University of Crete
Department of Computer Science Institute of Computer Science

Voicing detection in spontaneous and
real-life recordings from music lessons

(MSc. Thesis)

Sofia-Elpiniki Giannikaki

Heraklion

April 2015






DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF CRETE

Voicing detection in spontaneous and real-life
recordings from music lessons

Submitted to the
Department of Computer Science
in partial fulfillment of the requirements for the degree of
Master of Science

April 2, 2015
(© 2015 University of Crete & All rights reserved.

Author:
Sofia-Elpiniki Giannikaki
Department of Computer Science
Committee
Supervisor
Yannis Stylianou
Professor
Member
Athanasios Mouchtaris
Assistant Professor

Member

Emmanouil Benetos
Researcher, City University London

Accepted by:

Chairman of the
Graduate Studies Committee Antonis Argyros
Professor

Heraklion, April 2015






Abstract

Speech is one of the most important abilities that we have, since it is one of the principal
ways of communication with the world. In the past few years a lot of interest has been
shown in developing voice-based applications. Such applications involve the isolation of
speech from an audio file. The algorithms that achieve this are called Voice Detection
algorithms. From the analysis of a given input audio signal, the parts containing voice are
kept while the other parts (noise, silence, etc) are discarded. In this way a great reduction

of the information to be further processed is achieved.

The task of Voice Detection is closely related with Speech/Nonspeech Classification. In
addition, Singing Voice Detection and Speech/Music Discrimination can be seen as sub-
classes of what we generally call Voice Detection. When dealing with such tasks, an audio
signal is given as an input to a system and is then processed. The signal is usually analysed
in frames, from which features are extracted. The frame duration depends mostly on the
application and sometimes on the features being used. Many features have been proposed
until now. There are two categories in which the features could be divided, time domain
and frequency domain features. In time domain the short time energy, the zero-crossing
rate and autocorrelation based features are most often used. In frequency domain cepstral
features are most frequently used, due to the useful information about speech presence.
To be more specific, in Singing Voice Detection and in Speech/Music Discrimination the
state-of-the-art feature are the Mel-Frequency Cepstral Coefficients. It has been reported,

that this particular feature provides the best performance in the majority of the cases.

In this thesis an algorithm is developed that performs voice detection in spontaneous
and real-life recordings from music lessons. The content of the recordings was such that
the proposed algorithm was challenged to discriminate both speech and singing voice from
music and other noises. A classic approach for this problem would use MFCCs as the
discrimination feature and an SVM classifier for the classification into “speech” or “non-
speech”. In our work the methodology of this approach is expanded by preserving the
MFCCs as the main feature and incorporating three other features namely, the Cepstral
Flux, the Clarity and the Harmonicity. Cepstral Flux is extracted from the Cepstrum,
while Clarity and Harmonicity are time-domain autocorrelation-based features. The goal
is to improve with these additional features the performance of the system that uses only
the MFCCs. So, different combination of the three additional features with the MFCCs
were examined and evaluated. A 10-fold cross-validation is applied on segments, which are
labelled as “speech” or “nonspeech”. The database used for the training and the testing

purposes of our algorithm consists of three seminars. Two of them concern traditional



cretan music classes with lira and the third one traditional cretan music classes with lute.
Each recording has been carried out under different environmental conditions.
Performance evaluation was conducted using the Detection Error Tradeoff (DET) and Re-
ceiver Operating Characteristic (ROC) curves as a visual evaluation tool. Also, the Equal
Error Rate (EER), the Efficiency and the Area Under the Curve (AUC) were computed in
each case. Fach seminar was evaluated separately, as well as all together. A combination
of training and testing sets from different seminars was also done, to be able to provide
reliable results. It is shown that the use of the additional features significantly enhances
the performance of the classic algorithm that uses only the MFCCs from about 0.5% to
20%. Specifically, it is observed that three out of the five combinations stand out, by
reducing about 20% the miss probability given a false alarm probability equal to 5%.

vi



[lepirindn

Mio amd Tic onuavTixdTERES IXaVOTNTES oL EYEL 0 dvipwrog etvor 1 outhla, 1 omolo amoteAel
%0 T0 Baond TPOTOG ETXOWVGLVING UE TOV LTOAOLTO xOopo. Ta tedeutola ypdvia To eVoLlapEpov
TOMOV €yel emxevipwdel oTny avdntuln cgapuoy®y, ol otolec Bactlovion oTn Quvh. e
TETOWOL ElDOUG EPUPUOYES, Hag DIDETOL €V G ELGOOOL antd TO OTOlO YENOYOTOLOVUE UOVO
ToL xoUudTIor Tou TEPEYouy guvr.  Me dhha Adyia, avoAboviag To ofuo eviomioupe Ta
xouudTior wvNg, Tor omolar xa xpaTde, eved o utdlotna (VopuPoc, nouyio ¥AT) To oy VooUE.
H Siobixocion auth ovopdleton aviyveuon govic (Voice Detection). Me tn Siobixacior auth
UELOVETOL BROUATIXG O OYXOC TNG TANROQORIIC TOU TEOXELTOL Vo ETEEEQRYUCTOVUE, XATL TO

omolo etvar ToA) yenowo.

H Swdwacio tne aviyvevong tng gwvAc oyetiletow oTeVd Ye TNV ToklvounoT o€ outAla
xan un ouhlo. Emlong, 600 1 aviyveuon tpayoudiod 6co xon 1 ddxplon opt)\iag/pouotxﬁg
uTopolV var Yewpnolv UTOXATNYORIES TNG AVl VEUOTC PWVAG. M€ OAEC QUTES TIC TEQLTTMOOELS
woc oideton €vag orfua €w06dou To omolo xa enelepyalopacte. LuvAdwe 1 avdhuoT Tou
ofoTog YiveTal o xeOTERY xoppdTia, omd To omolo e€dyouue yapoxtnotoTixd. H didpxeia
TV XOUPTIOY xupaiveton Tepinou uetall 0.02 xon 3 deuteporéntwy xon opiletan avdhoyo Ue
70 TEOPBANUA ou €youue xhndel vo Abooupe. Mrogel enlong va e€optdtar and to eidog Twv
YAEUXTNELO TGOV Tou VéAouUe v e€dyoupe. Méypl tipa €youv tpotadel TArdog yopauxtnelo-
TIXOY, xdmoLo amd T omolal elvor EPIXTO VoL THEEYOUV AMOTEAEGUOTA YENOUWOTOLWVTOS [ULXEd
xoupdTior Tou ohpaToc. AvtideTa, UTdEYOLY YUPUXTNELCTIXE ToL OTOlo ATAUTOUY TEPLOCOTERT)
TANEOQOELOL UE ATMOTEAEOUN 1) DLEPXELN TWV XOPUATIOY VoL TEETEL Vo efvan weydAn. To yopox-
TNELOTIXG UTIOPOUY VO YWEIGTOUY O BLO xutnyopieg, oc auTtd Tou mediouv Tou ypEdvou xou
oe exelva Tou TEBIOU TV CLYVOTHTWY. XTO TEBIO TOU YPOVOU EUREWS OLUdEdOUEVA Elvarn T
evépyela, o puiudg BlEheuone amd To UNdeVIXS dlova xa yopoxTneloTd mou Poactlovton
oTNY aUTOoUGYETION. ATd TNV ALY, 6TO TEGO TWY CUYVOTATWY €Vol UEYSAO TOCOGTO TWV
yopaxtneto tixdy e€dyeton and to Cepstrum (eméxtaon tou @dopatoc). Autd cupfBaiver dioTt
exel UTAEYEL YENOHUN TANEOQOELA YLt T YWVT|. LUYHEXPWEVA, TO TIHO OLUBEDOUEVO Y ULUXTTELO-
TIXO GTNV AVl VEUST, TEoyoudloy ot GT1 BLAXELoN opt)\iocg/pouomﬁg elvar ov Mel-frequency
Cepstral cuvteheotéc. Trootnpiletar 6Tt TO YoEoXTNEICTIXG 0WTO Blvel Tor XUAUTEQRY omo-

TEAEOUOTO TNV TAELOdM@iol TWV TEPITTOOEWY.
Yy epyacta auth Tapouctdleton Evag olyoprduog aviyveuone Qwvic mhve o Teay-
HoTiég xoTorypagég amé wadfuata povowhic. Kodog n gion twy nyoypagriocwy etvar tétola,

otéyog ebvar v evtoniCeton 1000 1) owthiat 660 xan To TearyoLudt. ‘Eva xhaowd cloTnua

vil



yenowotnotel tougc MFC cuvteheatéc o yopaxtnoiotind doywpetodol “@uvic” /“un guvic”
xou pla unyavh Stavuopatixic vtoothene (Support Vector Machine) yio tnv ta€véunon.
Bdion evoe tétolou custhuatog howndy, opiCoupe touc MFC cuvteheotéc we to x0plo yopox-
TNEWTXO xat TeooVéToupe dhha teia, TN o) Tou Cepstrum, tn Logrveior xou v Ap-
wovixotnta. Ta 600 teheutola Bacilovion 6TNY AUTOCUCYETION TOL GHUATOS GTO TEDIO TOU
yeovou. O oxomndg eivan va Bedtiwdel 1 anddoon evée GUGTANATOS, TOU YENCHLOTOLE! UOVO
toug MFC cuvtedeotéc. Eletdloupe 5 BlapopeTinols GUVBLIOUOUS TWY YAURUXTNELO TIXEDY
mou mpoavapépinxay ye toug MFC ouvteheotéc. 'Emeta, epopudleton éva 10-fold cross-
validation mdve oe TudaTo Tou GHUNTOS, Yo vo Tagvountoly oe “povi” xan “un gwvh’. H
Bdomn mou yenouomolinxe yior TNV eXTUUBEUCT) XoL TOV EAEYYO TOU GUOTAUATOSC AMOTEAE(TON
am6 3 oeuwvdpla. Avo and autd oyetilovton pe T Adpol GTNY TUEABOGCLONY| XENTIXY| LOVCLXT,
eve To Telto aopd To Aaolto. Xnuewwvetar Ot 1 xdde nyoyedygnon Exel mpoyuotonotiel
%4t OO OLPOPETINES CUVITXEC.

H onédoon tou akyopiduou afioroyhinxe Bdoer twv Detection Error Tradeoff (DET) xou
Receiver Operating Characteristic (ROC) xopnuidv.  Ilapddnia, urnohoyiotnxe xou 1o
1000016 (oov opdhpatoc (Equal Error Rate), to pétpo Amodotxdmtag xo to eufadd
¢ ROC xoumiing. Hpoyuatomoudnxe aliohdynorn tou xdde cepvaplou ywetoTd ot OhwY
wolt. Emnfong, €yve cuvduaouog BeboPEVwY exTaBEVOTC Xl EAEYYOU TOU GUCTAUNTOS oo
000 OLoPopeTXd oeuvdpla.  Me Tov TpOmO auTH ToEEyouue O AELOTICTA ATOTEAECUATA.
Kotahfiyoupe 6tL 1 yerion Twv EMTAEOV YopaxTNEoTiX®Y BEATIOVEL aioInTd TNV amddoon
0L Xhoool akyopiduou Tou yenotuonotel uévo tougc MFC cuvtedeotéc ond 0.5% ewe 20%.
Luyxexpléva, mopatneInxe 6Tl TEELC amd TOUC TEVTE GLVOLAGHOUS LY wE{CouY, UELWVOVTAS
watd 20% NV THovOTNTA TOU Vo YAGOUUE €val XOUPATL “PwVvAc”, BEdopévng Ulag miavoTnTag
fon ue 5%, va yopoxtnploouue W “QoVvA” *ETOI XOUPdTL TOU GTNY TEOYHOTXOTNTA BEV

elvau.

viii
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Chapter 1
Introduction

Speech is one of the most important abilities that we have, since it is one of the principal
ways of communication with the world. Our voice helps us to express ourselves and thus
others can understand how we feel and what we want. In the past few years a lot of
interest has been shown in developing voice-based applications. Such applications involve
the isolation of speech from an audio file. This explains the necessity of being able to detect
such parts in a given signal. The algorithms that achieve this are called Voice Detection
algorithms. From the analysis of a given input audio signal, the parts containing voice are
kept while the other parts (noise, silence, etc) are discarded. In this way a great reduction

of the information to be further processed is achieved.

1.1 Background

Voice-based applications are widely used in the web, on smart phones and smart homes,
in multimedia and generally in telecommunications and networks. We already have the
opportunity to use this kind of applications in our daily life. It is a fact that the use of
cell phones has increased more than ever before.A cell phone is mostly used while doing
something else at the same time. For example when driving a car or walking on the street.
In those cases, it is difficult to write something using the keyboard or the touch screen.
It is useful to be able to carry out some operations using our voice. Further, many voice
browsers and search engines have been developed, that take as input an speech signal.
Such applications exist even in security systems, in which for example, voice identification
is required for being able to enter a building. Voice-based applications can also be used
for making life easier for people with disabilities. An application that works with voice
commands can easily be used from a person unable to use its hands. It seems therefore,
that the degree of tolerance to errors that we can have varies depending on the application.

Of course we want to achieve the optimal performance in whatever application we develop.



2 Voicing detection in spontaneous and real-life recordings from music lessons

However, in the last case where security is an important issue, we obviously demand to get
reliable and precise results. Hence in some cases, if the results are not accurate enough the
consequences could be significant whereas in other cases, they may not be that important.
Another example is Voice over Internet Protocol (VoIP), where the goal is to transmit
audio signals over IP networks. Before transmitting the signal, it has to be encoded and
compressed to use the least possible bandwidth. One first step is to keep only the parts of
the signal needed and discard the rest. After this, the signal can be encoded, compressed
and be ready to be transmitted. Furthermore, we often want to process an audio signal,
in order to do speaker recognition or identification, speech transcription, etc. The very
first thing that we do, is to separate the signal into speech and nonspeech parts. Thus,
we reduce the amount of information to be processed, by leaving out the parts being out
of our interest. This reduction of the information is for some applications necessary to be
done, especially for those used in VoIP. The requirements of applications are increasing and
everything has to work faster but still produce reliable results. To be able to discriminate
and keep only the needed information from the whole signal is an important step in order
to achieve this.

When talking about keeping only the useful information from a given audio signal, we
have to explain what we refer to. The kind of information considered as useful depends on
the task. In all of the applications discussed earlier, the information that we need is the
parts of the signal containing voice. This means that we want to analyse the audio signal
and detect those parts. For the analysis we split the signal into smaller parts, which are
called frames. The size of the frames depends on the application, but is constant during
the analysis. It has to be big enough to be able to collect sufficient information about the
audio content and at the same time small enough to be processed fast. An important issue
is to choose the most appropriate features in order to get the optimal results. However,
the type of features to be used, again varies from task to task. To be able to select the
appropriate features, we need to clearly define our problem. As soon as we have decided
what features we are going to use, we move on to the analysis. In each frame, the features
are extracted and using a classification method a decision is made about the content of
this frame. This way we achieve to separate the signal into labelled segments, knowing

which of them are useful for further processing.

1.2 Motivation

The wide use of voice detection algorithms in all the fields we have seen above, lead us

to study and develop new or improve existing algorithms and methods, that allow us fast
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and, at the same time, efficient and accurate signal processing. When we want to retrieve
information from an audio signal, we have to take into account the possible conditions
during the recording of the signal. It is not always the case that we record the signal in a
perfect environment. To be realistic, in most cases when recording an audio signal, other
sounds are also recorded along with our voice. Apart from that, whether the recording
contains noise or not, some parts of the signal to be processed will contain useless infor-
mation. In our case speech parts of a signal are of our interest, so we need to have a way
to detect such parts. This makes the task of voice detection very important and one of the
most important front-end in audio signal processing.

The tasks of singing voice detection, speech/music discrimination and speech/nonspeech
classification could be seen as subclasses of what we generally call voice detection. In
singing voice detection, we try to detect the audio parts where someone is singing. On the
other hand, when working on speech/nonspeech classification the goal is to discriminate
speech from anything else. Singing voice has different properties than speech and this is
why we study it separately. Speech/Music Discrimination is an separate task too. It is a
case of speech/nonspeech discrimination in a certain environment, which contains music.
There are methods, designed in order to discriminate speech from music or to detect singing
voice. Also methods has been developed for speech /nonspeech classification. The goal of
this thesis is to detect voice, meaning speech and singing voice, in a music environment.
As we deal with real life recordings, they contain many types of noise. To efficiently detect
voice in such environments we need to develop a method that combines features and/or

methods from the tasks described earlier.

1.3 Contribution

This thesis contributes the following:

e presents a voicing detection algorithm that uses combinations of MFCCs, Cepstral

Flux, Clarity and Harmonicity, which:
— is able to discriminate both speech and singing voice from music and other
noises.
— demonstrates robustness in real environmental noises, achieving low scores in

the Detection Error Tradeoff curves, on indoors and outdoors recordings.

e compares different combinations of the MFCCs with the other three features and

concludes to the use of all features for the best performance.
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1.4 Structure of the thesis

In Chapter 2 we will present related work on voicing detection. Four categories will be
examined, which are Voice Activity Detection, Speech/Nonspeech classification, Singing
Voice Detection and Speech/Music Discrimination. Some methods and the features being
used will be described. Thus, we will get a general idea of how we deal with such problem
usually.

In Chapter 3 the proposed algorithm will be analysed step by step. We will present the
algorithm in pseudo-code, so to have a better overview. Also, a description of the features
that have been used will be given.

Then in the Chapter 4, information about the database, which has been used will be given.
Finally, the performance of the algorithm will be evaluated in Chapter 5 and results will be
presented. We will refer to each combination of the features that has been done separately.
In Chapter 6, conclusions will be presented and future work that can be done on voicing

detection is going to be discussed in the end.



Chapter 2

Related Work

The task of voicing detection can also be seen as a speech/non-speech classification prob-
lem. This thesis aims to detect voice in a music environment and to be more specific, during
a music lesson. Consequently, as we have already mentioned, apart form speech it can con-
tain singing voice too. This means that it could also be approached as a speech/music
discrimination problem as well as a Singing Voice Detection problem. Methods that solve
this kind of problems usually consist of two parts. Firstly, features are extracted from
the signal and then a classification takes place. For the first step, we have to study the
behaviour of features and choose the ones that are able to discriminate voice from other
sounds the best.

In speech processing, when dealing with this kind of problems we analyse the signal in
frames. This means that we examine a small part of it each time. The size of the frame
depends on the problem and the features being used. Some features need to be computed
over a larger period of the signal than others. So the duration of a frame varies from 20ms
up to a few seconds (2-3 secs). The first thing that we do when having a task, is to define
the goal that we want to achieve. In our case the goal is to detect voice. According to
this, we then try to choose the most appropriate features for detecting voice. In most
cases more than one features is used for the detection. There are features that detect
successfully particular characteristics of voice. However, this is not always guaranteed in
the various kinds of noises and environments. For this, it is necessary to combine features
properly for being able to demonstrate robustness in noisy environments. This suggests
that, the features to be used have to provide complementary information to each other, in
order to achieve a good trade-off between low computational cost but still having a good
performance. In order to evaluate the performance of an algorithm, most of the times we
follow two steps, the training and the testing step. So, we first train the system that was
built using a part of the database, mostly more than the half and then test it with the
remaining data. Otherwise, the algorithm is directly applied on all the data provided.
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As we mentioned above, this thesis is relevant to tasks like Voice Activity Detection (VAD),
Speech/Nonspeech classification, Signing Voice Detection and Speech/Music Discrimina-
tion. Features are needed that detect not only speech but also singing voice. In addition,
the discrimination between voice and music is desired, which can be seen as a specific
type of noise. So, we will start by describing some methods and features for VAD and
Speech/Nonspeech classification. After this, features for Singing Voice Detection will be
analysed and in the end we will refer to features that are used for Speech/Music Discrimi-
nation. Also, some classification methods will be mentioned, that are usually used in those

tasks.

2.1 Voice Activity Detection and Speech/Nonspeech

classification

Voice Activity Detection is defined as a binary classification problem. We have an in-
put frame and the goal is to estimate whether it contains speech or not. An example of

the output that an VAD algorithm gives, can be seen in Figure 2.1. It is widely used

3 T T T T T T
Raw signal
Arctivations

1 L 1| T

'-"-1- | 1 | | | 1
1l s00 1000 1500 2000 2500 3000 3500

Figure 2.1: Example of Voice Activity Detection, taken from [33].
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in many voice-based applications using speech recognition, speech enhancement, speaker
recognition and speech coding [1]. Speech/Nonspeech classification is actually very simi-
lar. Frames or segments are classified into speech or nonspeech. This is very useful when
having large audio signals and we only want to proceed the speech parts. There are many
methods proposed for solving this kind of problems. Some of them use simple measures like
the frame energy [2], zero crossing rate or autocorrelation function based features, which
are computed in time domain. Features extracted in frequency domain are also very often
used. For example spectrum based features or Mel-frequency cepstral coefficients. In most
cases, a combination of features from both domains is done.

In [2], Moattar, Homayounpour and Kalantari propose an VAD algorithm that uses four
short time features. They combine the short-term energy of the frame with the Spectral
Flatness Measure (SFM) and the most dominant spectral component as it was proposed
in [3]. Apart from these features they use another one, which is called peak-valley differ-
ence (PVD). Energy is the most common feature being used in such tasks. However, in
noisy conditions and especially in low SNRs energy alone does not work efficiently. As
we know, the energy of a frame is computed as the sum of it’s squared amplitudes. The
computation of the SFM gives an estimation of how noisy the spectrum is. It was observed
that apart from SFM, the most dominant frequency component is also good in detecting
speech. The computation of the last is very easy and not at all time-consuming. The
algorithm was tested on data from TIMIT and Aurora2, after adding different types of
noises (white, babble, pink, factory and Vovlo) with 25, 15, 5 and -5 dB Signal to Noise
Ratios (SNRs).For the evaluation the average of Silence Hit Rate (HRO) and Speech Hit
Rate (HR1) is computed. The scores are between 65%-96% for the various SNR levels
independent from the noise type.

The main problem that someone has to overcome in VAD is noise. Many energy-based
methods ([6]) do excellent in high quality recordings, but when noise exists the performance
is dramatically degraded. Noisy parts of a signal have energy as well as voiced parts do and
due to this fact methods like these, produce a significant number of false alarms. Based
on this, Chuangsuwanich and Glass propose in [5] the use of two features that are able to
measure fundamental attributes of speech: Harmonicity, which is an autocorrelation based
feature and Modulation Frequency (MF) that is computed in the frequency domain. Peri-
odicity is one of the main characteristics of speech. By computing the autocorrelation of
a speech signal, those repetitions are captured. The two features were evaluated on noisy
data (from -5 to 15 dB SNR) where engine, street, background talking and environmental
sounds are expected to be encountered. Harmonicity on its own gives an EER equal to
12.93% and the combination of the two reduce the EER to about 4%. An Support Vec-
tor Machine (SVM) is used for the classification, but first a Neighbourhood Component
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Analysis is applied. Autocorrelation features are also examined by Kristjansson, Deligne
and Olsen in [7] for voiced, unvoiced and nonspeech discrimination. In time domain the
Maximum Autocorrelation Peak, the Autocorrelation Peak Count and the Maximum LPC
Residual Autocorrelation Peak are studied. Also, the Windowed Autocorrelation Lag En-
ergy is introduced as an extension of the Maximum Autocorrelation coefficient. Whereas in
frequency domain the Spectral Autocorrelation Peak Valley Ratio (SAPVR) is described.
Apart from those, Spectral Entropy and Cepstral Peak are also presented which are well
known in this area. The 3 features performing best are the Cepstral Peak, the Maximum
Autocorrelation Peak and the Windowed Autocorrelation Peak, which are reported to pro-
vided complementary information to the Mel-Frequency Cepstral Coefficients.

Others assume that the most significant information to detect voice in noisy conditions is
on the time-varying signal spectrum magnitude. In [4] an adaptive algorithm that esti-
mates the Long-Term Spectral Envelope (LTSE) is proposed. After this, the Long-Term
Spectral Divergence (LTSD) between speech and noise periods is computed and compared
to an adaptive threshold. The evaluation was conducted on data from TIdigits database,
for clean conditions and for SNRs ranging from 20 to -5 dB. The proposed method gives a
HR1 of 98.15% while the HRO is equal to 47.28%. There is a great divergence between the
values of HR1 and HRO, so it can be used for application that do not require a low false
alarm score, but need a low miss probability.

In the algorithm proposed in [9], three out of five features that are used are based on the
autocorrelation function of the signal. These are the Harmonicity, the Clarity and the Pre-
diction Gain, which are computed in time domain. The other two features are Periodicity
and Perceptual Spectral Flux, which are in frequency domain. Harmonicity is defined as
the relative height of the maximum autocorrelation peak and Clarity as the relative depth
of the minimum average magnitude difference function. The Prediction Gain is the ratio
of the signal energy to the linear prediction residual signal energy. For the computation
of Periodicity, the Harmonic Product Spectrum (HPS) technique is used [8], which is used
for pitch detection in noisy environments. Periodicity captures the harmonics of the pitch
frequency during voiced and speech-like segments. The Perceptual Spectral Flux is based
on the observation that speech has a lower rate of frame-to-frame changes than music
does. All the features described above, are combined into one vector and using Principal
Component Analysis (PCA) a 1-dimensional feature is obtained, which is used for the
discrimination. The results show that the algorithm performs quite well. In addition, each
feature is evaluated in terms of P, (miss probability) for a Py, (false alarm probability)
of 3%. The two features performing best are the Clarity and the Harmonicity, achieving a
Piss of 7.43 and 10.76 respectively.

Another widely used feature in speech processing tasks, is the MFCCs. As we will see
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in the following section, these features perform quite good in Singing Voice Detection.
In [1], a voice detection algorithm is proposed using MFCCs with delta and double-delta
coefficients. This features does not depend on the energy level of the signal, so it will
work well even in cases where energy-based features will fail. The main advantage of the
proposed SVM-based VAD is that it works consistently although using different training
data. According to the experiments it is concluded that the SVM is easier to adapt to new
data sets, as long as there is a short audio sample from the recording environment.

As it has already been mentioned VAD is actually a Speech/Nonspeech classification prob-
lem. Consequently, the features that are used for Speech/Nonspeech discrimination are
similar to those described earlier. Many speech/nonspeech classification methods have
been proposed, especially for endpoint detection, that use short-time energy features and
zero crossings rate [12]. But, the efficiency of such features decrease in low SNR conditions
due to the fact that noise contains a lot of energy like speech does. In [10] some frequency
domain features are proposed like, LPC residual energy and the energy of certain bands
in the spectrum, which are similar to those described earlier for VAD. Following, features

that are used in Singing Voice Detection (SVD) will be presented.

2.2 Singing Voice Detection

The task of identifying singing voice in an audio signal, does not seem to be hard for hu-
mans, even if we are not familiar with the style of the music, the particular singer, or even
the language. This does not mean that it is easy to be done automatically. Nevertheless,
a method being able to do this can be applied in many applications like singer recognition
and identification, audio segmentation, vocal extraction and language detection. Again
this task can also be seen as a classification problem. The audio signal is analysed into
segments and the goal is to classify each segment as vocal or non-vocal. Many researchers
have studied and proposed features that perform well in detecting signing voice ( [13], [14],
[15], [16], [17]). Techniques and features used in speech detection or recognition can also
be applied to singing voice problems due to the similarities that speech and singing voice
have.

The feature that is used the most and performs quite good, is the Mel-Frequency Cep-
stral Coefficients (MFCCs). In [14] it is shown that by using only MFCCs, appropriately
parametrised along with their first derivatives is sufficient to achieve results as good as
those that we get with more complicated state-of-the-art systems. Rocamora and Herrera
[16] studied and compared MFCCs, Perceptually derived LPC (PDLPC), Log Frequency
Power Coefficients (LFPC), Harmonic Coefficient (HC) and pitch. Additionally, they com-

bined into one vector spectral features, namely Centroid, Roll-off, Flux, Skewness, Kurtosis
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and Flatness. According to this study, MFCCs are the most suitable features for SVD.
They also report that the classifier performing best for this task is Support Vector Machines
(SVM). However, there are others that prefer using Gaussian Mixture Models (GMMs) as
a classifier [17], while using MFCCs, log energies, modulation energy and harmonic coef-
ficient as discrimination features. The evaluation of the proposed method gives an EER
of 14%, without applying post-filtering. Again in [13], a signing voice detection method is
proposed that uses MFCCs and modulation frequency features and classifies the segments
using an SVM. The system was tested on Greek music classifying segments into 4 classes,
a) instrumental only, b) voice of target singer without 2nd voice, ¢) voice of target singer
with 2nd voice and d) interjections. The evaluation of the performance of this system gives
an EER equal to 12.06%.

Moreover, in [18], Regnier and Peeters approach the problem from another perspective.
It is supposed that singing voice is characterized by harmonicity, formants, vibrato and
tremolo. So, features are chosen that are able to describe the particular characteristics. In
the proposed approach, frequency modulation and amplitude modulation is used, which
describe vibrato and tremolo respectively. In the end, a post processing (e.g median filter)
of the segmentation is applied in order to remove short-duration segments. The proposed
method is compared to a learning machine approach that uses MFCCs, A MFCCs, AA
MFCCs, SFM, A SFM and AA SFM and a GMM classifier. Before the filtering the learn-
ing machine approach is much better than the proposed one, having a difference between
5-14 % in terms of Recall, Precision and Fmeasure. After the filtering, it is noticed that
the proposed method gives a better recall whereas the learning approach is still more pre-
cise. We observe that the filtering does not help significantly the learning approach as the
scores increase only 2%. In opposite, an improvement of about 10% is achieved for the
proposed method. Vibrato combined with Harmonic Coefficient is also proposed in [19]. A
comparison is made between the proposed system and a classic one based on MFCCs and
GMM. It is concluded that, although the results that we get are comparable, the system
using MFCCs is still better than the proposed one.

So, the common way to deal with an SVD problem is to extract feature parameters from
the input signal and then classify them using a threshold or a statistical classifier. The
signal is usually proceeded in frames and the decision is taken whether for each frame
or for a block of frames (segment). When using a threshold for the classification, the
descriptors being used must be able to clearly discriminate between the different classes.
Methods using thresholds apply one threshold on one descriptor or compute more than
one descriptors and apply a set of thresholds on them. A combination of several features
can be done when statistical classifiers are being used. So the system can be trained and

is then able to learn more complex boundaries between the classes. The most often used
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classifiers are SVM, GMM, and Hiden Markov Models (HMM). By training the system
and combining more features, more time is needed in order to complete the classification,
but still the performance is enhanced. If having a task that has no restrictions on time, a

statistical classifier could be used achieving better performance.

2.3 Speech/Music Discrimination

In applications of multimedia information retrieval, effective coding for telecommunica-
tions and Automatic Speech Recognition (ASR), audio signals need to be segmented and
classified, so that each segment can be used in a different way. In the first section, we
discussed about detecting voice in a given audio signal. As already said, most of the times
the input signal contains noise. The task of discriminating speech from music, can be seen
as a special case of voice detection-classification, by considering music as noise. However,
music has particular characteristics that are very similar to those of speech, for example
the harmonicity. This is why we study Speech/Music discrimination separately from VAD
and Speech/Nonspeech Classification. The features being used in such methods, must be
able to distinguish speech from music despite the similarities.

Scheirer and Slaney examined thirteen possible features that can be used in a speech/music
discrimination system [20]. In their system they used zero-crossing rate, spectral rolloff
point, centroid and flux. Also, cepstrum resynthesis residual magnitude is used as well as
the 4Hz modulation energy, percentage of low-energy frames and a novel features called
pulse metric. Pulse metric determines the amount of ”rythmicness” in a 5-second window.
Based on the fact that speech tends to have more modulation energy at 4Hz, this energy
is computed, using MFCCs and is then used for the discrimination between speech and
music. Each one of them was intended to be a good discriminator on their own, but not
all of them end up adding value to a multivariate classifier. This proves that when using
a combination of several features, even if each feature on his own does well this does not
guarantee the optimal performance. The combined features need to provide complemen-
tary information to each other, so to achieve the optimal combination. They report that
the "best 3”7 features are the 4Hz energy, the variance of the spectral flux and the pulse
metric by giving an total error (frame-by-frame error) of about 5.8%.

In [21] again a spectral feature is proposed, that detects the curved frequency trajectory
of the harmonics over a certain period of time. This is based on the observation that in
speech, the harmonics are sustained over a certain span of time in which they usually vary
in frequency. Whereas music parts of the signal consist of partials with a relatively con-
stant frequency. The spectral of a noise frame does not contain significant peaks that are

sustained over time. The results after the evaluation seem to be good, but it is reported
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that there is still some room for further improvement. Fu and Wang claim in [22], that
cepstrum analysis is a more powerful tool than spectrogram for analysing the details of
spectrum. So two novel features are introduced, based again on the differences in the pitch
between music (discrete frequencies) and speech (pitch changes continuously) and also the
peak values of the real cepstrum. The two features are the Average Pitch Density (APD)
and the Relative Tonal Power Density (RTPD). The novel features are combined with: 1)
log od variance of RMS, 2) log of variance of spectral centroid, 3) log of variance of spectral
flux, 4) 4Hz modulation energy and 5) dynamic range. Evaluation and comparison of this
combination to the MFCCs + delta + acceleration shows that the latter have a good abil-
ity for discrimination on one of the two data sets, while the combination performs better
on the other data set.

The importance of spectrum in all these tasks is obvious as many researches propose fea-
tures extracted from there. Like in SVD so in Speech/Music discrimination, a feature that
is very often used due to its efficiency is MFCCs. That is why, in many works the evalu-
ation is made by comparing the performance of the proposed method to the performance
of the MFCCs. Kim, Choi and Lee compare in [24] the efficiency of using the spectrum
based Modulation Energy (ME) and the Mel-Cepstrum Modulation Energy (MCME). The
experiments show that MCME at 8Hz perform better than 4Hz ME. This proves what Fu
and Wang claimed in [22] about cepstrum and spectrogram. Some researchers consider
MFCCs as the main feature and try to find other features that can be combined with
MFCCs so to get the optimal performance. In [23] two novel features are proposed that
can be concatenated with MFCCs. The Delta Cepstral Energy (DCE) is introduced, that
measures the energy variation of the signal over time. It is observed that speech has greater
energy at low frequencies, unlike music which has also a significant amount of energy at
higher frequencies. Of course this depends a lot on the kind of music that we have in our
signal. The Power Spectrum Deviation (PSDev) is computed as the standard deviation
of filter bank energies in each band in order to discriminate between speech and music.
The speech error rate (frame-by-frame) in which we are interested for our work is equal
to 6.13% when using MFCCs (12 coefficients), while 6.41% when combining MFCCs with
DCE and PSDev. The results seem to be very close, but MFCCs alone still perform better.
Moreover, in a recent work [11] a speech discrimination algorithm is presented that uses
modulation frequency features. As MFCCs is the state-of-the-art in this kind of tasks, a
12th-order MFCCs was chosen to be combined with the log energy and their first and sec-
ond differences. Although the general approach for the classification is maximum-likelihood
with GMMs, SVM was preferred for the experiments. In order to reduce the dimension-
ality of the feature subspaces, High Order Singular Value Decomposition (HOSVD) was
performed, which is a costly process. The performance of MFCCs+A+AA was evaluated,
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as well as a fusion of the cepstral with the 21 most relevant features that gave an EER of
4.79% and 4.45% respectively. It seems that the proposed method provides slightly better
results than the cepstral features does, apart form the cost of HOSVD and the complexity
of deriving the final feature combination.

In general, when dealing with Speech/Music Discrimination tasks the features being used,
can be separated into time domain, spectral domain and cepstral domain features. The
most commonly used features are the spectral and cepstral domain features and specifi-
cally the MFCCs. All the features are estimated in frames of 0.5-5 seconds. The duration
depends on the type of the feature and of the specific task working on. As for the clas-
sification stage, the classifiers that are usually used are again GMM, HMM, and SVM. It
is observed that the performance of an SVM-based system was more consistent or even

better than GMMs based on the same cepstral features [1].

2.4 Discussion

As it has been shown above, there are plenty of features that can be used for voice detection
and classification. Some features are ideal for detecting specific properties of a speech signal
([21], [20]), but need other features to be able to work successfully in detecting or classifying
speech parts of an audio signal. When dealing with voice detection tasks, we have to take
into account the various conditions under which the audio signals have been recorded. It is
almost impossible to carry out a recording having no additional noise. Besides this, many
applications require efficient voice detection regardless the conditions in which they are
used, e.g. in cafeterias, in commercial centers, at home or even on the street. Consequently,
an algorithm being developed for this purpose needs to show robustness in such recording
conditions. Many existing algorithms use energy based feature, but their performance is
degraded a lot in noisy conditions. In SVD and Speech/Music Discrimination the most
commonly used features are extracted from the frequency domain. A feature that performs
quite well and is widely used in both tasks is the MFCCs ( [13], [16], [14], [11], [23],
[24]). The goal of this thesis is to improve the performance of a classic approach that
uses MFCCs as the discrimination feature. So we actually want to use features that
provide complementary information to the MFCCs so to improve the performance. We
examine here, are Harmonicity and Clarity that are referred to perform good in VAD([9])
and Cepstral Flux that contain useful information for the discrimination of speech and
music. Based on the observation made in [1] the SVM classifier will be preferred for the
classification in our approach. In the rest of the thesis, a definition of these features will

be given and the implementation of the whole algorithm will be described. Furthermore,
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we will evaluate each feature combination that was made with the MFCCs and the results

will be presented.



Chapter 3
Voicing Detection Algorithm

In this chapter, the features used in the algorithm will be described and their mathematical
definition will be given. Also, the algorithm is going to be analysed, explaining each step.

A description in pseudo code will also be presented.

3.1 Features

In the previous chapter, features that are usually used in VAD were presented, Speech /Nonspeech
classification, SVD and Speech/Music Discrimination. As already mentioned, MFCCs is
the state-of-the-art feature in the last two tasks and is also used in the other two. This
particular feature is claimed to provide the best performance in the majority of the cases
and due to this it is widely used [15], [16], [13], [11], [22], [1]. In this thesis MFCCs are
considered as the main feature combined with Cepstral Flux, Harmonicity and Clarity.
Each feature is computed separately and then concatenated with the MFCCs, into one
global feature vector.

The feature vector based on the MFCCs consists of 12th-order Mel frequency cepstral
coefficients containing also the DC component, which is actually the Oth coefficient. The
Matlab implementation by Daniel Ellis is used [25]. Specifically, 13 coefficients are derived
from 40 mel scale frequency bands for each segment. The magnitude spectrum is obtained
through a Fast Fourier Transform (FFT). The energy is computed on each band by pro-
cessing the magnitude spectrum with a filter bank, whose frequencies are spaced according
to the mel scale. After this, the logarithm is taken. Due to the high correlation of the
energies of each band, a Discrete Cosine Transform (DCT) is applied to decorrelate the
values and then obtain the MFCCs. As it is described in [11], equal-loudness pre-emphasis
and cube-root intensity-loudness were applied for the computation of MFCCs according
to [30], by setting the parameter 'usecmp’ equal to 1. In [16] the authors concluded that

the use of delta coefficients can improve the performance. According to this, we use also
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the delta and delta-delta coefficients. So, we have a (39x/N.) matrix, containing the 39
coefficients, where NNV, is the number of elements for each coefficient. After computing the
mean and the variance of each coefficient contained in the matrix, we end up with a 78
element feature vector, with whom the following features will be concatenated.
The first feature that is combined with the MFCCs is called Cepstral Flux (CF). It can be
seen as an extension of the Spectral Flux (SF), that is used in [9] and [20] . It is defined
as the squared absolute value of the frame-to-frame amplitude difference of the real cep-
strum. For the computation, we keep in a buffer the cepstrums of the N previous frames.
So, considering C; to be the real cepstrum of the i-th frame, we have:

CF= Y |Ci—Cyl” (3.1)

n=i—N

This feature detects how fast or slow the cepstrum of the signal changes over time. In [20]
this feature is used for Speech/Music Discrimination based on the fact that music exhibits
more drastic changes from one frame to the next, having a higher rate of change than
speech. But this depends on the music style as well. It is possible that the cepstrum of
speech changes faster when we compare it for example to the cepstrum of a classical music
song. In Figures 3.1a, 3.1b, 3.1c and 3.1d the cepstrums for each frame for a 1 second
signal are shown. It is observed that some coefficients for lira and lute maintain similar
values for small periods, whereas for speech and cicadas this does not happen. Due to
this behaviour, the value of cepstral flux is expected to be small for such periods in the
particular music signals, but will produce a peak at the beginning and in the end of this
period. As for the speech and the cicadas signal the cepstrum changes constantly from
frame to frame. Consequently, the values of cepstral flux corresponding to music will have
a larger variance than those for speech and cicadas.

In contradiction to the first two features, the following two are computed in the time
domain. Harmonicity, also known as harmonics-to-noise ratio (HNR) is defined as the
relative height of the maximum autocorrelation peak in the plausible pitch range [9]. The
range of 62.5 to 500 Hz is chosen for human speech, which corresponds to the interval of
[2, 16 Jms. The lower limit is imposed by the frame length and the fact that it usually
chosen so to cover at least about two pitch periods, for a reliable voicing estimation. It is

computed as following:

Tzx (ta kmax)
, kmer = argmax 1. (t, k). 3.2
Txa (t, O) - rxa:<t7 kmaa}) 2ms§gk§16ms ( ) ( )

h(t) =
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o 0.01 o
(9] = (9]
L L
Q Q
£ E
[ [
0.005
0 = = i T % T = e =
20 40 60 80 20 40 60 80
Frames Frames
(a) Speech signal. (b) Music signal (lute).
Cesptrogram of lira music Cepstrogram of cicadas
0.015 : e
o 0.01 o
(9] 2 (9]
L = L
Q Q
E £
[ [
0.005

20 40 60 80 20 40 60 80
Frames Frames
(c) Music signal (lira). (d) Cicadas signal.

Figure 3.1: Examples of cepstrograms for different signals. The horizontal axis represents
the frame number.

The autocorrelation is computed according to the next equation:

i

raa(t, k) = ) w(w(G)z(d + k)w(j + k) (3.3)

J

Il
=)

where w(n) is a Hanning window and ¢ and k are frame and autocorrelation lag indices
respectively. In Figures 3.2a, 3.2b, 3.2c and 3.2d the autocorrelation for different kind of
signals can be seen. Four signals that last one second has been processed in small frames,
in which the autocorrelation was computed. The mean of all these autocorrelations is
plotted. We can see the r,,(t,0) and the ry,(t, knae) corresponding to speech, lira, lute
and cicadas. We notice that the correlation between these two values differ for each signal.
The last feature that we use is also based on the autocorrelation of the frame and is called

Clarity. It describes the relative depth of the minimum Average Magnitude Difference
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Autocorrelation of two speech frames
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Figure 3.2: Examples of autocorrelation for different signals. The horizontal axis represents
time in samples.

Function (AMDF) valley in the plausible pitch range. It is defined in [9] as

=1 —2 ™" 3.4
C( ) D<t7 kmax) ( )

where,
Emin = argmin D(t, k) and k., = argmax D(t, k) (3.5)

2ms<k<l16ms 2ms<k<l6ms

and D(t,k) is the AMDF as mention above. It is costly to compute it from its exact

definition, but it has been shown [28] that it can be approximately derived from the

autocorrelation as

D(t, k) = B(k)\/2[rew(t,0) — ruu(t, k)] (3.6)

where ((k) is a scale factor that varies between 0.6 and 1.0. It was found out that the
value of this parameter does not significantly affect the clarity feature. So it was set equal
to 0.6. The autocorrelation, rr,,, is again computed as described in (3.3). The subtraction

in (3.4) is just for converting the minimum to a maximum. Consequently, speech frames
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will have large values whereas non speech frames will present small values. An example of
the AMDF for various signals is presented in Figures 3.3a, 3.3b, 3.3c and 3.3d. Like in the
previous figures what we see following, is the mean of the AMDFs of the frames for a one
second lasting signal. The signals for the examples were chosen so, due to the content of
the database that has been used (Chapter 4).

It is important to say that both features, the Harmonicity and the Clarity, are not influ-
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Figure 3.3: Example of AMDFs for different signals. The horizontal axis represents time
in samples.

enced by the energy of the signal due to the way that we compute them. In other words,
duplicating a signal’s amplitude will give the same value as the original signal will give for

both features.

In order to do the classification we used the publicly available SVM"“"* tool [26]. SVM
is a binary classifier, that models the decision boundary between two classes as a separating
hyperplane. The training set, given as input to the SVM consists of binary training vectors,
containing +1 and -1. In our case the positive vectors, labelled as +1, correspond to speech

feature vectors and the negative vectors, labelled as -1, correspond to non speech feature
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vectors. A model is created that represents the decision boundary, which is mostly not
linear, like for example in Figure 3.4. Then the classification is applied on the testing
set, according this model. When evaluating a system by training it first, the accuracy of
this system depends on how representative the training set is. So, it is very important
to choose the appropriate training set. This way the features will be able to discriminate
speech from non speech and give reliable results in different cases. In Chapter 5 we will

see how results can differ when using different combinations of training and testing sets.

L
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. @'E' O Support Vectors
- ® . '

Figure 3.4: Example of SVM classification taken from [32].

3.2 Algorithm description

The algorithm aims at classifying segments of an audio signal into “speech” or “nonspeech”.
The class “speech” refers to parts of the signal that contain both speech and singing voice.
In opposite the class “nonspeech” refers to all the other possible “noises” (music, noise,

silence etc).

The description of the algorithm in pseudo code is given below:
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Feature extraction for each segment

e - Define frame and step size
- Initialize feature vectors and CF buffer

- Compute number of frames Nfr

e For k from 1 to Nfr
- Compute the autocorrelation of the frame

- Compute Clarity, Harmonicity and Cepstral Flux
- Compute MFCCs, deltas and double deltas

e - Take median and variance of features
- Subtract mean and divide with standard deviation

- Combine all the features into one vector
Classification
e Define K equal to 10 (10-fold cross-validation)

e For k from 1 to K
- Split data into training and testing sets
- Train the SVM classifier

- Test the remaining data

e Store the results

The two classes were defined so, due to the content of the database as we will see in
the next chapter. It consists of 3 seminars on traditional Cretan music. Consequently,
the audio signals may contain speech, singing voice, music and other types of noise too.
A listener might search the recordings under different aspects. He might be interested
in those instances where music is played. On the other hand, he could be interested in
the parts where the teacher speaks, or a discussion is made between the teacher and the
participants. Therefore, it is very useful for the listener being able to get the important
parts without consuming much time. In this thesis, we focus on the second case where voice
is in our interest. Either way, classification must be applied in order to discriminate the
different parts. When choosing to apply short-term classification (classifying each frame
separately), the information that is considered is local. This makes the classification prone
to errors, having many changes from one class to the other. For this reason, classification
is usually smoothed by splitting the signal into segments and assigning the same class to

the whole segment. The segments consist of many frames and so long-term information
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is introduced [29]. In [31], Marolt presents a probabilistic approach of segmentation of
recordings containing music. He emphasizes the low priority of temporal accuracies of
the boundaries and states that a few seconds is a sufficient accuracy when determining
the boundaries. So, 3 second long chunks are classified into one of the classes defined.
According to this work, we define the length of a segment to be 3 seconds. Additionally,
the duration of the segment to be classified has also to do with the content of the audio
signals being processed. We assume that the parts in which we are interested can last at
least 3 seconds. For example, when the teacher explains something during the seminar
he will not say it only using one sentence, but more. Thus, the goal is to classify these
segments according to the classes defined previously (”speech” and ”nonspeech”).

For the analysis, each segment is split into smaller frames, in which the feature extraction
takes place. The decision to be made is then addressed to the whole segment. The length
of each frame is 30ms and there is an overlap of 20ms between them. For each frame
a Hanning window is applied and then the features are extracted. The Clarity and the
Harmonicity are computed using the autocorrelation of the current frame, according to
the equations (3.4) and (3.2) respectively. For the computation of the Cepstral Flux, we
use a buffer of size N = 15 frames. So, for each frame the feature CF is computed as
the squared sum of the difference between the current frame and the 15 previous frames,
divided by the length N of the buffer (Eq. 3.1). This produces one value per feature for
each frame. As already described, the MFCCs are extracted using the implementation of
Daniel Ellis [25]. The frame size is 30ms and an overlap of 20ms is defined similar to the
other features. Also, the deltas and double deltas are computed for more efficiency. Then,
the median and variance are computed for these three vectors (MFCCs, deltas and double
deltas) and put into the feature vector to be later used. This produces an MFCC based
vector of 78 elements.

Using only one value for the Clarity, one for the Harmonicity and one for the Cepstral
Flux to represent each segment, does not provide enough information for the classification.
What actually happens is a smoothing of the real feature vector and there is a large
possibility to miss classify a segment. Through the feature extraction previously applied,
a vector is produced for each feature, which contains as many elements as the number of
frames are. Since the length of a segment is defined to be 3 seconds and the frame size
30ms with a step of 10ms, the total number of frames is 298. This is computed using the

following formula:

Length of segment — Length of frame

Number of frames = +1 (3.7)

Step size

In order to avoid this kind of smoothing, more than one value is required for representing
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one segment. After trial and error, it was found out that it is enough to use 12 values, for
the representation of each segment. So, we down sample the feature vector down to 12 from
the 298 values that we initially had. This means that we have to group together every 24
frame values. We then take the median and the variance of those 12 values to end up with
24 values for each feature per segment. For the current application the standard score,
also known as z-score was computed for each feature vector separately. According to its
definition, for each vector the mean was subtracted and then a division was applied by its
standard deviation. Doing this, the mean is going to be 0 and the standard deviation equal
to 1. By computing the z-score for a vector, the amplitudes will change but the ”envelope”
of it will remain the same. We have seen that the MFCCs are often used for speaker
recognition due to the fact that they vary from speaker to speaker. The thing in which
they differ in this case is the amplitude (energy) of the MFCCs. But when dealing with
speech in general, the structure of them is similar regardless the speaker. Normalizing the
MFCCs in the way described previously, the values of the amplitude change, but this does
not concern us since speaker recognition is not in our interest. The correlation between
the coefficients and their structure do not change and this is very important for our task.
Relying on this fact we use this features to discriminate voice from other sounds. After
this, we concatenate all the previously computed feature vectors into one, which will be
used for the classification of the segments. So a 150 element vector is finally extracted for
each segment, 78 values for the MFCCs, 24 for Cepstral Flux, 24 for Harmonicity and 24
for Clarity.

After we have finished with the feature extraction for the given data, the classification
must be performed. An SVM classifier needs to be trained and then tested. As described
in 3.1, the training and testing vectors are defined to be binary, containing +1 for class
"speech” and -1 for "nonspeech”. So a 10-fold cross validation is applied on the database
, which will be described in the next chapter. This means that the data are split into 10
disjoint subsets, from which one is kept for the testing and the other 9 subsets are used to
train the classifier. A description will be given in Chapter 5 (Evaluation), of the various
data combination that have been made for the training and testing. As it is mentioned
in the manual of SVM'"  the RBF kernel is selected. During the training the support
vectors are created, according to which the testing data will be classified. The evaluation
of the results produced will take place in Chapter 5 presenting plots with the Detection
Error Trade-off and Receiver Operating Characteristic curves, as well as tables with the
scores (Equal Error Rate, Efficiency and Area Under the Curve) and the corresponding

diagrams.
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Chapter 4
Description of the database

As it has been mentioned before, the goal of this thesis is to develop an efficient algo-
rithm that is able to detect the voicing parts of an audio signal. In order to do that we
used a database, obtained from the Phonogramm Archiv in Vienna [27], which will be
described following. The database consist of three different seminar recordings that have
been carried out in Crete. As we will see there are different environmental settings as well
as different instruments. Although the recordings are available in high resolution video,
we extracted and used only the audio track for this thesis. The length of the record-
ings varies from 31 minutes to 62 minutes. In each seminar there is a person(renowned

master) that teaches how a specific musical instrument is applied on a certain repertoire

of Cretan folk music. In Table 4.1 some basic information can be seen about the recordings.

Video 1 Video 2 Video 3
Instrument Lira Lira Lute
Duration 62m 52m 31m
Location Houdetsi Meronas Meronas
Date April 2011 | August 2011 | August 2011
Environment | Class room | Class room Outdoors

Table 4.1: Basic information about seminars

We considered two classes, speech and nonspeech. Consequently, silence, music and
noise parts are labelled as nonspeech. We chose to do so because we are just interested
in detect the voicing parts of the signal and keep them. Although we name the first class

speech, singing voice is also included in this class.
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4.1 Video 1: Lira seminar

The first seminar was held in a class room, in a small village in Crete called Houdetsi in
April of 2011. The video was recorded on tape with a Sony DSR-PD150P camera, using
the internal microphones of the camera. It was compressed just for the uploading, probably
with Adobe Premiere. The teacher and the students play a traditional Cretan instrument
called lira. It is a stringed instrument, which is played with a bow and is similar to a
violin. The video camera, on which the microphone is, is placed between the teacher and
the students. So there is a distance between the microphone and all the persons being
there. When someone speaks, we can hear something like an echo, probably due to the
size of the room. There are parts in which the teacher only speaks and nobody plays
the instrument, but there are also parts where one or more speak and at the same time
we can hear someone playing. In parts where the students play all together, we notice
that they are not synchronized at all. A small proportion of the parts of the signal that
contain speech correspond to singing voice. After finishing the annotation of the audio
signal, it was observed that the most parts that were annotated as ”Speech”, contained a
lot of noise. This means, that by evaluating our method on this data the results will be
reliable, due to the rough recording conditions. If we get good results by testing the algo-

rithm on these data, we expect to get even better results when testing it on less noisy data.

4.2 Video 2: Lira seminar

The next two seminars were held in the village Meronas, which is also in Crete, in August
2011. The first one was recorded in a class room and the instruments that we hear are
again liras. For the recording a HDR-FXT7E Sony camera was used. The internal micro-
phones were used in this case too. The video was compressed so to achieve a 720p format.
The Final Cut Pro was used for this purpose, using an export to Mpg4 with the following
settings:

Quality: 50%

Compression: H.264

Data rate limited to 2 Mbps

Sound Mpeg-4 AAC Stereo Automatic 256 kbps

Frame size: 1280x720 (HDTV 720p)

The camera is closer and although it is not right in front of the teacher, we can hear him
better than in the first seminar. It is worth mentioning that in this particular seminar the

teacher is singing more often than in the other seminars. The windows of the classroom
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were open during the seminar so noise from outside (cicadas) was also recorded. Still, it
was noticed that when someone speaks there is not much noise, e.g. by others playing
the instruments. So the parts of the signal that were annotated as ”Speech” are clearer.
That is why the results that we will get by evaluating the method with these data will not

correspond to the general case and the method is probably going to be overestimated.

4.3 Video 3: Lute seminar

The last seminar was about playing the lute. The lute is also a stringed instrument and is
played like a guitar so no bow is used. It is important to mention that during the whole
seminar cicadas can be heard, which produce a noise in high frequencies. The microphone
is in distance but close enough so we can understand what is said, although the sound of
the cicadas is loud. The teacher is trying to teach how a particular song is been played with
the particular instrument. He asks from each student to play on his own and sometimes he
sings the notes at the same time in order to help them. There are also parts in the signal
where they play all together with the teacher giving the rhythm. So again, there are parts

here in which someone speaks and others play, or only music or speech can be heard.

To be able to use these data and validate the results of the algorithm, each seminar
was segmented and annotated manually. The free available audio editor Wavesurfer was
used for this purpose. As already described, two classes were considered, ”speech” and
"nonspeech”. The manual segmentation was not performed according to the definition
that was given in Section 3.1, about the duration of a segment. Parts of continuous speech
and singing voice where labelled as "speech”, whereas the remaining parts where labelled
as "nonspeech”. After finishing with the annotation of all the seminars, these large chunks
where split into 3 second lasting segments with a Matlab script. Segments with durations
less than 3 seconds were discarded, as they do not agree with the predefined conditions of
the algorithm. In the following chapter, the results will be presented and the performance

of the algorithm will be evaluated.
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Chapter 5
Evaluation

In this chapter, the results will be presented and the algorithm will be evaluated. The
detection error trade-off (DET) curve is used as the evaluation tool. The DET curve
shows the miss probability (P,,ss) as a function of the false alarm probability (Py,) on a
normal deviate scale. The P, refers to the probability of the algorithm to miss classify
a voice segment. In opposite, Py, is the probability of classifying a segment that does not
contain voice as a voice segment. Depending on the application, one of the two errors can
be considered less significant. So the threshold can be adjusted properly to get the desired
result. The number of false alarms can be reduced by defining a higher threshold, at the
cost of increasing the number of missed voice segments. The lower this curve is the better
the system is. We also compute the Equal Error Rate (EER), which corresponds actually
to the threshold for which P,,ss is equal to Pr,. Another measure that was used for the
evaluation is the Receiver Operating Characteristic(ROC) curve. The True Positive rate
(T'P,) is plotted against the False Positive rate (F'P,) at various thresholds. The TP, is
computed as the number of "speech” segments that were correctly classified over the total
number of ”speech” segments. Similarly, the F'P, is the ratio of the number of "nonspeech”
segments that were classified as "speech” over the total number of "nonspeech” segments.
The TP, and F P, are also called Sensitivity and Fall-out respectively. The two previous
evaluation tools are are visual tools. We also use three other measures for the evaluation.
The Efficiency and the Area Under the Curve (AUC) are computed. The Efficiency is
equal to the number of the segments that were classified correctly (both ”speech” and
"nonspeech”), over the total number of segments that were processed. And finally by
saying AUC, the area under the ROC curve is meant. Computing the AUC we measure
the possibility, that a classifier will rank a randomly chosen positive instance higher than
a randomly chosen negative one. This is because, as mentioned earlier the ROC shows the
TP, against the F'P,.
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5.1 Evaluating the performance on each seminar sep-

arately

First we will see how the algorithm performed on each seminar separately. In Figure 5.1
we can see the DET curve that we get, when using only the data from the first Lira sem-
inar. This means that both training and testing data are from the same seminar. Due
to this, the training and testing sets will be similar, since they were recorded under the
same environmental conditions. With dashed lines the DET curve when using only CF,
Clarity and Harmonicity on their own are represented. Whereas the solid lines correspond
to the DET curves of the feature combinations, except the black one that corresponds
to the MFCCs. The goal of this thesis is to improve the performance of a classic voice
detection/discrimination system that uses the MFFCs. By observing the following plot, it
is clear that all the feature combinations, except the MFCCs-Clarity, perform better that
the MFCCs alone.

In the description of this seminar we mentioned that most of the parts that contain
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Figure 5.1: DET curves for seminar 1 Lyra.

speech do also contain music. This makes the classification harder. In opposite, after the
annotation of the second Lira seminar we noticed that the speech parts are clearer than

in the first. Most of the times, nobody played music while someone was talking. This
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difference has a great influence on the performance of the algorithm. Comparing Figures

5.1 and 5.2, we can see that the DET curves for the second seminar take much lower values.
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Figure 5.2: DET curves for seminar 2 Lyra.

Further, in Figures 5.2 and 5.3 the improvement of the results is more visible. Using
MFCCs and Harmonicity, MFCCs, CF and Harmonicity or all features together a signifi-
cant Pp;ss and Py, reduction is achieved. It is remarkable that for a Py, of 5%, the P,
decreases about 20% for any of the previously mentioned combinations. Exactly the same
thing can also be seen in Figures 5.5 and 5.6, where the ROC curves are shown. The curves
that we get by using the combinations mentioned just before, are better than the black
one (black corresponds to MFCCs). In other words the Area Under the Curve is getting
bigger which is our goal. It is obvious from Figures 5.1-5.3, that the performance of using
CF, Harmonicity and Clarity alone is worse. So it is not worth comparing these results
with those from the combinations. This is why the ROC curves are not presented for those
cases.

The third seminar, which is on lute was help and recorded outdoors. We referred to the
noisy conditions, due to the cicadas in the previous chapter. The results agree with our
expectations and it can be seen that the algorithm does not perform as good as in the

second seminar, which is clear observing Figures 5.2 and 5.3.
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Figure 5.3: DET curves for seminar 3 Lute.
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Figure 5.4: ROC curves for seminar 1 Lyra.
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Figure 5.5: ROC curves for seminar 2 Lyra.

Analysing Figures 5.1 - 5.6 we see that whichever feature we combine with MFCCs,
the algorithm performs better than in the case when we use only MFCCs. However, we
notice that the combinations that perform best are MFCCs and Harmonicity (pink curve),
MFCCs, CF and Harmonicity (green curve) and all the features together (red curve). The
same applies, as we will see in the next section, when we use different data for the training

and testing.
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Figure 5.6: ROC curves for seminar 3 Lute.
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5.2 Evaluation when using data from seminar 1 for

training and seminar 2 for testing

In Chapter 3, we mentioned that when using different combinations of data for training
and testing the results can differ. As described in Chapter 4, the conditions under which
each seminar took place are different. In the first one, the microphone is not placed close to
the teacher and due to the size of the room, an echo can be heard when someone talks. In
the second seminar the microphone is closer to the teacher and the participants. Moreover,
it was observed that the "speech” parts of this recording are much clearer in the second
seminar than in the first.

What we did in this case is to use data from the first seminar for the training and from
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Figure 5.7: DET curves using data from seminar 1 for training and Lyra 2 for the testing.

the second one for the testing. The results of this data combination can be seen in the next
two figures (5.7 and 5.8). It reasonable to compare Figure 5.7 with Figures 5.1 and 5.2.
We notice that the DET curves in Figure 5.7 are better than those in 5.1. This behaviour
was expected, as the training data were noisy whereas the testing data were not. So the
algorithm was trained in rough conditions and then tested in simpler and clean conditions.
Consequently the classification was easier to be applied. Comparing now Figures 5.7 and

5.2 we see that the DET curves of 5.7 are slightly worse than those in 5.2. Again, this
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result is not surprising us. Since the training was performed on different data than the
testing, the classification will obviously be more difficult and the possibility to miss classify
a segment is bigger. This experiment confirms the importance of choosing the appropriate
data for the training stage of a system (Chapter 3.1). The accuracy of the algorithm is
affected of how representative the training data are. For this reason, we mixed all the

data available and then tested the performance of the algorithm. The results can be seen

following.
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Figure 5.8: ROC curves using data from seminar 1 for training and seminar 2 for the testing.
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5.3 Evaluation of the performance when using all data

available

Here, the results can be seen in Figures 5.9 and 5.10 in the case where all data were used.
The data of all three seminars are put into one set and both training and testing data
are then derived from this set. The results produced in this way are more reliable than
those presented previously. By using all the data, not all but many possible conditions are
taken into account, under which a recording could take place. Thereby, the system will
be trained in a way, where is could perform good whether the conditions are easy(relative
clean data) or not(noisy data). The type of data on which the algorithm is tested is also
important. If the testing data are clean, the scores will be better than in the general case.
To be closer to the general case, noisy data need also to be contained in the testing set.
The difference between the performance of MFCCs and Harmonicity, MFCCS,CF and
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Figure 5.9: DET curves using all data.

Harmonicity and all the feature is again visible in Figures 5.9 and 5.10. The results that
we derive from those three combination stand out from the others. Following, tables are
presented for the Equal Error Rate (EER), the Efficiency and the Area Under the Curve
(AUC) for the cases described above. Since only three out of the five combinations show

a significant improvement, we computed EER, Efficiency and AUC just for those cases.
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In Table 5.1, the EER can be seen for each data set used with the feature combinations

mentioned earlier. The mean of those measures are reported and their variance in brack-

ets. Since the value of the variance is very small and close to zero not the exact value is

written. Then in Tables 5.2 and 5.3, the Efficiency and the AUC is presented. Plots are

also presented, as it is a more convenient way to compare the performance in each case.

Observing Figure 5.11 we clearly see the improvement that is achieved through the fea-
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Figure 5.10: ROC curves using all data.

ture combinations. The value of the EER differs a lot between the blue bar (using only
MFCCs) and the other three bars.

Seminars — Seminar 1 Seminar 2 Seminar 3 Seminars All seminars
Features | (Lira) (Lira) (Lute) 1 and 2 .
MFCCs 0.104(< 10°7) | 0.097(< 102) | 0.1082(< 10-7%) | 0.126(0) | 0.1139(< 10~ 9)
IlfFCCS.a.nd 0.0994(< 1073) | 0.0475(< 1073) | 0.0764(< 10~3) | 0.0986(0) | 0.0949(< 10~3)

armonicity
MFCCS7 CF -3 —3 —3 -3
and Hasmonicity | 0-0934(< 107%) | 0.0466(< 107%) | 0.0679(< 107) | 0.0748(0) | 0.0894(< 10~%)
ATl features 0.0911(< 10-%) | 0.046(< 10-%) | 0.0715(< 10~?) | 0.0681(0) | 0.0849(< 10~%)

Table 5.1: Mean and variance of Equal Error Rates (EERSs) for the feature combinations on the various

data.

In the next two Figures (5.12 and 5.13), we see that the values are much higher for the

three combination than for the MFCCs. It is remarkable to see the difference between the
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Equal Error Rate (EER)

0,14

B MFFCs

® MFCCs and Harmonicity

m MFCCs, CF and Harmonicity

W MFCCs, CF, Clarity and Harmonicity

Seminar 1 (Lira) Seminar 2 (Lira) Seminar 3 (Lute) Seminar 1and 2 All seminars

Figure 5.11: EER scores for all the tested data.

results that we get from seminar 2 and from seminar 1. In Chapter 4, we said that the
parts containing speech in seminar 2 were relatively clean, whereas in seminar 1 this does
not hold.

In seminar 2, it is easier for the classifier to distinguish between the two classes, since

Seminars — Seminar 1 Seminar 2 Seminar 3 Seminars All .
Features | (Lira) (Lira) (Lute) 1 and 2 SCIHArs
MFCCs 0.8957(< 1073) | 0.9074(< 1073) | 0.8921(< 1073) | 0.8529(0) | 0.8735(< 10~2)
MFCCs and _3 _3 _3 -3
Harmonicity 0.9(< 1073) | 0.9545(< 1073) | 0.9291(< 10~3) | 0.8992(0) | 0.8974(< 10~3)

MFCCs, CF

.. 0.9063(< 1073) | 0.9584(< 1073) | 0.9328(< 1073) | 0.9151(0) | 0.9059(< 10~3)
and Harmonicity
All features 0.9043(< 1073) | 0.9588(< 1073) | 0.9291(< 10~3) | 0.9181(0) | 0.9085(< 10~%)

Table 5.2: Mean and variance of Efficiency for the feature combinations on the various data.

the various parts (speech and nonspeech) differ a lot. This explains the high values of
Efficiency and AUC and low ones of EER for the second seminar. In the last three Figures
(5.11, 5.12, 5.13) the degree by which the data being used for the training and testing
of the system affect the results can be visually seen. For seminar 2, the EER scores are
lower than in the other cases. As for the Efficiency and the AUC the difference can be seen
clearly too . In the fourth case, by combining the data from seminar 1 and 2, we notice that

although the results are better than in the first case, they are slightly worse than in the
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second case. This is not strange, because as described earlier, not the same conditions hold

for both training and testing data. As we can see in Tables 5.1, 5.2 and 5.3, the variances

of all metrics are equal to zero. This happens due to the fact that the validation was only

performed once for this particular case. Concerning the last case, putting together all the

available data, it is reasonable to expect that the results will be an average of those in the

others cases. What actually happens in this case is that the training set consist of data

from all seminars and as well as the testing set. Figures 5.11, 5.12 and 5.13 confirm this

estimation as the results really seem to be averaged.

Efficiency
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Seminar 1 and 2

All seminars
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m MFCCs, CF and Harmonicity
B MFCCs, CF, Clarity and Harmonicity

Figure 5.12: Efficiency scores for all the tested data.

Seminars — Seminar 1 Seminar 2 Seminar 3 Seminars All .
Features | (Lira) (Lira) (Lute) 1 and 2 Sermars
MFCCs 0.9081(< 1073) | 0.9577(< 1073) | 0.8921(< 1073) | 0.9187(0) | 0.9194(< 1073)
MFCCs and _3 _3 _3 -3
Harmonicity 0.9217(< 107%) | 0.981(< 107%) | 0.9441(< 107%) | 0.9555(0) | 0.9481(< 1073)
MFCCs, CF _3 —3 -3 -3
and Harmonicity 0.9262(< 1077) | 0.982(< 107%) | 0.9462(< 107°) | 0.9682(0) | 0.9538(< 107%)
All features 0.9257(< 1073) | 0.9826(< 1073) | 0.9441(< 1073) | 0.9698(0) | 0.9556(< 10~3)

Table 5.3: Mean and variance of Area Under the Curve for the feature combinations on the various data.
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Figure 5.13: AUC scores for all the tested data.
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Chapter 6
Conclusions and future work

In this thesis, we worked on voice detection in musical environment. An algorithm was
implemented in order to detect the presence of voice in spontaneous and real-life record-
ings from music lessons. The developed algorithm is based on a classic system which
extracts MFCCs from the input signal and classifies segments into ”"speech” and "non-
speech”. Three additional features were used to achieve an improvement of the results
given by the classic system. These features are the Cepstral Flux, the Harmoniicty and
the Clarity, which are computed during the signal analysis.

Various combinations of those three features with the MFCCs are examined and evaluated.
We conclude that only three combinations are worth of discussing and comparing with the
state-of-the-art MFFCs. Those are the MFCCs with the Harmonicity, the MFCCs with
the Cepstral Flux and Harmonicity and the MFCCs combined with all three features. Al-
though the results produced by the combinations mentioned before are very close to each
other, the use of all features performs best.

We have seen the importance of using representative enough data for both the training
and testing stage. In Chapter 5, observing the figures presented, the difference between
the results can be seen when using different combination of training and testing sets. To
provide reliable results, we note that the training set needs to contain data recorded in as
many as possible environmental conditions (very noisy but also less noisy). This way we
are able to guarantee that the algorithm will perform as good as the results show, in the

majority of the cases.

Extending this work, it would be interesting to build a system that takes an input
audio signal and returns it segmented. This means that after the processing and the
classification of the small segments (3 seconds) that our algorithm performs, continuous
segments would be grouped together. So, the access to parts of the signal according to its

content will be easier. Also, in some application there is the need to know with a high
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precision the boundaries of each segment. So another extension could be to develop a
method or using an existing one, in order to determine precisely the beginning and the end
of each segment given as an output from our algorithm. Studying more features and test
various combination for improving even more the results by providing more robustness in
environmental noises could also be done.

Finally, it would be quite interesting to be able to run such a system in real time. Of course
this needs to be fast but accurate enough, which is difficult in some cases. Developing such
a system means, fast feature extraction and classification too. Consequently, the features
to be used need to carefully be chosen by having low computational cost. In the case of
a real time system, the segments to be classified must last less than 3 seconds, otherwise
the system will not provide results often enough. Even reducing the duration to 1 second
would possibly not be enough. In this case, we have to deal with the question of, which
is the ideal length of a segment. It has to be short enough so the processing will not take
too long, but big enough to be able to get useful and representative information of the

underlying signal at the same time.
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