization in [88].
The basic idea is to assign a different transform quantizer to local regions of the
P -dimensional space. The local transform quantizer is operating according to the
local statistics of the source, thus resulting in a versatile quantization scheme that
combines the computational efficiency of transform coding with near state-of-the-art
performance.

This chapter provides the necessary background for the GMM-based quantization
schemes that will be used in the next chapters. The focus is given on resolution
constrained quantization, where each vector x is quantized using a predefined number
of bits R. This type of quantization is typically used in speech coding, mainly due to
network and end-to-end delay constraint. Section 3.1 reviews resolution constrained
quantization of multivariate Gaussians, focusing on transform coding. Section 3.2
reviews GMM-based quantization techniques. The material in this chapter is largely
adapted from [55] and [88] with insights and comments from other sources, when
necessary.

37
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3.1 Quantization for Multivariate Gaussians

This section presents a high-rate theory analysis for resolution constrained quanti-
zation of a scalar Gaussian variable, discusses bit allocation in transform coding of
multivariate Gaussians and shows how companding can be used to quantize a N(0, 1)
Gaussian variable without precomputed codebooks.

3.1.1 High-Rate Quantization of a Scalar Gaussian

Let x ∼ fx(x) be a scalar random variable and Q(.) a scalar quantizer. The Mean-
Square-Error (MSE) distortion Dx is provided by the expectation:

Dx =

∫ ∞

−∞
fx(x)(x − Q(x))2dx =

N∑
i=1

∫
x∈Qi

(x − x̂i)
2fx(x)dx (3.1)

where x̂i is the i-th codeword, N is the total number of codewords, fx(.) is the source
pdf and Qi is the i-th quantization cell associated with x̂i. If the quantization rate
is high, then the quantization cell Qi is small enough to assume that the pdf fx(x) is

constant in Qi: fx(x) ≈ px(x̂i)
∆i

when x ∈ Qi, where px(x̂i) is the probability of having
the i-th cell and ∆i is the length of Qi. The average distortion is then approximated
by:

Dx ≈
N∑

i=1

px(x̂i)

∆i

∫
x∈Qi

(x − x̂i)
2dx =

1

12

N∑
i=1

px(x̂i)∆
2
i (3.2)

The average distortion can be rewritten as:

Dx ≈ 1

12

N∑
i=1

px(x̂i) (Ng(x̂i))
−2 (3.3)

where g(x̂i) = 1
N∆i

. As N → ∞, ∆i → 0, g(x) becomes the so called point density
function and represents the probability density function that describes the distribu-
tion of the codepoints x̂i. Therefore, at high rates, the average distortion can be
approximated by the following integral [55] (pg. 163):

Dx ≈ 1

12N2

∫ ∞

−∞
fx(x)g(x)−2dx (3.4)

The optimal point density function gopt(x) for resolution-constrained vector quanti-
zation can be obtained if the average distortion Dx is minimized with respect to the
constraint that g(x) is a pdf:

∫∞
−∞ g(x) = 1. The solution can be obtained by means

of variational calculus:

g(x)opt =
fx(x)

1
3∫∞

−∞ fx(x)
1
3 dx

(3.5)
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Note that the optimal distribution of the codepoints is different from the distribution
of the samples. If we combine equations (3.5) and (3.4) for the N(0, σ2) Gaussian
case, it is straightforward to show that the optimal average distortion is provided by
formula [55] (pg. 228):

Dx,opt = Qcσ
22−2R (3.6)

where Qc =
√

3π
2

is the quantization constant and R = log2(N) is the rate in bits.

3.1.2 Bit Allocation for Transform Coding

Let x ∈ �P be a zero mean multivariate Gaussian random variable with covariance
matrix Σx and R be the total rate for x. The total rate is the sum of the individual
rates rp of each variable:

R =
P∑

p=1

rp. (3.7)

If Σx is not diagonal, the Karhunen-Loeve Transform (KLT) can be used to decorrelate
the variables. It can be shown that the KLT is the optimal transform for high-
rate quantization of a multivariate Gaussian vector [55] (pg. 242). Without loss of
generality, we can assume that Σx = diag(σ2

1, σ2
2, . . . , σ2

P ). Let Q(.) be the quantizer
of x and x̂ = Q(x) be the quantized version of x. The quality of the quantization is
addressed using a square-error distortion measure:

d(x, x̂) =
P∑

p=1

(xp − x̂p)
2 (3.8)

where xp and x̂p are the p-th variables of x and x̂ respectively. The average distortion
can be provided using the high rate theory presented in the previous subsection:

D =
P∑

p=1

Qcσ
2
p2

−2rp (3.9)

Finding the optimal bit allocation is a well-known optimization problem and near-
optimal solutions are typically used. If we relax the constraints and allow rp to take
non-integer or even negative values, we can use Lagrangian methods to analytically
minimize the average distortion D for the optimal rp under the constraint (3.7), then
the following bit allocation [55] (pg. 229) is obtained:

rp =
R

P
+

1

2
log2(

σ2
p

c
), p = {1, ..., P}, (3.10)

where

c =

(
P∏

p=1

σ2
p

)1/P

, (3.11)
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is the geometric mean of the variances. A convenient expression for the average
distortion D can then be obtained from equations (3.9) and (3.10):

D = QcPc2−2R/P (3.12)

Note however that formula (3.10) provides continuous rates not necessarily corre-
sponding to integer sized codebooks. The resulting rates can even be negative when
the variables have small variances. A typical suboptimal solution to the problem of
non-integer rates is to use the codebook sizes �2rp� as an initial guess and distribute
the remaining bits with a greedy approach as in [55] (pg. 234).

3.1.3 Companding and Lattices

Companding can be used to avoid storing precomputed codebooks for the quantization
of scalar Gaussians. The idea behind companding is to introduce an one-to-one
invertible mapping G(.) : Ωx → Ωu which maps the support Ωx of x-space onto a finite
support Ωu of a random variable u = G(x) with approximately uniform distribution
over Ωu. The new variable u is easily quantized to û using a lattice quantizer (for
example a simple uniform quantizer) and the quantized value of x is obtained with
the inverse mapping x̂ = G−1(û).

The optimal compander for a scalar Gaussian random variable x and a mean
square error distortion measure under high rate assumptions can be found in closed
form [89]:

G(x) =
1

2

(
1 + erf(

x√
6
)

)
(3.13)

where erf(a) = 2
π

∫ a

0
e−x2

dx is the error function. However, since the derivation is
based on high rate assumptions, companding is not effective when the Gaussians are
encoded in low rates. In our experiments, we found that it is better to use trained
codebooks for rates lower than 5 bits and companding for higher rates. The total
size of these codebooks is low: 32(32+1)

2
= 528 codewords. Furthermore, depending on

the complexity/accuracy of the implementation of the erf(.) function and its inverse
erf−1(.), it is faster to use codebooks for the lower rates.

Transform coding based on cartesian companding (that uses a scalar compander
like G(.) to each of the variables in vector x) and scalar quantizers is suboptimal
because of the so-called space filling loss ; the fact that the shape of the rectangular
quantization cell is not optimal for more than one dimension [90], [91]. Therefore,
some researchers have proposed the use of lattice vector quantizers [55] that reduce the
space filling loss [88] at the expense of relatively increased computational complexity.
However, the use of cartesian companding is not justified in the multi-dimensional
case. It is merely a practical choice associated with the difficulties arising upon
the design of optimal multi-dimensional companders [92]; namely, the interactions
between the compander and the lattice [93].
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Figure 3.1 Basic GMM-based Vector Quantization scheme.

3.2 Quantization based on Gaussian Mixture Mod-

els

The design of an optimal unconstrained vector quantizer (for example an LBG-like
quantizer [55]) can be viewed as a procedure which optimizes the positioning of the
codevectors according to the point density function of the codevectors. Therefore,
an unconstrained vector quantizer has the dual task of capturing the statistics of
the point density function (or equivalently the pdf of the source), as well as the
optimal local arrangement of the quantization cells. GMM-based quantizers [88], [94]
effectively decouple the estimation of the source statistics from the optimal allocation
of the codepoints. The statistics of the source are modeled with a Gaussian Mixture
Model, while the optimal allocation of the codepoints is computed using high rate
theory assumptions. The result is a versatile quantizer that enables variable/high
rate operation, and state-of-the-art tradeoff between complexity and performance.

3.2.1 Encoding/Decoding Process

The encoding/decoding process is depicted in Figure 3.1. The basic idea is to encode
the data vector x with each of the M Gaussian encoders and to transmit the indices
Im′ of the “best” encoding together with the index m′ of the corresponding Gaus-
sian quantizer. The Gaussian encoder/decoder can be constructed according to the
discussion in Section 3.1. The decoder receives the two indices (m′, Im′) and selects
the m′-th Gaussian decoder to decode Im′ in order to obtain the quantized vector
x′ = Qm′(x), where Qm′(.) is the corresponding Gaussian quantizer.

Let x ∼ GMM(αx,m, µx,m, Σx,m), m = {1, 2, . . . , M} be a P -dimensional source
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that is modeled using a GMM with M Gaussians, where αx,m is the prior probability,
µx,m is the mean and Σx,m is the covariance matrix of the m-th Gaussian compo-
nent. Each Gaussian is encoded using the KLT transform provided by the eigenvalue
decomposition of the corresponding covariance matrix Σx,m:

Σx,m = Vx,mΛx,mV T
x,m (3.14)

where the columns of Vx,m are the eigenvectors of Σx,m and

Λx,m = diag(σ2
m,1, σ2

m,2, . . . , σ2
m,P )

is a diagonal matrix with the eigenvalues (variances) σ2
m,p on it’s diagonal.

The m-th Gaussian encoder assumes that the statistics of x follow the statistics
of the m-th Gaussian component of the GMM, namely N(µx,m, Σx,m). Vector x
is translated and rotated in order to obtain a zero mean vector x′

m with diagonal
covariance matrix Λx,m:

x′
m = V T

x,m(x − µx,m). (3.15)

The uncorrelated vector x′
m is then quantized with a series of scalar quantizers to

obtain x̂′
m = Q(x′

m). The “best” encoding m′ is selected according to a square-error
criterion:

m′ = arg min
m

‖x′
m − x̂′

m‖2
2 . (3.16)

Note that no rotation is needed since the distortion is not affected by V T
x,m which is a

unitary transform. The m′-th Gaussian decoder performs the inverse operation. The
transmitted indices Im′ are used to decode the corresponding value x̂m′ , which is then
rotated and translated to obtain the resulting codevector:

x̂ = µm′ + Vx,m′x̂m′ . (3.17)

3.2.2 Quantizer Bit Allocation

Each of the M multivariate Gaussian quantizers Qm(.) may operate at a different
rate Rm. Let R be the total encoding rate:

R =
M∑

m=1

Rm. (3.18)

High-rate theory assumptions can be used to find the optimal rate. We will examine
the case where Qm(.) are transform-based Gaussian quantizers. In that case, the av-
erage distortion from each quantizer is provided by formula (3.12). If we assume that
the Gaussians of the GMM are well separated, the average distortion from the GMM-
based quantizer can be approximated by the summation of the individual distortions:

DGMM ≈
M∑

m=1

αmQcPcm2−2Rm/P , (3.19)
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where cm is the geometric mean of the variances σ2
m,p:

cm =

(
P∏

p=1

σ2
m,p

)1/P

. (3.20)

Lagrangian optimization can then be used to minimize DGMM for Rm under the rate
constraint (3.18). The optimal quantizer bit allocation can be shown to be [88]:

Rm = R + log2

(αmcm)
P

P+2∑M
m′=1(αm′cm′)

P
P+2

(3.21)

3.3 Example: Quantization of Cepstral Envelopes

An experiment was conducted using GMM-based quantization in order to evaluate
the quantization rate for the cepstral envelopes. The training set of the TIMIT
database was analyzed using the harmonic analysis described in Chapter 2. Speech
was analyzed/synthesized using 20 ms frames, 10 ms overlapping and a Hanning
window. Pitch was estimated according to Section 2.5. A 20-th order Bark-scale
regularized cepstral envelope was computed for each frame, according to Section 2.4.
The Expectation Maximization (EM) algorithm [95] was used to estimate a GMM
with 16 components from 400.000 training samples. The evaluation was made in
terms of PESQ-MOS [5] with a subset of TIMIT test set consisting of 256 male
utterances and 256 female utterances. The test set utterances were synthesized using
the quantized cepstral envelopes for quantization rates between 20 bits/frame and 70
bits/frame. All other parameters (pitch, voicing and phases of the harmonics) were
not quantized. The experiments were made separately for males and females since
these groups behave differently in terms of PESQ-MOS score. Note that no post-
filtering is applied to the cepstral envelopes. The corresponding PESQ-MOS scores
for unquantized cepstral envelopes are depicted in Figure 3.2 with dashed horizontal
lines. The following observations can be made:

• The PESQ-MOS saturates for rates above 60 bits.

• There is a graceful degradation of PESQ-MOS with decreasing rate.
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Figure 3.2 Relationship between rate and PESQ-MOS for the quantization
of cepstral envelopes using a GMM-based quantizer.



Chapter 4

Stochastic Modeling and
Quantization of Harmonic Phases

4.1 Overview

The spectrum of a voiced speech sound is typically treated as if it consists of two
parts: an amplitude spectrum and a phase spectrum. The statistical behavior and
the properties of amplitude spectra are well known and have many applications in
Speech Processing. On the contrary, phase spectra are usually disregarded due to the
intrinsic difficulties associated with the accurate and robust modeling of the phases
in voiced speech. However, there are several studies that indicate the importance of
phase in speech perception [96], [97], [98].

There is a considerable literature on phase modeling and related problems like
the estimation of group delay spectra (also referred to as group delay processing)
and glottal flow estimation. Understanding and modeling phase is very important for
speech coding in the sense that a robust and computationally efficient phase modeling
algorithm can also be used for coding. Furthermore, they can provide insight to the
designer of a speech codec. It is beyond the scope of this thesis to review these
methods and focus will be given to the application of speech coding. The interested
reader can find a detailed review of glottal flow estimation techniques in [99], [100]
and of group delay processing in [101].

In CELP coding, the innovative excitation is typically encoded with a closed-loop
codebook search. Therefore, phases and fine-spectral details which are not captured
by the AR spectral envelope are blindly encoded together [29].

On the other hand, sinusoidal coders rely on a phase model to reconstruct speech.
For example, in codecs based on STC (Sinusoidal Transform Coding) and MBE
(Multi-Band Excitation), the harmonics are classified as voiced or unvoiced, and a
phase model is used to construct phases that provide pleasant speech. The voiced har-
monics are constructed using the assumption that the excitation is a zero phase signal,
while the unvoiced harmonics are constructed using random phases [1], [29], [45]. The
zero phase model is not an accurate assumption because the excitation corresponds

45
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to the glottal flow derivate (according to the source-filter model of speech production)
and the glottal flow is well modeled by maximum phase systems [45] (pg. 151). This
poses an upper bound to the quality of encoded speech at higher bit-rates but, in
practice, it works well at low bit-rate coders (below 4 kbps). As a consequence, many
researchers argue that high-quality sinusoidal speech coding requires the encoding of
phases.

A model-based approach is to fit a deterministic model to the excitation or directly
to the sinusoidal phases φk. In [102], the excitation is constructed using a Rosenberg
glottal pulse model [103]. Another idea is to use all-pass filters to correct the phase
response of the minimum phase AR spectral envelope [104], [105]. A drawback of the
latter methods is that the resulting all-pass filters may be unstable. The parameters of
the all-pass filter can also be computed in the frequency domain [106] by minimizing a
squared-error criterion that is used directly on the phases, but this distortion measure
is prone to errors due to the modulo-2π behavior of the phases.

The harmonic phases φk can also be quantized without the requirement of a de-
terministic model. In [107], [108], the phase residual, the difference between the phase
of the current frame and its prediction from the previous frame is quantized. Vec-
tor quantization of phases was proposed in [48] for the quantization of the harmonic
phases of the SEW (Slowly Evolving Waveform) in the context of WI (Waveform In-
terpolation) coders. An important contribution of the latter work is the introduction
of a distortion measure that takes into account the modulo-2π behavior of phases,
and the derivation of the corresponding k-means algorithm. However, codebook-based
phase quantizers cannot operate at increased bit-rates. A GMM-based phase quan-
tization algorithm capable of operating at high rates was provided in [54], but the
quantizer restricts the GMM to (0, 2π] and does not take into account the modulo-2π
behavior of the phase data.

A comparative evaluation of these algorithms is not always possible due to the lack
of a widely accepted phase distortion measure and to the strong coupling between
the phase quantizer and the analysis/synthesis procedure of the sinusoidal coder.
An important limitation is that the typically used squared-error distortion measure
between the original and the reconstructed waveform does not correlate well with the
perceived distortion at low/medium rates [109]. Another option is to compute the
distortion directly on the phases φk. A psychoacoustic study of a simple difference
phase distortion measure is made in [97], [110] to facilitate perceptual weighting of
the harmonic phases.

This chapter proposes a novel phase modeling and quantization method. Phases
are not modeled in a deterministic manner (i.e., through a glottal flow model or an
all-pass filter), but in a statistical manner as multivariate circular random variables.
Raw phase data have an approximately uniform distribution. Section 4.2 describes a
procedure to determine the translation that aligns the waveforms according to a refer-
ence point within the glottal cycle. Processing of the phases of the aligned waveforms
reveal the presence of dependencies between the harmonic phases. This motivates
the construction of a vector quantizer for phases. Since phase data exhibit a circular
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behavior, Section 4.3 provides the necessary background for circular statistics, giving
emphasis to the wrapped Gaussian distributions. Section 4.4 presents a GMM suitable
for circular spaces; the so-called Wrapped Gaussian Mixture Model (WGMM). A de-
tailed derivation of an Expectation-Maximization algorithm for training is provided
and focus is given to the case where the Gaussian components have diagonal covari-
ance matrices. Section 4.5 discusses the construction of a quantizer that is based
on WGMM, using a distortion measure that is suitable for circular spaces. Sub-
section 4.5.1 proposes the construction of scalar quantizers for wrapped Gaussian
variables by wrapping codebooks made for linear Gaussian variables. Two WGMM
bit-allocation algorithms for these quantizers are then proposed. However, wrap-
ping linear Gaussian codebooks is sub-optimal when the linear Gaussian pdf does
not approximate well the wrapped Gaussian pdf. A better quantizer for wrapped
Gaussian random variables is proposed in Section 4.5.2 by introducing the concept of
Polynomial CodeFunctions (PCF). In PCF-based quantization, the construction of a
codebook for a specific variance σ2 is made by sampling a set of polynomial functions.
A k-means-like training algorithm is provided along with a bit-allocation procedure
for WGMM. Finally, Section 4.6 evaluates the proposed quantizers for phase quanti-
zation of narrowband speech.

4.2 Harmonic Phase Decomposition

Let φk, k = 1, . . . , K denote the harmonic phases. Phase can be decomposed to a
minimum phase term ∠Hs(ω), a linear phase term kω0τ and a dispersion term ψk:

φk = kω0τ + ∠Hs(kω0) + ψk (4.1)

The dispersion phase term ψk corresponds to the phase of the excitation signal since
the subtraction of the minimum phase term corresponds to inverse filtering with the
linear system H(ω). The excitation signal e(n) can be reconstructed according to the
formula:

e(n) =
K∑

k=1

cos(kωo(n − n0) + kω0τ + ψk), n = 0, . . . , N − 1, (4.2)

where n0 = N−1
2

is the center of the analysis frame. The linear phase term kω0τ
corresponds to a τ -sample translation of the excitation with respect to a reference
point inside the pitch period. As a reference point, we used the maximum peak of
the excitation e(n) within a single pitch period. The peak-picking is performed on
a uniformly sampled version of the excitation e(n) using 128 samples (7 bits). We
found that this procedure provided robust reference points within the glottal cycle.

Some insight regarding the distribution of ψk can be obtained from the two-
dimensional marginal distributions between phases. The underlying marginal pdf
can be visualized with a scatter plot of the corresponding samples. Figure 4.1 plots
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Figure 4.1 Scatter plots of two harmonic phases. The phases were extracted
from the excitation of narrowband speech frames with pitch between 95 Hz
and 115 Hz. The mean phase of the dataset was removed.
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the samples that correspond to phases ψ1 and ψ2, ψ2 and ψ6, ψ13 and ψ14, ψ13 and ψ15.
The samples were extracted from speech frames with pitch between 95 Hz and 115 Hz,
and the (circular) mean phase of the dataset was removed. The marginal distributions
of ψk reveal the presence of structure and covariation within the phase parameters ψk.
This is an important observation that provides justification for vector quantization
of phases.

4.3 Circular Statistics

Let �ψ = [ψ1, , ψ2, . . . , ψK ]T be a vector that contains the phases ψk, k = 1, 2, . . . , K.
Phases exhibit a modulo-2π periodic behavior in the sense that the excitation signal
e(n; �ψ) = e(n; �ψ + u2π), u ∈ Z

K . Thus, for each time instant n, the excitation

signal e(n; �ψ) is a function on the surface of an “n-Torus” manifold defined as T
K =

R
K/2πZ

K . The T
1 n-Torus is the unit circle, while T

K = T
1 ×T

1 × . . .×T
1 is the K

times product of T
1. The corresponding statistics are called circular (or directional)

statistics and the random variables �ψ are called circular (or directional) random
variables. The material in this section is largely adapted from [111].

4.3.1 Circular Mean and Circular Variance

Let θ ∈ T
1 be a circular random variable distributed according to the periodic prob-

ability density function f(θ) = f(θ + w2π), w ∈ Z, and let θn, n = 1, . . . , N be N

samples drawn from f(.). Since f(θ) is a pdf, f(θ) ≥ 0, ∀ θ ∈ R and
∫ 2π

0
f(θ)dθ = 1.

The circular mean µθ,c and the circular variance σ2
θ,c of θ are defined as [111] (pg. 20):

Circular Mean : µθ,c = arg
(
E{ejθn}) (4.3)

Circular Variance : σ2
θ,c = 1 − ∥∥E{ejθn}∥∥ , (4.4)

where E{.} denotes the expectation operator and j is the imaginary unit (j2 = −1).
The circular mean µθ,c measures the mean direction of the data and σ2

θ,c ∈ [0, 1].

4.3.2 Wrapped Univariate Gaussian Distribution

Let g(θ), θ ∈ R, be the pdf of a distribution defined on a line. A circular distribution
that is defined on T

1 can be obtained by wrapping g(.) around the circumference of
the unit circle. The random variable θw of the wrapped pdf gw(.) is given by:

θw = 〈θ〉2π, (4.5)

where 〈θ〉2π ≡ θ mod 2π denotes the modulo-2π operation. The wrapped pdf is then
obtained from infinite repetitions of g(.) at regular 2π intervals:

gw(θw) =
∞∑

w=−∞
g(θw + w2π), θw ∈ (0, 2π] (4.6)
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Figure 4.2 Examples of scalar wrapped Gaussian pdf with µθ,w = π. The
left plot shows the Gaussian component (dashed line) that is wrapped and
the corresponding wrapped pdf (with σ2

θ,w = π). The right plot shows three
examples of wrapped pdfs with variances σ2

θ,w = {π, 2π, 4π}.
.

If g(.) is a univariate Gaussian distribution then the wrapped univariate Gaussian
distribution is given by [111] (pg. 55):

Nw(θw; µθ,w, σ2
θ,w) =

1√
2πσ2

θ,w

∞∑
w=−∞

exp

(
− 1

2σ2
θ,w

(θw − µθ,w − w2π)2

)
, (4.7)

where µθ,w and σ2
θ,w is the mean and the variance of the wrapped Gaussian, respec-

tively. The mean µθ,w and the variance σ2
θ,w of the wrapped Gaussian is related to

the circular mean µθ,c and the circular variance σ2
θ,c by:

µθ,w = 〈µθ,c〉2π (4.8)

σ2
θ,w = −2 log

(
1 − σ2

θ,c

)
. (4.9)

Several useful properties that hold for Gaussian distributions also hold for the wrapped
Gaussian distributions. For example, the distribution is unimodal and symmetric
around µθ,w. It possesses the additive property (a sum of wrapped Gaussian random
variables is also a wrapped Gaussian random variable) [111] (pg. 56) and it appears
in the Central Limit theorem on the circle [111] (pg. 90). An interesting note is that
Nw(θw; µθ,w, σ2

θ,w) tends to the uniform distribution when σ2
θ,c → 1 or equivalently

when σ2
θ,w → ∞. Figure 4.2 depicts an example of a wrapped Gaussian with variance

σ2
θ,w = π. Larger variances lead to more uniform distributions. Finally, the wrapped
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Gaussian can be approximated by the linear Gaussian when the variance σ2
θ,w ≤ 1, as

shown in [112].

4.3.3 Wrapped Multivariate Gaussian Distribution

The wrapped multivariate Gaussian distribution can be obtained by wrapping a mul-
tivariate Gaussian to the surface of the n-Torus T

K . This corresponds to an infinite
tiling of the multivariate Gaussian on a K-dimensional grid with 2π intervals. Let
�θ ∈ R

K be the (unwrapped) phase vector and p(�θ) the corresponding pdf. The
following must hold:

• p(�θ) ≥ 0,

•
∫ ∫

. . .

∫ 2π

0︸ ︷︷ ︸
K times

p(�θ)d�θ = 1,

• p(�θ) = p(�θ + �w2π), �w ∈ Z
K .

Therefore, the wrapped multivariate Gaussian distribution can be defined as:

p(�θw; �µ, Σ) =
1√

(2π)K |Σ|
∑
�w∈ZK

exp

(
−1

2
(�θw − �µ − �w2π)T Σ−1(�θw − �µ − �w2π)

)
(4.10)

where �θw = 〈�θ〉2π ∈ (0, 2π]K , �µ and Σ are the mean and the covariance matrix of the
multivariate Gaussian, respectively. For notational simplicity, in the following text
we will assume that all circular random variables are confined to their principal value
in (0, 2π].

An application of wrapped Gaussian models can be found in [112], where wrapped
multivariate Gaussians and semi-wrapped multivariate Gaussians (which model sources
with circular and non-circular data) are proposed for handwriting recognition.
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Figure 4.3 An example of a two-dimensional WGMM with diagonal co-
variance matrices. The ellipses correspond to iso-contours of the Gaussian
kernel.

4.4 Wrapped Gaussian Mixture Model estimation

using Expectation-Maximization

We propose to model the harmonic phases using a mixture of wrapped multivariate
Gaussian distributions. Wrapped Gaussian Mixture Models (WGMM) can model
a wide range of variables that exhibit a modulo-2π behavior. However, up to our
knowledge, only a few recent publications utilize wrapped mixture models to model
circular (or directional) data: In [113], wrapped Hidden Markov Models (HMM) are
used to track the trajectories of sound sources inside a room. In [114], wrapped (Nor-
mal, Cauchy) mixture models are used to study time series with linear and circular
variables. An Expectation-Maximization (EM) algorithm for wrapped multivariate
Gaussians and an extension to HMM is presented in [113] for the case of Gaussian
components with diagonal covariance matrices. However, the EM algorithm provided
in [113] estimates the parameters by performing the EM steps one dimension at a
time. This restriction is not necessary as it will be shown. This section presents
an EM algorithm for a WGMM with full covariance matrices and then focuses to
the more tractable case where the Gaussian components have diagonal covariance
matrices.

Let p(�θ; Ω), �θ ∈ (0, 2π]K be the pdf of a WGMM with M wrapped Gaussians and
a set of parameters Ω = {αm, �µm, Σm : m = 1, . . . , M}, with αm, �µm and Σm being
the m-th Gaussian weight, mean and covariance matrix, respectively:

p(�θ; Ω) =
∑
�w∈ZK

M∑
m=1

p(m, �w, �θ; Ω), (4.11)
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where

p(m, �w, �θ; Ω) = αmp(�w, �θ|m; Ω), (4.12)

αm = p(m; Ω), (4.13)

p(�w, �θ|m; Ω) =
1√

(2π)K |Σm|
exp

(
−1

2
(�θ − �µm − �w2π)T Σ−1

m (�θ − �µm − �w2π)

)
,

(4.14)

is the �w-th tiling of the m-th translated Gaussian component. Note that m is the dis-
crete random variable that states the Gaussian component and that it is interchange-
ably used as an index for notational simplicity. An example of a two-dimensional
WGMM with diagonal covariance matrices is depicted in Figure 4.3. The ellipses
are iso-contours of the Gaussian kernel and the dots correspond to random samples
generated according to the WGMM pdf. For visualization purposes, the support is
translated to (−π, π].

The estimation of the model parameters Ω from N data samples �θn ∈ (0, 2π]K , n =
1, . . . , N can be made using a Maximum Likelihood (ML) criterion. The corresponding
log-likelihood of WGMM is:

L(Ω) =
N∑

n=1

ln
(
p(�θn; Ω)

)
. (4.15)

The maximization of L(Ω) over all Ω is a difficult optimization task. However, it can
easily be addressed with a two-step algorithm that belongs to the class of Expectation-
Maximization algorithms [95], [115]. This treatment is suitable for mixture models
and may lead to closed-form solutions. The Expectation-Maximization algorithm can
be viewed as an iterative bound optimization algorithm in the sense that at each
iteration the log-likelihood L(Ω) is lower bounded with another function Q(Ω; Ω0) :
L(Ω) ≥ Q(Ω; Ω0) which is an optimal (potentially tight) bound in Ω0 (an estimation
of Ω made in the previous iteration) that is easier to optimize than L(Ω) [116].

We will provide an EM algorithm for WGMM. First we will bound the log-
likelihood using a set of parameters qn(m, �w) with the following properties:

qn(m, �w) > 0, ∀ m, �w (4.16)

M∑
m=1

∑
�w∈ZK

qn(m, �w) = 1 (4.17)

Each component probability inside the log-likelihood is multiplied and divided by
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qn(m, �w):

L(Ω) =
N∑

n=1

ln

( ∑
�w∈ZK

M∑
m=1

p(m, �w, �θn; Ω)

)

=
N∑

n=1

ln

( ∑
�w∈ZK

M∑
m=1

p(m, �w, �θn; Ω)
qn(m, �w)

qn(m, �w)

)

≥
N∑

n=1

∑
�w∈ZK

M∑
m=1

qn(m, �w) ln

(
p(m, �w, �θn; Ω)

qn(m, �w)

)

≡ Q(Ω, qn(m, �w)), (4.18)

where the lower bound of the log-likelihood Q(Ω, qn(m, �w)) = Q1(Ω, qn(m, �w)) +
Q2(qn(m, �w)) consists of two parts:

Q1(Ω, qn(m, �w)) =
N∑

n=1

∑
�w∈ZK

M∑
m=1

qn(m, �w) ln
(
p(m, �w, �θn; Ω)

)
(4.19)

Q2(qn(m, �w)) = −
N∑

n=1

∑
�w∈ZK

M∑
m=1

qn(m, �w) ln (qn(m, �w)) . (4.20)

Note that in equation (4.18) we have used Jensen’s inequality (Appendix A.1) to
lower bound the log-likelihood L(Ω).

At the expectation step, the algorithm maximizes the bound Q(Ω, qn(m, �w)) at
Ω = Ω0 for the optimal parameters qn(m, �w), while at the maximization step the
algorithm maximizes the bound Q(Ω, qn(m, �w)) for the optimal model parameters
Ω. The EM algorithm repeats these steps until the log-likelihood converges. The
procedure will be discussed in the following subsections and summarized in Table 4.1.

4.4.1 Expectation Step

The lower bound Q(Ω0, qn(m, �w)) is optimized with respect to the parameters qn(m, �w),
under the constraints posed by equations (4.16) and (4.17). We formulate the La-
grangian function:

F = Q(Ω0, qn(m, �w)) +
N∑

n=1

λn

(
M∑

m=1

∑
�w∈ZK

qn(m, �w) − 1

)
(4.21)

and maximize it to obtain:

qn(m, �w) =
p(m, �w, �θn; Ω0)

p(�θn; Ω0)
. (4.22)
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The solution is always positive, so the first constraint (4.16) is always satisfied. The
derivation can be found in Appendix A.2. Note that although we have shown that
the bound Q(Ω, qn(m, �w)) is optimal with respect to qn(m, �w), we have not been able
to prove the tightness of the bound at Ω = Ω0, which remains an open question.

4.4.2 Maximization Step

The optimal qn(m, �w) given Ω = Ω0 are now used to compute the optimal Ω for
which the bound Q(Ω, qn(m, �w)) is optimized. Since Q2(qn(m, �w)) is independent of
Ω, only Q1(Ω, qn(m, �w)) has to be optimized under the constraint

∑M
m=1 αm = 1. The

optimization is quite straight-forward and can be found in Appendix A.3. The model
parameters Ω are updated according to the following equations:

αm ← 1

N

N∑
n=1

∑
�w∈ZK

qn(m, �w) (4.23)

�µm ←

N∑
n=1

∑
�w∈ZK

qn(m, �w)
(
�θn − �w2π

)
N∑

n=1

∑
�w∈ZK

qn(m, �w)

(4.24)

Σm ←

N∑
n=1

∑
�w∈ZK

qn(m, �w)(�θn − �µm − �w2π)(�θn − �µm − �w2π)T

N∑
n=1

∑
�w∈ZK

qn(m, �w)

(4.25)

The resulting EM algorithm is summarized in Table 4.1.
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Initialization: Set Ω0

1: Expectation Step: qn(m, �w) ← arg max
qn(m,�w)

{Q(Ω0, qn(m, �w))} ⇒

qn(m, �w) ← p(m,�w,�θn;Ω0)

p(�θn;Ω0)

2: Maximization Step: Ω0 = arg max
Ω

Q(Ω, qn(m, �w)) ⇒

αm ← 1
N

N∑
n=1

∑
�w∈ZK

qn(m, �w)

�µm ←
N�

n=1

�

�w∈ZK
qn(m,�w)(�θn−�w2π)

N�

n=1

�

�w∈ZK
qn(m,�w)

Σm ←
N�

n=1

�

�w∈ZK
qn(m,�w)(�θn−�µm−�w2π)(�θn−�µm−�w2π)T

N�

n=1

�

�w∈ZK
qn(m,�w)

Check Convergence: Repeat steps 1 and 2 until convergence.

Table 4.1 An overview of the EM algorithm.

4.4.3 Diagonal Covariance Model

The complete computation of the WGMM pdf in equation 4.11, as well as the update
equations (4.23), (4.23), (4.23) require a summation over an infinite number of terms.
In practice, an adequate approximation can be made if the summation is restricted to
the first ±2 terms at each dimension. This approximation is justified if the variances of
�θ are small compared to 2π. However, even in this case, the number of computed terms
increases exponentially with the number of dimensions K and becomes infeasible for
more than 2 dimensions. A solution to this problem is to restrict the covariance
matrices Σm to be diagonal Σm = diag (σ2

m(1), σ2
m(2), . . . , σ2

m(K)). The corresponding
wrapped pdf can then be computed according to the following equation:

p(�θ|Ω) =
M∑

m=1

αm

∑
�w∈ZK

K∏
k=1

1√
2πσ2

m(k)
exp

⎛
⎜⎝−

(
�θ(k) − �µm(k) − �w(k)2π

)2

2σ2
m(k)

⎞
⎟⎠ ⇒

p(�θ|Ω) =
M∑

m=1

αm

K∏
k=1

∑
w∈Z

1√
2πσ2

m(k)
exp

⎛
⎜⎝−

(
�θ(k) − �µm(k) − w2π

)2

2σ2
m(k)

⎞
⎟⎠ (4.26)

where �θ(k), �µm(k) are the k-th element of �θ and �µm, respectively. The interchange be-
tween the product over the dimensions and the summation over the wrappings allows
a significant complexity reduction. The update equations (4.23), (4.24) and (4.25)
can also benefit from interchanging the product and the summation, leading to an EM
algorithm of tractable complexity. The corresponding update formulae are provided
in Appendix A.4.
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Figure 4.4 An illustration of the computation of the wrapped scalar Mean-
Square-Error distortion measure. The distortion in this case is dw(ϕ, ϕ̂) =
min(d2

1, d
2
2)

4.5 Wrapped-GMM-based Quantization of Phase

data

The WGMM can be used for efficient quantization of the phase data. The linear
distortion measures are not suitable for circular variables, therefore, we define a scalar
Wrapped-Squared-Error (WSE) distortion criterion according to equation:

dw(ϕ, ϕ̂) = min
w∈Z

{
(ϕ − ϕ̂ − w2π)2} . (4.27)

The distortion criterion as stated, requires a search over an infinite number of linear
squared errors. However, if ϕ is confined to its principal value (in (0, 2π]) and if ϕ̂
extends over at most ±L wrappings (thus ϕ̂ ∈ (−L2π, (L + 1)2π]), the WSE needs
to be computed only for ±(L + 1) wrappings.

Figure 4.4 displays this in a schematic manner. The wrapped MSE distance (4.27)
corresponds to a codebook search of a codebook generated from the tiling ϕ + w2π,
w ∈ Z, of ϕ for the point that is nearest to ϕ̂. Figure 4.4 illustrates the codebook
ϕ + w2π, w ∈ Z and the fixed point ϕ̂, which belongs to the L-th wrapping of 2π. It
is easy to see that the best codepoint is at most ±1 wrappings away from ϕ̂. Thus,
a search over L + 1 wrappings is adequate. In other words, if the quantization of the
phases is made using a codebook of phases ϕ̂ restricted to ±L wrappings, the WSE
can be computed using only ±(L + 1) wrappings.

A vector Wrapped-Squared-Error (WSE) criterion dw(�θ, �̂θ) can be formulated ac-



58 Chapter 4 Stochastic Modeling and Quantization of Harmonic Phases

Wrapped

Gaussian

Encoder (1)

Wrapped

Gaussian

Encoder (2)

Wrapped

Gaussian

Encoder (M)

n

F

I

N

D

B

E

S

T

1I

CHANNEL

S

E

L

E

C

T

B

E

S

T

Wrapped

Gaussian

Decoder (1)

Wrapped

Gaussian

Decoder (2)

Wrapped

Gaussian

Decoder (M)

ˆ
n

2I

MI

'( ', )mm I

1I

2I

MI

Figure 4.5 Basic scheme for WGMM-based vector quantization.

cording to:

dw(�θ, �̂θ) =
K∑

k=1

dw(�θ(k), �̂θ(k)). (4.28)

The efficiency of GMM-based quantization is due to the decoupling of the esti-
mation of the source pdf from the allocation of the codepoints. This idea can also
be employed here using a WGMM estimator of the pdf. The corresponding scheme
encodes the data vector �θ according to the pdf of each of the multivariate wrapped
Gaussians. The procedure is depicted in Figure 4.5. Data �θ are quantized separately
with M wrapped multivariate Gaussian coders and the best quantization is trans-
mitted through the channel along with the corresponding indices. The design of a
wrapped multivariate Gaussian quantizer is the subject of the following subsections.
In subsection 4.5.1 we discuss the construction of a quantizer obtained by wrapping
a Gaussian codebook to the circumference of the unit circle, and propose two bit al-
location algorithms for WGMM-based quantization. This design is computationally
appealing, but it provides sub-optimal codepoint allocation for variances σ2 > 0.5.
Section 4.5.2 provides a solution to this problem by introducing the concept of Poly-
nomial CodeFunctions (PCF), which -in effect- is a set of functions that generate
codepoints for given σ2. A training algorithm for PCF is provided, followed by a
greedy bit-allocation algorithm for WGMM.

4.5.1 Quantization using Wrapped Codebooks

The shape of the wrapped Gaussian pdf and the corresponding optimal codepoint
density depends on the variance σ2. Therefore, if the scalar quantizer for the wrapped
Gaussian random variable is to be implemented with a set of precomputed codebooks,
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one codebook needs to be stored for each required rate and variance. The storage
complexity of this solution is prohibiting. For example, a WGMM with 32 components
and 24 dimensions requires about 32 ∗ 24 = 768 codebooks. We propose to construct
these wrapped codebooks by wrapping the codepoints of Gaussian N(0, σ2) codebooks
around the circumference of the unit circle. In practice this is made by a simple
modulo operation:

cwrapped = mod(clinear, 2π), (4.29)

where clinear is the codepoint of the linear Gaussian N(0, σ2) and cwrapped is the
wrapped version of this codepoint. This solution works quite well for low variances
σ2 ≤ 1 because the interval (0, 2π] contains most of the pdf mass and the overlapping
of the tiled Gaussian components is low, but it becomes less accurate for higher
variances. However, we choose to accept this degradation for the benefit of low storage
complexity, and we constrain the maximum overlapping by restricting the variances
to (0, 2π] during the training of the WGMM. Note that for variances above 2π the
wrapped pdf is very close to the uniform distribution, as it is shown in Figure 4.2.

Bit Allocation

The allocation of quantization levels to the scalar variables of a Gaussian component
requires a function that links the rate with the WSE. Two bit allocation algorithms
will be presented. The first relies on a greedy bit allocation using precomputed
tabulated distortions and the second is based on assumptions regarding the WGMM.

Algorithm A: Tabulated Distortions & Greedy Bit Allocation
Let R be the encoding rate and N = 2R be the number of quantization levels. A

number of Nm = �αmN� quantization levels is assigned to each of the M components
of the WGMM. Within each Gaussian component, the Nm quantization levels were
allocated with a greedy algorithm similar to [55] (pg. 234) that minimizes the expected
component distortion Dm:

Dm =
K∑

k=1

D(Nm,k, σ
2
m(k)), (4.30)

where D(Nm,k, σ
2
m(k)) is the expected WSE when the k-th variable of the m-th Gaus-

sian component is encoded with Nm,k quantization levels. The greedy bit allocation
algorithm is the following:

Initialization: Set Nm,k = 1 for all k = 1, . . . , K.

Step 1: Find the variable with the largest distortion k′ = arg max
k

{D(Nm,k)} subject

to the rate constraint
Nm,k′+1

Nm,k′

K∏
k=1

Nm,k ≤ Nm.

Step 2: Increment the corresponding quantization level: Nm,k′ ← Nm,k′ + 1.
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Figure 4.6 Two-dimensional WGMM and the corresponding codepoints,
according to bit-allocation algorithm B.

Step 3: Repeat from Step 2 until no Nm,k can be incremented without violating the
rate constraint.

When the variances σ2
m(k) ≤ 0.5, the wrapped univariate Gaussian is well approxi-

mated by the linear Gaussian, and the high-rate formula (3.6) provides an approxima-
tion of the wrapped distortion function D(., .). For higher variances, σ2

m(k) > 0.5, we
use linear interpolation of tabulated distortions, sampled for a wide range of quantiza-
tion levels and variances. The distortions were computed using 100.000 samples of a
wrapped N(0, σ2) and evaluated with the WSE, for quantization levels l = 1, 2, . . . , 26

and for densely sampled variances σ2 = {0.5, 0.51, 0.52, . . . , 2π}.
Algorithm B: Small Variance Assumptions & Optimal Bit Allocation
The second bit allocation algorithm is based on the assumption that the variances

σ2
m(k) are small. In this case, the mean wrapped-squared-error DWSE associated

with the encoding of a wrapped Gaussian with a wrapped Gaussian codebook can
be approximated by the mean-squared-error DMSE associated with the encoding of a
linear Gaussian with a linear Gaussian codebook.

This is illustrated in Figure 4.7 which shows the difference between the two errors
∆D = DMSE − DWSE (in decibel) as a function of the variance σ2, for 1, . . . , 6 bits.
For σ2 ≤ 0.5, the two distortions are identical. For σ2 ≤ 1, the linear distortion DMSE

is still a fairly accurate estimation of the wrapped distortion DWSE, up to an accuracy
of 0.5 dB (≈ 1

6
bits). In practice, the most common rates are below 3 bits/dimension

which are modeled with an accuracy of 0.25 dB when σ2 ≤ 1. The approximation
becomes worst as the variance σ2 increases. For example, for a variance equal to π the
approximation error is approximately 2 dB which corresponds to an overestimation
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Figure 4.7 The difference (in decibel) between the mean-squared-error
DMSE and the mean wrapped-squared-error DWSE for several variances σ2.

of ≈ 1
2

bits/dimension. Note that the rapid variations above 3 bits/dimension are
caused by the coincidence of the wrapped codepoints to the circumference of the unit
circle.

If we assume that the variances σ2
m(k) are small, then the scalar WSE can be

approximated by the high-rate formula (3.6). This results to a bit allocation algo-
rithm that is the same with the bit allocation made for linear variables. Therefore,
formula (3.10) provides the optimal bit-allocation for multivariate quantization and
formula (3.21) the optimal allocation of bits to the WGMM components. In other
words, the bit allocation is the same with the bit allocation made for GMM-based
quantization, as it is presented in Chapter 3.

An evaluation between the two bit allocation algorithms will be made in Sec-
tion 4.6 using measured phases of narrowband speech harmonics. An example of
the reconstruction codepoints of a two-dimensional WGMM-based quantizer with bit
allocation according to algorithm B is given in Figure 4.6.

4.5.2 Quantization using Polynomial CodeFunctions

Wrapping a linear Gaussian codebook on the unit circle in order to obtain a codebook
for the wrapped Gaussian pdf is a practical but suboptimal choice dictated by the
increased complexity of the optimal solution. This section proposes a novel method
to construct codebooks optimized for symmetric circular random variables by intro-
ducing the concept of Polynomial CodeFunctions (PCF). The optimal codebook for
a wrapped scalar Gaussian Nw(µ, σ2) is a function of the variance σ2 and the number
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of codepoints M , since the translation term µ does not affect the shape of the pdf.
Therefore, the idea is to construct a set of polynomial functions:

cm(σ2) =
P∑

p=0

cm,pσ
2p, m = 1, ...,M (4.31)

that generate a codebook with M entries for Nw(0, σ2) for each σ2 belonging to a
continuous interval S. These functions could be referred to as “polynomial codepoint
generator functions”, or -in short- as Polynomial CodeFunctions. The PCF quantizer
is based on the assumption that the optimal codepoints evolve smoothly over σ2 in
S. Let P be the order of the polynomial, cm,p its parameters and M be the size of the
codebook. Assume that cm(.) and all circular variables take values in (−π, π], and
that cm(.) are sorted so that c1(σ

2) > c2(σ
2) > ... > cM(σ2), for all σ2 ∈ S. Since

Nw(0, σ2) is symmetric around zero, only M/2 PCF are needed, and the following
holds:

cm(σ2) = −cM−m+1(σ
2), m = 1, ...,M. (4.32)

If M is odd, then the central PCF is zero:

cm(σ2) = 0, m = �M/2� + 1. (4.33)

Enforcing symmetry using equation (4.32) makes sure that the partitioning of the unit
circle made by the PCF has the point at π (or equivalently at −π) at the boundary
between the quantization cells of c1(σ

2) and cM(σ2) = −c1(σ
2). In this case, no

wrappings should be taken into account when quantizing the circular random variable
θ ∈ (−π, π], and the linear squared error

d(θ, θ̂) = (θ − θ̂)2

can be used instead of the wrapped-squared-error of equation (4.27).

Training PCF

An iterative k-means-like algorithm has been developed for the training of the PCF.
The PCF are trained for σ2 ∈ S. Let σ2

l = {σ2
1, σ

2
2, ..., σ

2
L} be L samples of σ2 in S. For

example, σ2
l = {0.5, 0.52, 0.54, ..., 0.68, 0.7}. Let θl,n, l = 1, ..., L, n = 1, ..., N be N

random samples from Nw(0, σ2
l ), for each variance σ2

l . Let c
(k)
m,p be the PCF parameters

resulting from the k-th iteration of the algorithm. The algorithm is initialized with
constant PCF, uniformly distributed over (−π, π]:

c
(0)
m,0 = 2π

(
0.5 +

0.5 − m

M

)
, m = 1, ..., �M

2
� (4.34)

c
(0)
m,1 = c

(0)
m,2 = · · · = 0 (4.35)
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Each iteration consists of two steps: a classification step and an optimization step.
The classification step labels each sample θl,n to a PCF function, and the optimization
step uses these labels to estimate each PCF function. The PCF functions converge
after 20 to 50 iterations.

Classification Step
At the k-th iteration, the classification step finds the indices Il,n, l = {1, ..., L},

n = {1, ..., N} that minimize the square error:

Il,n = arg min
m

{(θl,n − c(k−1)
m (σ2

l ))
2}, m = 1, ...,M (4.36)

Optimization Step
Let Θl,m = {θl,n : Il,n = m} be the set of samples that have been classified to

the m-th PCF for each variance σ2
l . The optimized m-th PCF is the polynomial that

best fits the pairs of variables {(σ2
l , θl) : l = 1, ..., L & θl ∈ Θl,m}. In other words, we

obtain the optimal m-th PCF by minimizing the corresponding mean-square error:

c(k)
m,p = arg min

cm,p

{
L∑

l=1

∑
θ∈Θl,m

(
θ −

P∑
p=0

cm,pσ
2p
l

)2

}. (4.37)

The optimization can be made using typical polynomial least squares fitting meth-
ods [117].

Examples and Practical Considerations

The wrapped Gaussian is closely approximated by the linear Gaussian for small vari-
ances σ2 < 0.5. Therefore, for σ2 < 0.5 we can use the wrapped Gaussian quantizer
presented in Section 4.5.1, while for higher variances we use PCF quantizers. For
variances higher than 2π, the wrapped Gaussian is approximated by the uniform
distribution, as shown in Section 4.3.2. Accordingly, we limit the variance σ2 to a
maximum of 2π. The construction of PCF quantizers depends on two inter-related
design parameters: the size of the variance interval S and the order of the PCF poly-
nomial. We found that high-order polynomials cannot provide high-quality PCF for
the whole range of interest S = [0.5, 2π]. It is better to divide [0.5, 2π] into smaller
intervals of length 0.2 and to construct low-order (i.e., quadratic) polynomials for
each of these intervals.

An example of the trajectories of wrapped linear Gaussian codepoints and PCF
over σ2 is shown in Figure 4.8. The wrapped linear Gaussian codepoints are not
optimally distributed for σ > 1 and they may occasionally coincide, like at σ2 = 2π,
resulting to a practical loss of some quantization points and a distortion penalty.
On the other hand, the PCF codefunctions converge to the codepoint allocation of a
uniform quantizer, as σ2 increases. This is better illustrated in Figure 4.9 where the
distortion (WSE) of a PCF quantizer for θ ∼ Nw(0, σ2) is compared to the distor-
tion of a uniform quantizer for θ uniformly distributed in (−π, π]. When σ2 → 2π,
Nw(0, σ2) tends to the uniform distribution (horizontal line) and the two distortions
converge.
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Figure 4.8 Codepoint trajectories over σ2. The thin lines correspond to
wrapped linear Gaussian codepoints and the thick lines to PCF generated
codepoints. Three wrapped Gaussian pdf with variances σ2 = {0.6, 2, 6} are
illustrated along with the corresponding PCF-generated codepoints.
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Bit Allocation

A greedy bit-allocation algorithm similar to the one presented in Section 4.5.1 can
be used to assign the quantization levels for the scalar PCF quantizers of a WGMM.
The only difference now is that the tabulated distortions D(Nm,k, σ

2
m(k)) correspond

to the expected wrapped square error distortion when the k-th variable of the m-th
WGMM Gaussian component is encoded using a PCF quantizer with Nm,k levels.

4.6 Phase Quantization for Narrowband Speech

Coding

The presented WGMM-based quantization algorithm was used to quantize the dis-
persion phases ψk, k = 1, ..., K of the narrowband speech harmonics below 3700 Hz.
Only the phases of voiced frames were quantized, while the phases of unvoiced frames
were randomly set.

An intrinsic difficulty in phase quantization is the variable dimensionality of the
dispersion phase vectors �ψ. We address this problem by classifying pitch values in
7 classes (continuous intervals), referred to as Q1 to Q7 in Table 4.2, in order to reduce
the variance of the dimensionality within each class. Note that this classification is
just a plausible choice and that it is not critical for efficiency. The harmonics are
separated in two bands; a low- and a high-frequency band, in order to provide more
bits to the perceptually important low-frequency harmonics. A fixed number of low-
frequency harmonics (depending on pitch class Qi) are grouped together to form
the lower-band dispersion phase vectors. For pitch classes Q1 and Q2, the lower-
band consists of the first 24 harmonics. For pitch classes Q3 to Q6, the number of
dimensions of the low-frequency harmonics is equal to the minimum size of the phase
vectors of the corresponding class. For example, for class Q5, the number of harmonics
for the low frequency band is given by: �3700/217� = 17 harmonics, where 217 is the
lower pitch in Q5 and 3700 the bandwidth of the speech signal. The bandwidth of
the lower-frequency band varies with the number of harmonics and the pitch. For the
first 6 classes, Q1 to Q6, 6 fixed-dimension low-frequency dispersion phase datasets
are obtained from TIMIT database. The number of dimensions of each dataset is
shown in Table 4.2. Two more datasets are obtained for the high-frequency phases of
pitch classes Q1 and Q2 with a size of 14 and 8 dimensions, respectively. These phases
correspond to the first harmonics of the high-frequency band. An example is provided
in Table 4.3: assume that the pitch is 100 Hz, giving a total of �3700/100� = 37 phases.
The first 24 phases are used to train the low-frequency WGMM, while phases ψ25 to
ψ32 are used to train the high frequency WGMM. Concluding, we derive 6 datasets
from the low frequency band and 2 datasets from the high frequency band.

These datasets are used to train the corresponding WGMM according to Sec-
tion 4.4. The circular mean (equation (4.3)) of each dataset is removed prior to
training. This procedure moves the wrapped multivariate Gaussians closer to the
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Pitch Class Pitch Range Low-Freq. High-Freq.
WGMM dims. WGMM dims.

Q1 <95 Hz 24 >14
Q2 95-115 Hz 24 >8
Q3 115-142 Hz 24 >0
Q4 142-176 Hz 21 >0
Q5 176-217 Hz 17 >0
Q6 217-250 Hz 14 >0
Q7 >250 Hz <14 0

Table 4.2 Pitch Classes for WGMM-based Vector Quantization of phases.

Pitch f0 Low Frequency High Frequency
Class Harmonics Harmonics

Q2 100 Hz [ψ1, ..., ψ21︸ ︷︷ ︸
Quantized

] [ψ25, ..., ψ32], ψ33, ..., ψ37︸ ︷︷ ︸
Quantized

Q4 150 Hz [ψ1, ..., ψ21︸ ︷︷ ︸
Quantized

] ψ22, ψ23, ψ24︸ ︷︷ ︸
Quantized

Q7 300 Hz [ψ1, ..., ψ12︸ ︷︷ ︸
Quantized

, ψ13, ψ14︸ ︷︷ ︸
Ignored

] �

Table 4.3 Three examples of dispersion phase vectors with pitch values
f0 = 100, 150 and 300 Hz. Phases in brackets are modeled by a WGMM
trained from data. Phases outside brackets are modeled by the “extended”
WGMM.

center of the principal hypercube (0, 2π]K and increases the accuracy of the approx-
imation that is made using only ±2 tilings of each scalar Gaussian dimension. The
number of dimensions of each low-frequency and high-frequency WGMM is shown in
Table 4.2.

In most frames, the trained Wrapped Gaussian Mixture Models do not model all
the harmonics and the statistics of a variable number of high frequency harmonics
are not captured. In the examples provided in Table 4.3 these phases are shown to
be outside the brackets. However, these harmonics are in high frequencies where the
ear is less sensitive to individual phase distortions. Furthermore, we have observed
that the bivariate marginal distributions of high-frequency harmonics have similar
statistics. Therefore, for each frame we construct a high-band WGMM by replicating
the means and the variances of the dispersion phase with the highest frequency that is
modeled by a WGMM. Precisely, for pitch classes Q1 and Q2, where a high-frequency
WGMM is already trained with 14 and 8 dimensions respectively, the trained WGMM
is extended to the total number of harmonics using the means and the variances of the
last dimension of the latter WGMM. In the first example of Table 4.3, this means that
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the statistics of phases ψ33 to ψ37 are obtained from the statistics of ψ32. For pitch
classes Q3 to Q6, the high-frequency WGMM is constructed using the statistics of the
last dimension of the corresponding low-frequency WGMM. In the second example
of Table 4.3 the statistics of ψ22 to ψ24 are obtained from the statistics of ψ21. A
different procedure is used for the high-frequency class Q7 (above 250 Hz). Assuming
that classes Q6 and Q7 have similar statistics, the phases of this class are modeled by
removing the necessary number of higher frequency harmonics from the low-frequency
WGMM of Q6. Therefore we have less than 14 dimensions as it is stated in Table 4.2
and illustrated in Table 4.3.

The training samples were obtained from training set of TIMIT database. The
number of samples used for WGMM training for each class is shown in Table 4.2. The
training samples belonged to frames with SNRnorm ≥ 3 dB (see Section 2.5.2). Thus,
the quantizers were trained mostly with voiced and transitional frames. Unvoiced
frames can be transparently encoded with high distortion and a quantizer that is
not specifically trained with unvoiced frames suffices. The unvoiced phases have
approximately uniform distribution and the effect of including frames with lower
SNRnorm is to raise the level of uniform noise at the phase statistics. Note that
special classes of speech events like plosives are receiving high SNRnorm values in our
analysis system and they are treated as voiced speech.

As an example, Figure 4.10 provides some insight regarding the statistics of the
phases and the behavior of the WGMM for pitch class Q2. The plotted samples
(dots) indicate the distribution of the phases, while the iso-contours show the pdf as
it is modeled by the 32-component WGMM. We can observe that the first phases
are not as noisy as the higher frequency phases, and that there are dependencies
between the phases which benefit vector quantization. Furthermore, note that the
dependencies are stronger between phases of neighboring harmonics. The statistics of
the phases are well captured in higher harmonics but not so well in lower harmonics.
This is due to the fact that the WGMM has diagonal covariance matrices which fail to
accurately model the dependencies that exist, for example, between phases 1 and 2.
The WGMM captures the dependencies using the location of the wrapped Gaussian
means and in the latter case the means are located to account for the large diagonal
structures arising between higher frequency harmonics. A better fit can be obtained
at the cost of increased complexity if the number of WGMM components is increased.

An objective evaluation of the WGMM-based quantizers is made using a Mean-
Root-Wrapped-Square-Error (MRWSE) criterion:

D =

(
180

π

)
1

N

N∑
n=1

√
1

K
dw(�θn, �̂θn). (4.38)

The MRWSE provides a measure of the average per-symbol distortion in degrees
and it is useful for insight to the behavior of the quantizer. Figure 4.11 depicts the
MRWSE for pitch classes Q1 to Q6 using the low-frequency WGMM-based quantizer
at rates 30, 35, . . . , 60 bits. Three WGMM-based quantization methods are evaluated:
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Figure 4.10 Scatter plots of harmonic phases from pitch class Q2 and
iso-contours computed using the pdf of the corresponding low-frequency
WGMM.
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Figure 4.11 The Mean-Root WSE for pitch classes Q1 to Q6 and several
rates. Three quantization methods are evaluated.

A: wrapped codebooks with bit allocation that uses small-variance assumptions

B: wrapped codebooks with greedy bit allocation

C: PCF Gaussian codebooks with greedy bit allocation

The first two methods use the bit allocation algorithms presented in Section 4.5.1
and they are evaluated using contours Qi-A and Qi-B, i = {1, .., 6} respectively. The
third method uses the PCF quantization algorithm described in Section 4.5.2 and it
corresponds to contours Qi-C, i = {1, .., 6}.

In pitch classes Q1 to Q4 method B is better than method A saving about 1-
2 bits. The performance of both methods in all other pitch classes is similar. We
speculate that this is due to the fact that the variances of the WGMM increase as the
pitch decreases. The behavior of the variances can be partially attributed to the fact
that transitional and unvoiced frames judged as voiced are usually classified to the
low pitch classes. Note that the voiced/unvoiced decision is biased towards labeling
unvoiced frames as voiced. Finally, the PCF quantizers (method C) outperform all
other methods, saving about 1-5 bits over method A and about 0.5-3 bits over method
B, depending on the class.

The rates of the phase quantizers were defined experimentally. Almost trans-
parent quantization is achieved if the low-frequency WGMM-based quantizers use
60 bits/frame and the expanded high-frequency WGMM-based quantizers use 20 bits.
Therefore, a total of 60+20=80 bits/frame are used to quantize the phases of nar-
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rowband speech harmonics. Additionally, 7 bits are required for the quantization of
the linear phase parameter τ (see Section 4.2).

The proposed phase quantization method provides the framework for high-rate
quantization taking into account the circular (modulo-2π) nature of the phases both
at modeling and quantization. However, a lot of improvements can also be made;
perceptual weighting of the harmonics, voiced/unvoiced classification of the harmon-
ics, a proper “decorrelation” of the circular random variables prior to modeling and
quantization, etc. In the author’s perspective, the decoupling of the pdf estima-
tion from the allocation of codepoints breaks the phase quantization problem into
a series of smaller manageable subproblems. Furthermore, the WGMM modeling of
phases allows the statistical treatment of phases, which may benefit a number of ap-
plications like Speaker Recognition, where it is well known that the excitation bares
speaker-specific information [118], generative models for Text-To-Speech (TTS) syn-
thesis [119], detection of pathological speech [120]. Concluding, another application
of the proposed phase quantization scheme is to reduce the footprint of large-corpus
concatenative TTS systems [121].



Chapter 5

Packet Loss Concealment for
Harmonic Models

5.1 Introduction

Packet loss concealment (PLC) is a vital part of a speech codec that attempts to hide
the packet losses from the listener. This is a difficult task in predictive CELP-like
codecs because a single packet loss can desynchronize the decoder from the encoder
for a few subsequent frames. In that case, the major source of error propagation
is the erroneous Adaptive CodeBook (ACB) excitation. Thus, most PLC schemes
in CELP-like codecs are focused on reducing that desynchronization effect. A solu-
tion is to insert redundancy to the bit-stream using FEC (Forward Error Correction)
techniques. In [35], a PLC scheme for ITU-T recommendation G.729 [31], redundant
information from past frames is repeated regularly every 2 frames of coded speech.
In [122], a FEC scheme repeats the excitation parameters only for frames that are
judged to be perceptually important. In [123], a lower-quality low-bitrate Waveform
Interpolation (WI) speech encoding is used as FEC data. The lower-quality repre-
sentation is employed only when a packet is lost. In [38], the content of frames that
have arrived after their playback time is used to reduce the error propagation in case
of a frame erasure. In [124], time-scale modification is used to reduce the desynchro-
nization effect. In [37] and [38], the contribution of the ACB excitation is constrained
during the quantization of the innovative excitation of AMR-WB codec [125] so that
the codec recovers faster after a packet loss. The latter method reduces the dependen-
cies between frames to improve the robustness at the expense of lower speech quality
when there are no packet losses.

The current solutions are effective for packet loss rates up to 3%-5% but face
a rapid quality degradation upon higher loss rates and bursty losses. Most of the
effort is given at recovering the state of the codec and not at concealing the packet
loss. Clearly, there is a trade-off between coding efficiency and robustness. In that
aspect, some researchers propose PLC schemes for codecs that encode each frame
independently of the previous frames, like the ITU-T Recommendation G.711 [26],

71
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the iLBC [40] codec and non-standardized, experimental sinusoidal codecs in [54], [51].
In practice, most of the research regarding PLC is made using the old G.711 codec
that employs 8-bit companded Pulse-Code Modulation (PCM).

The ITU has proposed two PLC algorithms for G.711. The first one [126] detects
and repeats the last received pitch period of the speech signal and has very low
complexity while the second one [127] uses the short-term and the long-term excitation
of the previously received speech signal to synthesize the lost speech samples. A simple
scheme for waveform repetition was proposed in [128]. A periodic replication of the
excitation signal is also used in [129], where an MOS of approximately 3.4 is reported
for 10% packet losses. In [130], the lost samples are generated using a combination of
linear prediction and waveform replication. Linear prediction has also been used in
the backward direction when future speech samples are available in the jitter buffer,
like in [131] where forward and backward linear prediction is used to compensate the
speech gap. In [132], the LP residual signal is split into 8 sub-bands and each band
is classified as voiced or unvoiced. In voiced bands, the excitation is replicated with
respect to the estimated pitch while unvoiced bands are excited using white noise. An
MOS of approximately 3 is reported for 10% packet losses. In [133], the consecutive
speech samples are interleaved into L packets so that each packet contains one every
L samples. Packet losses result to sparse sample losses that are recovered using a
multi-rate state-space model of speech and interpolation based on a Kalman filter.
The paper reports an MOS of approximately 3.4 for 15% packet losses. In [134], [49],
a PLC algorithm based on a sinusoidal model shows significant improvement over the
G.711, Appendix A algorithm [126]. All aforementioned MOS ratings are made using
10 ms packets of G.711. The MOS degradation is higher when the PCM samples are
grouped in longer packets (i.e., 20 ms packets). It is evident that the PLC schemes
for PCM encoded speech provide adequate subjective speech quality for packet loss
rates up to 10%-15%.

The robustness of PCM speech codecs to packet losses is achieved at the expense of
a very high bit-rate (64 kbits/sec). Sinusoidal codecs are well posed for high quality
PLC because the harmonic representation allows efficient interpolation, extrapola-
tion, and time scaling of the speech signal. Furthermore, these operations do not
require extra analysis steps and can be made natively with appropriate modifications
of the codec parameters. However, since there are no ITU standardized sinusoidal
codecs, the corresponding sinusoidal PLC schemes are demonstrated on experimental
codecs. In [51], time-scaling is used to stretch the received speech frames to fill the
gap resulting from a packet loss, in the context of a 8 kbps sinusoidal speech codec.
The authors report MOS ratings of 3.3 and 3.2 for loss rates of 10% and 20% re-
spectively. In [54], a high-quality/high-rate sinusoidal speech codec classifies frames
as unvoiced, voiced and transitional and the PLC algorithm treats differently each
class. The author reports a slight quality degradation for packet losses up to 30%.
Both aforementioned speech codecs encode each frame independently of the previous
frames.

In this chapter we will propose a novel high-quality PLC algorithm suitable for
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Figure 5.1 A combination of extrapolation and interpolation for PLC. Box
labels “R”,“E”,“I” and “?” indicate a received, an extrapolated, an interpo-
lated and a lost frame, respectively.

harmonic speech codecs. The proposed algorithm requires no extra analysis steps
because it uses the quantized parameters of the harmonic model. The algorithm
performs interpolation when a future speech frame is available in the jitter buffer or
extrapolation when the jitter buffer is empty. Each sinusoid is characterized as voiced
or unvoiced and treated accordingly. A sinusoid is considered voiced if it is below a
voicing cutoff frequency threshold and unvoiced otherwise.

5.2 A novel high-quality PLC algorithm

The Harmonic Model (HM) allows efficient interpolation and extrapolation of the
harmonically related sinusoids. Interpolation is used when a future speech frame is
available in the jitter buffer, while extrapolation is used when the jitter buffer is
empty. Each frame is 20 ms long (160 samples) at a sampling rate of 8000 Hz and
the frame rate is 100 Hz (one frame every 10 ms).

Assume that the decoder has already played all the samples until the middle of the
last received frame and that the current frame is not available due to a packet loss.
The proposed PLC algorithm searches the jitter buffer for the nearest received future
frame. If the jitter buffer is empty, then the decoder enters the “extrapolation mode”
and uses extrapolation to fill the next 10 ms (80 samples) of speech. The extrapolation
procedure is discussed in Section 5.4. If the jitter buffer is not empty, then the decoder
enters the “interpolation mode” and uses interpolation to fill the samples from the
last received frame to the nearest future received frame. Furthermore, the decoder
may enter the interpolation mode after the extrapolation mode. The interpolation
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Figure 5.2 PLC with available future frames in the jitter buffer.

procedure is discussed in Section 5.3.
Figure 5.1 shows an example of interpolation following extrapolation. The decoder

has to face a 4 packet long bursty loss. The boxes represent speech frames at successive
time instants 0,1,...,6. The frames/boxes are labeled with a “?”,“R”,“E” or “I” to
state that they are lost, received, extrapolated or interpolated, respectively. The first
two lost frames (time instants 1,2) are extrapolated because the corresponding jitter
buffer is empty, while the last two lost frames are interpolated since the jitter buffer
contains a received frame (at time instant 5). The interpolation is made with the
parameters of the last extrapolated frame and not the original received frame (at time
instant 0). This ensures a smooth transition between extrapolation and interpolation
in the proposed PLC scheme and it is suitable for the relatively infrequent long bursty
losses.

The interpolation procedure is schematically shown in Figure 5.2. The jitter buffer
holds two frames and there are two consecutive frame losses. The lost speech content
is filled by interpolating the last played frame with the last frame of the jitter buffer.
Let A

(s)
k , φ

(s)
k , f

(s)
0 = kf

(s)
0 , k = 1, . . . , K(s) be the amplitudes, the phases and the

pitch of the last played frame (the “(s)tart-frame”), and A
(e)
k , φ

(e)
k , f

(e)
0 = kf

(e)
0 ,

k = 1, . . . , K(e) the corresponding parameters of the nearest future received frame
(the “(e)nd-frame”) in the jitter buffer. Let P

(s)
v and P

(e)
v be the voicing probability

for the start-frame and the end-frame, respectively. The voicing probability is defined
according to the normalized SNR of the speech frame (see equation 2.37):

Pv(SNRnorm) =

⎧⎨
⎩

0, SNRnorm < 5
SNRnorm−5

5
, 5 ≤ SNRnorm ≤ 10

1, SNRnorm > 10
(5.1)

A sinusoidal component is characterized as “voiced” if it is below the following cutoff
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frequency:
fc = 4000Pv (5.2)

and “unvoiced” otherwise. All sinusoidal components of unvoiced frames are con-
sidered to be unvoiced and are assigned to Pv = 0, because, occasionally, unvoiced
frames may yield high SNRnorm values.

5.3 Interpolation Mode

An interpolation is made between the harmonic sinusoids of the start-frame and
the harmonic sinusoids of the end-frame. The harmonic sinusoids are interpolated
only when the corresponding fundamental frequencies f

(s)
0 and f

(e)
0 are close enough:

|f (e)
0 − f

(s)
0 | ≤ ∆f0. The maximum difference for 1 frame loss is ∆f0 = 20 Hz,

for 2 consecutive frame losses is ∆f0 = 30 Hz, and ∆f0 = 40 Hz for 3 or more
consecutive losses. Since the number of sinusoids K(s) may differ from K(e), the
remaining sinusoids are treated with a birth-death approach [45] (pg. 443). A birth-
death approach is also used when the maximum difference is higher than ∆f0: the
sinusoids of the start frame extrapolate with an amplitude that fades to zero while the
sinusoids of the end frame extrapolate (backwards) with an amplitude that gradually

rises from zero to A
(e)
k . The result of this matching/birth-death procedure is a new set

of start-frame and end-frame sinusoids, with amplitudes B
(s)
k , B

(e)
k , phases ϕ

(s)
k ,ϕ

(e)
k ,

and frequencies f
(s)
k ,f

(e)
k , respectively.

In detail, when both start-frame and end-frame are voiced and |f (e)
0 −f

(s)
0 | ≤ ∆f0,

the PLC method synthesizes the samples of the gap using interpolation synthesis with
the following sinusoidal parameters:

Start-Frame parameters:

B
(s)
k =

{
A

(s)
k , k = 1, ..., K(s)

0, k = K(s) + 1, ..., max{K(s), K(e)} (5.3)

ϕ
(s)
k =

{
φ

(s)
k , k = 1, ..., K(s)

φ
(e)
k − 2π

kf
(e)
0

Fs
S ′, k = K(s) + 1, ..., max{K(s), K(e)} (5.4)

f
(s)
k =

{
kf

(s)
0 , k = 1, ..., K(s)

kf
(e)
0 , k = K(s) + 1, ..., max{K(s), K(e)} (5.5)

V
(s)
k =

{
true, f

(s)
k ≤ f

(s)
c

false, f
(s)
k > f

(s)
c

(5.6)
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End-Frame parameters:

B
(e)
k =

{
A

(e)
k , k = 1, ..., K(e)

0, k = K(e) + 1, ..., max{K(s), K(e)} (5.7)

ϕ
(e)
k =

{
φ

(e)
k , k = 1, ..., K(e)

φ
(s)
k + 2π

kf
(s)
0

Fs
S ′, k = K(e) + 1, ..., max{K(s), K(e)} (5.8)

f
(e)
k =

{
kf

(e)
0 , k = 1, ..., K(e)

kf
(s)
0 , k = K(e) + 1, ..., max{K(s), K(e)} (5.9)

V
(e)
k =

{
true, f

(e)
k ≤ f

(e)
c

false, f
(e)
k > f

(e)
c

(5.10)

where S ′ = NlossS is the size of the gap in samples, Nloss is the number of lost frames,
S = 80 samples is the hop size, V

(s)
k , V

(e)
k are boolean variables stating the voicing of

the k-th sinusoid, and f
(s)
c , f

(e)
c , are the voicing cutoff frequencies for the start-frame

and the end-frame respectively.
When either the start-frame or the end-frame is unvoiced, or |f (e)

0 − f
(s)
0 | > ∆f0,

the PLC method synthesizes the samples of the gap using birth-death synthesis with
the following sinusoidal parameters:

Start-Frame parameters:

B
(s)
k =

{
A

(s)
k , k ∈ “start − frame”

0, k ∈ “end − frame”
(5.11)

ϕ
(s)
k =

{
φ

(s)
k , k ∈ “start − frame”

φ
(e)
k − 2π

kf
(e)
0

Fs
S ′, k ∈ “end − frame”

(5.12)

f
(s)
k =

{
f

(s)
k , k ∈ “start − frame”

f
(e)
k , k ∈ “end − frame”

(5.13)

V
(s)
k =

{
true, f

(s)
k ≤ f

(s)
c

false, f
(s)
k > f

(s)
c

(5.14)
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End-Frame parameters:

B
(e)
k =

{
A

(e)
k , k ∈ “start − frame”

0, k ∈ “end − frame
(5.15)

ϕ
(e)
k =

{
φ

(e)
k , k ∈ “start − frame”

φ
(s)
k + 2π

kf
(s)
0

Fs
S ′, k ∈ “end − frame”

(5.16)

f
(e)
k =

{
f

(e)
k , k ∈ “start − frame”

f
(s)
k , k ∈ “end − frame”

(5.17)

V
(e)
k =

{
true, f

(e)
k ≤ f

(e)
c

false, f
(e)
k > f

(e)
c

(5.18)

In both cases, the start-frame parameters B
(s)
k , ϕ

(s)
k , f

(s)
k and the end-frame pa-

rameters B
(e)
k , ϕ

(s)
k , f

(s)
k describe the evolution of a single sinusoid over time. The

synthesis of the speech gap is made on a per-sinusoid basis, according to the voic-
ing state of each sinusoid at the start-frame and the end-frame. Three cases are
considered:

case 1: Voiced-Voiced (V*V): The sinusoid is voiced in both endpoints.

case 2: Unvoiced-Unvoiced (U*U): The sinusoid is unvoiced in both endpoints.

case 3: Voiced-Unvoiced (V*U) or (U*V): The sinusoid is unvoiced only in one
endpoint.

The synthesis method differs for each case, as it will be presented in the following
subsections. This type of synthesis provides a flexible way to interpolate between
voiced speech frames, transitional speech frames and unvoiced speech frames.

5.3.1 Voiced-Voiced synthesis

The S ′ samples of the interpolated speech signal are provided by the following equa-
tion:

x̃(n) =
K∑

k=1

Bk(n) cos (θk(n)) , n = 0.5, 1.5, . . . , S ′ − 0.5 (5.19)

where K is the total number of sinusoids, Bk(n) are the instantaneous amplitudes
and θk(n) are the instantaneous phases of the sinusoids. Note that the +0.5 sample
displacement is due to the location of the center of the analysis window (time instant
0 is between samples 80 and 81, at position 80.5). Therefore, the first reconstructed
sample is at position n = 0.5, and the last at position n = S ′ − 0.5. The analysis
of the start-frame and the end-frame was made at time instants n = 0 and n = S ′

respectively.
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The instantaneous amplitudes are easily computed with linear interpolation:

Bk(n) = B
(s)
k +

(
B

(e)
k − B

(s)
k

) n − 0.5

S ′ − 1
, n = 0.5, 1.5, . . . , S ′ − 0.5 (5.20)

The computation of the instantaneous phases is somewhat more complicated.
When the k-th sinusoid is voiced at the start-frame and the end-frame (V

(s)
k = V

(e)
k =

true) then the instantaneous phases are computed using cubic phase interpolation [45]
(pg. 446). The following description of the cubic phase interpolation is adapted

from [45] (pg. 446). For convenience, let ω
(s)
k =

2πf
(s)
k

Fs
, ω

(e)
k =

2πf
(e)
k

Fs
. The cubic phase

model assumes that the phase of the sinusoid is a third order polynomial over time:

θk(n) = ϕ
(s)
k + ω

(s)
k n + αkn

2 + βkn
3, n ∈ [0, S ′] (5.21)

where the time variable n is now considered to vary continuously over [0, S ′]. The time
positions n = 0 and n = S ′ refer to the center of the start-frame and the end-frame,
respectively. The polynomial satisfies the start-frame conditions:

θk(0) = ϕ
(s)
k (5.22)

∂θk(n)

∂n

∣∣∣∣
n=0

= ω
(s)
k , (5.23)

that ensure continuity at n = 0. The parameters αk and βk are computed using the
end-frame conditions at ensure continuity at n = S ′:

θk(S
′) = ϕ

(e)
k + 2πM (5.24)

∂θk(n)

∂n

∣∣∣∣
n=S′

= ω
(e)
k (5.25)

where M is an integer that unwraps the end-frame phase. The solution of this linear
system for given M yields the following ak, bk:[

αk

βk

]
=

[
3

S′2
−1
S′

−2
S′3

1
S′2

][
ϕ

(e)
k − ϕ

(s)
k − ω

(s)
k S ′ + 2πM

ω
(e)
k − ω

(s)
k

]
. (5.26)

The unwrapping integer M can be obtained using a smoothness criterion on θk(n). A
reasonable smoothness criterion is the energy of the second-order derivative of θk(n):

ε =

∫ S′

0

[
∂2θk(n)

∂n2

]2

dn (5.27)

The M that minimizes ε is:

M = round

(
1

2π

[(
ϕ

(s)
k + ω

(s)
k S′ − ϕ

(e)
k

)
+
(
ω

(e)
k − ω

(s)
k

) S′

2

])
(5.28)

The cubic phase model assures that the phase and the frequency of the evolving
sinusoid at the start-frame and the end-frame are the measured corresponding phases
and frequencies, while the evolution of the phase over time is smooth.
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Figure 5.3 PLC synthesis of a single sinusoid that is voiced at the start-
frame and unvoiced at the end-frame.

5.3.2 Unvoiced-Unvoiced synthesis

When the sinusoid is unvoiced at both endpoints (V
(s)
k = V

(e)
k = false), each lost frame

is reconstructed using a random phase and the gap is synthesized with OLA of the
reconstructed frame(s). This provides the desirable noisy character to the sinusoids.

5.3.3 Voiced-Unvoiced synthesis

Let Nloss be the number of the lost speech frames and l the index of the lost frame
counting from past to future. When the k-th sinusoid is unvoiced only at one of
the endpoints, (V

(s)
k = false or V

(e)
k = false), the synthesis is guided by a voicing

decision made for every lost frame according to a linear interpolation of the voicing
cutoff frequency. The voicing decision states the type of synthesis that will be used at
the corresponding speech frame. If the k-th sinusoid at the l-th lost frame is judged
to be voiced, we perform cubic phase interpolation between the two endpoints to
reconstruct the lost frame. If the k-th sinusoid at the l-th lost frame is judged to
be unvoiced, we use a random phase that is uniformly distributed over (−π, π] to
synthesize the lost frame. The reconstructed frames are then properly overlap-added
to the synthesis buffer.

The linear interpolation of the voicing cutoff frequency is given by equation:

f (int)
c (l) = f (s)

c +
(
f (e)

c − f (s)
c

) l

Nloss

, l = 1, . . . , Nloss. (5.29)

The corresponding voicing decision is then made according to the interpolated cutoff
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frequency f
(int)
c (l):

V
(int)
k (l) =

{
true, f

(s)
k ≤ f

(int)
c (l) & f

(e)
k ≤ f

(int)
c (l)

false, otherwise
(5.30)

In other words, a voicing decision is made for every lost frame and every sinusoid that
is unvoiced at the beginning or at the end of the gap. Since sinusoids from unvoiced
frames are marked as unvoiced in both endpoints, a sinusoid that is marked as voiced
at one of the endpoints has voiced frames at both endpoints.

An example of voiced-unvoiced synthesis is illustrated in Figure 5.3, where a single
sinusoid is interpolated to fill a three-frame gap. The sinusoid is judged to be voiced
at the start frame and unvoiced at the end-frame. The voicing cutoff frequency is
interpolated for the three lost frames. The sinusoid is considered to be voiced at the
first two lost frames because both frequencies f

(s)
k , f

(e)
k are below f

(int)
c (l), l = 1, 2, and

is considered to be unvoiced at the third frame because f
(int)
c (3) is below f

(s)
k or f

(e)
k .

At the first two frames, the sinusoid is constructed using cubic phase interpolation
between the start-frame and the end-frame parameters while at the third frame, the
sinusoid is constructed using random phase. At all frames, the amplitude is linearly
interpolated using equation 5.20. Finally, the speech gap is synthesized by overlap-
adding the three reconstructed frames to the playout buffer.

5.4 Extrapolation Mode

The harmonic sinusoids A
(s)
k , φ

(s)
k , f

(s)
0 , k = 1, . . . , K(s) of the last played frame are

extrapolated to fill the next 10 ms (80 samples) of the speech signal. The parameters
of the extrapolated lost frame (next 160 samples) are estimated according to the
following formulae:

Amplitudes: A
(ext)
k = γA

(s)
k

Phases: φ
(ext)
k = φ

(s)
k + 2π

kf
(s)
0

Fs
S + εk

Frequencies: f
(ext)
k = kf

(s)
0

where k = 1, . . . , K(s), S = 80 samples is the hop size, Fs = 8000 is the sampling
rate, and ε

(s)
k is a noise parameter which is zero when the k-th harmonic is voiced and

uniform noise in (−π, π] when the k-th harmonic is unvoiced. The variable γ ∈ [0, 1]
is a scaling factor that reduces the energy of the frame in order to avoid extensive
extrapolation over time that may lead to metallic sounds. For the first extrapolated
frame, γ = 1, for the second and the third extrapolated frame, γ = 0.9, while for 4
or more extrapolated frames, γ = 0.5.
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(a) Three consecutive losses at a non-stationary part of voiced speech.
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(b) A single loss of unvoiced speech and two consecutive losses at a
transition from unvoiced to voiced speech.
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(c) Six consecutive losses at stationary voiced speech.

Figure 5.4 Three examples of PLC. The lower waveform presents the orig-
inal signal while the upper waveform the concealed signal. The boxes are
centered at the center of the analysis/synthesis frames. The empty boxes
represent the lost frames. The dashed lines are located at the centers of the
analysis/synthesis frames.
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5.5 Results

A subjective evaluation of the proposed PLC algorithm is made in Chapter 9, Sec-
tion 9.4 in the context of a sinusoidal speech codec. Some examples of concealment
that provide further insight to the operation of the PLC algorithm are shown in Fig-
ure 5.4. The analysis/synthesis of the speech signal is made with the Harmonic Model
discussed in Chapter 2. A 20 ms Hanning window was used for analysis/synthesis
with a 10 ms step. The harmonic amplitudes were derived from a 20-th order cepstral
envelope. At all cases, we consider a jitter buffer of 40 ms. Therefore, interpolation
is used for up to 4 frame losses and extrapolation for more than 4 frame losses.

The first example (Figure 5.4a) is about the loss of three consecutive frames lo-
cated at a non-stationary part of voiced speech. The PLC algorithm uses cubic phase
interpolation to provide a smooth transition between the two endpoint speech frames.
The concealment in this case provides speech of high quality and no degradation is
perceived.

The second example (Figure 5.4b) shows the concealment of unvoiced/voiced tran-
sitions. Two frames are lost exactly in a unvoiced/voiced transition. The PLC al-
gorithm uses birth/death synthesis to link the two endpoints. Furthermore, a single
frame is lost at the unvoiced part of the speech. The frame is synthesized with
birth/death synthesis using random phases. The concealment in this case provides a
noisy character to the transition that is evident to the experienced listener. However,
the perceived degradation is minimal to the average listener.

The third example (Figure 5.4c) is about a 6-frame long bursty loss that occurs
in voiced speech. The first two frames are extrapolated while interpolation is used
to fill the last 4 frames. The concealment in this case is of high quality, almost
indistinguishable from the original signal.



Chapter 6

Multiple Description Coding

The content of a lost packet cannot be recovered with a PLC algorithm and redun-
dancy is needed to compensate the packet loss. Multiple Description Coding (MDC)
is a plausible way to introduce controlled redundancy into the bitstream. In MDC,
each frame is encoded in two correlated descriptions that are independently trans-
mitted through the network. If both descriptions arrive, then the central decoder
is used to provide a high quality reconstruction of the encoded source. If only one
description arrives then one of the two side decoders is used to provide a lower quality
reconstruction of the source. If no description arrives then PLC is used to fill the
gap. The generic MDC procedure is illustrated in Figure 6.1.

The goal in MDC is to construct the side descriptions and the central description
in an optimal manner for the given channel conditions. Let D0, D1 and D2 be the
average distortions associated with the central decoder and the two side decoders.
Assuming that each description is routed through an independent symmetric channel
with packet loss probability ρ, the total distortion of an MDC system is provided by
the following equation:

DMDC = (1 − ρ)2D0 + ρ(1 − ρ)(D1 + D2) + ρ2D3 , (6.1)

where D3 is the distortion when both descriptions are lost (for example, the variance
of the source). The two descriptions are called “balanced” when they have the same
rate and D1 ≈ D2. Most of the attention in MDC is given to balanced MDC systems.
We can classify MDC techniques in three categories, discriminated by the way the cor-
relations between the descriptions are captured: MDC based on an index-assignment
matrix, MDC based on lattices and transform-based MDC.

The techniques based on “index-assignment” require three codebooks; two side
codebooks that decode the indices of each of the descriptions, and one central code-
book which decodes the indices of both descriptions. A lookup table called “index
assignment” function maps the received indices to the central codebook and the side
codebooks. Intuitively, the index assignment function captures the correlations be-
tween the descriptions. A scalar version of these techniques was initially introduced
by Vaishampayan in [74] with the Multiple Description Scalar Quantization (MDSQ)
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framework. A theoretical analysis can be found in [135], [136], [137], [138]. An
extension to vector data and more than two descriptions was made in [139]. The
performance of these methods is sensitive to the initialization of the index assign-
ment table prior to training. A way to by-pass this problem is to assume a stochastic
index assignment mapping that converges to the index assignment function in a deter-
ministic annealing framework [140]. The major drawback of these techniques is that
the computational complexity and the memory requirements for training, encoding
and decoding increase rapidly with the encoding rate, the number of descriptions,
the dimensionality of the data and the complexity of the network model. Multiple
description transform quantizers based on MDSQ can provide a solution with much
lower complexity [141].

Lattice-based MDC uses central codebook and side codebooks generated from lat-
tices. The correlations between the descriptions are captured through the relative po-
sition/size of these lattices. MDC based on lattices can be found in [142], [143], [144].

In Multiple Description Transform Coding (MDTC), a correlating transform is
used to introduce correlations between uncorrelated data [145]. In [146], [147], the
correlations are introduced in a pairwise manner, via a linear volume preserving trans-
form. The correlations can also be introduced via frame expansions [148]. The quan-
tization of frame expansions and reconstruction issues are discussed in [149], [150].

In this chapter we study MDC systems suitable for speech coding. Focus is given
to resolution-constrained quantization which is typically used in speech coding. Sec-
tion 6.1 presents the principles of MDSQ (Multiple Description Scalar Quantization),
the MDC method for scalar quantization originally proposed by Vaishampayan in [74].
The complexity of a vector quantizer that uses the index assignment matrix as in
MDSQ is overwhelming for the rates and dimensionalities encountered in sinusoidal
speech coding. Therefore, we resort to transform coding solutions. Section 6.2 dis-
cusses the construction of transform coders based on MDSQ [141]. Such transform
coders will be referred to as MDSQTC (MDSQ Transform Coding). A special note is
made regarding the behavior of the bit-allocation formula for MDSQTC which lower
bounds the distortion of the central description according to the statistics of the
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source. Section 6.3 presents GMM-MDSQTC , the extension of MDSQTC to sources
that can be accurately modeled by GMM, like spectral envelopes [151]. Section 6.4
extends GMM-MDSQTCto sources with a modulo-2π behavior (phase data) using
Wrapped GMM. Finally, section 6.5 proposes a novel method that uses the redun-
dancy between the descriptions in GMM-MDSQTC to alleviate the effect of bit-errors.
Experiments using RCC cepstral coefficients show that single and double bit-errors
that occur solely in one description can be corrected with minor impact to the average
central distortion.

6.1 Multiple Description Scalar Quantization

In MDSQ, the correlations between the two descriptions are introduced via an index-
assignment matrix that links the two side description codebooks with the central
description codebook [74]. Let λ ∼ p(λ) be the scalar random variable which describes
the data that we encode. Assuming balanced descriptions with equal rates, let each
description have a rate of r bits. Thus, 2r is the total rate of the MDSQ system.
Let C0 ≡ {λ̂(0)

i,j : i = 1, ..., 2r, j = 1, ..., 2r} be the codebook of the central description,

C1 ≡ {λ̂(1)
i : i = 1, ..., 2r} be the codebook of description 1 and C2 ≡ {λ̂(2)

j : j =
1, ..., 2r} be the codebook of description 2.

The two description indices i and j are routed independently to the receiver that
has three decoders, a central decoder and two side decoders, one for each description.
When both descriptions are received, the central decoder returns λ̂

(0)
i,j ∈ C0. When

only the first description is received, side decoder 1 returns λ̂
(1)
i ∈ C1. Accordingly,

when only the second description is received, side decoder 2 returns λ̂
(2)
j ∈ C2. The

encoder finds the pair of indices (i, j) that minimizes the total distortion:

dtot = d0 +
ρ

1 − ρ
(d1 + d2), (6.2)

where ρ is the packet loss probability, d0 = (λ − λ̂
(0)
i,j )2 is the central distortion

and d1 = (λ − λ̂
(1)
i )2, d2 = (λ − λ̂

(2)
j )2 the distortions of the two side descriptions,

accordingly. This total distortion measure is based on the assumption that each
description is routed through a symmetric channel and that both channels have the
same packet loss probability ρ. Note that the distortion when both descriptions are
lost is constant and depends on the variance of the source; thus it can be ignored
during the minimization process. In practice, varying ρ provides a mechanism to
exchange central distortion for side distortions. The index assignment matrix links
each possible pair of side codebooks entries (i, j) to one central codebook entry. Note
that at non-zero loss probabilities ρ, C0 has less than 22r codepoints. Therefore, not
all possible pairs of indices (i, j) correspond to a central description codepoint. The
pairs (i, j) that correspond to a central description codeword will be referred to as
“valid”.
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Let Q
(0)
i,j be the quantization cell associated with central description codepoint λ̂

(0)
i,j ,

Q
(1)
i and Q

(2)
j be the quantization cells associated with side description codepoints λ̂

(1)
i

and λ̂
(2)
j respectively. Let I

(2)
j (i) ≡ {j : λ̂

(0)
i,j ∈ C0} be the set of valid indices j when i

is known, and I
(1)
i (j) ≡ {i : λ̂

(0)
i,j ∈ C0} be the set of valid indices i when j is known.

Then, the side description quantization cells Q
(1)
i , Q

(2)
j can be expressed as a union

of several Q
(0)
i,j cells:

Q
(1)
i =

⋃
j∈I

(2)
j (i)

Q
(0)
i,j , Q

(2)
j =

⋃
i∈I

(1)
i (j)

Q
(0)
i,j , (6.3)

When the quantization cells Qi,j and the mappings Ii(j), Ij(i) are known, the
optimal (in the MSE sense) codepoints can be computed by taking expectations over
the quantization cells using p(λ):

λ̂
(0)
i,j =

∫
Q

(0)
i,j

λp(λ|i, j)dλ, (6.4)

λ̂
(1)
i =

∑
j∈I

(2)
j (i)

∫
Q

(0)
i,j

λp(λ|i)dλ, (6.5)

λ̂
(2)
j =

∑
i∈I

(1)
i (j)

∫
Q

(0)
i,j

λp(λ|j)dλ, (6.6)

where p(λ|i, j), p(λ|i) and p(λ|j) is the pdf of λ inside the quantization cells Q
(0)
i,j ,

Q
(1)
i and Q

(2)
j , respectively.

Figure 6.2 provides an example of a source pdf, the corresponding quantization
cells and their relationship as it is captured by the index assignment table. The two
side description codebooks C1 and C2 index the column and the row of the sparse
index assignment matrix which links to the central description codebook C0. The
index assignment matrix has a maximum of 6 ∗ 6 = 36 entries but only 24 of these
36 entries are linked to central description codewords, thus, the central description
has a loss of 12 codewords. Assume that C0(10) and C1(3),C2(3) are the central and
side description codewords that minimize the MDC distortion (6.2). The source pdf

and the corresponding quantization cells Q
(1)
3 , Q

(2)
3 and Q

(0)
3,3 are shown in Figure 6.2b.

Note that the side description quantization cells are disjoint and consist of several
central description quantization cells.

Construction techniques for the design of N(0, 1) MDSQ codebooks and the cor-
responding index assignment tables can be found in [74] and [140]. Both methods
use a k-means approach with two steps, where the first step labels the samples of the
source according to the central description quantization cells and the second step com-
putes the optimal codepoints using equations (6.4),(6.5),(6.6). The method in [140]
uses deterministic annealing to avoid local minima of the average total distortion but
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Figure 6.2 An illustration of MDSQ. Sub-figure (a) shows the central de-
scription codebook C0, the two side description codebooks C1, C2 and the
index assignment matrix. Sub-figure (b) shows the source pdf and the cor-
responding quantization cells.

does not explicitly provide balanced descriptions. However, we found that balanced
descriptions can be obtained by penalizing the average total distortion E{dtot} us-
ing the difference |E{d1} − E{d2}| during the first step (labeling) of each k-means
iteration (E{·} denotes expectation). The deterministic annealing method provides
high-quality tradeoffs between central distortion and side distortions.

The behavior of an MDSQ system is studied using asymptotic high-rate analysis.
Under the assumption that the source pdf is approximately constant over the side
description quantization cells (the diameter of the disjoint cells Q

(1)
i , Q

(2)
j goes to zero

as r → ∞) [135] (pg. 281), the average central and side distortions are given by the
following equations:

d̄0 = Cσ22−2(1+α)r (6.7)

d̄1 = d̄2 = Sσ22−2(1−α)r (6.8)

where α ∈ (0, 1) states the tradeoff between the central and the side distortions,
σ2 is the variance of the source, C and S are constants determined by the source
pdf [135]. Note that the product d̄0d̄1 is constant, indicating the aforementioned

tradeoff between the central and the side distortions. The parameter α = log2(k)
r

where k is the number of diagonals of the index assignment matrix [135], [141]. For
example, in Figure 6.2, the index assignment matrix has k = 2 diagonals.

An example of the behavior of an MDSQ system for resolution-constrained quan-
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Figure 6.3 An example of resolution-constrained MDSQ of a N(0, 1) Gaus-
sian with r = 3 bits. The left plot shows the mean central distortion d0 and
the mean side distortions d1,d2 for several loss probabilities. The right plot
shows the central/side distortion tradeoffs.

tization of the Gaussian N(0, 1) case is provided in Figure 6.3. MDSQ codebooks
were trained for several loss probabilities ranging from 0 to 0.5. The left plot shows
the central and side distortions for each loss probability ρ. As ρ increases, the central
distortion d̄0 becomes worst at the benefit of better side distortions d1 and d2. For
each loss probability ρ, there is a tradeoff between d0 and d1,d2. These tradeoffs are
depicted in the right plot of Figure 6.3, along with the theoretical tradeoffs provided
by the constant product d̄0d̄1. Note that d0,d1 and d2 indicate data-driven averages
(using 50.000 samples) and that the constants C and S for the resolution-constrained

quantization of an N(0, 1) Gaussian are C = π33/2

24
, S = π33/2

6
[141] (pg. 706).

6.2 Transform Coding using Multiple Description

Scalar Quantization

A practical vector quantizer can be designed using transform coding and precomputed
MDSQ codebooks. Let xp ∼ N(0, σ2

p), p = 1, · · · , P be a multivariate source of
uncorrelated Gaussian random variables. Each variable xp is encoded with MDSQ

codebooks at a rate of ŕp bits. Let Rs =
∑P

p=1 ŕp be the rate of each side description
and R = 2Rs be the total rate for both descriptions. Theoretical approximations of
the average central distortion D̄0 and average side distortions D̄1,D̄2 of the transform
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coding system can then be computed according to the formulae:

D̄0 =
1

P

P∑
p=1

d̄0(rp) (6.9)

D̄2 = D̄1 =
1

P

P∑
p=1

d̄1(rp). (6.10)

The behavior the MDSQ-based transform coder (MDSQTC) is studied by Batllo and
Vaishampayan in [141] using asymptotic high-rate arguments. The product D̄0D̄1 is
constant as in the scalar case, indicating the existence of a distortion tradeoff that
is linear on the logarithmic domain. Furthermore, the optimal bit allocation for
MDSQTC is:

ŕp =
Rs

P
+

1

2
log2

⎛
⎜⎝ σ2

p(∏P
i=1 σ2

i

) 1
P

⎞
⎟⎠ . (6.11)

This result is the same with the bit allocation formula (3.10) for the single channel
case at the half rate Rs = 1

2
R. Furthermore, the KLT transform is (again) the optimal

transform for the MDC case [141].
An interesting note can now be made regarding the behavior of an MDSQTC

quantizer at low loss rates. Assume that there are no packet losses (ρ = 0). Then, the
scalar MDSQ codebooks are trained to minimize only the average central distortion:
E{dtot} = E{d0} (see equation (6.2)) resulting to a central codebook that is the
same with the optimal single channel codebook with 22ŕp entries. Therefore, the p-
th dimension of the central description will have a rate of 2ŕp bits. However, if the
bit allocation is optimized for a single description, then rp bits will be available for

the p-th dimension, allocated according to equation (3.10). Let D́0 be the average
central distortion of MDSQTC at ρ = 0 and D0 the average distortion of typical
transform coding with R bits. The ratio of the two distortions can be obtained using
equations (3.9), (3.10), (3.11). and (6.11):

Dpenalty =
D́0

D0

=
1
P

∑P
i=1 σ−2

i

(
∏P

i=1 σ−2
i )

1
P

, (6.12)

which is the arithmetic-to-geometric mean ratio of σ−2
i . Since the arithmetic mean

is always greater or equal to the geometric mean, D́0 ≥ D0, the MDSQTC scheme is
suboptimal at ρ = 0. Furthermore, the performance loss depends on the distribution
of the σ−2

i . When σi = σj,∀i, j, there is no penalty, but this case is rare in practice.

The distortion penalty sets a bound to the central distortion D́0 that can be achieved
by the MDSQTC scheme. Since D́0 can only increase with increasing ρ, this bound
is limiting the performance of the MDSQTC quantizer at a whole range of low loss
probabilities ρ.
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Figure 6.4 Central/Side distortion penalty (in log-scale) for MDSQTC

quantization. D(R) is the average single description distortion at rate R,
while Rs is the side description rate.

The observation made in this section states that the bit allocation in [141] is
optimal only within a range of the available central-side distortion tradeoffs. It may
be tempting to use a different (ad-hoc) bit-allocation for MDSQTC . For example,
one could minimize only the central distortion at ρ = 0. Such a scheme may produce
good results at ρ = 0 but it will be suboptimal at all other loss probabilities ρ > 0.
Another option would be to use a greedy bit-allocation algorithm with tabulated
central and side description distortions. Such an algorithm would perform better
at lower loss probabilities, but it would also require higher side description rates,
resulting to increased storage requirements.

The suboptimal behavior results from the limited range of validity of the equa-
tions (6.7) and (6.8) that describe the central distortion and the side distortions
respectively, in [141], [135]. Similar formulae are also derived with less restrictive
assumptions regarding the central description cells in [138]. Both high-rate analysis
in [135] and [138] are based on the assumption that the source pdf is approximately
constant inside the side description cells, as it is shown in [138], pg. 2096 and [135],
pg. 281. This “smoothness” assumption restricts the index assignment matrix to
be a “thin”-banded matrix, as stated in [138], pg. 2096. The central/side distor-
tion tradeoffs and the distortion penalty for MDSQTC are illustrated in Figure 6.4.
The optimal tradeoffs lie in the line D0Ds = constant, above the full-rate bound
D0 ≥ D(2Rs) + Dpenalty and above the half-rate distortion Ds ≥ D(Rs). An ideal
MDC quantizer though, should operate like a single channel quantizer at ρ = 0 (that
is D0 = D(2Rs)).
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6.3 GMM-based Multiple Description Coding

The extension of the MDSQTC to GMM-based quantizers (GMM-MDSQTC) is rela-
tively straightforward [151]. The source vector x ∈ R

P is MDSQTC quantized with
each of the M Gaussian components of the GMM. Let x̂0,m and x̂1,m, x̂2,m be the
output of the central decoder and the two side decoders of the m-th Gaussian com-
ponent, respectively. Let m′ be the component that yields the least MDC distortion:

Dtot,m = ‖x − x̂0,m‖2
2 +

ρ

1 − ρ

[‖x − x̂1,m‖2
2 + ‖x − x̂2,m‖2

2

]
. (6.13)

Each GMM-MDSQTC description is composed of the index m′ of the “best” encoding
and the corresponding MDSQTC indices. Therefore, there is a slight loss of efficiency
(since the index m′ is transmitted twice) at the benefit of simple implementation.

Assuming balanced descriptions, let Rm be the number of bits allocated for each
side description of each Gaussian component and Rs =

∑M
m=1 2Rm be the total side

description rate of GMM-MDSQTC . A surprising result is that the optimal com-
ponent bit allocation for the GMM-MDSQTC quantizer is the same with that of a
GMM-based quantizer at a rate of Rs bits (provided by equation 3.21), as stated
in [151]. Therefore, similarly to the MDSQTC quantizer, the bit allocation of the
GMM-MDSQTC quantizer is optimized to minimize solely the side distortions inher-
iting the suboptimal behavior of MDSQTC at lower loss probabilities.

The MDSQ quantizer at bit rates lower than 2 bits/dimension fails to provide
balanced descriptions. This is a significant problem because for spectral envelopes
and harmonic phases most of the scalar MDSQ quantizers in a GMM-MDSQTC system
operate at low rates of 1-2 bits. A practical and efficient solution to this problem is
to flip the MDSQ indices (i, j) of the odd-indexed dimensions of x.

6.4 WGMM-based Multiple Description Coding of

Phase data

The construction of a scalar multiple description quantizer for circular Nw(0, σ2)
wrapped Gaussian random variables is not trivial due to the fact that the shape of
the wrapped pdf Nw(0, σ2) depends of the variance σ2. In practice, this means that
we need a different set of Nw(0, σ2) quantizers for each possible rate, variance and
loss probability. The number of codebooks needed for this solution is overwhelming.

In Section 4.5 we saw that it is possible to construct a quantizer for the phase data
using WGMM and circular scalar quantizers of Nw(0, σ2) random variables created
by wrapping a linear Gaussian codebook on the unit circle. This construction of
circular codebooks is not optimal and it does not minimize the WSE as the PCF-based
quantizers do (in Section 4.5.2) but it is fairly accurate for lower variances σ2 and in
practice it is only 2-5 bits worst than the PCF-based method, as it is demonstrated in
the experiments of Section 4.6. Therefore, it is possible to construct a scalar multiple
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description phase quantizer by wrapping the central and side description codebooks
of an MDSQ quantizer to the circumference of the unit circle.

The only difference of this scalar quantizer from the MDSQ quantizer is that
the encoder finds the pair of indices (i, j) of the first and the second description by
minimizing an appropriate version of the total distortion in (6.2). The wrapped total
distortion is of the form:

dw,tot(λ, λ̂
(0)
i,j , λ̂

(1)
i,j , λ̂

(2)
i,j ) = dw(λ, λ̂

(0)
i,j ) +

ρ

1 − ρ

(
dw(λ, λ̂

(1)
i,j ) + dw(λ, λ̂

(2)
i,j )

)
, (6.14)

where ρ is the packet loss probability, λ̂
(0)
i,j , λ̂

(1)
i,j and λ̂

(2)
i,j are the central/side description

MDSQ codepoints that correspond to the index pair (i, j), and dw(·, ·) is the wrapped
square error (WSE) function (equation (4.27)).

A phase vector �θ is quantized according to each of the M wrapped multivariate

Gaussian components of the WGMM. Let �̂θ
(0)
m , �̂θ

(1)
m and �̂θ

(2)
m the central description and

the two side description reconstructions associated with the m-th wrapped Gaussian
component of the WGMM. The WGMM-based phase quantizer selects the m′-th
wrapped Gaussian component that minimizes the vectorized form of the wrapped
total distortion:

d(�θ, �̂θ(0)
m , �̂θ(1)

m , �̂θ(2)
m ) =

K∑
k=1

dw,tot(�θ(k), �̂θ(0)
m (k), �̂θ(1)

m (k), �̂θ(2)
m (k)), (6.15)

where K is the number of dimensions and �θ(k), �̂θ
(0)
m (k), �̂θ

(1)
m (k), �̂θ

(2)
m (k) are the k-th

dimensions of the corresponding vectors. The index m′ of the selected wrapped
Gaussian component is transmitted together with the indices of the associated scalar
multiple description quantizers, as it is made in GMM-based MDC (Section 6.3).

The allocation of bits to the wrapped Gaussian components of the WGMM and
the scalar quantizers within each component is made using the bit-allocation method
for multiple description coding of GMM. This strategy is justified when the variances
of the WGMM are small (below 1.0) because in that case the interval (0, 2π] contains
most of the mass of the Gaussian pdf and the overlapping of the tiled Gaussian
components is low. A similar strategy was used in single description WGMM-based
quantization by the bit-allocation algorithm B at Section 4.5.

Figure 6.5 shows an evaluation of the proposed WGMM-based MDC algorithm
using the mean-root-wrapped-square-error criterion (MRWSE) that was introduced
in equation (4.38). The algorithm is evaluated for the quantization of the first 21-24
dispersion phases of pitch classes Q1 to Q4, as they were introduced in Table 4.2, Sec-
tion 4.6. The dispersion phases were modeled with the corresponding low-frequency
WGMM that was trained according to Section 4.6 and the same test-set was used.
The central and side distortions of the WGMM-based MDC quantizers are plotted
against the packet loss probability ρ, for a range of values ranging from 0 to 0.5. The
distortion is associated with the rate using four horizontal lines which correspond
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(b) Pitch Class Q2 (95-115 Hz)
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(c) Pitch Class Q3 (115-142 Hz)
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Figure 6.5 WGMM-based MDC examples. Central and Side Distortions
(MRWSE) for several loss probabilities.
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to the distortion levels achieved by a single description WGMM-based quantizer at
rates of 30, 40, 50 and 60 bits. The single description WGMM-based quantizer uses
wrapped codebooks and the bit allocation algorithm B (Section 4.5). The dispersion
phases were encoded with 45 bits/description. We can observe that at the highest
correlation point (ρ = 0.5), each side description provides distortion below the 40-bit
level, while the central description operates at a little higher than the 60-bit level.
Therefore, we can expect a high-quality reconstruction when both descriptions are
available and a lower quality reconstruction when only one description is available.

6.5 Erasure Channel Decoding for GMM-MDSQTC

quantizers

The redundancy that is introduced between the two descriptions in GMM-MDSQTC

can be used to combat bit-errors that may have occurred during the transmission. Let
the data vector x ∈ R

P be GMM-MDSQTC-encoded with Rs bits per description and
assume that each description is error protected with a channel code that can correct
ecor bits and detect edet bit-errors. Let e1, e2 be the number of bit-errors that are
detected but not corrected by the channel coder for description 1 and 2, respectively.
The channel decoder outputs a set of candidate indices U1, U2 with 2e1 , 2e2 elements
for the corresponding description.

The case where both descriptions contain bit-errors is similar to the case where
we have a single description with 2Rs bits and e1 +e2 bit-errors. The set of candidate
indices then is the product set U = (U1 × U2)\X , where X is the set of “non-valid”
indices: the pairs (I1, I2) that do not correspond to a codevector due to the fact that
the index assignment matrix is sparse or that they do not refer to the same Gaussian
component of the GMM. A solution to this problem is provided in [88] (chapter 6)
where correlated information from past speech frames is used to average the candidate
codevectors.

This section presents a novel decoding method for the case where only one descrip-
tion contains bit-errors. In this case, the correlations between the received descrip-
tions can be used to significantly reduce the average distortion of the reconstruction.
Assume that the second description contains e1 uncorrected bit-errors while the first
is received correctly. Initially, the problem will be addressed for MDSQ and then
the solution will be extended to GMM-MDSQTC . Finally, the proposed method is
experimentally evaluated using RCC cepstral coefficients.

6.5.1 MDSQ Case

The optimal decoding of an MDSQ system for a squared error distortion measure
when one description is lost is given by equations (6.5),(6.6). These reconstructions
are based on the pdf p(λ) of the data λ. The conditional probability of the data when
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the first description is received, is:

p(λ|i) =
p(λ)∑

j∈I
(2)
j (i)

∫
Q

(0)
i,j

p(λ)dλ
1(λ ∈ Q

(1)
i ), (6.16)

where 1(·) is the characteristic function. The corresponding reconstruction is:

λ̂
(1)
i =

∑
j∈I

(2)
j (i)

∫
Q

(0)
i,j

λp(λ|i)dλ. (6.17)

Note that the integration in this case is made over all central quantization cells with
indices (i, j) = (i, I

(2)
j (i)), where i is the index from description 1 which is received and

Ij(i) is the set of valid indices from description 2, according to the index assignment

matrix (see Section 6.2). However, the set I
(2)
j (i) of description 2 indices corresponds

to the case where description 1 is totally lost. In the case of a few bit-errors, a
much smaller set of candidate indices U2 can be obtained from the channel decoder.
Thus, the expectation can be made over a disjoint quantization cell with much smaller
diameter, resulting to a better reconstruction. The optimal MSE reconstruction is:

λ̃
(1)
i =

∑
j∈U2

⎛
⎝

∫
Q

(0)
i,j

λp(λ)dλ∑
j′∈U2

∫
Q

(0)

i,j′
p(λ)dλ

⎞
⎠ . (6.18)

This formula is amenable to analytic computation for the Gaussian case but it is
computationally expensive. A fast approximation can be obtained under the “high-
rate” assumption that p(λ) is constant within each central quantization cell Q

(0)
i,j . The

resulting fast reconstruction formula is:

λ̃
(1)
i ≈

∑
j∈U2

(
p(λ̂

(0)
i,j )Si,j∑

j′∈U2
p(λ̂

(0)
i,j )Si,j

)
λ̂

(0)
i,j , (6.19)

where Si,j is the length of the quantization cell Q
(0)
i,j which can be precomputed and

stored off-line.
An example is provided in Figure 6.6. The second description is received with

bit-errors. The first description i states that the integration should be made over the
quantization cells Q

(0)
i,j with indices j = {6, 8, 10, 13, 16} as shown at the 3-rd column

of the index assignment matrix (Figure 6.6a). The second description states that
the candidate indices are only j = {6, 8}. Therefore the integration is made using

the quantization cells Q
(0)
3,6 and Q

(0)
3,8. The side decoder reconstruction λ̂

(1)
i and the

reconstruction λ̃
(1)
i made by the proposed method are depicted in Figure 6.6b. Note

that λ̃
(1)
i is closer to both candidate central description reconstructions (stars).
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(a) index assignment table

(1)

3
ˆ

(1)

3Q

(1)

3

(b) central and side description
quantization cells

Figure 6.6 An example of MDSQ decoding when description 2 contains
bit-errors. Sub-figure (a) shows the central description codebook C0, the two
side description codebooks C1, C2 and the index assignment matrix. The two
candidate quantization cells are highlighted. Sub-figure (b) shows the source

pdf, the side decoder reconstruction λ̂
(1)
i and the proposed reconstruction

λ̃
(1)
i . The central description reconstructions are indicated with the stars.

6.5.2 GMM-MDSQTC Case

The extension to the GMM-MDSQTC quantizer is relatively straightforward. Assume
that description 1 (index I1) is received without bit-errors, while description 2 contains
bit-errors. The channel decoder provides a set of L candidate indices U2 = {I2,l : l ∈
1, · · · , L} for the second description. The indices I1, I2,l are decomposed to the
following set of component and scalar quantization indices:

I1 = {m′, i1, i2, · · · , iP}, (6.20)

I2,l = {ml, j1,l, j2,l, · · · , jP,l}, l = 1, · · · , L (6.21)

where P is the number of dimensions. Only a subset of the candidate indices U2 are
valid, in the sense that the pair (I1, I2,l) can be produced from the encoder. Let U ′

2

be the set of valid candidate indices :

U ′
2 = {I2,l : ml = m′ & (ip, jp,l) is valid ∀p ∈ {1, · · · , P}}, (6.22)

where a pair of indices (ip, jp,l) is considered to be valid if the index assignment matrix
maps it to a central codebook entry. Note that the component index m′ is transmitted
twice, one in each description, therefore every valid candidate index must have the
same component index. For convenience, let us renumber the elements in U ′

2 so that
U ′

2 = {I2,l, l = 1, · · · , L′}, where L′ is the size of the set U ′
2.
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Following the nomenclature of Chapter 3, let x′
m′ = [x′

m′,1, x
′
m′,2, · · · , x′

m′,P ]T be
the P uncorrelated variables that are encoded with the m′-th MDSQTC quantizer, and
σ2

m′,1, σ2
m′,2, . . . , σ2

m′,P be the corresponding variances. Let rm′,p be the number of
bits allocated to each of the x′

m′,p, p = 1, ..., P . A set of pre-trained MDSQ codebooks
for the N(0, 1) Gaussian is obtained using the methods discussed in Section 6.1: one
pack of MDSQ codebooks (central and side codebooks) for each loss probability ρ
and each rate rp. The GMM-MDSQTC encoder/decoder operates with the subset
of MDSQ codebooks that corresponds to the loss probability of the network. Let
λ̂

(0)
i,j (r) be the (i, j)-th entry of the central description codebook trained for N(0, 1)

variables at a side description rate of r bits, and Si,j(r) the length of the corresponding
quantization cell. Let y(l), l = 1, ..., L′ be the valid candidate codevectors :

y(l) =

⎡
⎢⎢⎢⎢⎣

σm′,1λ̂
(0)
i1,j1,l′

(rm′,1)

σm′,2λ̂
(0)
i2,j2,l′

(rm′,2)
...

σm′,P λ̂
(0)
iP ,jP,l′

(rm′,P )

⎤
⎥⎥⎥⎥⎦ . (6.23)

Let Q(l) be the P -dimensional quantization cell associated with codevector y(l):

Q(l) = Qi1,j1,l
× Qi2,j2,l

× · · · × QiP ,jP,l
, (6.24)

where Qip,jp,l
is the (scalar) central description quantization cell associated with the

codepoint σpλ̂
(0)
ip,jp,l

(rm′,1). The cell Qip,jp,l
is an interval of length Sip,jp,l

(rm′,p)σp. The

optimal MSE (Mean Square Error) reconstruction is given by the following formula:

x̃′
1,m′ =

L′∑
l=1

⎛
⎜⎜⎜⎜⎝

∫
x∈Q(l)

xp(x)dx

L′∑
l′=1

∫
x∈Q(l′)

xp(x)dx

⎞
⎟⎟⎟⎟⎠, (6.25)

where p(x) is the pdf of x. A computationally attractive high-rate approximation can
be made if we assume that p(x) is approximately constant inside each quantization
cell Q(l). The resulting reconstruction formula is:

x̃′
1,m′ =

L′∑
l=1

⎛
⎜⎜⎜⎝

P∏
p=1

p(λ̂
(0)
ip,jp,l

(rp))Sip,jp,l
σm′,p

L′∑
l′=1

P∏
p=1

p(λ̂
(0)
ip,jp,l′

(rp))Sip,jp,l′σm′,p

⎞
⎟⎟⎟⎠y(l), (6.26)

where p(λ) is the N(0, 1) pdf.
The decoded GMM-MDSQTC reconstruction can be obtained by rotating and

translating x̃′
1,m′ according to the statistics of the m′-th Gaussian component of the

GMM (see equation 3.17):

x̃1 = µm′ + Vx,m′x̃′
1,m′ . (6.27)
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Complexity Issues

The reconstruction formula (6.26) has a complexity that increases linearly with L′,
but the number L′ of valid candidate codevectors increases rapidly with the number of
detected but uncorrected bit-errors. Assume that each description is quantized with
30 bits, and that the channel code only detects bit-errors. The number of candidate

codevectors when there are K bit-errors is L =

(
30
K

)
. For K = 1 ⇒ L = 30, for

K = 2 ⇒ L = 30 ∗ 29 = 870, while for K = 3 ⇒ L = 30 ∗ 29 ∗ 28 = 24360. The
number of valid candidate codevectors is smaller that L: L′ ≤ L, but the complexity
remains overwhelming for more than 2 bit-errors because all candidate codevectors
should be checked for validity.

6.5.3 Results

An evaluation is made using 20-dimensional RCC cepstral coefficients derived from
20 ms speech frames. The training-set was the same one used in Section 3.3, while
the test-set consisted of 10.000 samples. The RCC source was encoded with 60 bits
using two balanced 30 bit descriptions. The source was encoded and decoded using
the central decoder (distortion D0) and the two side decoders 1 and 2 (distortions D1

and D2, respectively). A number of 1, 2 bit-errors was introduced to description 2
and the proposed decoder was evaluated using the measured distortions Dber,1, Dber,2,
respectively. The candidate indices for each vector were computed by introducing
1-2 random bit-errors to the 30 bit description and changing every possible set of

two bits; a total of

(
30
1

)
= 30 candidates for the 1 bit error case and a total of(

30
2

)
= 30 ∗ 29 = 870 candidates for the 2 bit error case. The evaluation is made

with the MSE (Mean Square Error) criterion using the raw RCC parameters.
The results are depicted in Figure 6.7. The distortions were evaluated for several

loss probabilities ρ ranging from 0 to 0.5. At ρ = 0, the central distortion D0 is
very low but the side distortions D1, D2 are very high. As the loss probability
increases, the side distortions become lower at the cost of a higher central distortion.
From ρ = 0.2 and above, the central/side descriptions almost converge to the state
of highest correlation. At ρ = 0.5, the side distortions D1, D2 are equal to the
distortion provided by a GMM-based quantizer at a rate of 30 bits. Having both
descriptions provides a much better reconstruction. When the second description has
bit-errors, the distortion Dber,1 (or Dber,2) provided by the proposed method is much
lower than D1 which corresponds to a complete loss of description 2. At the higher
correlation point (ρ = 0.5) the proposed method almost corrects the single/double
bit errors, providing a reconstruction that is close to the one provided by the central
description. Furthermore, the benefits of the proposed method appear even from low
correlations (ρ ≥ 0.03).
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Figure 6.7 GMM-MDSQTC for an 20-dimensional RCC source of speech
spectral envelopes. Each description is encoded using 30 bits. D0,D1 and D2

correspond to the average distortions of the central and the two side descrip-
tions, respectively. Dber,1 and Dber,2 corresponds to the average distortion
when description 2 contains 1 and 2 bit-errors. The distortions are depicted
in dB scale.

A practical aspect of this work is that it makes possible to reallocate a portion
of the redundancy given for channel coding to the GMM-MDSQTC quantizer. For
example, the error correction capability of the channel coder could be reduced by 1,
allowing to reallocate the saved bits to the GMM-MDSQTC quantizer in order to pro-
vide a better reconstruction when there are no bit-errors. Furthermore, in a wireless
transmission setting, the two descriptions could be routed through different (inde-
pendent) channels in order to minimize the possibility of damaging both descriptions
of a single speech frame.
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Chapter 7

Multiple Description Transform
Coding

The complexity of the GMM-MDSQTC quantizer increases rapidly with the bit-rate
and the complexity of the channel. A set of precomputed MDSQ codebooks (one
central, two side codebooks, and an index assignment mapping) has to be stored for
each possible rate and each possible channel condition. In practice, GMM-MDSQTC is
effective only under several constraints: a rather simple channel model (for example,
two independent symmetric channels with equal loss probabilities), balanced descrip-
tions, and a source that does not require scalar MDSQ quantization at increased
rates. The latter constrain is more-or-less satisfied when the 20 RCC coefficients (or
the 12-24 coefficients of the harmonic phases) of a single frame are quantized with
GMM-MDSQTC but it is violated when the coefficients of more than one frame are
block quantized together. A solution to this problem is to further constrain the side
description MDSQ codebooks to be integer-sized [151], at the cost of performance
loss.

Another drawback of GMM-MDSQTC is related to the bit-allocation procedure of
MDSQTC . Both GMM-MDSQTC and MDSQTC are optimized solely for the side dis-
tortions (equiv. high loss probabilities). This poses a bound to the central distortion
of the MDSQTC quantizer as it is addressed in Section 6.2. The bound consequently
effects the behavior of GMM-MDSQTC at lower loss probabilities. Another approach
to the bit allocation problem (i.e., a greedy optimization) would require higher side
description rates for the MDSQ quantizers. Depending on the source, the latter may
considerable increase the complexity and the storage requirements of GMM-MDSQTC .

This chapter contributes to another type of multiple description quantizers, which
are inherently scalable to high bit-rates. In Multiple Description Transform Coding
(MDTC), the redundancy between the descriptions is introduced via a multiplication
with a correlating matrix. Currently, there are two choices for the construction of
the correlating matrix: a transform and a frame expansion. In [152], [147], [146],
the correlations are introduced in a pairwise manner via a transform matrix. The
optimal pairing of the encoded coefficients is discussed in [145]. However, as noted

101
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in [145] (pg. 2211), transform coding is better than MDSQ in lower redundancies
(equiv. loss probabilities) and MDSQ is better than transform coding in higher re-
dundancies. The suboptimal behavior of transform coding in higher redundancies is
partially corrected in [153] via the introduction of a layered coding approach which
actually corresponds to a frame expansion.

A different approach to transform coding is made when the correlating matrix is a
frame expansion [154], [148]. Quantization issues regarding frame expansions are dis-
cussed in [149], [150]. Frame expansions can also be used as source-channel codes that
feature a soft degradation compared to conventional block-channel codes [155]. The
construction and optimization (for given channel conditions) of the frame expansion
matrix F for MDTC is, in general, a complicated problem. In [154], frame expansions
are optimized by varying one coefficient at a time using numerical gradient descent
techniques. However, for increased dimensions this approach is prohibitively expen-
sive in terms of storage requirements and optimization complexity, while its effective-
ness is demonstrated for a limited number of dimensions. Furthermore, all reported
MDTC methods focus to entropy-constrained MDTC [146], [147], [148], [154], [145],
aiming mostly to audio, image and video coding applications which benefit from large
encoding buffers. Therefore, the analysis and the design of the presented MDTC
methods cannot be applied to resolution-constrained quantization. However, many
ideas from entropy-constrained MDTC can also be used in the case of our interest:
resolution-constrained MDTC.

This chapter proposes a novel resolution-constrained MDC scheme based on trans-
form coding. Section 7.1 presents a novel MDTC quantizer for multivariate Gaussian
sources. The quantizer is based on a special class of tight frame expansions called
Parseval frames. The Parseval frames are constructed in a systematic manner with
a predefined number of degrees of freedom. Two special cases are then studied,
MDTC with 1 and MDTC with P degrees of freedom (where P is the number of
dimensions). For these cases, we propose a novel optimal consistent reconstruction
algorithm for the central quantizer. Section 7.2 extents the proposed MDTC quantizer
to sources that can be modeled with a GMM. The quantizers are evaluated and com-
pared to MDSQTC and GMM-MDSQTC . The proposed quantizers feature very low
complexity and storage requirements, rate scalability, excellent performance at lower
redundancies and competitive performance at higher redundancies. In combination
with GMM-MDSQTC they provide a practical resolution-constrained MDC system
with very good performance and low computational overhead at the whole range
of central/side distortion tradeoffs. Finally, Section 7.3 identifies a sub-optimality
in MDTC and proposes a modification to the MDTC encoding procedure that im-
proves the central distortion in higher redundancies. In the new algorithm, the two
Gaussian encoders cooperate in order to minimize a distortion criterion that takes
into account the central decoder. As illustrated by example, the proposed quantizer
provides much better central/side description tradeoff points. This idea can also be
extended to entropy-constrained multiple description transform coders.
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7.1 Multiple Description Transform Coding of Mul-

tivariate Gaussian Sources

In this section, we propose a framework for resolution-constrained MDTC that uses
Parseval frame expansions with a predefined number of degrees of freedom. The
proposed algorithm optimizes MDTC for given network conditions and requires min-
imal memory and computational resources for optimization, encoding and decoding.
Section 7.1.1 presents the necessary background knowledge and defines the notion of
optimal consistent reconstruction. Section 7.1.2 provides an overview of the proposed
MDTC system and the methodology of Parseval frame construction. In Section 7.1.3
we focus on two computationally tractable cases; expansions with one and expan-
sions with P degrees of freedom where P is the number of the Gaussians. An optimal
consistent reconstruction algorithm for these cases is given in Section 7.1.4. The pro-
posed MDTC schemes are tested in two experiments shown in Section 7.1.5: MDTC
for a simple symmetric channel with equal loss probabilities, and hierarchical coding.
Furthermore, a comparison is made between the proposed methods and MDSQTC .
We experimentally show that a combined MDTC and MDSQTC system achieves a
wide range of admissible central/side distortion tradeoffs while having low complex-
ity and storage requirements. Section 7.1.6 discusses the significance of this work in
comparison to related work and proposes possible improvements.

7.1.1 Frames and Frame Expansions

Frames can be seen as a generalization of linear transforms. Let x be a random vector
in �P and F ∈ �D×P . The rows of F form a frame iff the frame condition holds:

AxT x ≤ xT F T Fx ≤ BxT x, ∀x ∈ �P . (7.1)

The lower bound in (7.1) states that F spans �P , therefore, if (7.1) holds then D ≥ P .
The constants A and B are equal to the minimum and maximum eigenvalues of F T F ,
respectively. A frame F is called tight frame when A = B. When A = B = 1, the
frame is called 1-tight or Parseval.

Now assume that we use a quantizer Qy(·) to encode y = Fx: ŷ = Qy(y), and that
we recover a decoded value x̂ from ŷ using a matrix operation x̂ = F#ŷ. The matrix
that minimizes the mean square error E{‖x−x̂‖2

2} is given by the pseudoinverse of F :
F# = (F T F )−1F T . This MMSE solution is also referred to as MMSE Reconstruction
and corresponds to the projection of ŷ onto the column space of F . A very useful
property is that for a Parseval frame, the pseudoinverse of F is its transpose F# = F T .

A schematic display of the quantization process in frame expansions and MMSE
reconstruction can be found in Figure 7.1. Let Sx = F (�P ) be the image of F (column
space of F ) in Sy = �D. The initial vector x is mapped to y = Fx, y ∈ Sx. Then
y is encoded to ŷ which is the representative of the cell V (y) = V (Fx) ∈ �D of x.
The MMSE reconstruction is x̂ = F#ŷ and it corresponds to the point y = Fx̂ ∈ Sx.
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Figure 7.1 Examples of consistent and inconsistent MMSE reconstructions
in frame expansions.

Depending on the geometry of the quantization cell, the reconstruction point ȳ may
not be in the same cell as y. A mapping that assures that y and ȳ belong to the same
cell is called Consistent Reconstruction [149]:

Definition 1 Let x̂ be the reconstruction of x. The reconstruction x̂ is called consis-
tent reconstruction iff Qy(Fx) = Qy(Fx̂).

The property of consistency does not take into account the statistics of y = Fx
inside the quantization cell V (Fx). Let G(x) = {a ∈ �P : Qy(Fa) = Qy(Fx)} be the
set of points mapped onto the image of F inside the quantization cell V (Fx). Let
p(x) be the pdf of x in �P . The pdf of x′ ∈ G(x) is:

g(x′) =
p(x′)∫

G(x)

p(a)da
, x′ ∈ G(x), (7.2)

Now we can provide a formal definition of the Optimal Consistent Reconstruction:

Definition 2 Optimal Consistent Reconstruction (OCR) under a distortion measure
d(·, ·) is the consistent reconstruction x̂ that minimizes the mean reconstruction error
Eg(x′){d(x′, x̂)}, x′ ∈ G(x), ∀x ∈ �P .

According to this definition, OCR is the optimal mean square error reconstruction
according to the statistics of each cell V (Fx), for all cells {V (Fx) : ∀x ∈ �P}.
Therefore, OCR is optimal with respect to the specific quantizer, while the MMSE
reconstruction provided by the pseudoinverse is optimal according to a more generic
but not so accurate quantizer model. The fine grained optimality of OCR is not
without cost; for each cell, the expectation is taken over G(x) (the image of F that lies
inside the cell V (Fx)). The complexity required for this expectation increases rapidly
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with the complexity of the shape of V (Fx) and the number of dimensions P . However,
fast solutions can be found for some cases, as will be reported in Section 7.1.4. OCR
is mentioned in [150] (as “optimal reconstruction”) but no formal definition is given
and no solution is provided due to the complexity of the generic case.

It can be shown that for a squared error distortion measure the OCR is given by
the equation:

x̂ =

∫
G(x)

ag(a)da. (7.3)

7.1.2 MDTC using Parseval Frame Expansions

In this section we will present an overview of the proposed MDTC framework, the
operation of the encoder, the side decoders and the central decoder. The construc-
tion of Parseval frames is presented, and a discussion regarding time and memory
complexity is following.

Overview

At the sender, the zero-mean Gaussian random vector x ∈ �P is transformed into
two correlated vectors y1 = F1x, y2 = F2x, such that F1, F2 form a Parseval frame
F = [F T

1 F T
2 ]T . Since the rows of F are not restricted to be of unit norm, the frame

bound does not indicate the redundancy. This unconventional choice of F is moti-
vated by the resulting simplicity of the construction procedure. The vectors y1, y2

follow a multivariate Gaussian distribution and the encoding is made with a series of
scalar quantizers using typical transform coding techniques (see Section 3.1.2) at rates
R1, R2, respectively. Consequently, the corresponding indices I1, I2 are transmitted
through the network. Let R = R1 + R2 be the total rate of the MDTC system.

At the receiver, the indices I1, I2 are decoded back to the correlated descriptions
ŷ1, ŷ2. Then, according to the losses that occurred in the network the descriptions
are fed to the appropriate decoder; the central decoder when both descriptions are
received, side decoder 1 when only description 1 is received, etc. The output of the
central decoder and the side decoders 1 and 2 is denoted by x̂0, x̂1, x̂2, respectively.
The MDTC process is schematically presented in Figure 7.2.

Let D0 = E{‖ x − x̂0 ‖2
2} be the distortion from the central decoder, D1 = E{‖

x − x̂1 ‖2
2} and D2 = E{‖ x − x̂2 ‖2

2} be the distortions from the side decoders 1 and
2 respectively. If we assume that each description is routed through an independent
channel and that channels 1 and 2 have loss probabilities ρ1 and ρ2, respectively, then
the total distortion is:

Dtot = (1 − ρ1)(1 − ρ2)D0 + ρ2(1 − ρ1)D1+
+ρ1(1 − ρ2)D2 + ρ1ρ2D3,

(7.4)

where D3 =
P∑

i=1

σ2
i is the distortion when both descriptions are lost.
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Figure 7.2 A schematic display of the proposed MDTC scheme.

Central Decoder

The central decoder receives both descriptions ŷ1, ŷ2, therefore it has the full quan-
tized expansion ŷ = [ŷT

1 ŷT
2 ]T . The MMSE reconstruction can be computed using the

pseudoinverse F# = F T :

x̂0 =
[

F T
1 F T

2

] [ ŷ1

ŷ2

]
= F T

1 ŷ1 + F T
2 ŷ2. (7.5)

Better reconstructions can also be achieved, as it is shown in Section 7.1.4.

Side Decoders

When only one description is received, the lost description is estimated from the re-
ceived description using the correlations introduced via the frame expansion. Note
that depending on F , y1 and y2 have at most P non-zero dimensions, therefore they
are potentially incomplete descriptions. Assume that description ŷ2 is lost. The quan-
tization cell defined by received description ŷ1 may be unbounded in some directions
and then no inverse transform can provide a reconstruction. Therefore, in order to
have a reconstruction we must make an estimation. In Appendix B.1 we show that
the optimal MSE reconstruction x̂1 is provided by:

x̂1 = (F T
1 + F T

2 Σy2y1Σ
−1
y1y1

)ŷ1, (7.6)

where Σy2y1 is the cross-covariance matrix between y2 and y1, Σy1y1 is the covariance
matrix of y1, while both y1, y2 have zero means. The formula for the side decoder 2
is similar:

x̂2 = (F T
2 + F T

1 Σy1y2Σ
−1
y2y2

)ŷ2, (7.7)

where Σy1y2 = ΣT
y2y1

, and Σy2y2 is the covariance matrix of y2.
The covariance matrices can be computed using the frame expansion F to derive
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the covariance matrix Σyy of y:

Σyy = FΣxxF
T =

[
F1

F2

]
Σxx

[
F T

1 F T
2

]T
=

=

[
F1ΣxxF

T
1 F1ΣxxF

T
2

F2ΣxxF
T
1 F2ΣxxF

T
2

]
=

[
Σy1y1 Σy1y2

Σy1y2 Σy2y2

]
.

(7.8)

Note that the inversion of Σy1y1 (resp. Σy2y2) is not possible when F1 (resp. F2)
has rows/columns which are zero or are linearly dependent. The constraints can be
satisfied by an appropriate construction of frame F . Such a construction is proposed
in Section 7.1.3, where F1 and F2 are diagonal matrices.

7.1.3 MDTC with P degrees of freedom

This section describes a MDTC system with P degrees of freedom (DOF) �φ = {φi :
i = 1, ..., P}. The main idea is to introduce the correlations in a scalar manner; i.e.,
component x(1) is correlated with only one component y1(1) in the first description
and one component y2(1) in the second description. The advantages of this system is
that it has low complexity, limited storage requirements (only P degrees of freedom
per channel condition), and that it simplifies the matrix inversions of Σy1y1 and Σy2y2 .

For fixed source statistics Σxx, the total distortion Dtot in equation (7.4) is a
function of the channel loss probabilities ρ1 and ρ2, the frame expansion parameters
�φ and the description rates R1 and R2. It is convenient for practical purposes to have
fixed rate descriptions R1 and R2. However, the determination of R1 and R2 is not
a trivial task. An optimal set of rates R1 and R2 can found by minimizing Dtot for
specific values of ρ1, ρ2 and �φ. An MDC system should behave like a conventional
coding system when there are no packet losses (ρ1 = ρ2 = 0). In that case, no
correlations are needed between the two descriptions. The proposed MDTC system
can be calibrated to have �φ = 0 when there are no correlations between y1 and y2.
The description rates R1 and R2 can then be allocated according to this operating
point.

The section presents the construction of frame expansion F with P degrees of
freedom, discusses the determination of the description rates R1 and R2 for the no-
losses operating point and describes an algorithm that provides descriptions with
predefined rates R̃1 ≈ R1 and R̃2 ≈ R2. The construction of frame expansion F with
a single degree of freedom is then introduced and its training is presented.

Frame Expansion with P degrees of freedom

Let x̆1 ∈ �P1 and x̆2 ∈ �P2 be sub-vectors of x = [x̆T
1 x̆T

2 ]T with P1 + P2 = P . We

construct F (�φ) ∈ �2P×P as the concatenation of two diagonal matrices F1(�φ) ∈ �P×P ,

F2(�φ) ∈ �P×P so that F (�φ) = [ F T
1 (�φ) F T

2 (�φ) ]T . F1(�φ) and F2(�φ) are generated
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according to the formulas:

F1(�φ) = diag

(
cos(φi)︸ ︷︷ ︸

i={1,...,P1}

, sin(φi)︸ ︷︷ ︸
i={P1+1,...,P}

)
, (7.9)

and

F2(�φ) = diag

( − sin(φi)︸ ︷︷ ︸
i={1,...,P1}

, cos(φi)︸ ︷︷ ︸
i={P1+1,...,P}

)
. (7.10)

It can easily be verified that F is a Parseval frame: F T F = I. Due to the symmetries
of cos(·) and sin(·) it makes sense to restrict φi in [0, π/4]. As φi ∈ [0, π/4] increases,
so do the correlations between the two components y1(i) and y2(i).

For this frame, the side decoder estimation matrices are greatly simplified:

F T
1 + F T

2 Σy2y1Σ
−1
y1y1

= F1 + F 2
2 F−1

1 = (F 2
1 + F 2

2 )F−1
1 = F−1

1 (7.11)

F T
2 + F T

1 Σy1y2Σ
−1
y2y2

= F2 + F 2
1 F−1

2 = (F 2
1 + F 2

2 )F−1
2 = F−1

2 . (7.12)

Which proves that the estimation matrices reverse the transform operations y1 = F1x
and y2 = F2x, respectively. The case where F1 or F2 has a zero on its diagonal is
treated by inserting a zero to the corresponding dimension of x.

Intuitively, what F1 does is to primarily preserve the information regarding x̆1 and
secondarily insert a backup copy of the information regarding x̆2 at the expense of a
higher distortion for x̆1. For example, when �φ = 0, then F1 = diag(1, ..., 1, 0, ..., 0)
and F2 = diag(0, ..., 0, 1, ..., 1). Therefore, y1 holds x̆1 and y2 holds x̆2: y1 = F1x =
[x̆T

1 0, ..., 0]T and y2 = F2x = [0, ..., 0 x̆T
2 ]T . Encoding y1 in this case is the same

as encoding x̆1. When �φ = π/4, F1 = diag(
√

2/2, ...,
√

2/2,
√

2/2, ...,
√

2/2) and
F2 = diag(−√

2/2, ...,−√
2/2,

√
2/2, ...,

√
2/2). In this case both descriptions are

equivalent since both y1 and y2 hold the same information regarding x. Intermediate
values of φi introduce intermediate correlations.

Description Rate Allocation

When there are no correlations, the optimal MDTC system should operate like a
conventional transform coding system. The proposed MDTC system can be designed
to satisfy this requirement if we set R1 =

∑
i=1,...,P1

ri and R2 =
∑

i=P1+1,...,P

ri, where

ri are the rates of x(i) for i = 1, . . . , P . The rates ri can be computed using the
standard bit allocation algorithm for transform coding (see Section 3.1.2). It is a
simple exercise to show that the two independent Gaussian encoders in Figure 7.2
will allocate the same rate ri to the corresponding variable x(i) they receive when
�φ = 0. Therefore, we expect excellent performance at zero loss rate.

Splitting x into two sub-vectors

It is sometimes convenient for practical purposes to predefine the desirable rates of
the descriptions 1 and 2 to be R̃1 and R̃2, respectively. In that case, a “splitting”
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algorithm is needed to distribute the variables x(i) in two sub-vectors x̆1 and x̆2 so
that R̃1 ≈ R1 and R̃2 ≈ R2.

Let ri be the number of bits allocated to the scalar component x(i) by the bit
allocation algorithm, and R̃1, R̃2 the desirable rates allocated to the first description
and the second description respectively. The following algorithm splits x into two
sets x̆1 ∈ �P1 and x̆2 ∈ �P2 , P1 + P2 = P :

a. Initialize Ia = {1, ..., P1}, Ib = {P1 + 1, ..., P} as the sets of indices of the
variables x(i) that compose x̆1 = {x(i) : i ∈ Ia} and x̆2 = {x(i) : i ∈ Ib}.

b. Let ri be the rates of x(i).

c. Set R1 =
∑
i∈I1

ri, R2 =
∑
i∈I2

ri, dR = |R̃1 − R1| + |R̃2 − R2|

d. While dR > 0.25 bits, swap every possible combination of two variables between
the sets Ia and Ib and update Ia, Ib for the swaps that reduce dR. Break, if no
swap reduces dR.

e. If dR > 0.25 bits, transfer one variable from the description with the higher
rate to the description with the lower rate. Choose the variable with the lowest
ri inside the description with the higher rate.

f. Repeat steps (d), (e) until dR ≤ 0.25 or a predefined number of iterations is
reached.

Note that P1 and P2 are the number of variables in Ia and Ib respectively.

Frame Expansion with a single degree of freedom

The degrees of freedom for the construction of F can be further reduced to one, if we
constrain all φi to take the same value φi = φ, i = {1, ..., P}. This is very tempting in
terms of complexity and memory requirements. Also, we found that having a single
DOF is as effective as having P DOF, for the typical MDC case of having equal rate
descriptions and a simple network model of two symmetric independent channels with
independent losses according to equal loss probabilities ρ1 = ρ2 = ρloss. This result
reflects the symmetry of the network and the fact that the descriptions are balanced.

Training

The total distortion Dtot is optimized by performing a series of scalar optimization
steps, varying one φi at a time. The fact that this is a scalar minimization over
a fixed interval makes feasible a data-driven minimization of the distortion: Given
the packet loss probabilities ρ1, ρ2, random samples of x are encoded and decoded
using the proposed MDTC for N=4096 uniformly distributed values of φi ∈ [0, π/4],
and the φi that minimizes the total distortion (7.4) is found. The encoder and the
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Figure 7.3 An example of Optimal Consistent Reconstruction. The normal
samples are distributed on a line with angle φ to the u-axis. The integration
is performed over the line segment (P2, P3) that lies inside the rectangular
cell.

decoder share a small lookup table that stores one vector of parameter(s) �φ per network
condition, for a predefined set of network conditions.

7.1.4 Optimal Consistent Reconstruction

In this section we will describe a method to have Optimal Consistent Reconstruction
(OCR) for the MDTC scheme presented in Section 7.1.3. The method is based on
the fact that the latter introduces the correlations in a scalar manner. Therefore
the reconstruction of x̂o when both descriptions are received can be expressed as a
series of independent reconstructions; one for each set of correlated components. For
example, ŷ1(i) and ŷ2(i) will be combined to reconstruct x̂0(i). This greatly simplifies
the geometry of the quantization cells and allows an efficient solution of the optimal
consistent reconstruction problem.

Let u be a scalar component of one description and υ be the corresponding com-
ponent of the other description. The image of F in the two dimensional plane is then
a line of the form u = αυ, α = ±1/ tan(φ), where φ is the rotation introduced by F .

The intersection of the line u = αυ with the rectangular quantization cell is
depicted in Figure 7.3. The line intersects the cell boundary. At least two of these
intersections are inside the quantization cell. Let P2 and P3 be these intersections, as
shown in Figure 7.3. A consistent reconstruction would then lie on the line segment
(P2, P3). Let the coordinates of P2 and P3 with respect to the line be η2 and η3

respectively. Without loss of generality we can assume that η2 < η3.
The optimal consistent reconstruction is a point η̂ ∈ (η2, η3). This point can eas-
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Figure 7.4 The benefit from using OCR reconstruction over MMSE recon-
struction, in dB.

ily be found if we assume that the data in u = αυ follow the Gaussian distribution
N(0, 1). In that case, according to equation (7.3) the optimal consistent reconstruc-
tion η̂ for a squared error distortion measure is given by the formula:

η̂ =
(2π)−0.5

Fg(η3) − Fg(η2)

(
e−0.5η2

2 − e−0.5η2
3

)
, (7.13)

where Fg(·) is the Gaussian cumulative density function.
An experiment was conducted to measure the benefit from using optimal consis-

tent reconstruction when both descriptions are available. A large number (50.000)
of eight dimensional Gaussian vectors x ∼ N(0, I8) were generated, encoded and de-
coded at R=4 bits/component with MMSE reconstruction and OCR reconstruction,
using the MDTC scheme with a single DOF. The distortion DMMSE of the MMSE
reconstruction and the distortion DOCR of the OCR reconstruction were measured in
dB, and their difference is plotted in Figure 7.4 for several angles φ ∈ [0, π/4]. As
expected, the gain DMMSE −DOCR depends on the angle φ. Note that φ controls the
bit assignment that affects the shape of the quantization cells. This explains the non-
smooth evolution of the gain DMMSE −DOCR. The gain is significant in intermediate
angles while the computational overhead is relatively low.
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7.1.5 Results

Experiments were performed to measure the effectiveness of the proposed MDTC sche-
me. Two different network scenarios were tested: The first is the Simple Symmetric
Channel scenario which refers to the case where the two descriptions are rooted
through independent channels with independent losses according to the same loss
probability ρloss = ρ1 = ρ2. The second is the Hierarchical Coding scenario, where
description 1 always arrives (ρ1 = 0) and description 2 may be lost with probability
ρloss = ρ2. We refer to this scenario as “hierarchical coding” because it can be seen
as a formulation of the hierarchical coding problem within the MDC context.

The experiments were conducted using 50.000 random samples. For the data-
driven minimization we used 10.000 samples. Optimal consistent reconstruction was
used in the first scenario, while the second scenario was examined using MMSE re-
construction. All distortions in this section are presented in decibel for visualization
purposes.

Simple Symmetric Channel

In this experiment we used the proposed MDTC with a single degree of freedom as
stated in section 7.1.3. The optimized MDTC is compared to three different coding
schemes:

• The single packet scheme that refers to typical single description scalar quanti-
zation of the Gaussian components with R bits.

• The double packet scheme, which is actually a repetition code of a half rate R/2
scalar encoding of the Gaussian components.

• The MDSQTC scheme presented in Section 6.2.

When there are no losses (ρloss = 0), an optimal MDTC (or MDC) scheme is expected
to behave like single description coding. Under severe losses (ρloss = 0.5) the optimal
MDTC (or MDC) should operate better than a repetition scheme. Therefore the first
two schemes indicate the performance boundaries for both MDTC and MDSQTC .

The third scheme uses the method provided by Vaishampayan [74] to train a
scalar MDSQ encoder for the N(0, 1) case. The MDSQ codebooks were trained using
methods from [74] and [140] and validated according to the theoretical central/side
distortion tradeoffs provided in [135].

The experiment is conducted using a multivariate Gaussian taken from a GMM
(Gaussian Mixture Model) trained with 10-dimensional Line Spectrum Frequencies
(LSF) spectral envelopes of narrowband 0-4 kHz speech. The variances of the encoded
components correspond to the eigenvalues of the covariance matrix of the multivariate
Gaussian. The results are depicted in Figures 7.5, 7.6 and 7.7. Figure 7.5 shows the
total distortion for all the examined schemes. As expected, MDTC outperforms the
single packet and the double packet schemes. In contrast, MDSQTC is worse than
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Figure 7.5 A comparison between the total distortions provided by the
single packet scheme, the double packet scheme, MDTC with a single DOF
(MDTC) and MDSQTC , for the LSF source.

the single packet scheme at packet loss probabilities near ρ = 0. According to the
discussion in Section 6.2, this can be attributed to the fact that the variances of the
components differ enough to provide a penalty of 2 dB to the central distortion at
ρ = 0. However, at higher loss probabilities, the MDSQTC scheme outperforms the
MDTC scheme. Further insight about the behavior of the central and side descriptions
is provided in Figure 7.6 where the central distortion and the side distortions for
MDTC and MDSQTC are depicted for a range of packet loss probabilities.

Figure 7.7 provides a better understanding of the behavior of the two schemes by
showing the central distortion and side distortion tradeoffs. The dashed line corre-
sponds to the optimal distortion tradeoff of a MDSQTC scheme [141], the dashed-
dotted line corresponds to the best central distortion achievable by MDSQTC and the
dotted line to the best central distortion achievable by MDTC. The latter two bounds
show the distortion penalty of 2 dB for MDSQTC . Furthermore, we can clearly see
that the bound restricts the distortion tradeoffs for MDSQTC to be away from the
optimal theoretical behavior of the MDSQTC (achieved only when the variances of
the components are equal). However, at intermediate and higher loss probabilities,
MDSQTC benefits from the increased number of the degrees of freedom and outper-
forms MDTC, progressively, up to 1 dB.

From a practical point of view, the two schemes are actually not competitive but
complementary; a combination of MDTC (at lower loss probabilities) and MDSQTC
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(at higher loss probabilities) provides a Multiple Description Coding system that per-
forms well at all cases. This observation is experimentally validated for many real
world sources typically used in speech coding, like LSF and Cepstrum Coefficients
computed for narrowband and wideband spectra. Furthermore, such a combined
system will have much lower memory requirements than the MDSQTC , because the
central description codebooks of MDSQ are sparsely populated at higher loss proba-
bilities.

The comparison made in this section does not take into account the fact that due
to storage limitations in many practical applications, like GMM-based MDSQTC [151],
the storage of all MDSQ codebooks required for good performance may become too
expensive. Therefore, a limited number of codebooks must be used, i.e. using inte-
ger bit allocation schemes [151]. This introduces a loss in terms of distortion, and
this loss partially compensates the distortion gap between MDSQ and MDTC at
higher loss probabilities. Furthermore, the MDSQTC scheme is not practically scal-
able to complicated channel models, where the channel loss probabilities ρ1,ρ2 are
different. In contrast, the MDTC scheme has a number of significant computational
advantages like low complexity, low storage requirements and rate scalability (via
companding [89]).

The two multiple description schemes that are compared in this section are quite
different in nature. However, a proper theoretical comparison between the two meth-
ods is beyond the scope of this thesis. The proposed MDTC scheme constrains the
partitions of the descriptions and ties the partitioning to a single degree of freedom.
This imposes structure onto the quantizers and enables the scalability of the proposed
MDTC scheme. The MDSQTC scheme, on the other hand, does not constrain the
partitions, at the cost of decreased scalability and the requirement of a large number
of parameters to model the relationship between the descriptions.

Finally, we argue that the worse performance of the proposed MDTC scheme at
higher loss probabilities is associated with the nature of transform coding. A similar
observation is made in [145] (pg. 2211) when comparing their version of entropy-
constrained multiple description transform coding with MDSQ. In [155] it is shown
that the MSE is increased by a factor of 2 (that is ∼ 3 dB) when half of the components
are lost, and the lost components are pairwise orthogonal. A solution to this problem
is provided in [153] for the case of entropy-constrained transform-based coding of
Gaussians. Therefore, the behavior of the proposed scheme in high redundancies is
in accordance to the observations made for other transform coding schemes for the
entropy-constrained case.

Hierarchical Coding

In this experiment, the first description is always received, while the second descrip-
tion may be lost with probability ρloss. This is equivalent to the “hierarchical cod-
ing” problem [55]. Following the notation of the previous subsection the MDTC is
the measured distortion from the data-driven minimization. This example, however,
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Hierarchical Coding experiment. The upper and lower horizontal lines cor-
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respectively.

.

uses |I| = 8 degrees of freedom to compensate the need to have different rotations in
different Gaussian components. Figure 7.8 shows the central distortion D0 and the
side distortions D1, D2 for the MDTC case. As expected, the distortion D2 of de-
scription 2 is constantly high, at the benefit of a much better central reconstruction
D0, while D1 converges to the half rate bound. This readily reflects the fact that
description 2 will never be received alone.

7.1.6 Discussion

A novel scheme for MDTC of Gaussian variables was proposed. The scheme is de-
signed for resolution-constrained MDTC, in contrast to other MDTC schemes pre-
sented in the literature that focus on entropy-constrained MDTC. The proposed
MDTC scheme is based on structured Parseval frame expansions. Two special cases
are presented and evaluated. For these cases, an optimal consistent reconstruction
algorithm is provided. The optimization procedure directly minimizes the expected
distortion for a given data-set. The result is a practical MDTC scheme that is compu-
tationally efficient and scalable with minimal memory requirements, both for training
and encoding/decoding.
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Compared to “conventional” multiple description transform coding schemes that
are based on scalar MDSQ codebooks (MDSQTC), our method is fast, scalable and
practically efficient (via companding [89]) for coding at high rates and complicated
network models. However, this scalability comes at the cost of reduced performance at
higher loss probabilities. In practice, this performance loss is partially compensated
by the fact that in a practical MDSQTM implementation the number of MDSQ
codebooks and index-assignment tables is restricted by cost. On the other hand, the
proposed MDTC scheme outperforms MDSQTC at low loss probabilities. This can
be attributed to the bit-allocation method used in MDSQTC that bounds the central
distortion, as it is shown in Section 6.2. The resulting distortion penalty for MDSQTC

is considerable for real world sources (like LSF spectral envelopes of speech). Our
observations motivate a combined MDC scheme where MDTC is used at lower loss
probabilities and MDSQTC at higher loss probabilities.

The reduced performance of the proposed method at higher redundancies can be
attributed to the nature of transform coding with multiple descriptions, and it is also
observed by many other researchers [145], [153], [145]. The simplicity, scalability and
computational advantages of MDTC come not without a cost.

This work can be extended in many ways. For example, an extension can be
made to Generalized MDTC, where the data is encoded in more than two correlated
descriptions. Layered coding approaches can be used to improve the performance in
higher redundancies, as in [153]. Finally, the quantization of y1 and y2 can be made
jointly with respect to the MDC distortion measure.

7.2 GMM-based MDTC

This section extends the basic MDTC scheme, introduced in Section 7.1, to a novel
MDC quantizer suitable for GMM sources. Section 7.2.1 presents an overview of the
proposed scheme (GMM-MDTC). Section 7.2.2 describes the bit-allocation proce-
dure for the proposed quantizer. The training and the complexity of GMM-MDTC
is discussed in Section 7.2.3. The proposed scheme is experimentally evaluated in
Section 7.2.4.

7.2.1 Overview

Let x ∈ R
P follow a GMM distribution with M Gaussians. The basic scheme is

depicted in Figure 7.9. Data x is encoded with each of the M MDTC Gaussian
encoders giving M candidate sets of codevectors {x̂0,m, x̂1,m, x̂2,m : m = 1, ...,M}.
Let m′ be the index of the “best” candidate set, corresponding to the m′-th Gaussian
of the GMM. The m′-th candidate set that minimizes the MDC distance:

m′ = arg min
m

{(1 − p1)(1 − p2) ‖ x − x̂0,m ‖2
2 +ρ2(1 − ρ1) ‖ x − x̂1,m ‖2

2 +

+ρ1(1 − ρ2) ‖ x − x̂2,m ‖2
2}

(7.14)
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Figure 7.9 Proposed system for GMM-based MDTC.

is selected for transmission. The index m′ together with the indices I1,m′ , I2,m′ pro-
vided by the m′-th Gaussian MDTC encoder are packed and transmitted through the
network in two descriptions I1 = {m′, I1,m′} and I2 = {m′, I2,m′}. Let R1,m, R2,m be
the rates of I1,m, I2,m, respectively. Then, the rates of I1, I2 are:

R1 = log2

(
M∑

m=1

2R1,m

)
, R2 = log2

(
M∑

m=1

2R2,m

)
(7.15)

and the index m′ of the “best” Gaussian encoder can be represented by the location
of the values of I1, I2 inside the (integer) intervals [1, 2R1 ] and [1, 2R2 ], respectively.

At the GMM-MDTC decoder, the m′-th Gaussian MDTC decoder is used to get
one of the available reconstructions x̂0, x̂1, x̂2, depending on whether one or both
descriptions are received. Therefore, the GMM-based MDTC scheme is a multi-coder
scheme where the data is encoded with many Gaussian MDTC coders and the “best”
encoding is selected for the transmission together with the corresponding information
regarding the index of the coder. This treatment is typical in GMM-based coding,
which is actually a generalization of KLT (Karhunen-Loeve Transform) coding for
GMM, and details can be found in Section 3.2 and in [88], [151].

The m-th Gaussian MDTC encoder assumes that the statistics of x follow the
statistics of the m-th Gaussian component of the GMM, namely N(µm, Σxx,m). Vector
x is translated and rotated in order to get a zero mean vector x′

m with diagonal
covariance matrix:

x′
m = V T

m (x − µm) (7.16)

where Vm is the eigenvector matrix taken from the eigenvalue decomposition of the
covariance matrix Σxx,m = VmΛmV T

m . The variances of x′
m(i) are the corresponding

eigenvalues Λm(i, i), i = 1, ..., P . From these variances we compute the rate required
for each of the x′

m(i) according to the well-known bit-allocation algorithm [55] (see
Section 3.1.2). The eigenvectors (columns of Vm) are ordered to ensure that x′

m is
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composed of two subvectors x′
1,m and x′

2,m in such a way that x′
1,m ∈ �P1,m requires

R1,m bits and x′
2,m ∈ �P2,m requires R2,m bits. Note that the dimensions P1,m and

P2,m may be different for each of the M Gaussian components. The rates R1,m and
R2,m depend only on the variances Λm(i, i) of x′

m(i) and the total rates R1, R2 and
they are computed by the bit allocation procedure described in Section 7.2.2. The
frame expansion for the m-th Gaussian component is Fm = [F T

1,mF T
2,m]T and the

corresponding descriptions are y1,m = F1,mx′
m and y2,m = F2,mx′

m. The matrices F1,m

and F2,m are provided by the following equations:

F1,m(�φ) = diag

(
cos(φi,m)︸ ︷︷ ︸

i={1,...,P1,m}

, sin(φi,m)︸ ︷︷ ︸
i={P1,m+1,...,P}

)
, (7.17)

and

F2,m(�φ) = diag

(
− sin(φi.m)︸ ︷︷ ︸
i={1,...,P1,m}

, cos(φi,m)︸ ︷︷ ︸
i={P1,m+1,...,P}

)
(7.18)

where φi,m is the angle that corresponds to the i-th dimension of y1,m and y2.m. The
vectors y1,m and y2,m are then encoded into two indices (descriptions) I1,m and I2,m

at rates R1,m and R2,m respectively according to the MDTC scheme for Gaussians
presented in Section 7.1.

7.2.2 Bit Allocation

This section describes the bit allocation procedure for the proposed GMM-based
MDTC scheme. We assume that R1 and R2 are predefined design parameters. The
bit allocation procedure sets the rates R1,m, R2,m for each of the Gaussian MDTC
encoders m = 1, ...,M . Assuming that the Gaussians of the GMM are well separated,
the total distortion of the GMM-based MDTC encoding is:

Dtot =
M∑

m=1

αmDtot,m (7.19)

where αm are the weights of each Gaussian and Dtot,m is the average total distortion
associated with the m-th Gaussian component (see equation 7.4). For fixed source

statistics, the total distortion Dtot is a function of �φm, and ρ1, ρ2. Since we do not
have a closed-form formula for the total distortion, an analytical minimization of Dtot

for the optimal R1,m and R2,m is not feasible. Therefore, we will have to resort to a
strategy that will provide us with a solution that is optimal for a single predefined
operation point; the case when no packets are lost: ρ1 = ρ2 = 0. In that case, the
total distortion D′

tot is equal to the distortion of the central description:

D′
tot = Dtot|p1=p2=0 =

M∑
m=1

αm

(
D́

(1)
0,m + D́

(2)
0,m

)
. (7.20)
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When ρ1 = ρ2 = 0, the best performance is obtained if the descriptions are uncor-
related, thus when �φm = 0, m = {1, ...,M}. In the latter case, it is easy to observe

that the central distortions D́
(1)
0,m and D́

(2)
0,m for the first and the second description,

respectively, are provided by:

D́
(1)
0,m = QcP1,mc1,m2

−2R1,m
P1,m ,

D́
(2)
0,m = QcP2,mc2,m2

−2R2,m
P2,m ,

(7.21)

where Qc =
√

3π
2

is the quantization constant for scalar resolution-constrained cod-
ing of Gaussians [55], and c1,m, c2,m are the geometric means of the corresponding
variances:

c1,m =

(
P1,m∏
i=1

Λm(i, i)

) 1
P1,m

, c2,m =

⎛
⎝ P∏

i=P1,m+1

Λm(i, i)

⎞
⎠

1
P2,m

(7.22)

The minimization of D′
tot with respect to the rate constrains stated in equations (7.15)

can be made using typical Lagrangian methods, and results to the following bit-
allocation formula:

R1,m = R1 + log2

(
(αmc1,m)

P1,m
P1,m+2

�M
m=1(αmc1,m)

P1,m
P1,m+2

)
,

R2,m = R2 + log2

(
(αmc2,m)

P2,m
P2,m+2

�M
m=1(αmc2,m)

P2,m
P2,m+2

)
,

(7.23)

which is equal to the GMM “cluster” allocation formula for resolution-constrained
coding, in [88]. Note, however, that these rates depend on the splitting of x′

m =
[ x́T

1,m x́T
2,m ]T in two subvectors x′

1,m and x′
2,m. This ordering defines the dimensions

P1,m and P2,m and it is implemented with an appropriate ordering of the eigenvectors
(columns of Vm) of Σxx,m.

The splitting of x′
m in x́T

1,m and x́T
2,m is performed according to the splitting algo-

rithm in Section 7.1.3 using the following rates:

R′
1,m =

R1

R1 + R2

R′
m, R′

2,m =
R2

R1 + R2

R′
m, (7.24)

where R′
m are the GMM “cluster” bit allocation rates (according to equation (3.21))

when the GMM is encoded with a total rate R = R1 + R2. Concluding, the bit-
allocation algorithm is the following:

a. Compute R′
m according the “cluster” bit allocation formula in (3.21), using a

total rate R = R1 + R2. Then use equation (7.24) to compute R′
1,m and R′

2,m.
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b. Order the eigenvectors in Vm (and the corresponding eigenvalues in Λm) so that
the first P1,m parameters of x′

m are x́T
1,m and the last P2,m parameters of x′

m are
x́T

2,m, requiring rates R′
1,m and R′

2,m, respectively.

c. Compute the rates R1,m and R2,m using equation (7.23).

A nice property of the presented bit allocation algorithm is that it makes the proposed
GMM-based MDTC scheme to operate like a conventional GMM-based encoder when
�φm = 0 or equivalently, when there are no packet losses.

7.2.3 Training and Complexity

The proposed GMM-based MDTC scheme requires the determination of M angle
vectors �φm for a specific loss probability set (ρ1, ρ2). In practice, we can quantize
the set (ρ1, ρ2) to a predefined set of K channel configurations and compute offline

a set of optimal angle vectors �φm, m = 1, ...,M for each of these configurations.
This strategy will make GMM-MDTC a practical and viable solution with reasonable
storage requirements (K×M ×P angles). For specific loss probabilities ρ1 and ρ2 the
training of the proposed scheme is made by a series of M separate trainings, one for
each of the M MDTC Gaussian encoders. This treatment is justified only when the
Gaussian components of the GMM are well separated and it is a common practice in
GMM-based coding [88].

The typical network model used for MDC consists of two simple symmetric chan-
nels with equal loss probabilities p = p1 = p2. For this model and for balanced
equal-rate descriptions R1 = R2 an interesting observation can be made: the descrip-
tions must be equally correlated. Note that description 1 holds a quantized version
of x′

1,m and a lower fidelity version of x′
2,m and vice versa. The two descriptions

are correlated via the lower fidelity subvectors which hold information regarding the
other description. The symmetric network model states that no description is more
important than the other. Since the descriptions are balanced, an equal amount of
correlation should be introduced via frame Fm. Therefore, it is reasonable to constrain
φi,m = ϕm , for all i = 1, ..., P and parameterize each angle vector �φm with a single
parameter ϕm. In this case, the training procedure for each MDTC Gaussian encoder
is a scalar minimization in interval [0, π/4]. Furthermore, the storage requirements
for K channel configurations are considerably reduced to K × M angle parameters.

The complexity of using the proposed GMM-based MDTC scheme is very low
and comparable to the complexity of the typical GMM-based quantization [88]. The
storage requirements for the precomputed angles are also very low allowing the us-
age of the proposed scheme under more complicated network models. Furthermore,
high rates are achievable if companding is used for the quantization of the scalar
variables y1(i), y2(i) in Section 7.1. This is a clear computational advantage over
GMM-MDSQTC because the storage requirements for the latter increase rapidly with
the complexity of the network model and the encoding rates. Furthermore, with an
appropriate construction of F , the proposed method can directly be generalized to
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MDTC with more than two descriptions using relatively minor additional complexity
and storage requirements.

7.2.4 Experiments and Results

The proposed method is evaluated on the context of MDC of RCC cepstral envelopes
derived from narrowband speech. The cepstral envelopes are encoded at a total rate
of R = 60 bits. The basic hypothesis for the experiments is that the network consists
of two symmetric channels with equal loss probabilities ρ = ρ1 = ρ2 and that the
descriptions have equal rates R1 = R2 = 30 bits. The proposed method (GMM-
MDTC) is compared to four different schemes:

a. GMM-SD: A single description scheme with one full rate (60 bit) description,
using GMM-based quantization [88].

b. GMM-SD: A double description (repetition) scheme with two equal half rate
(30 bit) descriptions, using GMM-based quantization [88].

c. GMM-MDSQTC: The GMM-based MDC scheme presented in [151], with
integer-level side description codebooks.

d. GMM-MDSQTC (ibit): The GMM-based MDC scheme presented in [151],
with integer-bit side description codebooks.

The GMM-SD scheme and the GMM-DD scheme are used to indicate the perfor-
mance of single description codes and repetition codes in the context of an erasure
channel. The latter two schemes are chosen as “transform coding” alternatives to
the proposed GMM-MDTC scheme; competitive, in terms of complexity and perfor-
mance. The GMM-MDSQTC (ibit) scheme uses integer-bit side codebooks, following
the implementation in [151]. However, this introduces a loss of performance because
it constrains the rate of each encoded scalar gaussian of the central description to
be allocated in steps of 2 bits. Therefore, the latter method is also evaluated in
GMM-MDSQTC using side codebooks with integer-level sizes. The GMM-MDSQTC

scheme requires a large number of codebooks for each description loss probability ρ.
For example, the cepstral envelope source needs 16 MDSQ sets of codebooks when
encoded with the GMM-MDSQTC scheme, compared to 4 MDSQ sets of codebooks
when encoded with the GMM-MDSQTC (ibit) scheme. Note that each set of code-
books consists of one central description codebook and two side description codebooks
for each channel loss probability ρ.

The experiments were conducted using 400.000 samples from the training set
of TIMIT database to estimate the GMM of the cepstral envelope (with M = 16
Gaussians) and 100.000 samples from the testing set of TIMIT for testing. The test-
set is the same with the one used in Section 3.3. The 20-dimensional cepstral envelopes
were derived with a least squares fit of the harmonic amplitudes at the log-domain,
according to Section 2.4.1. For the GMM-MDTC scheme, we used MDTC with a
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Figure 7.10 Total distortion for several loss probabilities.

single degree of freedom per Gaussian component. Thus, the memory requirements
of the proposed method are M parameters per channel condition. The performance of
the four schemes is measured in terms of mean square error and expressed in decibel
for visualization purposes.

Figure 7.10 shows the total distortion for the four tested encodings. The total
distortion for GMM-SD is provided by equation:

Dtot,SD = (1 − ρ)D0,SD + ρD3, (7.25)

while the total distortion for GMM-DD is provided by equation:

Dtot,DD = (1 − ρ2)D0,DD + ρ2D3, (7.26)

where ρ is the description loss probability and D3 is the distortion when both de-
scriptions are lost. The total distortion of the three MDC methods is computed by
equation:

Dtot,MDC = (1 − ρ)2D0 + ρ(1 − ρ)(D1 + D2) + ρ2D3. (7.27)

Note that the above formulas do not take into account the beneficial effect of the
packet loss concealment algorithm to the distortion. However, this does not effect
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Figure 7.11 Central distortion D0 and side distortions D1, D2 for several loss
probabilities. Note that the side distortions coincide, reflecting the symmetry
of the descriptions.

the insight that can be gained regarding the performance of the four schemes when
packets are lost.

As it is shown in Figure 7.10, all MDC schemes outperform the double description
scheme in all loss probabilities ρ, and the single description scheme at ρ > 0.01. Note
that the single description scheme outperforms the three MDC schemes at ρ = 0, due
to the fact that the MDC schemes encode the index of the Gaussian component twice
(once to each description) instead of once. The proposed GMM-MDTC scheme out-
performs the other MDC schemes in lower loss probabilities, while it converges to more
or less the same performance in higher loss probabilities. Furthermore, Figure 7.10
indicates the penalty from using integer-bit side codebooks instead of integer-level
side codebooks. The penalty is more evident at lower loss probabilities.

A further insight into the results of the experiment is provided by Figure 7.11,
where the central distortion D0 and the side distortions D1, D2 for GMM-MDTC
and GMM-MDSQTC are plotted. As the loss probability increases, the central recon-
struction becomes worst and the side reconstructions become better to compensate
the probable loss. It can be clearly seen that the proposed method provides much
lower central distortion at lower loss probabilities. This is can be attributed to the
bit-allocation procedure of MDSQTC [141], [74], as it is shown in Section 6.2. In con-
trast, the GMM-MDSQTC scheme outperforms the GMM-MDTC scheme at higher
loss probabilities ρ. This is consistent with the findings in Section 6.2 where it is
shown that MDSQTC outperforms MDTC at higher loss probabilities, primarily by
taking advantage of the high degree of freedom non-parametric nature of the MDSQ
codebook structure. The MDTC scheme introduces the dependencies between the
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Figure 7.12 Tradeoff between the central distortion D0 and side distortions
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descriptions in a structured manner (via the Parseval frame expansion F ), for the
benefit of scalability and reduced complexity, but also at the cost of reduced perfor-
mance when increased dependencies are needed.

A closer look, however, reveals that the performance reduction at higher redun-
dancies is not as high as Figure 7.11 implies. Figure 7.12 shows the tradeoff between
the central distortion and the side distortions for the three evaluated MDC schemes.
At higher redundancies, GMM-MDSQTC is only slightly better than GMM-MDTC
because the central/side distortion tradeoffs offered by GMM-MDSQTC are closely
followed by the GMM-MDTC tradeoffs. For example, the highest redundancy (low-
est, right-most) tradeoff point of GMM-MDSQTC is closely followed by the 3-rd to the
right tradeoff point of GMM-MDTC. Furthermore, the superior performance of the
proposed GMM-MDTC scheme is clearly shown in lower loss probabilities. We can
observe that GMM-MDTC is better than GMM-MDSQTC in almost half of the avail-
able central/side distortion tradeoffs, and much better than GMM-MDSQTC (ibit) in
most of the available central/side distortion tradeoffs.

A comparison between GMM-MDSQTC and GMM-MDTC is performed in terms
of computational complexity and memory requirements. The computational complex-
ity is measured in flops (floating point operations) while the memory requirements
are measured in bytes. The evaluation is made using pseudo-code implementations
of GMM-MDTC and GMM-MDSQTC . The parts of code that are common in both
GMM-based quantizers (like the translation and decorrelation operations) are not
taken into account. Details are omitted to Appendix B.2. The results are depicted in
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Figure 7.13 Complexity and storage requirements for GMM-MDSQTC and
GMM-MDTC.

Figure 7.13. The two algorithms where evaluated for several loss probabilities (cen-
tral/side distortion tradeoff points). Note that the storage requirements show the
amount of static memory that holds precomputed information. The proposed method
is twice as fast as GMM-MDSQTCat loss probabilities above ρ ≥ 0.2, and more than
two times faster for lower loss probabilities. Furthermore, the storage requirements
are as lower than those of GMM-MDSQTC (ibit) at ρ = 0.5, approximately the same
at 0.2 < ρ < 0.4 and higher at ρ = 0.5.. Compared to GMM-MDSQTC , though,
the storage requirements are approx. 2.5 to 7 times lower at higher correlations. It
is evident that the proposed method has considerable computational advantages. It
achieves competitive multiple description coding performance with minimal storage
and complexity requirements.

The analysis so far has examined the performance of the MDC methods according
to the description loss probability ρ. However, the subjective quality of the resulting
encoding cannot be captured by equation (7.27). Furthermore, the effect of inter-
frame dependencies and packet loss concealment is not captured in the results of
Figure 7.11. Therefore, the loss probability ρ should not be handled as a parameter
directly associated with the conditions of the network, but as a parameter that allows
the MDC encoder to switch to different central/side distortion tradeoff points. MDC
is based on the minimization of a total distortion measure, i.e. equation (7.27). It is
very difficult to quantify all the necessary parameters that effect the overall subjective
quality in a distortion metric. It is up to the speech codec designer to establish a link
between the central/side distortion tradeoffs and the network conditions, according
to the overall subjective quality of the speech coder.
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7.3 Improving MDTC: Cooperative Encoding

The performance of MDTC in higher packet loss probabilities is worse than the per-
formance of MDSQTC . Similar observation have been made in the literature for other
transform coding systems, as discussed in Section 7.1. This section identifies a source
of performance degradation in MDTC and proposes an improvement. In MDTC, the
source vector x is transformed in two vector y1 and y2 which are encoded indepen-
dently by Gaussian quantizers. This means that for a given frame F the MDTC
encoder operates in a manner that is optimal only for the side decoders and does not
take into account the central decoder, resulting to higher central distortion as it is
evident in Figure 7.6. In this Section, without loss of generality, the focus will be
given to the case where the descriptions are of equal rate, balanced and transmitted
through two independent channels with equal loss probability ρ. In that case, the
central distortion is taken into account if the two encoders operate with respect to
the total distortion:

dtot = ‖x − x̂0‖2
2 +

ρ

1 − ρ

(‖x − x̂1‖2
2 + ‖x − x̂2‖2

2

)
, (7.28)

where x0, x1 and x2 are the output of the central decoder and the two side decoders,
respectively. The total distortion can be broken to the sum of the individual distor-
tions per dimension:

dtot =
P∑

i=1

[
(x(i) − x̂0(i))

2 +
ρ

1 − ρ

[
(x(i) − x̂1(i))

2 + (x(i) − x̂2(i))
2
]]

, (7.29)

where a(i) is the i-th dimension of vector a. The minimization of dtot is made by
individually minimizing the scalar expressions inside the brackets. When the encoders
do not cooperate, the terms (x(i)− x̂0(i))

2 are ignored. An MDTC scheme where the
encoders cooperate will be referred to as “Cooperative Encoding MDTC” (MDTCCE).
A schematic representation of an MDTCCE scheme is shown in Figure 7.14.
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Figure 7.15 Cooperative Encoding in the side description y1(i)-y2(i) plane.

The construction of an MDTCCE encoder is simplified by the frame F that was
presented in Section 7.1.3. Each dimension of the source is encoded using one com-
ponent in each side description. For example x(i) is encoded in y1(i) and y2(i).
Figure 7.15 shows the y1(i)-y2(i) plane and the corresponding quantization cells.
The source point x(i) is projected to the image of F which in our case is a straight
line passing through the origin of the axes. If the central distortion is ignored,
the source point will be quantized to the patterned quantization cell that corre-
sponds to the side description codepoints c1(l) and c2(k). The central description
will be reconstructed with the projection of the codepoint (c1(l), c2(k)) to the im-
age of F . Clearly, the central description codepoints are limited by the number of
quantization cells that intersect the image of F , reducing the performance of the
central decoder. The central distortion can be reduced if the neighboring quanti-
zation cells are used to provide more central description codepoints. Figure 7.15
depicts the candidate central description codepoints as stars that lay on the image
of F . It is possible that a neighboring quantization cell provides less total distor-

tion
[
(x(i) − x̂0(i))

2 + ρ
1−ρ

[(x(i) − x̂1(i))
2 + (x(i) − x̂2(i))

2]
]

than the quantization

cell that minimizes the side distortions (patterned one). However, the possibility
that a quantization cell minimizes the total distortion is greatly reduced with the
distance from that cell. Therefore, in practice it suffices to search only it’s direct
neighbors.

Let c1,i(·) and c2,i(·) be the codepoints used to quantize y1(i) and y2(i), respec-
tively. The algorithm of the cooperative encoder could be summarized as follows:
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a. For each dimension i = 1, ..., P

b. Quantize y1(i) and y2(i) with the side encoders:
l = arg min

j

{
(y1(i) − c1,i(j))

2},

k = arg min
j

{
(y2(i) − c2,i(j))

2}
c. Search the neighboring quantization cells for the one that minimizes the total

distortion:
(I1(i), I2(i)) = arg min

(j1,j2)∈S

{
(x(i) − x̂0(i; j1, j2))

2 + ρ
1−ρ

[
(x(i) − x̂1(i; j1))

2 + (x(i) − x̂2(i; j2))
2
]}

where S = {l − 1, l, l + 1} × {k − 1, k, k + 1} is the set of neighboring cells and
x̂0(i; j1, j2), x̂1(i; j1) and x̂2(i; j2) are reconstructions from the central decoder
and the two side decoders that were made using the codepoints c1(j1) and c2(j2),
respectively.

Cooperative encoding was evaluated for the LSF source presented in Section 7.1.5,
Figure 7.7. The training of the system was made using the cooperative encoders
instead of the independent encoders and the new method is evaluated in comparison
to MDTC and MDSQTC . Figure 7.16 depicts the central/side distortion tradeoffs
provided by MDSQTC , MDTC and MDTCCE. MDTCCE outperforms MDTC in
higher loss probabilities while it has the same performance in lower loss probabilities.
Furthermore, at ρ = 0.5, the proposed method provides a central distortion that is
only 0.35 dB away from the central distortion of MDSQTC , for a slightly (0.04 dB)
better side distortion.

Another evaluation was made in the context of GMM-MDTC. The corresponding
quantizer will be referred to as GMM-MDTCCE. The evaluation was made with the
RCC source used in Section 7.2.4, Figure 7.12. GMM-MDTCCE was trained using
cooperative encoders. The results are depicted in Figure 7.17. It is clearly shown
that the proposed quantizer offers tradeoff points which are similar to the tradeoff
points of GMM-MDSQTC and better that the tradeoff points of GMM-MDTC.

Concluding, a modification was made to the MDTC quantizer. This modification
improved the central distortion and allowed multiple description transform coding
with much better central/side distortion tradeoff points. The improvement though
doesn’t come without a computational cost. However, MDTCCE retains the advan-
tages of MDTC: it is scalable, it has low storage requirements and it can be used with
complicated channel models. Motivated by the findings of this section, we strongly
suggest cooperative encoding also for the case of entropy-constrained multiple de-
scription transform coding.
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Figure 7.16 MDTCCE evaluation for the multivariate Gaussian LSF source.
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Chapter 8

Coding with Side Information

Several speech coding problems, like Speech Spectrum Expansion (the reconstruction
of 4-8 kHz speech spectrum) and the recovery from packet losses in VoIP (Voice-over-
IP), face the following situation: there is available information and lost information,
and the lost information has to be -somehow- recovered from the available informa-
tion. This is an estimation problem when there is no possibility to transmit additional
data, and a coding problem when data transmission is permitted. In a simple coding
scenario where the available information is coded independently of the lost informa-
tion (however, useful to the decoder) there is no benefit from the mutual information
between the two sources: the lost information and the available information. There-
fore, it is desirable to encode the former having the latter as side information.

In terms of (Conditional) Rate-Distortion theory, this is referred to as Coding with
Side Information (CSI) problem [156], [157] schematically shown in Figure 8.1, where
Y is the information that will be coded, and X̂ the side information (with distortion)
available at the encoder and the decoder. Estimation can be seen as a particular
case of CSI where the transmitted bit stream is empty. This chapter investigates the
potential of CSI for applications like wideband speech coding, bandwidth expansion
and packet loss concealement.

There has been much effort in the enhancement of the narrow-band (0.3-3.4 kHz)
PSTN (Public Switch Telephone Network) speech signal by bandwidth expansion; the
high-band is estimated from the narrow-band using several methods like VQ mapping

Encoder Decoder
bits

X̂

Y Ŷ

Figure 8.1 Coding with Side Information.
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[158], GMM (Gaussian Mixture Models) based estimators [159], [160] and HMMs
(Hidden Markov Models) [161]. These attempts report an improvement over narrow-
band speech, although the resulting speech signal suffers from artifacts. The quality of
the reconstructed speech is bounded by the relatively low mutual information between
the two bands [162], [163] and the poor performance of estimation [164]. On the
other hand, the acceptable performance of these methods indirectly states that the
required bit-rate for high quality highband reconstruction should be low. Coding the
highband without taking advantage of the highband knowledge carried at the narrow-
band, results in a higher bit-rate. Therefore, it is beneficial to encode the highband
having the narrow-band as side information available to the encoder and the decoder.

It is widely accepted that for many speech sounds the lower frequencies are per-
ceptually more important than the higher frequencies. Therefore, in wideband speech
coding it may be desirable to separately encode the spectral envelope of the higher
frequencies from the spectral envelope of the lower frequencies. Moreover, different
fidelity requirements may be used in each band. For example, memoryless coding
of the wideband spectral envelopes (0-8 kHz) using 14 Line Spectrum Frequencies
(LSFs) requires ≈ 41 bits/frame, while coding narrow-band spectral envelopes (0-3.4
kHz) using 10 LSFs requires ≈ 24 bits/frame [165]. Because a high distortion is in
general acceptable at the higher frequencies the use of a non-weighted single fidelity
criterion to the whole wideband spectral envelope is perceptually not optimal. Fur-
thermore, different bands may need to be encoded using different analysis/synthesis
rates. Splitting the wideband spectral envelope in two bands and coding them with
different fidelity criteria can be quite advantageous, but it results to an information
loss equal to the mutual information between the two spectra. Coding with Side
Information may use most of the mutual information, by reestablishing the broken
dependencies between the two information sources [156].

New packet-based applications like Voice-over-IP (VoIP) generate new demands
for codecs. Packets, typically containing 10-30 ms of encoded speech, may be lost
or unacceptably delayed. A lookahead buffer called “jitter buffer” containing a few
packets of speech is used to counteract small delays of packet arrivals. One lost
packet results to the loss of 1-2 speech frames and depending on the speech codec
used, the reconstruction error can be propagated to several following frames [35].
An obvious way to cope with this is to use Forward Error Correction (FEC) [35];
the information of the current frame is repeated in the next frame, but the added
redundancy does not take into account the information carried at the neighboring
frames. Some researchers try to estimate the lost spectral envelope from the previous
frame(s) [166], [167]. Coding with Side Information can be used to introduce a small
size corrective bit-stream that provides an enhanced estimation/coding of the lost
spectral envelope(s), up to a pre-defined fidelity requirement. In other words, the
idea is to repair the loss, not to repeat the loss.

Coding with Side Information is not something completely new in speech coding.
In fact, various forms of Predictive Coding can be seen as CSI; the current frame
is coded having the previous frame as side information under certain distortion re-
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quirements. In this perspective, CSI can be seen as a generalization of Predictive
Coding, with complex non-linear input-output space relationships, where adverse but
relevant information sources (like LSFs, energy, voicing, pitch) can be used as side
information.

This chapter deals with two distinct speech coding problems which are formulated
in the CSI context; the loss of packets in VoIP and speech spectrum expansion. Focus
is given to the recovery of the lost spectral envelope information. A VQ-based solution
to the CSI problem is proposed. In Section 8.1 the CSI problem is discussed using
Conditional Rate-Distortion theory arguments, in comparison with estimation and
simple VQ. The role of mutual information is discussed and a distortion-rate bound
for CSI is given. The discussion is supported by a toy example. In Section 8.2
we formulate/simplify the CSI problem as a generalization of VQ, which will be
referred to as the Conditional Vector Quantization (CVQ) problem, and suggest a
fast divide-and-conquer two-step solution. CVQ assumes a piecewise one-to-many
mapping between input space X (the side information) and output space Y (the
coded information). Section 8.3 describes three estimation methods. The following
sections discuss two applications of CSI. In Section 8.4 CVQ is used to generate a
repairing bit-stream for the VoIP problem and encode the current spectral envelope,
using the previous and the next spectral envelopes as side information. Using LSFs
for the parameterization of the spectral envelopes, we show that a very low bit-stream
of 400 bits/sec can significantly reduce the reconstruction distortion for single and
double packet losses. In Section 8.5 we use CVQ to encode the highband 4-8 kHz
LSFs using the narrow-band 0-4 kHz LSFs as side information. It is shown that,
provided an appropriate excitation, only 134 bits/sec are enough for a high quality
reconstruction of the highband spectral envelopes.

8.1 Background

Lets us consider two correlated sources X,Y , and their joined source Z = [ X Y ]T .
Source X is already transmitted from the encoder to the decoder, while source Y
must be, somehow, reconstructed at the decoder. Three options are available then:

• estimate Y given X. In most cases mutual information I(x; y) between the two
sources cannot be fully utilized.

• encode Y with a CSI system having X as side information. Mutual information
I(x; y) can be effectively utilized.

• encode Y . In this case, mutual information is lost.

The best option for reconstructing Y will depend on the amount of mutual informa-
tion, the available bit-rate and the fidelity requirement. In this section we discuss
about the benefits and the limits of Coding with Side Information (as shown in Fig-
ure 8.1), using rate-distortion theory arguments. The distortion-rate Shannon Lower
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Bound for CSI will be provided, and a non-tight distortion bound for estimation will
be given as a special case.

8.1.1 Conditional Rate-Distortion Theory

Let Rx(∆x), Ry(∆y) and Rxy(∆x, ∆y) be the rate-distortion functions for X,Y and
Z, respectively, where ∆x, ∆y is the fidelity constraint for each of the corresponding
variables. Let Dx(x, x̂), Dy(y, ŷ) be some distortion measures over X-space and Y -
space, respectively. Rate-Distortion theory [59] states that :

Ry(∆y) = inf
p(ŷ|y):Ey,ŷ{Dy(y,ŷ)}≤∆y

I(y; ŷ) (8.1)

where I(y; ŷ) is the mutual information between the source and the encoded source.
For the Coding with Side Information problem we are mainly interested in rate
Ry|x(∆y) which is the rate of the system depicted in Figure 8.1. The formula for
the conditional rate-distortion function [156] is analogous to (8.1):

Ry|x(∆y) = inf
p(ŷ|y,x):Ex,y,ŷ{Dy(y,ŷ)}≤∆y

I(y; ŷ|x) (8.2)

Note that Ry|x(∆y) is the rate of the CSI system when side information X is provided
with zero distortion. The conditional rate-distortion function satisfies the following
inequalities [156]:

Rxy(∆x, ∆y) ≥ Ry|x(∆y) + Rx(∆x) (8.3)

Ry|x(∆y) ≥ Ry(∆y) − I(x; y) (8.4)

Rxy(∆x, ∆y) ≥ Ry(∆y) + Rx(∆x) − I(x; y) (8.5)

where I(x; y) is the mutual information between the two sources. Under moderate
assumptions, inequalities (8.3) to (8.5) become equalities [156]. The assumptions are
that there are no restricted transitions between X and Y (for any x and y, P (y|x)
is non-zero), and that distortions ∆x and ∆y are sufficiently small. When these
assumptions do not hold, the above inequalities provide the performance bounds. On
the other hand, when the assumptions hold there is no rate penalty for encoding
source Y with a CSI system instead of jointly encoding X and Y . Therefore coding
X with fidelity ∆x, and Y with fidelity ∆y at a specific rate can be made either way:
with typical source coding of the joined source Z or with CSI. Additionally, CSI has
the advantage of being applicable in cases where the two sources X and Y are defacto
separated. Furthermore, (8.4) states the role of mutual information: I(x; y) is the
rate loss for encoding Y without knowing X.

Note that in [156] inequalities (8.3) to (8.5) are proven for X and Y taking values
from finite alphabets. However, it is quite straightforward to extend the proof of the
corresponding theorem to continuous sources.
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8.1.2 Mutual Information

Mutual information provides the rate gain when a CSI system is used for coding
Y , instead of a typical source coding system. Furthermore, mutual information is
provided in closed form [59]:

I(x; y) = Ex,y{log
p(x, y)

p(x)p(y)
} (8.6)

When densities p(x, y),p(x),p(y) are available through a continuous parametric model
like a GMM, the integral in (8.6) can be approximated by stochastic integration [162], [163],
according to the law of big numbers:

I(x; y) ≈ 1

N

N∑
n=1

log
p(xn, yn)

p(xn)p(yn)
(8.7)

where xn, yn are drawn from the join pdf p(x, y).
Several properties of mutual information provide further insight to the CSI prob-

lem. For example, theoretically we cannot increase the rate gain of a CSI system
by using other transformations (1-1 mapping functions g(·), f(·) ) of either X or Y ,
because a transformation can only decrease mutual information, as stated by the data
processing inequality [59]:

I(X, Y ) ≥ I(g(X), f(Y )) (8.8)

8.1.3 Distortion-Rate for CSI

A distortion-rate bound for CSI and squared error distortion measure can easily be
derived via Shannon’s Lower Bound (SLB) for vector processes:

Dy(Ry) ≥ d

2πe
exp

(
2

d
(h(y) − Ry)

)
(8.9)

where h(y) is the differential entropy of source Y , and d the dimensionality of Y -
space. Using inequalities (8.4) and (8.9) we can derive a Shannon Lower Bound for
the distortion rate function of vector processes for CSI:

Dy(Ry|x) ≥ d

2πe
exp

(
2

d
(h(y) − Ry|x − I(x; y))

)
(8.10)

Note that inequality (8.4) is also valid for vector processes (exercise 4.4 in [168]) and
continuous sources.

In the CSI framework, estimation can be seen as the attempt to recover Y at the
decoder without transferring any bits (Ry|x = 0). By setting Ry|x = 0 we obtain a
boundary to the performance of an estimator of Y given X:

Dy ≥ d

2πe
exp

(
2

d
(h(y) − I(x; y))

)
(8.11)
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Figure 8.2 A Toy Example.

This is the same estimation bound with the one provided in [162]. However, note
that the bound is not tight [162]. Based on the discussion developed in section 8.1.1
this is expected since the estimation distortion is rather high and mutual information
is gained only when distortions ∆x and ∆y are sufficiently small.

The evaluation of CSI via the SLB is not practical for many sources (including the
speech spectral envelopes) for two reasons: it is not always feasible to determine the
tightness of the SLB and it is not always possible to make an accurate estimation of
the differential entropy h(y). Note that the estimation of differential entropy is not a
trivial task when data lay on a manifold, since then h(y) must be computed over the
manifold. Furthermore, there is evidence that the spectral envelopes of speech lay on
manifolds [169]. In such cases, the evaluation of CSI can be made via an estimation
of the mutual information, e.g. as presented in Section 8.1.2.

8.1.4 A Toy Example

A toy example, similar to the one provided in [162], will be given to illustrate the
notions described in previous subsections. Let X ∈ {1...7} and Y ∈ {1...8} be
random variables taking values from finite alphabets. Let X,Y follow the joined
distribution depicted in Figure 8.2. The joint distribution codepoints (dots) have
equal probability p = 1

14
. Three bits are needed to describe Y . If we perform an

estimation ŷ = Ey{Y |X} of Y from X, we get the stars between the codepoints.
Estimation ŷ depends on the distance k between the two codepoints corresponding
to the value of X. Note that for any k ≥ 3, the mutual information is constant
(I(x; y) = 1.95) bits and the entropy is fixed to H(y) = 2.95 bits. Therefore the
distortion-rate function Dy(Ry|x) is independent of k. Obviously, estimation distortion
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Figure 8.3 Conditional Vector Quantization.

can be arbitrary large for the given statistics. An important remark can be made: if 1
bit is provided, the reconstruction distortion falls to zero. For a given X, 2 codepoints
may be chosen. The extra bit helps choosing among these codepoints. In terms of
our previous discussion, distortion ∆y in the case of estimation (rate Ry|x = 0) is too
large to take advantage of the mutual information. If 1 bit is provided, ∆y becomes
small enough (= 0) to gain I(x; y).

8.2 Conditional Vector Quantization

Intuitively, each value of X-space generates a different conditional pdf p(y|x) for Y -
space. We will try to capture the coarse structure of this mapping, using a Vector
Quantization framework, which is referred to as Conditional Vector Quantization.
The main idea is that each region in X-space is mapped to a different codebook of
Y -space.

The problem of Conditional Vector Quantization (CVQ) will be approached through
a probabilistic point of view. Let �x ∈ RP , �y ∈ RD be random vectors of X-space and
Y -space respectively. The CVQ problem consists of constructing two linked code-
books Cx ≡ {�̂xm : m = 1...M} and Cy ≡ {�̂ym,k : m = 1...M, k = 1...K}, for X-space
and Y -space respectively. Each codevector in Cx is linked to K codevectors in Cy,
which form the m-th subcodebook of Cy. The encoder finds the nearest Cx codevector
and transmits the index of the nearest Cy codevector of the linked Cy subcodebook.
The decoder locates the nearest Cx codevector and takes the estimation from the
linked Cy subcodebook according to the transmitted index. Figure 8.3 illustrates the
two codebooks Cx and Cy, for K = 4. CVQ can be seen as a form of classified vector
quantization [55], where the classification rule is taken from a VQ of X-space.
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The CVQ reconstruction of �y is a function of �y, �x, Cx, Cy:

�̂ym,k = Qy|x(�y, Qx(�x, Cx), Cy) (8.12)

where Qx(.) is the quantization rule for X-space and Qy|x(.) the quantization rule for
Y -space depending on X-space. The encoding rule can be expressed as:

k = arg min
k′

{d(�y, �̂ym,k′)}, where m = arg min
m′

{d(�x, �̂xm′)} (8.13)

where d(., .) is some distortion measure. If we assume that �xm, �ym,k are random
vectors spanning the discrete spaces Cx, Cy, respectively, the average distortion of
the CVQ encoding/decoding process becomes:

D =
M∑

m=1

K∑
k=1

∫∫
p(�x, �y, �̂xm, �̂ym,k)d(�y, �̂ym,k)d�xd�y (8.14)

The joint probability p(�x, �y, �̂xm, �̂ym,k) can be analyzed to

p(�x, �y, �̂xm, �̂ym,k) = p(�x, �y)p(�̂xm|�x, �y)p(�̂ym,k|�̂xm, �y, �x)

using the Bayes rule. The latter expression can be simplified with two CVQ-related
assumptions. The first assumption is that the decoder cannot have knowledge of
�y, therefore �̂xm is conditionally independent of �y: p(�̂xm|�x, �y) ≡ p(�̂xm|�x). The sec-

ond assumption is that �̂ym,k is conditionally independent of �x: p(�̂ym,k|�̂xm, �x, �y) ≡
p(�̂ym,k|�̂xm, �y) stating the piecewise mapping nature of the CVQ model; that no higher
than first order local statistics are taken into account when mapping a X-space region
to K Y -space regions. Using these two assumptions we conclude that:

D =

∫∫
p(�x, �y)

M∑
m=1

p(�̂xm|�x)
K∑

k=1

p(�̂ym,k|�̂xm, �y)d(�y, �̂ym,k)d�xd�y.

If the number of samples [�xn, �yn], n = 1, 2, ..., N is large enough then the law of big
numbers states that D can be approximated by:

D ≈ 1

N

N∑
n=1

M∑
m=1

p(�̂xm|�xn)
K∑

k=1

p(�̂ym,k|�̂xm, �yn)d(�yn, �̂ym,k) (8.15)

The conditional probability p(�̂xm|�xn) is the association probability relating the input

vector �xn with codevector �̂xm, while the association probability p(�̂ym,k|�̂xm, �yn) relates

the output vector �yn with the codevector �̂ym,k of the m-th subcodebook of Cy. The

conditional dependence of �̂ym,k with x̂m states that �̂ym,k belongs to the m-th subcode-
book of Cy. Although CVQ problem considers hard association probabilities taking
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values in {0, 1}, the distortion formula (8.15) does not explicitly impose regular par-
titions. Therefore minimization of D can also be made with non-regular partitions,
i.e. Gaussians, in X-space and/or Y -space.

The minimization of D is a hard problem, but the complexity can be reduced if
it is broken into several easier subproblems: first compute a VQ of X-space and then
minimize D. Since the partitioning of X-space determines the association probabili-
ties p(�̂xm|�xn) and the codevectors �̂xm, the minimization problem breaks into a series
of M typical weighted VQ minimization subproblems Dm:

D ≈
M∑

m=1

[
1

N

N∑
n=1

p(�̂xm|�xn)
K∑

k=1

p(�̂ym,k|�̂xm, �yn)d(�yn, �̂ym,k)]

=
M∑

m=1

Dm

Furthermore, with hard association probabilities each of the M minimization sub-
problems Dm operates in a subset of Y -space vectors providing therefore a significant
computational advantage.

The resulting algorithm for hard association probabilities is:

• compute a VQ of X-space (M codevectors)

• for every �̂xm ∈ Cx:

• find the Y -space vectors corresponding to the X-space vectors that are nearest
to �̂xm.

• perform a VQ on these Y -space vectors (K codevectors) to compute the m-th
Y -space subcodebook

At the case where K = 1, the CVQ problem is similar to the GVQ (Generalized
VQ) [170] problem, and the proposed solution is reduced to the NLIVQ (Non-Linear
Interpolative VQ) [171] solution of GVQ. CVQ has also been used in [158]. Note,
however, that in [158] the Y -space codebooks are taken from a Y -space partitioning
that is trained independently of the X-space codebooks. This solution is not consis-
tent with (8.15) where it is clearly shown that the Y -space codewords depend directly
on the X-space partition and not via a precomputed partitioning of Y -space.

8.3 Estimation

In some applications like Speech Spectrum Expansion and VoIP packet loss conceal-
ment, the lost information Y is usually estimated from the available information X.
The performance of the estimation is not always adequate in terms of subjective qual-
ity. CSI can overcome this limitation by providing an “enhanced” estimation at the



140 Chapter 8 Coding with Side Information

cost of a few extra bits. A comparison between CSI and estimation is then necessary
to indicate the practical performance gain when this strategy is adopted.

For this purpose, we focus on three memoryless mapping estimators; Linear Pre-
diction, a simple VQ mapping called NLIVQ (Non Linear Interpolative Vector Quan-
tization) [171] and GMM-based estimation which will be referred to as GMM Con-
version Function [172], [160]. The linear estimator provides a well-known baseline
because it corresponds to the optimal linear relationship between the two spaces. The
NLIVQ estimator provides useful insight as a special CVQ case (CVQ with K = 1).
The GMM Conversion Function is a robust state-of-the-art estimator able to handle
complex input-output space relationships.

8.3.1 Linear Estimation

In Linear Estimation the estimated �̂yt is a linear combination of the available infor-
mation: �̂yt = A�xt. The linear estimation �̂yt is computed according to the formulae:

�̂yt = E{�yt} + ΣyxΣ
−1
xx (�xt − E{�xt}) ,

Σyx =
1

N

N∑
t=1

(�yt − E{�yt}) (�xt − E{�xt})T ,

Σxx =
1

N

N∑
t=1

(�xt − E{�xt}) (�xt − E{�xt})T

where N is the number of training set vectors and E{·} denotes the expectation oper-
ator. When the past is used to estimate the future, linear estimation is referred to as
linear prediction [55] and it is commonly used in Predictive Vector Quantization [173].

8.3.2 NLIVQ

The NLIVQ method [171] uses two equal-sized codebooks, one for X-space codevec-
tors and one for Y -space codevectors. The X-space vector is classified to the nearest
X-space codevector which is mapped to one Y -space codevector. The X-space code-
book is constructed by a variant of the well known binary split LBG VQ algorithm.
The Y -space codebook is constructed from the means of Y -space vectors correspond-
ing to X-space vectors that are nearest to the linked X-space codevector. NLIVQ is
essentially the same to the CVQ method proposed in Section 8.2 when K = 1.

8.3.3 GMM Conversion Function

The GMMCF estimator uses an experts-and-gates regression function to “convert”
the narrow-band vectors to the wideband vectors. Both input and output spaces are
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modelled through GMM. The GMM conversion function is defined by:

�̂y =
M∑

m=1

p(ωm|�x)[�ym + Σm
yx(Σ

m
xx)

−1(�x − �xm)] (8.16)

where �x is the input vector associated with X-space, �̂y the estimation of �y, �xm and
�ym denote the centroids of the m-th Gaussian of X-space and Y -space respectively,
and Σm

xx is the covariance matrix of the m-th X-space Gaussian, Σm
yx is the cross-

covariance matrix that relates the m-th Gaussians of X-space and Y -space, and ωm

denotes the m-th class of X-space. Finally, p(ωm|�x) is the gating probability given
by:

p(ωm|�x) =
p(ωm)|Σm

xx|−0.5e−0.5(�x−�xm)T (Σm
xx)−1(�x−�xm)∑M

n=1 p(ωn)|Σn
xx|−0.5e−0.5(�x−�xn)T (Σn

xx)−1(�x−�xn)
(8.17)

The learning process for the GMM-based estimation function comprises of two stages.
In the first stage a GMM of the X-space is estimated via the standard EM algorithm,
while in the second stage the Y -space means �ym and the matrices Σm

yx are computed
using a least squares criterion [172]. For the experiments we used diagonal covariance
matrices Σm

xx and full cross-covariance matrices Σm
yx.

8.4 CVQ of Lost Spectral Envelopes for VoIP

Speech signals contain considerable temporal correlations. These correlations can be
used to tackle the packet loss problem in VoIP. For example, the LSF parameters of
adjacent frames are highly correlated and this has been successfully used in modern
codecs for Packet Loss Concealment (PLC) [54]. Waveform substitution PLC algo-
rithms try to reconstruct the lost speech giving emphasis to the continuity of the
speech waveform [126]. However, waveform substitution techniques do not ensure the
continuity of the sinusoidal tracks nor phase coherency. These desirable properties
can be provided by sinusoidal PLC schemes [49] which outperform waveform PLC
schemes [126]. Sinusoidal PLC schemes require the knowledge of the spectral enve-
lope(s) of the lost speech frame(s). The lost spectral envelopes can be recovered with
a repetition scheme or with more sophisticated estimators [166], [167].

The performance of the estimators is bounded by the mutual information and
the structure of the underlying probability space. To overcome these problems For-
ward Error Correction (FEC) techniques have been proposed [35]. These algorithms
require full repetition of the information for each packet consuming, however, band-
width (by doubling the bit-rate of a code.) CSI can be used to provide an adequate
reconstruction of the lost spectral envelopes with minimal extra bandwidth. More
specifically, past and future spectral envelopes (contained in the jitter buffer) can be
used as side information for encoding the lost spectral envelope(s). In [1](pg. 158), a
deterministic frame-fill technique has been used to increase the temporal resolution of
coarsely sampled (every 30ms) spectral envelopes. CVQ is the stochastic counterpart
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Figure 8.4 The 4 examined scenarios of lost/received packets using a 0-2
packet jitter buffer. The boxes indicate lost/received packets. A lost packet
(questionmark) is estimated or CSI encoded using some of it’s neighboring
packets. In each scenario, the CSI data -when needed- is stored in the packets
with the star.

of this frame-fill technique and it is capable of handling the complicated correlations
between the received and the lost spectral envelopes.

A typical jitter buffer usually contains 1-2 packets (20-40 ms) of speech. With a
jitter buffer of 2 packets, CVQ can be used to effectively handle single and double
packets losses. We will focus on the narrow-band spectral envelopes, typically encoded
with 10 LSFs per frame, assuming that each packet contains one spectral envelope.
Note, however that CVQ can be also be used for other parameters like pitch and gain.

8.4.1 Recovery Scenarios

Let �ut, t = {1, 2, ...} be the sequence of transmitted LSF vectors. We assume that each
packet contains 1 LSF vector. We further assume that the decoder has a jitter buffer of
1-2 packets and keeps a history of 1-2 packets. The idea is to use the information in the
received packets to recover the information of a lost packet. Clearly, there are many
possible combinations of lost/received packets that could be examined. Four possible
scenarios, depicted in Figure 8.4, were selected. Incoming LSF vectors/packets are
drawn as boxes. Lost packets contain a questionmark. CSI data are stored in each
packet. The CSI data that is going to be used in each scenario under study, is
presented by a star inside the boxes. The box with the star is always the last received
packet �ut. The two leftmost scenarios require 1 packet lookahead at the encoder,
while the rightmost scenarios require a jitter buffer of 1-2 packets.

In scenarios XY, XXY, the LSF vector �ut+1 is lost and one (for XY) or two (for
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XXY) previous LSF vectors are used as side information. Using more than two past
spectral envelopes for estimation does not enhance the estimation performance, as
shown in [167]. Scenario XYX considers the case when the current LSF vector is
lost, while the next and the previous vectors are received and used as input space
information. Scenario XY X is the case when two consecutive LSF vectors are lost
and we wish to recover �ut−2 using the information carried in �ut−3,�ut.

The other lost vector �ut−1, can be recovered from the reconstructed �̂ut−2 and the
received �ut applying a technique used in scenario XYX. This way, a decoder can
use the XYX CSI bitstream to recover from single packet losses and both XYX,
XY X CSI bitstreams to recover from double packet losses, without retransmitting
redundant information for �ut−1. Table 8.1 shows a brief description of the 4 scenarios.
For each scenario, input space X denotes the known (side) information and output
space Y denotes the lost information that is going to be reconstructed.

Scenario packet delay Input Space Output Space
XY 1 (lookahead) �xt = [�ut] �yt = [�ut+1]
XXY 1 (lookahead) �xt = [�ut−1�ut] �yt = [�ut+1]
XYX 1 (jitter buffer) �xt = [�ut−2�ut] �yt = [�ut−1]
XY X 2 (jitter buffer) �xt = [�ut−3�ut] �yt = [�ut−2]

Table 8.1 Brief description of the 4 scenarios. Note that the packet delay
in the first two scenarios refers to the case of transmitting FEC data.

8.4.2 Practical CSI

The simplest form of CSI is residual coding. Let �̂yt be the estimation of �yt. Residual
coding uses a form of VQ to encode �εt = �yt − �̂yt. In literature, residual coding is
typically made using Linear Estimation [173].

In this section we suggest to use the CF estimator for residual coding. The CF
estimator capability of modelling complex non-linear relationships between X and Y ,
provides a residual �εt that is more whitened, compared to the LE residual. In our
knowledge, until now, nobody has used GMM-based estimators like CF for residual
coding of LSFs.

Even if the (unknown) optimal estimator was used, residual coding may not be
able to benefit from all the mutual information between X and Y . Our measurements
indicate that in scenario XY, the mutual information between the side information �xt

and CF estimation residual �εCF,t, is 2.51 bits, while the mutual information between
�xt and �yt is 5.85 bits. The mutual information between the LE estimation residual
and �xt is measured to be 2.82 bits. In other words, the CF estimation residual has
nearly 43% of the initial mutual information between �xt and �yt. Note also, that CF
residual has less mutual information that LE residual, indicating that CF provides
a better estimation than LE. Similar results were also obtained for scenarios XXY,
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XYX, XY X. The mutual information measurements were conducted using GMM
with diagonal covariance matrices, 1024 Gaussians and 106 samples for the Monte
Carlo integration.

We attempt to gain from the mutual information between the estimation residual
and the side information, by using CVQ presented in section 8.2. CVQ will be used
to encode the estimation residual, and not �yt. When CVQ is used to directly encode
�yt the results were worse than the results obtained from a simple VQ of the linear
estimation (LE ) residual. However, as the number of X-space classes M increases
from 32 to 512, the results were improving, indicating that a much higher M is
required for a proper modeling of the input-output space relationship. The removal
of a simple rotational relationship between Y -space and X-space by LE was enough
to let CVQ benefit from the (remaining) mutual information.

8.4.3 Experiments

For the scenarios presented in Section 8.4.1, two modes will be evaluated for the
recovery of lost LSFs:

• estimation mode (no data transmission), using the following estimators:

– Linear Estimation (LE)

– GMM Conversion Function (CF)

• CSI mode (with data transmission), using the following methods:

– VQ of the LE Residual (VQLE)

– VQ of CF Residual (VQCF)

– CVQ coding of LE residual (CVQLE)

– CVQ coding of CF residual (CVQCF)

The experiments were conducted using the whole training set of TIMIT database
for training and the whole testing set of TIMIT for testing. A sequence of LSF
vectors (10 LSFs/frame) was extracted using analysis frames of 25ms at a rate of
50 frames/sec (5 ms overlap). For each scenario, all available X-space and Y -space
features were collected from the LSF sequence, excluding silent frames. The AR filter
was computed from the full narrowband (0-4 kHz) signal with the autocorrelation
method using preemphasis (µ = 0.95). The Spectral Distortion measure that is used
is given by:

D(Xt, X̃t) =
1

π

∫ π

0

(
20 log10

|Xt(e
jω)|

|X̃t(ejω)|

)2

dω (8.18)

where |Xt(e
jω)|,|X̃t(e

jω)| is the original spectrum and the reconstructed spectrum
respectively. Simple averaging was used for the evaluation over the test-set.
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Figure 8.5 CSI Rate-Distortion curves for each scenario and each CSI
method. Note that CVQLE and CVQCF uses M=256 X-space classes.

The linear system that has to be solved for CF training [172], is ill-conditioned
in scenarios XXY, XYX, XY X, where X-space has 20 dimensions. A dimensionality
reduction via PCA (Principal Component Analysis) to the 18 strongest dimensions
was used to avoid the ill-conditioning. This indicates the existence of redundancy
in X-space. In all scenarios, the CF estimator had 128 Gaussians, and CVQ had
M=256 input space codevectors. The size of the Y -space codebook in CVQ was
constrained to have at most 4096 vectors. Therefore, K = {21, 22, 23, 24} Y |X-space
classes.

8.4.4 Results

The experiment results are shown in Figure 8.5. Rate-Distortion measurements are
plotted for each scenario and each CSI method (VQLE, VQCF, CVQLE, CVQCF ).
Since each CSI method is associated with an estimation method, it is convenient to
represent the estimator performance as the performance of the corresponding CSI
scheme at the rate of 0 bits/frame (no FEC transmission). This allows a direct
comparison of CSI techniques and estimation methods, in terms of distortion.

Regarding estimation methods, CF outperforms LE in all scenarios, especially
in scenario XXY, where 3.35 dB were obtained. These results are similar to those
presented in [167]. Having the performance of CF in scenario XXY as a reference,



146 Chapter 8 Coding with Side Information

jitter buffer provides an improvement of 0.35-0.90 dB when CF estimation is used.
In all scenarios, distortion can be significantly reduced with a few bits. Regarding

CSI techniques, it is clearly seen that VQ-based residual coding can benefit from a
better estimator, i.e. VQCF outperforms the widely used VQLE at least 0.5 bit,
while in scenario XXY the gain is greater than 1 bit. The clear advantage of VQCF
over VQLE in scenario XXY suggests using a “predictive” VQ technique based on
CF estimation for “transparent” residual coding of LSFs [173]. On the contrary,
CVQ-based residual coding is less dependent on the estimator and provides similar
performance for both estimators in all scenarios except XXY. Furthermore, CVQ
always benefits from the available mutual information between the residual and the
side information, providing an improvement of 1 bit over the widely used VQLE, and
a gain of 0.75-1 bit over VQCF.

For single packet losses, just 4 bits/frame of FEC data encoded with CVQLE
provide a 42% distortion reduction (-1.42 dB) over the best “predictive” estimation
(3.35 dB using CF in scenario XXY), and a 21% distortion reduction (-0.54 dB) over
CF estimation in scenario XYX. For double packet losses, Figure 8.5d shows only
the distortion from the reconstruction of the first lost vector. Note, that the recovery
of the second lost vector is made from the reconstructed first vector as stated in
Section 8.4.1. However, our measurements showed that when this cascaded form of
CSI recovery is made, the second lost vector is reconstructed with less distortion than
the first lost vector. Therefore, double packet losses can be recovered with at least
25% distortion reduction (-0.75 dB) over CF estimation, and at least 32% distortion
reduction (-1.10 dB) over the best “predictive” estimation, using only 4 additional
bits.

Since both CVQ-based methods have the same performance, and CVQLE is more
simple than CVQCF, we chose CVQLE for informal subjective testing, assuming a
2 frame (40ms) jitter buffer, and using 4 bits/frame of FEC data for scenario XYX
and 4 bits/fra-me for scenario XY X. These 8 bits/frame of FEC data were used to
recover from 1 or 2 packet losses as stated in Section 8.4.1. LSFs were computed from
the speech signal, according to Section 8.4.3, and speech was inverse filtered using
the original AR filter parameters. An amount of 5%-25% losses was introduced to
the LSF vector sequence, constricted to generate either 1 or 2 sequential losses. The
proposed CVQLE methods were compared to simple interpolation. Speech signal was
then synthesized from the original excitation and the reconstructed LSFs. Informal
listening tests showed that envelope related artifacts were fewer and milder with
CVQLE.

The results from the reported subjective tests show that artifacts related to spec-
tral envelope distortions can be efficiently removed based on the proposed approach.
For speech codecs that rely explicitly on the use of an excitation signal (e.g., CELP-
based coders), additional tests should be conducted including the coding of the ex-
citation signal. Obviously, in this case a deterioration of the obtained quality is
expected. On the other hand, the spectral envelope information is very important
for the quality of the reconstructed signal for speech coders based on the sinusoidal
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representation [1] where the excitation signal is obtained through a phase model that
is based on the spectral envelope information.

8.5 Speech Spectrum Expansion

The problem of BandWidth Expansion (BWE) has gained attention as a cost effective
way to enhance narrow-band speech into wideband. The main assumption is that
narrow-band (NB) speech contains enough information for the reconstruction of the
missing highband (HB) frequencies. Another assumption is that the listener does
not need an exact reconstruction of the lost frequencies but a perceptually valid
one. Consequently, many researchers try to estimate the lost information from the
transmitted information [158], [159], [160], [161], [164]. Narrow-band features, like
spectral envelopes under several parameterizations, pitch, voicing, zero-crossing etc,
have been extracted from the narrow-band speech signal and used for the estimation of
a highband features. The highband is then reconstructed from these features, usually
an LSF (Line Spectrum Frequencies) spectral envelope [29] and a gain parameter. The
highband excitation is often an altered form of the narrow-band excitation [161] or
modulated white noise [174]. Reconstructed speech suffers from artifacts like whistling
sounds and crispy sounds whose nature is associated with the employed excitation.
These artifacts disappear if the highband LSF are encoded with a few bits. However,
the distortion at which this happens is significantly lower that the distortion resulting
from the estimation. Therefore, it seems that a high quality reconstruction of the
highband cannot be based solely on estimation.

This section investigates the expansion of the narrowband speech spectrum to
wideband and proposes a split-band approach to wideband speech coding similar
to the one proposed in [174]. The focus is given to the highband spectral enve-
lope and CVQ is used to benefit from the correlations between the two bands. The
proposed SSE system demonstrates that the bit-rate requirements for high quality
bandwidth expansion are actually very low and it constitutes the basis for a wide-
band speech codec that needs only slightly more bit-rate than the corresponding
narrowband speech codec.

8.5.1 The Expansion System

The expansion system consists of a highband encoder and a highband decoder. The
encoder (Figure 8.6a) receives the wideband speech signal and splits it in two bands,
the 0-4 kHz narrowband and the 4-8 kHz highband. The narrowband signal is treated
independently of the highband and it may be quantized, while the highband is mod-
elled and coded for the transmission. The highband model consists of the energy ratio
(in decibel) between the two bands and 10 LSF parameters describing a 10-th order
AR filter. The LSF parameterization is preferred for it’s useful coding and stability
properties [1]. At the decoder (Figure 8.6a), the wideband signal is resynthesized from
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Figure 8.6 The Speech Spectrum Expansion system.

the transmitted narrowband signal and the reconstructed highband signal, according
to the energy ratio and the highband LSF.

The encoder (Figure 8.6a) computes the highband parameters from the sub-
sampled highband. The sub-sampling flips the highband spectrum into the 0-4 kHz
spectrum. The AR polynomial is computed using the autocorrelation method and it
is transformed to LSF parameters. The highband LSF describe the flipped 4-8 kHz
spectrum and can be flipped back using the following formula [174]:

LSF (i)flip = π − LSF (P − i + 1),

where P = 10 is the order of the AR filter. The flipped highband LSFs are then CVQ-
encoded using the narrowband LSF and log2(K) bits. The decoder (Figure 8.6b)
computes the narrowband LSF and uses the transmitted CVQ information to decode
the highband LSF or drops the CVQ bits and estimates the highband LSF with one
of the estimators seen in Section 8.3.

The highband signal is reconstructed by exciting the 10-th order AR filter with
modulated white noise. The modulation is done with the time envelope of the 3-4
kHz transmitted narrowband signal. The synthesis is not done via OLA (OverLap
Add), since OLA in the case of noise synthesis -our case- may introduce audible
fluctuations [175], but with a variable lattice filter and sample by sample interpolation
of the reflection coefficients.

If the highband envelope is excited with unmodulated white gaussian noise, the
reconstructed wideband speech contains an unnatural noisy sound. Modulating with
the time envelope removes this artificial sound and provides a high quality highband.
The time envelope gives a pitch dependent temporal structure and thus a phase
information to the white noise. The noise is better integrated when the noise bursts
are concentrated around pitch closure instants [163].

The time envelope is computed by filtering the absolute value of the 3-4 kHz speech
signal with a simple lowpass filter of 300 Hz cutoff frequency. When the highband
spectral envelope is well estimated or coded, the modulation produces high quality
wideband speech. To the contrary, highband envelope errors tend to be amplified
due to errors in the excitation signal. This is caused by rapid amplitude variations of
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the time envelope, mainly in unvoiced parts of speech. To cope with this, we follow
a strategy similar to [174] and filter the time envelope with a lowpass variable filter
controlled by a simple voicing criterion, based on the energy ratio.

8.5.2 Objective Evaluation

We conducted several experiments to evaluate the quality of the reconstruction of
highband spectral envelopes using the previously presented estimators, CVQ and
simple VQ. All experiments were conducted using the TIMIT database. LSF param-
eterization was used for representing the spectral envelopes in the low and in the high
band using 14 and 10 size vectors, respectively. Each experiment involves the use
of approximately 730,000 LSF vectors for training and about 270,000 LSF vectors
for testing, while frames considered as silence were excluded from the training or the
testing corpus. A pre-emphasis filter with µ = 0.95 was applied on the narrow-band
signal. The length of the analysis window was set to 30ms. Voicing decisions -when
needed- were made according to the energy ratio between the narrowband and the
highband. As an objective metric, we used the symmetric Kullback Leibler (SKL)
distance given by:

dSKL(P, Q) =
1

2π

∫ 2π

0

(P (θ) − Q(θ)) log
P (θ)

Q(θ)
dθ (8.19)

where P (θ),Q(θ) are the two power-normalized spectral envelopes. The SKL distance
can also be seen as a weighted formant distance [176] and it seems to reflect the
perceptual differences between AR spectra [177]. The SKL distance was chosen as an
alternative to spectral distortion.

Figure 8.7 depicts the mean SKL distance of the presented estimators. The hor-
izontal axis refers to the number of X-space classes used by the estimator. For
example, the NLIVQ estimator has been tested for 16, 32, ..., 2048, 4096 classes,
while the GMMCF estimator has been tested for 128 classes. Accordingly, a multi-
ple estimator system with 2 GMMCF estimators (one for voiced frames and one for
unvoiced frames) had 2*128=256 classes, and a voiced/semivoiced/unvoiced system
had 384 classes. Results from the NLIVQ estimator are linked with a line to indicate
the convergence of the estimator. The horizontal dotted line shows the mean SKL
distance achieved when the highband is encoded with just 1 bit. From this figure, it
is worthwhile to note that even the best estimator cannot provide 1 bit regarding the
highband spectral envelope.

The performance of CVQ for 1,2,3 and 4 bits/frame and 128 classes for the X-space
is shown in Figure 8.8, where we have also included the performance of simple Y -
space VQ with 1...5 bits, and the performance of the previously mentioned estimators.
Clearly, CVQ outperforms VQ. Notice that CVQ benefits more from the mutual
information, as the number of bits, log2(K), is increasing 1. For CVQ with 1 bit/frame

1K is the size of each linked subcodebook



150 Chapter 8 Coding with Side Information

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

number of X−space classes

m
ea

n 
S

K
L 

di
st

an
ce

1 bit

NLIVQ
GMMCF
GMMCF Voiced/Unvoiced
GMMCF Voiced/Semivoiced/Unvoiced
Highband Coding with 1 bit

Figure 8.7 The performance (SKL mean distance) of a NLIVQ estimator
and three GMMCF based estimators, in comparison with the SKL distortion
of a simple highband VQ with 1 bit

1 1.5 2 2.5 3 3.5 4 4.5 5
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

bits/frame

m
ea

n 
S

K
L 

di
st

an
ce

NLIVQ

GMMCF

GMMCF V/S/U

VQ
CVQ

Figure 8.8 The performance of CVQ with 128 X-space classes, in compar-
ison with the SKL distortion of a simple highband VQ with 1,2,3,4,5 bits.
The performance of the estimators is indicated with horizontal lines.



8.5 Speech Spectrum Expansion 151

the distortion is slightly below the distortion of VQ with the same rate. It is a slight
improvement compared to the performance of the best estimator (nearly 1 bit/frame),
but it is much better than the performance of the NLIVQ estimator. Note that the
best estimator has extra voicing information and uses second order local statistics
(covariances) to perform the mapping between X-space and Y -space. Therefore,
CVQ can be directly compared with NLIVQ which is a special case of CVQ (K = 1).
As coding rate Ry|x = log2 K increases, CVQ gains approximately 1 bit from the
available mutual information, in terms of the SKL-based distortion. In relative terms,
CVQ offers a 20% improvement over simple VQ.

8.5.3 Subjective Evaluation

The described speech spectrum expansion system was subjectively evaluated for the
three following cases:

• original highband LSFs.

• estimated highband LSFs by NLIVQ with 128 classes.

• estimated/coded highband LSFs by the proposed method with 134 bits/sec.

The first two subjective tests were conducted in order to determine an upper and lower
bound, respectively, for the subjective quality of the proposed CVQ-based method.
For the third test we used 128 X-space classes and 4 bits/frame (1-to-16 mapping).
Since the evolution of highband envelopes in time is relatively slow, and the human
ear is insensitive to errors in these higher frequencies, a frame rate of 33.3 frames/sec
(thus 134 bits/sec) was found to be sufficient. Note that all tests use the original
energy ratio.

The evaluation was conducted with a DCR (Degradation Category Rating) test [1].
The subjects were presented with the original wideband signal and the reconstructed
wideband signal, and were asked to vote the degradation of the latter according to
the former. The DCR scale is shown in Table 8.2.

All the tests were conducted with PHILLIPS SBC-HP800 headphones and a
SoundBlaster Extigy sound card, in an office environment. Listeners were initially
presented with written instructions and one example for each of the gradings: 5,3,1.
Each listener received a different randomization of the stimuli. The initiation of each
stimuli was made automatically, but the listener also had the option to reinitiate the
stimuli by clicking a button. A short tone preceded the stimuli initiation to prepare
the listener for the initiation. The listener voted by clicking a button, and a new stim-
uli was presented to him. All stimuli were energy normalized to the same acoustic
level.

For the first two tests, 29 listeners participated, and they were asked to vote
for 41 utterances from test set speakers; 14 utterances for the NLIVQ estimator, 14
utterances using the original LSFs, a null set of 5 stimuli used to check the bias of
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the listener [1], and 4 stimuli repeated for each test, to check if the listener had a
consistent opinion. A few extreme cases of outlier listeners who obviously failed to the
null set and to the repeated stimuli set, were excluded. The test for the CVQ scheme
was conducted with 19 listeners, using 16 utterances from the test set, 4 repeated
utterances and 5 null set utterances, under the very same conditions.

Table 8.3 states that using a synthetic excitation and the original LSFs produces
a high quality wideband speech, almost indistinguishable from the original. The
NLIVQ estimator did not perform well, as expected. The proposed scheme gets a
very good DCR score which is close to the score obtained using the original LSFs.
This shows that the highband envelope is well represented by only 134 bits/sec.

All the experiments in this section were conducted using the TIMIT database
training set (738431 samples) for training, and the TIMIT test set (271366 samples)
for testing, preemphasis at the narrowband, 30ms windows, 14 LSFs for the X-space,
and 10 LSFs for the Y-space.

The proposed method can be used to construct a highband expansion coder. We
found that it suffices to quantize the energy ratio with 6 bits and use 4 bit CVQ for
the highband spectral envelopes. For a frame rate of 50 frames/sec, the highband
expansion coder requires 0.5 kbps, while for a frame rate of 100 frames/sec the coder
requires 1 kbps. The coder is evaluated in Chapter 9 where it is applied on quantized
narrowband speech.

Description Rating

Degradation is not perceived 5
Degradation is perceived but not annoying 4
Degradation is slightly annoying 3
Degradation is annoying 2
Degradation is very annoying 1

Table 8.2 DCR test scale.

Estimator DCR score(95% CI)

NLIVQ estimator with 128 classes 3.59 (0.23)
CVQ with 4 bits/frame 4.41 (0.20)
ORIGINAL highband envelope 4.67 (0.15)

Table 8.3 Average DCR score (and 95% Confidence Interval) using the
original wideband signal as reference.



Chapter 9

Harmonic Coding of Speech for
VoIP

This chapter presents a narrowband speech codec, referred to as HMC (Harmonic
Model Codec) that is based on the Harmonic-Model representation. The codec sum-
marizes some of the results presented in the previous chapters to demonstrate the
potential of Harmonic Models for speech coding. Each frame is encoded indepen-
dently of the other frames, in order to recover instantaneously from a packet loss.

Two versions of the codec are developed, differing solely on the employed quan-
tizers for the spectral envelope and the harmonic phases. The first version is referred
to as HMC-SD (Harmonic Model Codec - Single Description) and it is a variable-rate
single description codec that requires about 12.9-14.2 kbps on average with speech
quality that is equivalent to iLBC. The second version, HMC-MD (Harmonic Model
Codec - Multiple Description), is a multiple description codec that generates two de-
scriptions for each frame using about 21 kbps on average. The codecs show to be
robust upon packet losses.

9.1 Harmonic Model Analysis/Synthesis procedure

The codec receives the narrowband speech signal x[n] at a sampling rate of 8000
samples/sec. The signal is analyzed with fixed 20 ms frames (160 samples) every
10 ms (80 samples) using a Hanning window. The synthesis is made using simple
OLA (OverLap-Add) techniques. The analysis/synthesis OLA buffers are schemat-
ically shown in Figure 9.1. The encoder has an algorithmic delay of 15 ms: 10 ms
for the analysis/synthesis window plus another 5 ms for the 30 ms window that is
used for pitch detection purposes. The decoder holds a jitter buffer of future speech
frames which are used for PLC purposes upon a signaled packet-loss. Each frame is
encoded/decoded independently of the other frames. The PLC unit is used only when
the current frame (the frame that describes the 10 ms of speech that should be send
to the playout device) is not received. In that case, it synthesizes the current 10 ms of
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Figure 9.1 Analysis/Synthesis OLA buffers for the HMC codec.

speech using interpolation or extrapolation according to the PLC algorithm described
in Chapter 5, and suitably updates the codec’s internal states and OLA buffers. The
encoding and the decoding procedure of a single frame is shown in Figure 9.3.

9.1.1 HMC Encoder

The encoder receives the narrowband speech signal x[n] sampled with 8000 sam-
ples/sec and encodes each frame independently of the others. A schematic represen-
tation is shown in Figure 9.3a.

Pitch Detection and Voicing Detection
The Analysis-by-Synthesis pitch detection algorithm described in Section 2.5.2 is

then used to determine the following parameters:

e: the energy of the frame (in decibel)

f0: the pitch value in Hz.

VU: binary Voiced/Unvoiced decision

Pv: probability of voicing

The voicing decision VU is made according to the rules presented in Section 2.5.3 and
uses the normalized SNRnorm, the zero-crossings ζ and the SNR when the amplitudes
are sampled from a 16-th order RCC cepstral envelope that fits the harmonic ampli-
tudes. The probability of voicing is computed according to the following equation:

Pv(SNRnorm) =

⎧⎨
⎩

0, SNRnorm < 5
SNRnorm−5

5
, 5 ≥ SNRnorm ≥ 10

1, SNRnorm > 10
(9.1)
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The voicing decision VU is used for analysis/synthesis, while Pv is used solely for PLC.
Note that the VU decision is biased towards declaring unvoiced frames as voiced,
because quantizing a unvoiced frame as a voiced has no perceptual impact in HMC,
while the opposite does. However, such a voicing decision cannot be used for PLC
purposes. A soft voicing criterion, the voicing probability, is more suitable for PLC.
In unvoiced frames, the pitch is set to a fixed value of f0 = 100 Hz. We used the pitch
detection algorithm that was proposed in Section 2.5. The pitch detection algorithm
needs a lookahead of 15 ms for the initial “coarse search” step on the 30 ms speech
frame.

The speech frames are classified in four categories which effect the quantization
procedure:

silent: when the energy e of the frame is below -70 dB.

unvoiced: when VU=unvoiced. The pitch f0 and the phase information ψk, τ are
not encoded for these frames because unvoiced frames are reconstructed using
random phases and fixed pitch f0 = 100 Hz.

transitional: when VU=voiced and P (SNRnorm) = 0 (that is SNRnorm ≤5 dB).

voiced: when VU=voiced and P (SNRnorm) > 0 (that is SNRnorm >5 dB).

Harmonic Model analysis
The harmonic amplitudes and phases can be determined by solving the least-

squares linear system described in Section 2.2. Only the harmonics below 3700 Hz
are estimated. The output of the HM analysis unit is the following parameters:

Ak: K harmonic amplitudes

φk: K harmonic phases

Cepstral Envelope extraction
A 20-th order real cepstral envelope is computed from the harmonic amplitudes

Ak, according to Section 2.4. The cepstral envelope is computed using Bark-scale
with regularization constant λ = 0.002. The following parameters result from the
Cepstral Envelope extraction unit:

RCC: 20 Real Cepstrum Coefficients describing the spectral envelope

Dispersion Phase extraction
Since the phases of unvoiced frames are not quantized, the dispersion phase is

extracted only for transitional and voiced frames. The RCC cepstral envelope is
sampled at the harmonics of f0 to yield the phase response of the spectral envelope
∠Hs(kf0):

∠Hs(kf0) = −2
20∑

p=1

cp sin(2πkf0p). (9.2)
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The harmonic phases φk, k = 1, ..., K are then decomposed to the linear phase term
k 2πf0

Fs
τ and the dispersion phase term ψk:

φk = k
2πf0

Fs

τ + ∠Hs(kf0) + ψk, (9.3)

where Fs is the sampling rate (8000 samples/sec). The two phase terms are esti-
mated according to the phase decomposition procedure described in Section 4.2. The
translation term τ is between [0, T0], where T0 is the fundamental period, and it is
estimated with an accuracy of 7 bits. Summarizing, the output of the dispersion
phase unit are the following parameters:

τ : the translation parameter

ψk: K dispersion phases

Encode Scalar Parameters
The parameters f0, e, τ , VU, Pv are encoded with scalar quantizers. The pitch

f0 is quantized to f̂0 with 8 bits using a codebook trained with pitch samples from
TIMIT train-set. The same train-set was used to compute a codebook that quantizes
energy e with 8 bits in the log-domain (in decibel). The translation parameter τ uses
7-bit uniform quantization in [0, 8000

f̂0
]. The VU decision and the voicing probability

Pv are jointly encoded with 3 bits according to the Table 9.1. The pitch f0 and the
translation term τ is not encoded for unvoiced frames.

bits VU Pv frame type
000 U 0 unvoiced frame
001 V 0 transitional frame
010 V 0.1 voiced frame
011 V 0.3 voiced frame
100 V 0.5 voiced frame
101 V 0.7 voiced frame
110 V 0.9 voiced frame
111 V 1.0 voiced frame

Table 9.1 Encoding of voiced/unvoiced decision VU, voicing probability Pv

and frame classification using 3 bits.

Encode RCC and Dispersion phases
The 20 RCC parameters and the dispersion phases are encoded using single de-

scription quantizers for the HMC-SD codec and multiple description quantizers for the
HMC-MD codec. The quantizers of the RCC parameters were based on GMM while
the quantizers of the dispersion phase parameters were based on WGMM. Different
rates are used for unvoiced, transitional and voiced frames. The tradeoff’s between
quality and rate are examined in Sections 9.2 and 9.3.
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Figure 9.2 MSE for backwards predictive quantization of energy using scalar
quantization (SQ) and scalar CVQ of the linear prediction residual. Time
instant i refers to the i-th past frame that is recursively quantized.

Side Information for PLC
The performance of the PLC unit can be enhanced by introducing a small correc-

tive bitstream with the necessary side information. We found that the most important
parameter for the PLC unit is the frame energy, and so we propose a backwards pre-
dictive quantization scheme for the energy e. Therefore, for each transmitted packet
(that may contain more than one speech frames) we quantize the energy of the pre-
vious speech frames using the last received frame energy as side information. This is
made in an recursive manner: the energy of the (n − 1)-th frame is quantized using
the energy of the n-th frame as side information. Then, the energy of the (n − 2)-th
frame is quantized conditioned on the energy of the (n− 1)-th frame, and so on. The
procedure is repeated until we quantize a predefined number of past frame energies.
This information is useful when packets are lost at the boundaries of spoken words,
where interpolation of the energy may lead to unnaturally lengthened beginnings (i.e.
onset frames) or endings. For a jitter-buffer of four frames, it makes sense to quantize
4 past energies, so that the reconstruction upon interpolation is made according to
the recovered energy of the frames. The backwards predictive quantization is made
using the scalar version of CVQ for the quantization of the prediction residual at 3
bits/frame. A total of 64 X-space classes are used for CVQ. Figure 9.2 shows the av-
erage quantization error of the energy when the prediction residual is quantized with
scalar quantization (SQ) and with scalar CVQ. CVQ gains about 0.4 dB in distortion
over SQ. Note that the energy is expressed in decibel, while the distortion is not.
Assuming that we put two frames in one packet, the corrective bitstream requires
600 bits/sec.
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9.1.2 HMC Decoder

The decoder receives the bitstream and decodes each frame independently of the
previous. The decoding is made according to the type of the frame (unvoiced, transi-
tional, or voiced). A schematic representation is shown in Figure 9.3b. The following
notation is used:

ê: quantized frame energy

f̂0: quantized pitch (in Hz)

τ : translation parameter (linear phase component)

VU: voiced/unvoiced decision

RĈC: quantized RCC parameters (20 dimensions)

K : the number of harmonics K = �3700

f̂0
�.

RĈC: the quantized cepstral envelope

ĉp: the p-th coefficient of RĈC (p=1,...,20)

Âk: the K quantized harmonic amplitudes

Ãk: the K quantized harmonic amplitudes after post-processing

ψ̂k: the K quantized dispersion phases

φ̂k: the K reconstructed harmonic phases

∠Ĥs(kf̂0): the phase response of the quantized spectral envelope Ĥs(·) at the har-
monics.

Silent and Unvoiced Frames
The frame is considered to be ”silent” if the quantized energy ê is below -70 dB.

Silent and unvoiced non-silent frames are reconstructed in a similar manner. The
spectrum is reconstructed with harmonics of fundamental frequency f̂0 = 100 Hz,
up to 3700 Hz. The amplitudes Âk are sampled from the quantized RCC cepstral
envelope according to the following formula (see eq. (2.20)):

Âk = exp

(
2

20∑
p=1

ĉp cos(2πkf̂0p)

)
, (9.4)

where ĉp, p = 1, ..., 20 is the p-th cepstral coefficient. The harmonic phases φ̂k are set
to be random, uniformly distributed in (−π, π]. Prior to synthesis, the amplitudes
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Âk are post-filtered at the frequency domain, using the post-filtering technique of
Section 2.4.2. The synthesis is made with the post-filtered amplitudes Ãk.

Transitional and Voiced Frames
Transitional and voiced frames are reconstructed the same way, but at different bit

rates. The quantized RCC cepstral envelope is sampled at the harmonics of f̂0 to get
the amplitudes Âk (see eq. (9.4)) and the phase responce ∠Ĥs(kf̂0) of the minimum
phase cepstral envelope (see eq. (9.2)).

The quantized dispersion phases ψ̂k and the translation parameter τ are composed
to yield the harmonic phases φ̂k according to equation (9.3). The harmonic amplitudes
are post-filtered prior to synthesis as made for the silent and the unvoiced frames,
using the adaptive post-filtering method presented in Section 2.4.2. The post-filtering
reduces a slight “loss of presence” effect that the synthesized speech has. Note that
the quantized voicing probability P̂v is used only by the PLC algorithm, in the case
of a packet loss.

Packet Loss Concealment
Packet losses are handled by the PLC algorithm proposed in Chapter 5. The

algorithm uses the jitter buffer to perform interpolation when a future speech frame
is available and extrapolation when the jitter buffer is empty. The harmonics are
classified as voiced and unvoiced and a different type of synthesis is used for each
case. When interpolation is used, the harmonics of the start-frame are linked to the
harmonics of the end-frame via a pair-matching or a death-birth procedure. The
paired sinusoids, which may not be harmonically related anymore, are synthesized
according to their voicing state at the start-frame and the end-frame. The interpo-
lation between two voiced harmonics is made using a cubic phase model. The PLC
can also be assisted by a small corrective bitstream that holds energy information
regarding past frames, as it is described in Section 9.1.1.

9.2 HMC-SD: Single Description Quantization

This section describes the single description version of HMC (HMC-SD). GMM-based
quantization is used to encode the RCC cepstral envelope, while the phases are en-
coded with the WGMM-based quantization scheme that is proposed in Section 4.6.
Both schemes are trained with the TIMIT training set using a relatively low num-
ber of components; 16 Gaussians for the RCC and 32 Wrapped Gaussians for the
phases. The WGMM-based quantization was made using PCF-based wrapped Gaus-
sian quantizers and the corresponding empirical bit-allocation algorithm, presented
in Section 4.5.2.

Three different instances of the HMC-SD are evaluated. The three instances
differ solely on the allocation of bits to the RCC and phase quantizers, for each
frame class (silent, unvoiced, transitional, voiced). At all instances, the frame refresh
rate is 100 Hz, corresponding to one frame every 10 ms. The bit-allocation for the
three codec instances HMC-SDa, HMC-SDb, HMC-SDc and for each frame type is
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summarized in Table 9.2. An evaluation of the average rate is made using 64 male
utterances and 64 female utterances from TIMIT test-set. The average rates per
utterance are presented in Table 9.2, along with standard deviations.

CODEC HMC-SDa HMC-SDb HMC-SDc

Parameters RCC ψlow
k ψhigh

k RCC ψlow
k ψhigh

k RCC ψlow
k ψhigh

k

Silent 20 0 0 20 0 0 20 0 0
Unvoiced 60 0 0 60 0 0 50 0 0

Transitional 50 70 30 50 60 20 50 50 17
Voiced 60 70 30 60 60 20 50 50 17

Average (all) 14191 (1076) 12926 (898) 11337 (763)
Average (males) 14698 (1074) 13280 (927) 11638 (782)

Average (females) 13684 (811) 12572 (715) 11032 (612)

Table 9.2 Bit-allocation for the RCC parameters, the lower frequency phases
ψlow

k and the high frequency phases ψhigh
k , for three HMC-SD instances. The

average rates for all test-set utterances, male and female speakers are also
included along with the standard deviation.

The codecs are objectively evaluated in terms of PESQ-MOS (Perceptual Evalu-
ation Subjective Quality - Mean Opinion Score) [5]. PESQ is an ITU standardized
algorithm that predicts the MOS (Mean Opinion Score) of the quantized speech. The
MOS score is the sample average of the so-called ACR (Absolute Category Rating)
scale ( [1] pg. 476) which measures the subjective quality of speech according to
Table 9.3. The evaluation was made for the following cases:

AS: Harmonic Model Analysis/Synthesis

AS-RCC: Harmonic Model Analysis/Synthesis with amplitudes derived from a 20-
th order RCC cepstral envelope. This system is a version of HMC-SD with
unquantized parameters.

iLBC: internet Low Bit-Rate Codec (20 ms version, 15.2 kbps, fixed rate)

HMC-SDa: codec instance A (14.2 kbps, variable rate)

HMC-SDb: codec instance B (12.9 kbps, variable rate)

HMC-SDc: codec instance C (11.3 kbps, variable rate)

The proposed HMC-SD codecs are compared to iLBC [40], a narrowband codec that
also encodes speech in independent packets which contain 20 ms or 30 ms of speech.
The 20 ms version of iLBC requires a fixed-rate of 15.2 kbps, while the 30 ms version
requires 13.33 kbps. The latter codec is chosen as a plausible competitive choice to
HMC-SD because it operates at similar rates, it also has the packet independence
property and it is narrowband.
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Figure 9.4 PESQ-MOS evaluation (mean and 95% confidence interval) of
the Single Description HM codec, iLBC and the analysis/synthesis systems.

The measurements were made with the same 64 male utterances and 64 female
utterances from TIMIT test-set used for the evaluation of the average rate. The results
are plotted in Figure 9.4. We can observe that the AS system delivers high quality
speech of PESQ-MOS equal to 3.95 and that sampling the harmonic amplitudes from
the RCC cepstral envelope does not effect the PESQ-MOS. All codecs perform better
for male speakers than for female speakers, while the deviation between the two
genders is higher for iLBC. The HMC-SDa and HMC-SDb have similar performance
to iLBC. The low bitrate instant HMC-SDc is worse than all other cases.

Description ACR Rating

Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

Table 9.3 Absolute Category Rating (ACR) scale of subjective speech qual-
ity.
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9.3 HMC-MD: Multiple Description Quantization

This section describes the multiple description version of HMC (HMC-MD). The
only difference of HMC-MD from HMC-SD is that the former encodes the RCC
envelopes and the dispersion phases with multiple description quantizers. The other
parameters are quantized as in HMC-SD with single description quantizers and they
are repeated to each side description packet. Furthermore, HMC-MD uses the same
GMM and WGMM that were used in HMC-SD. In MDC-MD, the RCC envelopes
are quantized with the GMM-based MDC quantization algorithm (GMM-MDSQTC)
described in Section 6.3, while the dispersion phases are quantized with the WGMM-
based MDC scheme proposed in Section 6.4. The RCC quantizer GMM-MDSQTC was
restricted to a maximum of 4 bits/dimension per side description in order to limit
the number of precomputed MDSQ codebooks. Alternatively, similar central/side
distortion tradeoffs can be obtained with the GMM-MDTC scheme that is proposed
in Section 7.2. The GMM-MDSQTC was chosen for two reasons: first, it adapts
instantly to different rates, second, the precomputed MDSQ codebooks are shared
with the WGMM-based phase quantization scheme.

Two different instances of the HMC-MD are evaluated. The instances differ solely
on the allocation of bits to the RCC and phase quantizers. As in HMC-SD, the
frame refresh rate is 100 Hz, corresponding to one frame every 10 ms. Each frame is
then encoded in two descriptions, yielding a total rate of 200 descriptions/sec. The
bit-allocation for the two HMC-MD instances HMC-MDa, HMC-MDb and for each
frame type is summarized in Table 9.2. The rates in Table 9.2 correspond to the rate
allocated for both descriptions. An evaluation of the average rate is made using the
same test-set as HMC-SD (64 male and 64 female utterances). The average rates per
utterance are presented in Table 9.4, along with standard deviations.

CODEC HMC-MDa HMC-MDb

Parameters RCC ψlow
k ψhigh

k RCC ψlow
k ψhigh

k

Silent 30 0 0 30 0 0
Unvoiced 90 0 0 80 0 0

Transitional 70 90 40 60 80 30
Voiced 90 90 40 80 80 30

Average (all) 20823 (1495) 18726 (1266)
Average (males) 21484 (1511) 19231 (1308)

Average (females) 20151 (1144) 18213 (995)

Table 9.4 Bit-allocation for the RCC parameters, the lower frequency phases
ψlow

k and the high frequency phases ψhigh
k , for two HMC-MD instances. The

average rates for all test-set utterances, male and female speakers are also
included along with the standard deviation.

The evaluation of a multiple description codec is not as straight-forward as the
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evaluation of a single description codec. The quality of quantized speech depends on
the total rate allocated to each description, on the central/side description tradeoff,
and on the channel conditions. We conducted some experiments to investigate the
behavior of the two proposed multiple description codecs. The evaluation is made in
terms of PESQ-MOS. Three different cases are examined for each codec:

Central Description: both descriptions are received for each frame.

Side Description 1: only the first side description is received for each frame.

Side Description 2: only the second side description is received for each frame.

The first case provides an upper bound to the quality that can be achieved by perfect
channel conditions. When the channels introduce packet losses, a large percentage
of frames will be reconstructed with only one side description. For example, if we
assume that the descriptions are routed through two identical independent symmetric
channels with 10% packet losses (packet loss probability ρ = 0.1), then 1% (ρ2 = 0.01)
of the frames will be totally lost, 18% (2ρ(1 − ρ) = 0.18) of the frames will be
recovered from a single side description, and 81% ((1− ρ)2 = 0.81) of the frames will
be recovered from both descriptions. For 20% packet losses, 32% of the frames will
be recovered from one description only. At any case, speech is reconstructed from a
mixture of high-quality central description frames and lower-quality side description
frames. In fact, even for moderate loss rates, a considerable portion of frames will be
reconstructed from one description only. Therefore, it is interesting to evaluate the
quality of speech that a single description provides as well as the quality obtained by
the central description.

The operation of HMC-MD is controlled by the central/side description tradeoff
that is selected for the operation of the GMM-based and the WGMM-based multiple
description quantizers. As we saw in Chapters 6 and 7, the central/side description
tradeoff points are controlled by the packet loss probability ρ that was used to train
the MDC quantizer. The two instances HMC-MDa and HMC-MDb are evaluated for
the central/side description tradeoffs that correspond to packet loss probabilities ρ =
{0.08, 0.16, 0.3, 0.5}. Note, however, that the MDC quantizers are train to be optimal
in MSE sense which is not necessarily optimal in a perceptual sense. Therefore,
the tradeoffs obtained in ρ = {0.08, 0.16, 0.3, 0.5} should be interpreted as possible
operating states of the HMC-MD codec and not as the actual loss probabilities for
which the codec is trained to perform optimally.

The results are depicted in Figures 9.5 and 9.6. We can observe that the PESQ-
MOS difference between the central and the side reconstructions at ρ = 0.08 is 0.186
for the HMC-MDa codec and 0.235 for the (lower rate) HMC-MDb. At higher corre-
lations, ρ = 0.5 the same difference is 0.09 for both codecs. Therefore, the operating
state of the HMC-MD codec specifies the gain that we have when we receive both
descriptions instead of one. Furthermore, the higher rate HMC-MDa is about 0.04
units better than HMC-MDb at all operating states, while it needs 2 kbps more on
average.
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The purpose of these experiments is to demonstrate some of the central/side
description quality tradeoffs provided by HMC-MD. The HMC-MD codec provides
a flexible mechanism to control the quality of the central reconstruction over the
quality of the side reconstructions. However, it is up to the VoIP system engineer to
set the several control parameters that govern the relationship between the rate, the
redundancy and the quality for the measured channel conditions.
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Figure 9.5 HMC-MDa codec Central and Side Description PESQ-MOS rat-
ings (and confidence intervals) for loss probabilities 0.08, 0.16, 0.3 and 0.5.
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Figure 9.6 HMC-MDa codec Central and Side Description PESQ-MOS rat-
ings (and confidence intervals) for loss probabilities 0.08, 0.16, 0.3 and 0.5.
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Figure 9.7 State diagram and transition probabilities for the Gilbert-Elliot
model.

9.4 Subjective Evaluations

9.4.1 Quality of Quantization

The subjective quality of the HMC codecs is evaluated via a DCR (Degradation Cate-
gory Rating) test. The listeners were presented with two stimuli, the original and the
encoded speech signal, and were asked to evaluate the degradation of the perceptual
quality that the quantization process introduced to the encoded signal. The degra-
dation was graded according to the DCR scale, which is presented in Table 8.2. A
total of 16 listeners participated on this test. The samples were randomly drawn from
a small database that was constructed from 15 male and 15 female utterances from
TIMIT test-set. Five codecs were evaluated: four HMC-based codecs HMC-SDa,
HMC-SDb, HMC-MDa, HMC-MDb and iLBC. The MDC codecs were evaluated at
the maximum correlation point ρ = 0.5. Each codec was graded about 80 times. All
signals were lowpass-filtered and decimated to an 8 kHz sampling rate. The results
are shown in Figure 9.8. The first three codecs, HMC-SDa, HMC-SDb and HMC-
MDa have similar DCR ratings to iLBC (around 4.13). This observation is consistent
with the PESQ-MOS evaluation made over these codecs. On the contrary, the fourth
codec, HMC-MDb has a much lower DCR score of 3.89 although it uses only 2 kbps
less than HMC-MDa.

Description Rating

Degradation is not perceived 5
Degradation is perceived but not annoying 4
Degradation is slightly annoying 3
Degradation is annoying 2
Degradation is very annoying 1

Table 9.5 DCR test scale.
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Figure 9.8 Subjective evaluation (mean and 95% confidence interval) of the
HMC codecs and iLBC according to the DCR test.

9.4.2 Robustness to Packet Losses

This section makes a subjective evaluation of the robustness of HMC-SD and HMC-
MD codecs to packet losses. The speech is quantized, transmitted through one or
two simulated channels and reconstructed at the decoder using PLC. As a baseline,
the iLBC codec is evaluated under the same conditions. The packets of the single
description codecs iLBC, HMC-SD, are transmitted through a single channel, while
the packets of the multiple description codec HMC-MD are transmitted through two
independent channels.

The channels introduce packet losses according to the Gilbert-Elliot (GE) model.
The Gilbert-Elliot model is a two state Markov model; the first state represents the
case where the packet is received while the second state represents the case where the
packet is lost. There are two degrees of freedom: the probability p of losing a packet
given that the previous packet is received and the probability q of losing a packet
given that the previous packet is lost. Figure 9.7 depicts the state diagram for the
Gilbert-Elliot model. The GE model provides a easy way to simulate bursty losses
in packet networks and reduces to a simple Bernoulli model when p = q. Although
the behavior of IP networks is well approximated by high order Markov Models [21],
the Gilbert-Elliot model provides a reasonably good approximation and it’s simplicity
make it a plausible choice for the study of the behavior of speech codecs under packet
losses [23], [178]. In the experiments of this section we set the probability q of loosing
a packet after a packet loss to be twice the probability p of loosing a packet when the
previous packet is received. This constrain reduces the number of free parameters to
one and provides a bursty nature to the packet loss process.

The single description codecs iLBC, HMC-SD are evaluated for packet losses of 5%,
10%, 20% and 30%, while the multiple description codec HMC-MD is evaluated for
higher packet loss probabilites of 20%, 30%, 40%, 50%. We assume that each packet
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of HMC-SD contains two frames (20 ms) and that each packet of HMC-MD contains
two side descriptions from two consecutive speech frames. Therefore, there are 50
packets/sec for HMC-SD and 50 packets/sec per channel for HMC-MD. Respectively,
the iLBC codec is evaluated using the 50 packets/sec mode (20 ms frames). A four-
frame (40 ms) jitter buffer was used in both HMC-based codecs. The HMC-SD codec
is enhanced with a 600 bps corrective bitstream that performs backwards predictive
quantization of the energy of the previous frames according to Section 9.1.2. The
HMC-SDa (14.2+0.6=14.8 kbps) and HMC-MDa (20.8 kbps) versions of the codecs
were used for the experiments. HMC-MDa was tuned to operate at the highest
correlation state (corresponding to a packet loss probability ρ = 0.5 ).

The subjective evaluation is made with a DCR (Degradation Category Rating)
test. The listeners were presented with the quantized speech signal without packet
losses and the reconstructed quantized speech signal with packet losses and voted
the degradation of the latter compared to the former, according to the DCR scale
(Table 9.5). Therefore, the experiments focus on the robustness of the codec to packet
losses.

Each listener was presented with a stimuli that was randomly drawn from a
database of stimuli. The database was constructed from 9 male and 9 female ut-
terances from TIMIT database. Each utterance was encoded with iLBC, HMC-SDa,
HMC-MDa and decoded with no packet losses and with 5%, 10%, 20%, 30% packet
losses for the single description case and 20%, 30%, 40%, 50% packet losses for
the multiple description case. Each utterance was decoded three times with dif-
ferent packet losses for each packet loss condition and for each codec. Therefore, the
database consisted of 18*4*3*3 = 648 stimuli. Each listener was presented with 3
stimuli per channel condition and codec; a total of 3*3*4=36 stimuli. Twenty lis-
teners participated to the experiment, therefore each codec at each channel condition
received 60 votes. The experiments were made using Phillips SBC-HP800 headphones
and a SoundBlaster Extigy soundcard.

The average DCR score from the experiments is shown in Figure 9.9, along with
the corresponding confidence intervals. We can observe that the HMC-SDa out-
performs iLBC at all evaluated channel conditions and that iLBC suffers a rapid
degradation for 20% packet losses. In contrast, packet losses of 20% yield a degra-
dation that is nearly not annoying for HMC-SDa. But HMC-SDa also degrades to
a DCR score less than three 3 at 30% packet losses. However, the HMC-MD codec
is capable of dealing with 30% packet losses where it provides a degradation that is
perceived but not annoying. At the very high loss rates of 50%, HMC-MDa is capable
of accepting 50% packet losses with slightly annoying degradation. Further insight
is provided in Figure 9.10 where the distribution of the votes for each of the three
codecs and each packet loss condition is shown.

The presented results demonstrate the effectiveness of the sinusoidal PLC scheme
presented in Section 5. Sinusoidal PLC seems to work well for packet losses up to
20%, but it is not enough for 30% packet losses and redundancy is needed to cope
with the increased losses. The redundancy can be introduced via an MDC framework
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Figure 9.9 Average DCR score and 95% confidence intervals of iLBC, HMC-
SDa and HMC-MDa codecs for several loss rates.

and the corresponding HMC-MDa codec is capable of dealing with higher losses of
30% and 40%. The increased robustness of the MDC codec can be attributed to the
redundancy that is introduced and to the independence between the two channels
that makes the loss of any information regarding a speech frame less probable.
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Figure 9.10 Distribution of votes for the iLBC, HMC-SDa and HMC-MDa
codecs in the DCR scale.



Chapter 10

Discussion and Future Research
Directions

10.1 Speech Coding for VoIP

This thesis presents a framework for the development of sinusoidal speech codecs
suitable for VoIP. The effectiveness of the framework is demonstrated in two proof-
of-concept codecs, a single description and a multiple description harmonic codec. A
possible usage scenario would be to use the 14.2+0.6=14.8 kbps single description
codec for packet losses up to 20% and the 20.8 kbps multiple description codec for
higher packet losses of 30% to 40%. Obviously, the codecs are not as efficient as
CELP codecs under no packet losses, but they can accept considerably more packet
losses. Would it be better to take an efficient CELP codec and add channel coding?
For example, the presented single description harmonic codec demonstrates a DCR-
score about 4.0 for 20% packet losses at a rate of ≈15 kbps. The rate is 187.5% the
rate of the 8 kbps G.729 codec, but at 20% packet losses, even if we transmit each
packet of G.729 twice (with 16 kbps), the MOS score will go below 3 (“fair”) [35]
where a conversation cannot be held. A better strategy could be to use the low rate
5.3 kbps G.723.1 with a strong Reed-Solomon channel code at triple rate. Finding the
optimal choice requires extensive experiments. This brings us back to the dilemma
posed in the introduction of this thesis: efficient source coding with channel coding
or redundant source coding with fine-tuned PLC.

This thesis follows the second option and allows redundant source coding for better
PLC. The redundancy in the single description harmonic coder is the redundancy that
naturally exists between frames. The 21 kbps multiple description harmonic coder
introduces additional redundancy within the MDC context. Therefore, comparing
these codecs with standardized codecs at 0% packet losses is unfair because both har-
monic codecs perform joint source/channel coding of speech. However, they are not
ideal joint source/channel speech codecs. Such a codec would operate like a predictive
codec at 0% packet losses and would gradually become a packet independent codec
at higher packet losses.

173
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The potential of Harmonic Codecs is not fully exploited in this thesis and many
improvements can be made. For example, when two or more frames are placed in
a single packet, the first frame can be encoded independently of the previous but
the following frames can be encoded predictively. There is an extensive literature
on predictive coding schemes for spectral envelopes. Gain and pitch can also be
encoded predictively. Finally, the dispersion phases can be encoded differentially
using WGMM-based quantization for the difference between the dispersion phases of
successive frames.

Another source of improvement is the incorporation of perceptual weighting to the
bit-allocation procedure in dispersion phase quantization using one of the psychoa-
coustic models that are widely used in audio coding. Furthermore, the quantization
process of the dispersion phases can be made with respect to a CELP-like analysis-
by-synthesis weighted SNR criterion that shapes the quantization noise. Finally, the
PCF-based quantizers for wrapped Gaussians can be extended to MDC in order to im-
prove WGMM-based MDC. However, it is not obvious how to incorporate perceptual
weighting and quantization noise shaping in a MDC codec.

Not all frames are of equal significance. The frames located in stationary parts
of the speech signal can easily be concealed with high quality. The frames located
in non-stationary parts usually result in an audible degradation after concealment.
Therefore, these frames should be protected more with multiple description schemes
if necessary. An adaptive sinusoidal codec could use MDC for the perceptually sig-
nificant frames at packet losses around 15% and then gradually extend MDC to all
frames at higher loss rates. This would operate like a gradual rate/robustness tradeoff
mechanism.

Concluding, we suggest that the single description Harmonic Model Codec can
be used in small footprint Text-To-Speech (TTS) systems. Today’s high-quality TTS
systems use a large corpus database that contains many speech segments and synthe-
size the spoken sentences by selecting an appropriate sequence of these segments. The
segments are usually stored in a sinusoidal parametric form similar to the Harmonic
Model used in this thesis [179], [76] and the ideas presented here can also be applied
to the quantization of the corpus.

10.2 Speech Analysis

Harmonic Models are widely used in speech processing as a versatile tool for speech
modeling. They are used for high quality modifications of the speech signal, like time-
scaling and pitch-scaling and many commercial Text-To-Speech systems are based on
harmonic models to concatenate small fragments of speech in order to synthesize a
spoken sentence. From the signal processing point of view, harmonic models are a
parametric representation of the signal that is lossy in the sense that it usually con-
tains only a subspace of the signal (the set of harmonic sinusoids cannot perfectly
reconstruct the waveform). However, analysis/synthesis using harmonic models pro-
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vides speech nearly indistinguishable from the original, indicating that the discarded
information is not perceptually important. Therefore, HM can be used as a frequency
domain parameterization of the speech signal. In that aspect, HM offers the ability of
performing complicated signal processing tasks on a parameterized frequency domain.

The properties of amplitude information in speech signals are well understood
and there are numerous publications on the subject. A lot of work has also been
made on the phase information of the speech signal. Unfortunately, handling phase
information has an intrinsic difficulty arising from the fact that phase is defined on
a modulo-2π space. This thesis makes a contribution to the stochastic modeling of
phases: it proposes WGMM a stochastic model that is defined over modulo-2π spaces.

Although WGMM is successfully used for quantization purposes, its importance
may extend beyond speech coding. The spectral envelope contains information re-
garding the formants of speech. The same information is also contained in the phase
response of the spectral envelope because the latter is a minimum phase envelope.
The dispersion phases are the harmonic phases after the removal of the minimum
phase response of the spectral envelope and a linear phase term that aligns the signal
to a reference point within the glottal cycle. Therefore, we can expect that dispersion
phases contain mainly non-formant phase information regarding the speech signal in
the sense that some formant-preserving information is already removed via the spec-
tral envelope. WGMM can be a useful tool for the exploration of the properties of
this source of information. WGMM can be incorporated in Hidden Markov Models
and other stochastic models of speech. The unanswered question is what type of
information do dispersion phases hold and where can we use it.
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Appendix A

Expectation-Maximization for
WGMM

A.1 Jensen’s Inequality

If f(.) is a convex function and x is a random variable then:

E{f(x)} ≥ f (E{x}) (A.1)

and if f(.) is strictly convex, then equality implies that x = E{x}. Jensen’s inequality
is reversed if f(.) is concave. Since log(.) is concave, we have:

E{log(x)} ≤ log (E{x}) (A.2)

A.2 Optimization for the Expectation Step

We will maximize the function:

F = Q(Ω0, qn(m, �w)) +
N∑

n=1

λn

(
M∑

m=1

∑
�w∈ZK

qn(m, �w) − 1

)
(A.3)

=
N∑

n=1

∑
�w∈ZK

M∑
m=1

qn(m, �w) ln

(
p(m, �w, �θn; Ω)

qn(m, �w)

)
+

N∑
n=1

λn

(
M∑

m=1

∑
�w∈ZK

qn(m, �w) − 1

)
(A.4)

for qn(m, �w). We equate the partial derivative with respect to qn(m, �w)) to zero:

∂F

∂qn(m, �w)
= ln

(
p(m, �w, �θ; Ω0)

)
− (1 + ln (qn(m, �w))) + λn = 0 ⇒ (A.5)

qn(m, �w) = eλn−1p(m, �w, �θ; Ω0) ⇒ (A.6)

λn = 1 − ln
(
p(�θn, Ω0)

)
, (A.7)
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where we have summed equation (A.6) over m,�w to obtain λn. Substituting λn to
equation (A.5), we obtain the solution:

qn(m, �w) =
p(m, �w, �θn; Ω0)

p(�θn; Ω0)
. (A.8)

A.3 Optimization for the Maximization Step

We will minimize Q2 (Ω, qn(m, �w)) under the constrain
∑M

m=1 αm = 1. Let

F = Q2 (Ω, qn(m, �w)) + λ

(
M∑

m=1

αm − 1

)
⇒

F =
N∑

n=1

M∑
m=1

∑
�w∈ZK

qn(m, �w) ln
(
αmp(�θn|m; �w, Ω)

)
+ λ

(
M∑

m=1

αm − 1

)
. (A.9)

First, we will solve for αm:

∂F

∂αm

=
N∑

n=1

∑
�w∈ZK

qn(m, �w)
1

αm

+ λ = 0 ⇒

αm = −1

λ

N∑
n=1

∑
�w∈ZK

qn(m, �w)
sum over m⇒ λ = −N

therefore

αm =
1

N

N∑
n=1

∑
�w∈ZK

qn(m, �w). (A.10)

Then we will solve for �µm, Σm. The natural logarithm of p(�w, �θm|m; Ω) (equa-
tion (4.10)) is:

ln
(
p(�w, �θn|m; Ω)

)
= −K

2
ln(2π)+

1

2
ln
∣∣Σ−1

m

∣∣− 1

2
(�θn−�µm− �w2π)T Σ−1

m (�θn−�µm− �w2π),

(A.11)
where |.| denotes the determinant operation. Equating the derivative of F with respect
to �µm to zero, we get

∂F

∂�µm

= 0 ⇒ ∂

∂�µm

{
N∑

n=1

∑
�w∈ZK

qn(m, �w)Σ−1
m (�θn − �µm − �w2π)

}
= 0 ⇒

�µm =

N∑
n=1

∑
�w∈ZK

qn(m, �w)
(
�θn − �w2π

)
N∑

n=1

∑
�w∈ZK

qn(m, �w)

. (A.12)
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Equating the derivative of F with respect to Σ−1
m to zero, we get

∂F

∂Σ−1
m

= 0 ⇒ ∂

∂Σ−1
m

{
N∑

n=1

∑
�w∈ZK

qn(m, �w)
(
Σm − (�θn − �µm − �w2π)(�θn − �µm − �w2π)T

)}
= 0,

therefore

Σm =

N∑
n=1

∑
�w∈ZK

qn(m, �w)(�θn − �µm − �w2π)(�θn − �µm − �w2π)T

N∑
n=1

∑
�w∈ZK

qn(m, �w)

. (A.13)

where we have used the identities:

∂

∂Σ−1
m

{
�θT Σ−1

m
�θ
}

= �θ�θT (A.14)

∂

∂Σ−1
m

{
ln
∣∣Σ−1

m

∣∣} = ΣT
m = Σm (A.15)

|Σm| =
1

|Σ−1
m | (A.16)

(A.17)

A.4 Update equations for a full EM step of a WGMM

with diagonal covariance matrices

This section presents the equations that perform a full iteration of the EM algorithm.
For computational purposes, the expectation step and the maximization step are
intermixed.

We will define some accessory variables that hold the information that is related
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to the expectation step:

δk,m,n,w =
1√

2πσ2
m(k)

exp

⎛
⎜⎝−

(
�θn(k) − �µm(k) − w2π

)2

2σ2
m(k)

⎞
⎟⎠ (A.18)

βk,m,n =
∑
w∈Z

δk,m,n,w (A.19)

β
(µ)
k,m,n =

∑
w∈Z

δk,m,n,w

(
�θn(k) − w2π

)
(A.20)

β
(σ2)
k,m,n =

∑
w∈Z

δk,m,n,w

(
�θn(k) − �µm(k) − w2π

)2

(A.21)

βm,n = αm

K∏
k=1

βk,m,n (A.22)

βn =
M∑

m=1

βm,n (A.23)

Now, we define the following accessory parameters:

ωm =
N∑

n=1

βm,n

βn

(A.24)

(A.25)

The update equations can then be written as:

am ← 1

N
ωm (A.26)

�µm(k) ← 1

ωm

N∑
n=1

βm,n

βk,m,n

β
(µ)
k,m,n (A.27)

σ2
m(k) ← 1

ωm

N∑
n=1

βm,n

βk,m,n

β
(σ2)
k,m,n (A.28)

(A.29)

Note that in practice the summation need not be made over the whole Z; only ±2
tilings are adequate.
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Multiple Description Coding

B.1 Proof: Optimal MSE Reconstruction for the

MDTC Side Decoders

Let x̂1 be the side reconstruction when only description ŷ1 is received. Let ỹ2 be any
estimation of the second description from the first description. Due to quantization
and estimation noise, the joint vector [ŷT

1 ; ỹT
2 ]T may not lay on the image of F . By

reconstructing x̂1 using equation x = F T
1 y1 + F T

2 y2 we remove the component of
y = [yT

1 yT
2 ]T that is orthogonal to the image of F . In that case, the optimal MSE

reconstruction x̂1 is the one that minimizes:

MSE = Ey2,y1 {‖x̂1 − x‖2 |y1 ∈ Qŷ1}
where the expectation is taken over y2, y1, and Qŷ1 is the quantization cell defined
by ŷ1. Taking the derivative and equating to zero, we get:

x̂1 = Ey2,y1 {x |y1 ∈ Qŷ1 }
If we assume that the quantization noise e1 = y1 − ŷ1, y1 ∈ Qŷ1 is zero mean, then

x̂1 = Ey2,e1 {x |y1 = ŷ1 + e1}
= F T

1 (ŷ1 + Ee1 {e1}) + F T
2 Ey2,e1 {y2 |y1 = ŷ1 + e1}

= F T
1 ŷ1 + F T

2 Σy2y1Σ
−1
y1y1

(ŷ1 + Ee1 {e1}) ⇒
x̂1 =

(
F T

1 + F T
2 Σy2y1Σ

−1
y1y1

)
ŷ1

where Σy2y1 is the cross-covariance matrix between y2 and y1, and Σy1y1 is the covari-
ance matrix of y1. Note that Σy2y1Σ

−1
y1y1

is the optimal MSE linear regression matrix
of the regression Ey2 {y2 |y1}.

The case where only description ŷ2 is received is treated in a similar manner.

B.2 MDC Computational Issues

This section compares GMM-MDSQTC and GMM-MDTC in terms of complexity
and storage requirements. The comparison is made using an optimized pseudo-code
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implementation of both systems. Since both systems share an amount of source code,
the comparison is made solely on the parts of the code that differ. The following
notation is used in the pseudo-code:

M : number of Gaussian components on the GMM.

P : number of dimensions of the source.

V T
x,m: a P -by-P matrix holding the eigenvectors of the m-th Gaussian component in

it’s columns.

µx,m: a P -by-1 vector with the mean value of the m-th Gaussian component.

σm,p: the standard deviation of the p-th dimension of the m-th Gaussian component.

ρ: packet loss probability.

B.2.1 GMM-MDSQTC

The pseudo-code implementation of GMM-MDSQTC is shown in Algorithm 1. The
GMM-MDSQTC scheme stores a set of MDSQ codebooks for each possible loss prob-
ability and side description rate. Let C0,N,ρ, C1,N,ρ, C2,N,ρ be the central and the two
side codebooks trained for packet loss probability ρ and side description rate log2(N).
Let I1,N,ρ, I2,N,ρ be the corresponding index assignment. The following notation is
then used:

Nq[m, p]: the number of side description quantization levels for the p-th dimension of
the m-th Gaussian component.

C0,N,ρ[n]: the n-th entry of the MDSQ central codebook.

C1,N,ρ[n]: the n-th entry of the first MDSQ side codebook.

C2,N,ρ[n]: the n-th entry of the second MDSQ side codebook.

I1,N,ρ[n]: side codebook 1 index associated with the n-th central codebook entry.

I2,N,ρ[n]: side codebook 2 index associated with the n-th central codebook entry.

The computational requirements of GMM-MDSQTC are:

complexity:
∑P

p=1

∑M
m=1 (4 + 10Nq[p, m]) flops.

storage:
∑Nq,max

n=2 (4|C0,n,ρ| + 4|C1,n,ρ| + 4|C2,n,ρ| + 2n) =
∑Nq,max

n=2 (4|C0,n,ρ| + 10n) bytes
of static memory plus MP bytes of dynamic memory.
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where Nq,max is the maximum size of the side description codebook and |C0,n,ρ|,
|C1,n,ρ|, |C2,n,ρ| are the sizes of the corresponding MDSQ codebooks. Each code-
word is assumed to be stored using a 4 byte float and each index in I1,N,ρ, I2,N,ρ

using 1 byte (unsigned character). The dynamic memory consists of MP unsigned
characters needed for the side description bit allocation. The side description bit
allocation is made every time there is a change in the channel conditions (resp. loss
probability). Note that we do not measure the complexity nor the storage for the
whole GMM-MDSQTC system, but only for the part of GMM-MDSQTC that differs
from GMM-MDTC.

B.2.2 GMM-MDTC

The pseudo-code implementation of GMM-MDTC is given in Algorithm 2. The
implementation is optimized for the case where each Gaussian component is MDTC
encoded with 1 degree of freedom.

The algorithm uses a set of precomputed static data according to the following
notation:

CN : an 1-by-N matrix that holds a scalar codebook trained for N(0, 1) Gaussians
with N codewords.

φm,ρ : the frame expansion parameter (angle) for the m-th Gaussian component. The
angle is trained for packet-loss probability ρ.

Furthermore, the algorithm updates the following dynamic data every time the chan-
nel condition changes:

Nq,1: an M -by-P matrix that holds the number of quantization levels assigned to the
p-th dimension of the first description.

Nq,2: an M -by-P matrix that holds the number of quantization levels assigned to the
p-th dimension of the second description.

COS: an M -by-1 matrix that holds (cos(φm,ρ))
2.

SIN : an M -by-1 matrix that holds (sin(φm,ρ))
2.

Note that all matrices needed in equations (7.7),(7.6) and (7.5) are diagonal and
highly structured for the case of MDTC with 1 degree of freedom. This allows a
significant number of optimizations to take place. A total of 2MP characters are
needed to store the matrices Nq,1,Nq,2. Furthermore, the shuffling of the eigenvectors
in V T

x,m is made so that the first P1 = �P
2
� dimensions of the m-th Gaussian component

require the same rate with the rest P − P1 dimensions, by default.
The computational requirements of GMM-MDTC are:

complexity:
∑P

p=1

∑M
m=1 (7 + 3Nq,1[p, m] + 3Nq,2[p, m]) flops.
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Algorithm 1 GMM-MDSQTC Encoder. The algorithm encodes the input source vec-
tor x ∈ R

P to the index m′ (the “best” Gaussian component) and the P -dimensional
vector indices i1, i2 of the scalar MDSQ side description indices.

1: procedure [m′, i′1, i
′
2] ← GMM-MDSQ-TC Encode(x)

2: Dmin ← ∞;
3: m′ ← 0; i′1 ← 0; i′2 ← 0;
4: λ ← ρ

1−ρ
;

5: for m ← 1, · · · , M do
� Encode the source vector x according to the m-th Gaussian Component

of the GMM
6: x′

m ← V T
x,m(x − µx,m); � Translate and Decorrelate the vector x

7: for p ← 1, · · · , P do

8: x′′
m[p] ←

(
1

σm,p

)
∗ x′

m[p]; � Scale to N(0, 1) (+1 flop)

9: [x̂0[p], x̂1[p], x̂2[p], i1[p], i2[p]] ← MDSQ Encode(x′′
m[p], Nq[m, p], ρ); �

MDSQ quantization (+10Nq[m, p] flops)
10: x̂0[p] ← x̂0[p] ∗ σm,p; � Scale back to N(0, σ2

m,p) (+1 flop).
11: x̂1[p] ← x̂1[p] ∗ σm,p; � Scale back to N(0, σ2

m,p) (+1 flop)
12: x̂2[p] ← x̂2[p] ∗ σm,p; � Scale back to N(0, σ2

m,p) (+1 flop)
13: end for
14: D ← ‖x′

m − x̂0‖2 + λ (‖x′
m − x̂1‖2 + ‖x′

m − x̂2‖2) ; � Compute MDC
distance

15: if D < Dmin then
16: Dmin ← D; m′ ← m; i′1 ← i1; i′2 ← i2;
17: end if
18: end for
19: end procedure

20: procedure [x̂0, x̂1, x̂2, i1, i2] ← MDSQ Encode(x,N,ρ)
21: λ ← ρ

1−ρ
;

22: Dmin ← ∞;
23: for n ← 1, · · · , N do
24: d0 ← (x − C0,N [n])2 ; � Central distortion, (+2 flops)
25: d1 ← (x − C1,N [I1,N [n]])2 ; � Side distortion 1, (+2 flops)
26: d2 ← (x − C2,N [I2,N [n]])2 ; � Side distortion 2, (+2 flops)
27: D ← d0 + λ ∗ (d1 + d2) ; � MDC distance, (+3 flops)
28: if D < Dmin then � (+1 flop)
29: Dmin ← D;
30: n′ ← n;
31: end if
32: end for
33: x̂0 ← C0,N,ρ[n

′];
34: x̂1 ← C1,N,ρ[I1[n

′]];
35: x̂2 ← C2,N,ρ[I2[n

′]];
36: end procedure
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storage: 4M + 4 (Nmax+1)Nmax

2
bytes of static memory plus 2MP + 8M bytes of dy-

namic memory.

where Nmax is the maximum size of the precomputed N(0, 1) codebooks. As discussed
in the previous section, we do not measure the complexity nor the storage for the
whole GMM-MDTC system but only for the part of GMM-MDTC that differs from
GMM-MDSQTC .
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Algorithm 2 GMM-MDTC Encoder. The algorithm encodes the input source vector
x ∈ R

P to the index m′ (the “best” Gaussian component) and the P -dimensional
vector indices i1, i2 of the scalar side description indices.

1: procedure [m′, i′1, i
′
2] ← GMM-MDTC Encode(x)

2: Dmin ← ∞;
3: m′ ← 0; i′1 ← 0; i′2 ← 0;
4: λ ← ρ

1−ρ
;

5: for m ← 1, · · · , M do
� Encode the source vector x according to the m-th Gaussian Component

of the GMM
6: x′

m ← V T
x,m(x − µx,m); � Translate and Decorrelate the vector x

7: wc = COS[m];
8: ws = SIN [m];
9: for p ← 1, · · · , P1 do

10: y1 ←
(

1
σm,p

)
x′

m[p]; � (+1 flop)

11: y2 ← −y1; � (+1 flop)
12: [ŷ1, i1[p]] ← Norm Encode (y1, Nq,1[m, p]) ; � (+3Nq,1[m, p] flops)
13: [ŷ2, i2[p]] ← Norm Encode (y2, Nq,2[m, p]) ; � (+3Nq,2[m, p] flops)
14: ŷ1 ← ŷ1σm,p; � (+1 flop)
15: ŷ2 ← ŷ2σm,p; � (+1 flop)
16: x̂0[p] ← wcŷ1 − wsŷ2; � (+3 flops)
17: x̂1[p] ← ŷ1;
18: x̂2[p] ← −ŷ2; � (+1 flop)
19: end for
20: for p ← P1 + 1, · · · , P do

21: y1 ←
(

1
σm,p

)
x′

m[p]; � (+1 flop)
22: y2 ← y1;
23: [ŷ1, i1[p]] ← Norm Encode (y1, Nq,1[m, p]) ; � (+3Nq,1[m, p] flops)
24: [ŷ2, i2[p]] ← Norm Encode (y2, Nq,2[m, p]) ; � (+3Nq,2[m, p] flops)
25: ŷ1 ← ŷ1σm,p; � (+1 flop)
26: ŷ2 ← ŷ2σm,p; � (+1 flop)
27: x̂0[p] ← wcŷ1 + wsŷ2; � (+3 flops)
28: x̂1[p] ← ŷ1;
29: x̂2[p] ← ŷ2;
30: end for
31: D ← ‖x′

m − x̂0‖2 + λ (‖x′
m − x̂1‖2 + ‖x′

m − x̂2‖2) ; � Compute MDC
distance

32: if D < Dmin then
33: Dmin ← D; m′ ← m; i′1 ← i1; i′2 ← i2;
34: end if
35: end for
36: end procedure
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procedure [x̂, i] ← Norm Encode(x,N)
Dmin ← ∞;
for n ← 1, · · · , N do

D ← (x − CN [n])2 ; � (+2 flops)
if D < Dmin then � (+1 flop)

Dmin ← D;
n′ ← n;

end if
end for
i ← n′;
x̂ ← CN [n′];

end procedure


