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Abstract

The sinusoidal model and its variants are commonly used in speech processing. In the
literature, there are various methods for the estimation of the unknown parameters of
the sinusoidal model. Among them, the most known methods are the ones based on the
Fast Fourier Transform (FFT), on Analysis-By-Synthesis (ABS) approaches and through
Least Squares (LS) methods.

The LS methods are more accurate and actually optimum for Gaussian noise, and
thus, more appropriate for high quality estimations. In addition, LS methods prove to be
able to cope with short analysis windows. On the contrary, the FFT and the ABS- based
methods cannot handle overlapping frequency responses, in other words, they cannot
handle short analysis windows. This is important since in the case of short analysis
windows the stationary assumption for the signal is more valid. However, LS solutions
are in general slower compared to FFT-based algorithms and optimized implementations
of ABS schemes. In the present thesis, our goal is to alleviate the computational burden
that the LS-based techniques bear, such that both the increased accuracy and the faster
computational implementation can be achieved.

The four models of which the amplitude coefficients will be estimated, namely the
Harmonic, Sinusoidal, Quasi-Harmonic and Generalized Quasi-Harmonic models, are re-
introduced. Then, each model is studied individually and the straightforward LS solution
for the amplitude estimation is presented.

The sources of computational load in the case of an LS solution are indicated and
various computational improvements are introduced for each model in terms of its com-
putational complexity and execution time. The first speed up process includes performing
matrix multiplications manually, which yields a direct formula for every element of the
result. For the next accelerating method, we show how we can calculate a certain matrix
of exponentials using primarily multiplications. As a final acceleration, having realized
that certain elements of a matrix, which is needed to be calculated and then inverted,
play a less important role in the process of deriving the solution, we allow certain ap-
proximations of the matrix by omitting the calculation of the less important elements.

Finally, it is demonstrated that by following the suggested steps, the complexity of
LS-based solution along with the execution time, are reduced. The methods are evaluated
by analyzing and re-synthesizing randomly created synthetic signals and calculating the
Mean Square Error, Signal-to-Reconstruction Error Ratio and CPU time improvement for
each step. Next, in an effort to test the robustness of our hastening methods, we illustrate
their competence in analyzing noisy synthetic signals. Furthermore, as a final test we
check the ability of our amplitude estimation mechanisms to analyze and synthesize real-
world voiced speech signals.
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PerÐlhyh

To Hmitonoeidèc montèlo kai oi parallagèc tou qrhsimopoioÔntai eurèwc sthn epex-
ergasÐa tou fwn c. Sth bibliografÐa, up�rqoun di�forec mèjodoi gia thn ektÐmhsh twn
�gnwstwn paramètrwn tou hmitonoeidoÔc montèlou. MetaxÔ twn opoÐwn, oi pio dhmofil c
mèjodoi eÐnai autèc pou basÐzontai sto Gr goro Metasqhmatismì Fouriè (GMF), se
proseggÐseic An�lushc-Mèsw-SÔnjeshc (AMS) kai mèsw mejìdwn epÐlushc ElaqÐstwn
Tetrag¸nwn (ET).

Oi mèjodoi ET eÐnai pio akribeÐc kai sthn pragmatikìthta bèltistec gia Gkaousianì
jìrubo, kai wc ek toÔtou, pio kat�llhlec gia uyhl c poiìthtac proseggÐseic. Epiplèon,
oi mèjodoi ET apodeiknÔetai ìti eÐnai se jèsh na antimetwpÐsoun th qr sh braquprì-
jesmwn parajÔrwn an�lushc. Se antÐjesh, oi mèjodoi basismènec se GMF kai to AMS
den mporoÔn na qeiristoÔn epikaluptìmenec apokrÐseic suqnìthtac, me �lla lìgia, den m-
poroÔn na qeiristoÔn braquprìjesma par�jura an�lushc, ta opoÐa eÐnai shmantik� lìgw
tou gegonìtoc ìti, ìtan qrhsimopoioÔntai h paradoq  stasimìthtac gia to s ma eÐnai pio
isqur . Wstìso, oi ET lÔseic eÐnai genik� pio argèc se sÔgkrish me algìrijmouc basis-
mènouc se GMF kai beltistopoihmènec efarmogèc twn susthm�twn AMS. Sthn paroÔsa
ergasÐa, stìqoc mac eÐnai na meiwjeÐ h upologistik  epib�runsh pou fèroun oi teqnikèc
basismènec se ET, ètsi ¸ste na epiteuqjoÔn tìso h megalÔterh akrÐbeia ìso kai pio
gr goroi upologistik  ulopoÐhsh.

Ta tèssera montèla sta opoÐa ja efarmosteÐ h ektÐmhsh twn suntelest¸n pl�touc,
dhlad  ta Armonikì, Hmitonoeidèc, OioneÐ-Armonikì kai Genikeumèno OioneÐ-Armonikì Mon-
tèla, prìkeitai na epaneisaqjoÔn. Sth sunèqeia, k�je montèlo melet�tai xeqwrist� kai h
�mesh lÔsh ET gia thn ektÐmhsh tou eÔrouc parousi�zetai.

Oi phgèc tou upologistikoÔ fortÐou gia thn perÐptwsh thc lÔshc ET upodeiknÔontai
kai di�forec belti¸seic ìson afor� thn upologistik  poluplokìthta kai ton qrìno ek-
tèleshc eis�gontai gia k�je montèlo. H pr¸th epitaquntik  diadikasÐa perilamb�nei thn
diekperaÐwsh pollaplasiasmoÔ pin�kwn me to qèri, dÐnontac ènan �meso tÔpo gia k�je
stoiqeÐo tou apotelèsmatoc. Gia thn epìmenh epit�qunsh thc mejìdou, ja deÐxoume p¸c m-
poroÔme na upologÐsoume mia ènan sugkekrimèno pÐnaka ekjetik¸n qrhsimopoi¸ntac kurÐwc
mìno pollaplasiasmoÔc. Wc telik  epit�qunsh, èqontac suneidhtopoi sei ìti orismèna s-
toiqeÐa enìc pÐnaka, pou apaiteÐtai na upologisteÐ kai na antistrafeÐ, paÐzoun ligìtero
shmantikì rìlo sth diadikasÐa eÔreshc thc lÔshc, epitrèpoume proseggÐseic tou pÐnaka
apofeÔgontac ton upologismì twn ligìtero shmantik¸n stoiqeÐwn. Tèloc, deÐqnetai ìti,
akolouj¸ntac tic proteinìmenec enèrgeiec, h poluplokìthta thc lÔshc basismènh se ET,
kaj¸c kai o qrìnoc ektèleshc, mei¸nontai. Oi mèjodoi axiologoÔntai analÔontac kai ek
nèou sunjètontac tuqaÐa sunjetik� s mata kai ton upologismì tou mèsou tetragwnikoÔ
sf�lmatoc, tou lìgou s matoc proc sf�lma anakataskeu c kai thc beltÐwsh tou qrìnou
upologismoÔ gia k�je b ma. SuneqÐzontac, se mia prosp�jeia na dokimasteÐ h eurwstÐa
twn epitaquntik¸n mejìdwn mac deÐqnoume thn ikanìthta touc ìson afor� thn an�lush
jorubwd¸c sunjetik¸n shm�twn. Epiplèon, wc telik  dokim  elègqoume thn ikanìthta
twn mhqanism¸n mac gia thn ektÐmhshc tou pl�touc na analÔoun kai na sunjètoun s mata
fwnhm�twn.
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Chapter 1

Introduction

Parametric modeling involves the reduction of a complicated process to a simpler one
with a smaller number of parameters. It is commonly used in speech, as well as in other
distinct fields, such as communication systems and economic models.

The parameter reduction implies approximation but even so, the signal is often decom-
posed into a form that is more easily or efficiently processed than the original. Moreover,
if the parameters turn out to be psychically meaningful, then insight can be gained into
the behavior, the nature and even the mechanism of the overall process by understanding
the influence of each parameter. Thus, in order to produce parameters that can be phys-
ically interpreted, in speech most models are derived by an effort to replicate the human
speech production mechanisms.

As an example, Linear Predictive Coding (LPC) models speech as the output of a
linear, time-varying filter modeling the vocal tract. The filter is excited by either an
excitation pulse train for voiced speech or a random noise source for unvoiced speech
(purporting the role of the glottis). However, the implicit assumptions made about the
excitation signal in this model are quite restrictive, and result in speech which may sound
“unnatural” for input signals which do not match these assumptions exactly.

The desire for an alternative speech model, which is both more efficient and more
general in representing speech, motivated development of the Sinusoidal Model (SM) of
speech in the mid-1980’s. Sinusoidal modeling is usually modeled in a frame-based manner
as a superposition of modulated sinusoids. One of the most widely known sinusoidal model
implementations is the one introduced by McAulay and Quatieri in 1986 [9].

1



Chapter 1. Introduction

1.1 Sinusoidal Modeling Applications

Sinusoidal modeling of speech, musical and sound signals in general is widely rec-
ognized as a very powerful and flexible method. One of the applications in which the
sinusoidal modeling plays a crucial role is feature extraction for classification of music
and video. Many features have been proposed that are computed from the sinusoidal
parameters, which are used in the context of non-parametric estimation of control pa-
rameters for physical models [2, 3], audio compression/coding, audio annotation [13] and
instrument recognition [14].

Moreover, as one would expect, since the sinusoidal model should represent any
periodic signal efficiently and most musical instruments produce periodic signals, si-
nusoidal models prove to be useful in music processing applications that usually fol-
low the procedures of sinusoidal analysis of the original signal, perform modification of
amplitude/frequency/time-scale of individual components and synthesis of the altered
signal [23, 4, 5]. Another application can be found in acoustical oceanography and par-
ticularly in the study of sounds produced by marine mammals [24]. In addition, sinusoidal
models are widely used in various ways for signal enhancement, such as: the enhancement
for the hearing impaired [21, 22], the speech enhancement in noise [17], the peak-to-RMS
reduction [16, 18] and the co-channel interference suppression (a problem which is similar
to separation of sound sources) [15, 25, 8, 29, 30, 32, 33].

One of the main reasons for which sinusoidal modeling has been proven to be efficient
in the area of speech processing is that, due to its simplicity and the implicit physical
meaning of its parameters, it allows to vary the pitch and the duration of the sound inde-
pendently [20] by allowing sound modifications of a very high quality [19, 5]. Combined
with the ability to concatenate speech (and music) it result in an efficient implementation
of text-to-speech systems [7]. Other applications apart from time and pitch scaling at
the same area include speech analysis/synthesis [9], speech compression/coding [10] and
speaker modification [27].
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Section 1.2: Amplitude Estimation

1.2 Amplitude Estimation

The sinusoidal models which will be employed in our work, as well as most variants
of sinusoidal models, are described by two types of parameters to be estimated, namely
the parameters concerning the amplitudes and the parameters related to the frequencies.
The main focus of this thesis will be given on the estimation of the amplitude parameters.
In this section, we will introduce the three main groups of methods used for amplitude
estimation. The first main group utilizes the frequency response of the windowed signal
segment, the second estimation method is based on an analysis-by-synthesis scheme and
final group is known as the Least Squares (LS) type of method.

Early methods estimated the amplitude parameters from individual peaks using a
parabolic interpolation over the main lobe of the log frequency response [9, 23]. One
advantage of these methods is that they perform estimation of the frequencies and of the
amplitudes simultaneously. However, these methods cannot handle frequency responses
that are partially overlapping and therefore they require large windows. When using
large windows, on the other hand, the local stationarity assumption becomes invalid.
The accuracy can be increased by performing zero-padding (typically turning the length
of the signal fragment to be analyzed to a power of two) before utilizing the Fast Fourier
Transform (FFT) algorithm, since zero-padding in the time domain results in an increased
sampling rate in the frequency domain. However, increasing the zero-padding factor,
which is defined as the ratio between the zero-padded signal length and the original
signal length, results in an increment of the computational load as well.

The second group of methods that concerns the amplitude estimation of sinusoidal
components conscripts a technique based on analysis-by-synthesis, by using an iterative
LS method [4, 6, 5]. More specifically, the so-called Analysis-By-Synthesis/Overlap-Add
(ABS/OLA) method, detects the most dominant sinusoidal component, estimates the
amplitude and subtracts the component from the spectrum. The process is repeated iter-
atively until a predetermined error criterion is no longer decreasing significantly enough or
it has reached a predefined acceptable level. Like the previous methods, this group cannot
handle frequencies frequencies that are close enough resulting in overlapping frequency
responses and requiring the use of adequately large windows.

The last group of amplitude estimation methods, which is also the one that this
work deals with, are based on the minimization of an error function which is usually
the weighted sum of a squared error between the model and the actual analyzed frame.
These techniques consist of Least Squares methods which estimate all amplitudes si-
multaneously [29, 30, 32, 33]. The main advantage of such methods is that they can
handle close frequencies more effectively than the previous ones and therefore they can
be also be applied to small analysis windows. For Gaussian noise is equivalent to the
Maximum Likelihood Estimator (MLE). However their main drawback is their computa-
tional complexity scales at a power of three as a function of the number of the sinusoidal
components.

3



Chapter 1. Introduction

1.3 Frequency Estimation

In the subsequent analysis, except if it is stated otherwise, we will assume that the
frequencies of the sinusoids are known a priori. Though, the importance of having the
correct, or close enough, frequency values should be stressed. Not only when the signal
reconstruction is performed the frequencies themselves will be incorrect, but also by
not using correct frequency values as input when performing amplitude estimation, then
wrong amplitude parameter values will be yielded as well. That double impact that
erroneous frequency values have, results in a significantly distorted signal which does not
resemble the original. That is why, for completeness, the two main categories of methods
for performing frequency estimation will be briefly discussed in this section.

The first category consists of methods which estimate the fundamental frequency,
while the second one contains methods that estimate all the dominant frequencies. The
problem solved by the methods belonging in the first class is often referred to as pitch es-
timation. The methods of the second class are employed more often in for non-harmonic
models, in other words, for models of which one frequency value shares no mutual in-
formation about another frequency value. Pitch estimation is more meaningful when
implementing harmonic models, that is, models of which the frequencies are assumed to
be integer multiples of a fundamental frequency (fk = kf0), or routinely called pitch.

As far as pitch estimation is concerned, various methods exist. The majority of them
follows the basic idea of searching for peaks in a short-time autocorrelation function. The
autocorrelation function indicates “self-similarity” between the original signal s[n] and
the signal shifted in time by an offset P , which represents the under examination value for
the pitch, s[n+P ]. It can be shown that maximizing the autocorrelation is essentially the

same with finding P̂ > ε such that P̂ = max
P

(
+∞∑

n=−∞
s[n]s[n+ P ]

)
. The main problem

with such methods is that the peak at the pitch period is not always the one with the
greatest amplitude. Although, longer windows usually help assuring that the peak close
to the pitch becomes the largest, however, another usual problem introduce by larger
windows is that peaks arise at pitch multiples as well.1

For frequency estimation that yields all the frequencies, without any assumption for
their values, the most widely used technique is known as peak picking. Individual local
maxima are detected in the sampled spectrum obtained by an FFT. As with amplitude
estimation techniques that take advantage of the spectrum of the signal, sufficiently large
windows are required (with a frame length of at least four times the longest expected
pitch period to obtain sufficient spectral resolution). Of course, frames are windowed and
zero-padded to a fixed length, typically at a power of two. Windowing the analysis frames
reduces the spurious peaks in the spectrum, while, zero-padding effectively interpolates
the spectrum so that peaks may be located more accurately, as well as allowing efficient
FFT algorithms.

1A common problem in pitch estimation referred as pitch-halving and pitch doubling, whereby the
pitch estimate is half or double the true pitch.
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Section 1.4: Motivation

1.4 Motivation

In section 1.2, the three main amplitude estimation categories were presented. The
first one, the FFT-based approaches, which try to balance between the accuracy of the
estimated parameters, by increasing the window size and the zero-padding factor, the
fast computation of the parameters, by decreasing zero padding-factor, and the non-
stationarity of the analyzed signal, by applying a smaller window size to the signal.

The second category consists of methods applying a analysis-by-synthesis scheme by
iteratively solving LS problems. Such algorithms can have time complexity as low as
O (N logN), with N being the signal length, when an efficient implementation is used
(look-up tables for the frequency responses). On the other hand, these methods cannot
resolve close frequencies, which result in the overlapping frequency responses.

The last category contains Least Squares methods which estimate all the amplitudes
simultaneously. The main asset of these methods is that they can handle overlapping
frequency responses better that the previous families of amplitude estimators. That
fact can also be translated to an ability to cope with smaller windows. However, their
drawback is that in general they have a high computational complexity of order O(K2N)
with K being the number of sinusoidal components.

The key point is that many applications require an amplitude estimator which can
handle overlapping frequency responses. For instance, the separation of multiple har-
monic sound sources, the monophonic recordings with strong reverberation and when the
usage of small windows is mandatory. The choice of small windows can be important
because the constant parameter assumption is more likely to hold. In addition, when
small enough windows are used, then the phase interpolation is often made redundant,
resulting in simpler, and therefore faster signal re-synthesis.

However, the high computational complexity (practically resulting in an increased
processing time) restricts the usage of such LS methods more often than not. Many
of the applications mentioned in section 1.1 would only be of interest if they could be
implemented in real time While for others real-time implementations would create more
opportunities to be exploited. For instance, it is desirable that procedures, such as speech
analysis, enhancement and synthesis in noisy environment could be implemented in real
time even by mobile devices, which are characterized by limited computational and power
resources.

Thus, in an effort to alleviate the disadvantages of the methods belonging to the latter
category, the problem of reducing the computational load of the amplitude estimation
using the Least Squares-based methods is addressed. In that way, both an increased
accuracy and faster computations can be achieved.
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Chapter 1. Introduction

1.5 Thesis Contribution

Most of the work presented in this thesis has been accepted and presented in Inter-
speech 2010 [31]. Additionally, an example where the methods presented in this thesis
can be effectively applied, is a model called adaptive quasi-harmonic plus noise model
presented in [12]. That model finds the amplitude components which are optimal, in a
Least Squares sense and uses these components to correct the frequencies. These steps
can be performed iteratively to further improve the frequency estimation. Since the LS
solution is performed more than once, it is important that it is done fast. A feat which,
as it will be demonstrated, is achieved by the techniques proposed in the present thesis.

1.6 Structure of the Thesis

This thesis deals with the problem of accelerating the computational procedures for
estimating the amplitude parameters of certain sinusoidal models. For the estimation
process the LS solution is used. The rest of the thesis is organized as follows: Chapter 2
introduces the Harmonic, Sinusoidal Quasi-Harmonic and Generalized Quasi-Harmonic
models, of which the amplitude parameter estimation is our goal. In the same chapter,
for each model separately, it is presented how the direct LS solution for finding the
amplitudes is realized.

In Chapter 3, we develop the computational enhancements for each model individually.
First, we show how the window function is expressed parametrically and we use the square
of that expression to express analytically the the elements of a matrix resulting from
matrix multiplications. The next speed up consists of rewriting an array of exponentials
in terms of trigonometric functions. Doing so we can take advantage of the trigonometric
functions and the form of their arguments and express the as a solution of a differential
equation, by replacing them mostly with multiplication operations. The last step consists
of approximating the array that is to be inverted. We do so by noticing that sinusoids
which are far apart from each other have small interference. By taking advantage of that
fact we eliminate (set to zero) specific matrix elements depending on the model.

In Chapter 4, we present the results that stem from the improvements of the previous
chapter. We begin by showing the reduction of the complexity that has been achieved.
Then, with the help of synthetic signals, we find the Mean Square Error (MSE) and the
Signal-to-Reconstruction Error Ratio (SRER) to illustrate that our methods are able to
compute the amplitudes with accuracy equivalent to that achieved by the direct solution.
Then, we show how well the actual speed up improvements perform by measuring the
CPU time it takes to analyze the above synthetic signals. The last experimentation using
synthetic signals consists of adding noise to the original signal in order to check whether
or not our methods are robust to noise, in other words that they do not introduce further
noise in noisy signals. As a final test, our techniques are tested in real voiced signals.
Finally, we close with some remarks and propose future research directions in Chapter 5.
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Chapter 2

Sinusoidal Models

The models we employ in the present work are introduced in this chapter. We will
state each model and describe how its parameters can be yielded with the assistance of
LS, in particular, how the amplitude parameters are estimated. The models at hand
are the Harmonic Model (HM), the Sinusoidal Model (SM), the Quasi-Harmonic Model
(QHM) and the Generalized Quasi-Harmonic Model (GQHM).

The main difference between the sinusoidal model and the harmonic model is the fact
that the frequency values of the HM are integer multiples of a fundamental frequency ,
traditionally denoted by f0, whilst the SM has no such restriction. The same restriction
is applied to the QHM. That is, it assumes as acceptable frequency values fk only those
for which fk = kf0, for k = −K, . . . ,K holds true. Thus, knowing the fundamental
frequency yields all the other frequencies. On the other hand, as the name implies,
the GQHM is the non harmonic counterpart of QHM. The discrimination between the
general and the harmonic cases is done because by restricting the feasible frequency values
certain calculations are greatly simplified, rendering that special case worth mentioning.
Additionally, the human speech can be considered as a harmonic signal where f0 denotes
the fundamental pitch of the speaker and kf0 are the harmonics. Also, all the frequency
values may not be known in advance or be harder to be estimated in contrast to the
fundamental frequency.

2.1 Harmonic Model

Consider that s =
[
s[−N ] s[−N + 1] . . . s[N − 1] s[N ]

]T
is the original signal of

duration 2N + 1 to be modeled. Assuming that s will represent a relatively small portion
of speech signal, it is reasonable to adopt that is stationary. Then, it may be decomposed
into a harmonic and a noisy part denoted by h0 [n] and w0 [n], respectively:

s [n] = h0 [n] + w0 [n] . (2.1)

7



Chapter 2. Sinusoidal Models

Assuming a frame of two pitch periods, which is centered around zero, the harmonic
model states that the harmonic part is modeled as follows:

h0 [n] =
K∑

k=−K

ake
j2πnkf0/fs , n = −N, . . . , N , (2.2)

where f0 is the fundamental frequency, ak denotes the complex amplitude of the kth
component, and K is equal to the number of the sinusoidal components. What fs stands
for is the sampling frequency.

By substituting (2.2) to (2.1) yields the following expression:

s [n] =
K∑

k=−K

ake
j2πnkf0/fs + w0 [n] , n = −N, . . . , N . (2.3)

Our interest lies in the estimation of the complex amplitudes ak given the number of
components K and the fundamental frequency f0. A Least Squares method minimizes
the square of the error, which is given by:

εa =
N∑

n=−N

(s [n]− h0 [n])2

=
N∑

n=−N

(
s [n]−

K∑
k=−K

ake
j2πnkf0/fs

)2

=
N∑

n=−N

(s [n]− (EKh)
n a)

2

= (s− E0ha)H (s− E0ha) ,

(2.4)

where EKh =
[
ej2π(−K)f0/fs ej2π(−K+1)f0/fs . . . ej2π(K−1)f0/fs ej2πKf0/fs

]
is the vector

of exponentials and

a =
[
a−K a−K+1 . . . aK−1 aK

]T
(2.5)

is the vector with the complex amplitudes (in our case the unknown parameter) . With
the symbolism AH denoting, henceforth, the Hermitian (conjugate) transpose of an array
A. We also mark that the symbolism (EKh)

n indicates that every element of EKh is
to be raised to the power of n. Additionally, where the matrix E0h with dimensions

8



Section 2.1: Harmonic Model

(2N + 1)× (2K + 1) is given by:

E0h =


(EKh)

−N

(EKh)
−N+1

...
(EKh)

N−1

(EKh)
N



=


ej2π(−N)(−K)f0/fs ej2π(−N)(−K+1)f0/fs . . . ej2π(−N)(K−1)f0/fs ej2π(−N)Kf0/fs

ej2π(−N+1)(−K)f0/fs ej2π(−N+1)(−K+1)f0/fs . . . ej2π(−N+1)(K−1)f0/fs ej2π(−N+1)Kf0/fs

...
...

...
...

...
ej2π(N−1)(−K)f0/fs ej2π(N−1)(−K+1)f0/fs . . . ej2π(N−1)(K−1)f0/fs ej2π(N−1)Kf0/fs

ej2πN(−K)f0/fs ej2πN(−K+1)f0/fs . . . ej2πN(K−1)f0/fs ej2πNKf0/fs

 .
(2.6)

Thus, the elements of E0h can be re-written as:

(E0h)nk = ej2πnkf0/fs , (2.7)

Assuming obviously, that n = −N, . . . , N indicates the (2N + 1) rows of the matrix, and
k = −K, . . . ,K correspond to the (2K + 1) columns.

From matrix calculus, we have:

∂εa
∂a

= −EH
0h(s− E0ha)

= EH
0hE0ha− EH

0hs

To proceed, the derivative ∂εa
∂a

is set equal to zero and the existence of
(
EH

0hE0h

)−1
is

assumed, or equivalently, that E0h has full column rank. Then, it can be proved that the
minimization of the error εa with respect to a results in the following solution 1:

a =
(
EH

0hE0h

)−1
EH

0hs , (2.8)

In addition, if a proper window is used, then the signal, the least squares error and
the solution take the following forms:

Ws =
[
w[−N ]s[−N ] w[−N + 1]s[−N + 1] . . . w[N − 1]s[N − 1] w[N ]s[N ]

]T
,

(2.9)

εa =
N∑

n=−N

w2 [n]

(
s [n]−

K∑
k=−K

ake
j2πnfk/fs

)2

, (2.10)

1 The matrix
((

AHA
)−1

AH
)

is known as the Moore-Penrose generalized inverse (a special type of

pseudo-inverse) of A, it is often denoted by A+ and traditionally appears when solving Least Squares
problems such as the one at hand.
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Chapter 2. Sinusoidal Models

a =
(
EH

0hW
HWE0h

)−1
EH

0hW
HWs

= R−10h s0h ,
(2.11)

where
R0h = EH

0hW
HWE0h , (2.12)

s0h = EH
0hW

HWs , (2.13)

w[n] is a proper window of length 2N + 1 and W is a diagonal matrix of size (2N + 1)×
(2N + 1), with its elements being the values of the analysis window w[n] :

W =


w[−N ] 0 . . . 0 0

0 w[−N + 1] . . . 0 0

. . . . . .
. . .

...
...

0 0 . . . w[N − 1] 0
0 0 . . . 0 w[N ]


= diag (w[−N ], w[−N + 1], . . . , w[N − 1], w[N ]) .

(2.14)

It can be easily proved that R0h is a Hermitian matrix, that is R0h is equal to its
own conjugate transpose

(
R0h = RH

0h

)
. In Chapter 3, it will be established that it also

has Toeplitz form, in other words, is a matrix of which each diagonal is a constant. One
of the properties of the Hermitian Toeplitz matrices is that the matrix can be uniquely
represented by a single row (customarily the first one is used).

Thus, by utilizing an LS method, the minimization of the sum of the squared and
windowed difference, between the original signal s and the sinusoidal model approximation
of the harmonic part h0, with respect to a, has been achieved. The computational
complexity of this computation is at the order of O(K2(N + K))2, which is quite costly
when compared with FFT-based algorithms, of which the computational cost is at the
order of O(N log(N)).

2 The term O(K3) is presented by the inversion of R0h and the term O(K2N) appears when per-
forming the EH0hWWE0h multiplications, considering the fact that W is a diagonal matrix.
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Section 2.2: Sinusoidal Model

2.2 Sinusoidal Model

As with the HM, we start by decomposing s into a harmonic and noisy a part denoted
by h1 [n] and w1 [n] respectively:

s [n] = h1 [n] + w1 [n] . (2.15)

By removing the frequency restrictions, and by assuming a frame of two pitch periods,
centered around zero, the sinusoidal modeling states that the harmonic part is modeled
as follows:

h1 [n] =
K∑

k=−K

ake
j2πnfk/fs , n = −N, . . . , N , (2.16)

where fk are the frequencies in Hertz of the kth component. Thus, the substitution of
(2.16) to (2.15) yields the following expression for the signal:

s [n] =
K∑

k=−K

ake
j2πnfk/fs + w1 [n] , n = −N, . . . , N . (2.17)

Our goal is to estimate of the complex amplitudes ak given the number of components
K and the frequencies fk. Following a Least Squares approach we minimize the square
of the error, which is given by:

εa =
N∑

n=−N

(s [n]− h1 [n])2

=
N∑

n=−N

(
s [n]−

K∑
k=−K

ake
j2πnfk/fs

)2

=
N∑

n=−N

(s [n]− (EK)n a)
2
,

(2.18)

where EK =
[
ej2πf−K/fs ej2πf(−K+1)/fs . . . ej2πfK−1/fs ej2πfK/fs

]
. We also note that

(EK)n denotes that each element of EK is raised to the power of n.

The minimization of εa with respect to a results in the following solution, assuming
that the inverse of EH

0 E0 exists:

a =
(
EH

0 E0

)−1
EH

0 s , (2.19)
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Chapter 2. Sinusoidal Models

where E0 is a (2N + 1)× (2K + 1) matrix, which is given by:

E0 =


(EK)−N

(EK)−N+1

...
(EK)N−1

(EK)N



=


ej2π−Nf−K/fs ej2π−Nf(−K+1)/fs . . . ej2π−NfK−1/fs ej2π−NfK/fs

ej2π(−N+1)f−K/fs ej2π(−N+1)f(−K+1)/fs . . . ej2π(−N+1)fK−1/fs ej2π(−N+1)fK/fs

...
ej2π(N−1)f−K/fs ej2π(N−1)f(−K+1)/fs . . . ej2π(N−1)fK−1/fs ej2π(N−1)fK/fs

ej2πNf−K/fs ej2πNf(−K+1)/fs . . . ej2πNfK−1/fs ej2πNfK/fs


(2.20)

In a more compact form, the elements of E0 are given by:

(E0)nk = ej2πnfk/fs , (2.21)

for n = −N, . . . , N , indicating the (2N + 1) rows of E0 and for k = −K, . . . ,K denoting
the (2K + 1) columns.

If we employ an appropriate window then the signal, the least squares error and the
solution take the following forms:

Ws =
[
w[−N ]s[−N ] w[−N + 1]s[−N + 1] . . . w[N ]s[N ]

]T
, (2.22)

εa =
N∑

n=−N

w2 [n]

(
s [n]−

K∑
k=−K

ake
j2πnfk/fs

)2

, (2.23)

a =
(
EH

0 W
HWE0

)−1
EH

0 W
HWs

= R−10 s0 ,
(2.24)

where
R0 = EH

0 W
HWE0 (2.25)

and
s0 = EH

0 W
HWs . (2.26)

It can be illustrated that R0 is Hermitian
(
RH

0 = R0

)
, a property used later for the

accelerating steps.

Using an LS method, the minimization of the sum of the squared and windowed
difference between the original signal s, and the sinusoidal model approximation of the
harmonic part h1, with respect to a, has a computational complexity at the order of
O(K2(N+K)), which is higher when compared to the FFT-based algorithms, whose cost
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Section 2.2: Sinusoidal Model

is at the order of O(N log(N)). The complexity of this computation is O(K2(N + K))3

and it is quite costly compared with FFT algorithms which cost O(N log(N)).

3 The term O(K3) is presented when the inversion of R0 is taken into account and the term O(K2N)
derives from the EH0 WWE0 multiplication, which yields R0, since W is a diagonal matrix.
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2.3 Quasi-Harmonic Model

The third approach for modeling the harmonic part, the so-called Quasi-Harmonic
Model [11], which has an additional time-varying amplitude term for each component, is
given by:

h2 [n] =
K∑

k=−K

(ak + nbk) e
j2πnkf0/fs , n = −N, . . . , N , (2.27)

where bk denotes the complex slope for the kth component.

Working as before, we decompose the original signal s into a harmonic and a noisy
part denoted by h2 [n] and w2 [n], respectively, as follows:

s [n] = h2 [n] + w2 [n]

=
K∑

k=−K

(ak + nbk) e
j2πnkf0/fs + w2 [n] .

(2.28)

In this case the LS error takes the following form:

εx =
N∑

n=−N

(s [n]− h2 [n])2

=
N∑

n=−N

(
s [n]−

K∑
k=−K

(ak + nbk) e
j2πnkf0/fs

)2

=
N∑

n=−N

(
s [n]−

[
(EKh)

n n (EKh)
n]x)2 ,

(2.29)

where EKh =
[
ej2π(−K)f0/fs ej2π(−K+1)f0/fs . . . ej2π(K−1)f0/fs ej2πKf0/fs

]
, as illustrated

in HM and

x =

[
a
b

]
=
[
a−K , a−K+1, . . . , aK−1, aK , b−K , b−K+1, . . . , bK−1, bK

]T
, (2.30)

with, b = [b−K , . . . , bK ]T denoting the vector which consists of the complex slopes. Work-
ing similarly as in the previous model, the error can be rewritten in the following matrix
form:

εx =
(
s−

[
E0h|E1h

]
x
)H (

s−
[
E0h|E1h

]
x
)
, (2.31)

where E1h is a (2N + 1)×(2K + 1) matrix with its elements being exponentials multiplied
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with time n. More specifically,

E1h = NdE0h

=


−N(EKh)

−N

(−N + 1)(EKh)
−N+1

...
(N − 1)(EKh)

N−1

N(EKh)
N



=


−Nej2π(−N)(−K)f0/fs −Nej2π(−N)(−K+1)f0/fs . . . −Nej2π(−N)Kf0/fs

(−N + 1)ej2π(−N+1)(−K)f0/fs (−N + 1)ej2π(−N+1)(−K+1)f0/fs . . . (−N + 1)ej2π(−N+1)Kf0/fs

...
(N − 1)ej2π(N−1)(−K)f0/fs (N − 1)ej2π(N−1)(−K+1)f0/fs . . . (N − 1)ej2π(N−1)Kf0/fs

Nej2πN(−K)f0/fs Nej2πN(−K+1)f0/fs . . . Nej2πNKf0/fs

 ,
where Nd is a (2N + 1)× (2N + 1) diagonal array given by:

Nd =


−N 0 . . . 0 0

0 −N + 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . N − 1 0
0 0 . . . 0 N


= diag (−N,−N + 1, . . . , N − 1, N) .

(2.32)

Thus, the elements of E1h can be re-written as: (E1h)nk = nej2πnfk/fs = n (E0h)nk .

By zeroing the derivative of the error with respect to x, ∂εx
∂x

= 0 and assuming the

existence of the inverse (
[
E0h|E1h

]H [
E0h|E1h

]
)−1, we obtain the solution :

x = (
[
E0h|E1h

]H [
E0h|E1h

]
)−1
[
E0h|E1h

]H
s

=
(
EH

QHMEQHM

)−1
EH

QHMs ,
(2.33)

where

EQHM =
[
E0h|E1h

]
, (2.34)

note that the symbol | that appears above in
[
E0h|E1h

]
, represents the horizontal matrix

concatenation of E0h and E1h.

If we apply a suitable window, then the solution takes the following form:

x =

[
a
b

]
= (EH

QHMW
HWEQHM)−1EH

QHMW
HWs

=

(
R0h R1h

RH
1h R2h

)−1 [
s0h
s1h

]
= R−1QHMyQHM ,

(2.35)
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where the quantities a, b, W, E0h, E1h, R0h, and s0h are given before. While,

RQHM =

(
R0h R1h

RH
1h R2h

)
, (2.36)

yQHM =

[
s0h
s1h

]
, (2.37)

moreover,
R1h = EH

0hW
HWE1h , (2.38)

R2h = EH
1hW

HWE1h , (2.39)

and s1h = EH
1hW

HWs. Like R0h it can be illustrated that R1h and R2h are both
Hermitian matrices. In Chapter 3 it will be established that they also have Toeplitz
form. Thus, they too can be uniquely described by one of their rows.

In this case, there is no efficient FFT-based algorithm which is able to compute the
parameters of the model and thus, the LS approach is the only option.
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2.4 Generalized Quasi-Harmonic Model

The final model for the harmonic part, namely the Generalized Quasi-Harmonic Model
(GQHM), has an additional term for each component, like QHM, but without its feasible
frequency values limitation. A GQHM is given by:

h3 [n] =
K∑

k=−K

(ak + nbk) e
j2πnfk/fs , n = −N, . . . , N . (2.40)

Following the previous approach by decomposing the original signal s into a harmonic
and a noisy part, denoted by h3 [n] and w3 [n], respectively, the signal model can be
expressed as follows:

s [n] = h3 [n] + w3 [n]

=
K∑

k=−K

(ak + nbk) e
j2πnfk/fs + w3 [n] .

(2.41)

The associated LS error is given by:

εx =
N∑

n=−N

(s [n]− h3 [n])2

=
N∑

n=−N

(
s [n]−

K∑
k=−K

(ak + nbk) e
j2πnfk/fs

)2

=
N∑

n=−N

(
s [n]−

[
(EK)n n (EK)n

]
x
)2

,

(2.42)

where x is defined in (2.30) and EK =
[
ej2πf−K/fs ej2πf(−K+1)/fs . . . ej2πfK−1/fs ej2πfK/fs

]
from the Quasi-Harmonic and the Sinusoidal Model, respectively.

Working similarly to the previous models, the error can be written in a matrix form
as follows:

εx =
(
s−

[
E0|E1

]
x
)H (

s−
[
E0|E1

]
x
)

(2.43)

where E1 is a (2N + 1)× (2K + 1) matrix with its elements being the complex exponen-
tials (EK)n multiplied with time. By employing (2.20), E1 can be expressed as follows:
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E1 = NdE0

=


−N(EK)−N

(−N + 1)(EK)−N+1

...
(N − 1)(EK)N−1

N(EK)N



=


−Nej2π−Nf−K/fs −Nej2π−Nf(−K+1)/fs . . . −Nej2π−NfK/fs

(−N + 1)ej2π(−N+1)f−K/fs (−N + 1)ej2π(−N+1)f(−K+1)/fs . . . (−N + 1)ej2π(−N+1)fK/fs

...

(N − 1)ej2π(N−1)f−K/fs (N − 1)ej2π(N−1)f(−K+1)/fs . . . (N − 1)ej2π(N−1)fK/fs

Nej2πNf−K/fs Nej2πNf(−K+1)/fs . . . Nej2πNfK/fs

 ,
(2.44)

where Nd is a (2N + 1)× (2N + 1) diagonal matrix which is given by:

Nd =


−N 0 . . . 0

0 −N + 1 . . . 0
...

...
. . . 0

0 0 0 N


= diag

([
−N −N + 1 . . . N

])
.

(2.45)

The elements of E1 can be re-written in a more compact form, in relation to E0, as
follows: (E1)nk = nej2πnfk/fs = n (E0)nk .

By setting ∂εx
∂x

= 0, we obtain the solution, which minimizes the error, assuming the

existence of the inverse
([

E0|E1

]H [
E0|E1

])−1
:

x = (
[
E0|E1

]H [
E0|E1

]
)−1
[
E0|E1

]H
s

=
(
EH

GQHMEGQHM

)−1
EH

GQHMs ,
(2.46)

where
EGQHM =

[
E0|E1

]
(2.47)

In addition, if we apply a window to the original signal as in (2.22), then it can be shown
that the solution takes the following form:

x =

[
a
b

]
= (EH

GQHMW
HWEGQHM)−1EH

GQHMW
HWs

=

(
R0 R1

RH
1 R2

)−1 [
s0
s1

]
= R−1GQHMyGQHM

(2.48)

where the terms a, b, W, E0, E1, R0, and s0 have been defined earlier, while

RGQHM =

(
R0 R1

RH
1 R2

)
, (2.49)
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Section 2.4: Generalized Quasi-Harmonic Model

yGQHM =

[
s0
s1

]
, (2.50)

in addition,
R1 = EH

0 W
HWE1 , (2.51)

R2 = EH
1 W

HWE1 , (2.52)

and s1 = EH
1 W

HWs. Like R0 it can be easily proved that R1 and R2 are Hermitian
matrices. A property that will be utilized in the speed-up steps.

As in the previous time-varying case, there is no FFT-based algorithm being able to
effectively compute the parameters of the model, and thus, again an LS approach is the
only alternative.

19





Chapter 3

Speeding Up the Computations

In this chapter, we will introduce novel techniques for decreasing the computational
load of each individual model. We begin by describing a parameterization of the windows
used as an aid in our work. Then, we start by presenting the hastening methods for the
Harmonic Model, followed by the methods for the acceleration of the Sinusoidal Model
and the Quasi-Harmonic Model, while we close with the techniques the Generalized Quasi-
Harmonic.

In general, the solution for all the models presented can be summarized as follows:

x = R−1y

=
(
EHWHWE

)−1
EHWHWs ,

(3.1)

where x, R, y and E depend on the model. More specifically,

• For the Harmonic Model (HM): x = a, R = R0h, y = s0h and E = E0h. As
presented in (2.5), (2.12), (2.13) and (2.6), respectively.

• For the Sinusoidal Model (SM): x = a, R = R0, y = s0 and E = E0. First seen in
the equations (2.5), (2.25), (2.26) and (2.20).

• For the Quasi-Harmonic Model (QHM): x =

[
a
b

]
, R = RQHM =

[
R0h R1h

RH
1h R2h

]
,

y = yQHM =

[
s0h
s1h

]
and E = EQHM =

[
E0h|E1h

]
, given by (2.30), (2.36), (2.37) and

(2.34).

• For the Generalized Quasi-Harmonic Model (GQHM): x =

[
a
b

]
, R = RGQHM =[

R0 R1

RH
1 R2

]
, y = yGQHM =

[
s0
s1

]
and E = EGQHM =

[
E0|E1

]
, as they appear in the

equations: (2.30), (2.49), (2.50) and (2.47).
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Chapter 3. Speeding Up the Computations

Since our goal to decrease the computational time required to estimate x, instinctively
we begin by optimizing the part that acts as a bottleneck. From a computational point
of view, it can be seen that the most expensive part is the computation of the elements
of R, the matrix to be inverted, which is defined as:

R = EHWHWE . (3.2)

It can be easily seen that the complexity for computing R is at the order of O (NK2),
if we take into account the fact that W is diagonal. In order to improve that, we will
show that the elements of R can be found analytically. As a result, the complexity is
reduced to O (NK), since each element of the matrix is computed in constant time. As
a second step, we accelerate the estimation of E by taking advantage of the form of the
trigonometric functions required to be computed. As a third and final improvement we
perform approximations of the matrix R in such a way that not only ease the load of
its computation, but also the load of its inversion. We note that the latter acceleration
should be performed while the error induced by the approximations is kept at bay.

22



Section 3.1: Window Parameterization

3.1 Window Parameterization

In order to carry out certain computations such as summations that will be introduced
in the next sections, we have to take under consideration what kind of window is applied
to the signal s. Typical windows employed are Hamming, Han and rectangular. We
consider the general class of windows, which are symmetric at the origin and they are
parametrized by:

wα [n] = (1− αw) + aw cos (πn/N) n = −N, . . . , N . (3.3)

Table 3.1 shows the relationship between the various windows and the parameter αw,
while in Figure 3.1 we plot the windows for N = 300 (601 samples totally).
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Figure 3.1: Visual representation of different windows.

αw = 0 Rectangular
αw = 0.5 Hann
αw = 0.46 Hamming

Table 3.1: Different values of αw give various windows.

As the family of equations (3.2) assert, we will see that the squared windows will be
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Chapter 3. Speeding Up the Computations

also necessary, and thus we will need the square of (3.3):

w2
α [n] = ((1− αw) + αw cos (πn/N))2

= d0 + d1
(
ejπn/N + e−jπn/N

)
+ d2

(
ej2πn/N + e−j2πn/N

)
,

(3.4)

where the coefficients dm, m = 0, 1, 2, are given by:

d0 = (1− αw)2 + α2
w/2 , (3.5)

d1 = αw (1− αw) , (3.6)

d2 = α2
w/4 . (3.7)

In Figure 3.2 we can plot the square of each window shown in Table 3.1 for N = 300.
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Figure 3.2: Visual representation of the square of different windows.
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Section 3.2: Harmonic Model

3.2 Harmonic Model

In this section, the methods for accelerating the computations of the Harmonic Model,
which was introduced in section 2.1, will be described.

3.2.1 HM Step 1: Fast Matrix Multiplication

We start by calculating the terms of R0h analytically, which can be done by writing
R0h as follows:

R0h = EH
0hW

HWE0h . (3.8)

Since W is a real diagonal matrix, the matrix multiplication WHW is simplified by
taking the following form:

WHW = W2

=


w2[−N ] 0 . . . 0 0

0 w2[−N + 1] . . . 0 0
...

...
. . .

...
...

0 0 . . . w2[N − 1] 0
0 0 . . . 0 w2[N ]


= diag

(
w2[−N ], w2[−N + 1], . . . , w2[N − 1], w2[N ]

)
.

(3.9)

Thus, by combining (3.8) and (3.9) we can rewrite R0h using the following expression:

R0h = EH
0hW

HWE0h

= EH
0hW

2E0h

= W2EH
0hE0h .

(3.10)

The elements of R0h are given by:

(R0h)ik =
N∑

n=−N

w2[n]e−j2πnif0/fsej2πnkf0/fs

=
N∑

n=−N

w2[n]ej2πn(k−i)f0/fs .

(3.11)

By applying the squared window (3.4) to (3.11) the elements of R0h take the following
form:
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(R0h)ik = d0

N∑
n=−N

[
ej2π(k−i)f0/fs

]
+ d1

N∑
n=−N

[
ej2π((k−i)f0+

fs
2N )/fs

]
+ d1

N∑
n=−N

[
ej2π((k−i)f0−

fs
2N )/fs

]
+ d2

N∑
n=−N

[
ej2π((k−i)f0+

fs
N )/fs

]
+ d2

N∑
n=−N

[
ej2π((k−i)f0−

fs
N )/fs

]
,

(3.12)

where the coefficients d0, d1 and d2 are given by (3.5), (3.6) and (3.7), respectively.

We proceed by employing a standard mathematical identity about the sum of geo-
metric series, namely:

N∑
n=−N

an =
aN+1/2 − a−(N+1/2)

a1/2 − a−1/2
. (3.13)

Thus, the elements of R0h are given by:

(R0h)ik = d0g0 (2π (k − i) f0/fs)

+ d1g0

(
2π

(
(k − i) f0 +

fs
2N

)
/fs

)
+ d1g0

(
2π

(
(k − i) f0 −

fs
2N

)
/fs

)
+ d2g0

(
2π

(
(k − i) f0 +

fs
N

)
/fs

)
+ d2g0

(
2π

(
(k − i) f0 −

fs
N

)
/fs

)
,

(3.14)
where the auxiliary function g0 (x) is given by1:

g0 (x) =

{
sin((2N+1)x/2)

sin(x/2)
, x 6= 0

2N + 1, x = 0
. (3.15)

Thus, we can calculate any element of R0h directly via (3.14), making the the matrix
multiplication described in (3.8) obsolete, since in terms of computational load the direct
computation is more efficient. Also, from (3.14) it can be easily observed that the matrix
R0H is Toeplitz Hermitian, the values of its elements depend only from the result of
(k − i), or in other words, from the elements’ distance from the main diagonal. Taking
advantage of the Hermitian Toeplitz form of R0h (the knowledge of one line of the matrix
results in its full form) we can form R0h by calculating only (2N + 1) of its elements
instead of all (2N + 1)2.

1 The function g0 that appears here is known as the Dirichlet kernel. The importance of the Dirichlet
kernel comes from its relation to Fourier series and the delta distribution. The convolution of the Dirichlet
kernel with any function f of period 2π is the Nth-degree Fourier series approximation.
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Section 3.2: Harmonic Model

3.2.2 HM Step 2: Faster Computation of E0h

In the following, we will introduce a way to accelerate the computation of E0h. Al-
though the computational complexity in terms of N and K will not be altered, and
thus, the same number of calculations will be required, the complexity of the calculations
themselves will be reduced resulting in less computation time.

E0h can be written as:

E0h =


(
ej2π(−K)f0/fs

)−N (
ej2π(−K)f0/fs

)−N+1
. . .

(
ej2π(−K)f0/fs

)N(
ej2π(−K+1)f0/fs

)−N (
ej2π(−K+1)f0/fs

)−N+1
. . .

(
ej2π(−K+1)f0/fs

)N
...(

ej2πKf0/fs
)−N (

ej2πKf0/fs
)−N+1

. . .
(
ej2πKf0/fs

)N



=


ej2π(−N)(−K)f0/fs ej2π(−N+1)(−K)f0/fs . . . ej2πN(−K)f0/fs

ej2π(−N)(−K+1)f0/fs ej2π(−N+1)(−K+1)f0/fs . . . ej2πN(−K+1)f0/fs

...
ej2π(−N)Kf0/fs ej2π(−N+1)Kf0/fs . . . ej2πNKf0/fs



=


cos (2π(−N)(−K)f0/fs) . . . cos (2πN(−K)f0/fs)

cos (2π(−N)(−K + 1)f0/fs) . . . cos (2πN(−K + 1)f0/fs)
...

cos (2π(−N)Kf0/fs) . . . cos (2πNKf0/fs)

+

j


sin (2π(−N)(−K)f0/fs) . . . sin (2πN(−K)f0/fs)

sin (2π(−N)(−K + 1)f0/fs) . . . sin (2πN(−K + 1)f0/fs)
...

sin (2π(−N)Kf0/fs) . . . sin (2πNKf0/fs)

 .

(3.16)

The most time-consuming part of the computation is the estimation of sines and
cosines. The reduction of the computational cost stems from the fact that the solution
ck (n) of the following second-order difference equation [26]:

ck (n)− 2 cos (2πkf0/fs) ck (n− 1) + ck (n− 2) = 0, n = 3, 4 . . . , (3.17)

with initial conditions

ck (1) = cos (2πkf0/fs) , ck (2) = cos (4πkf0/fs) , (3.18)

is given by
ck (n) = cos (2πnkf0/fs) , n = 1, 2, . . . . (3.19)

On the other hand, by employing ck (1) = sin (2πkf0/fs) and ck (2) = sin (4πkf0/fs)
as initial conditions, yields the solution ck (n) = sin (2πnkf0/fs). Thus, by using the
above difference equations, the computation of each trigonometric function is reduced to
a multiplication.
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3.2.3 HM Step 3: R0h Matrix Approximation

Up to now, no approximation or discretization error was performed and the LS solution
has no additional error. However, if we allow for small errors, we can achieve a faster
computation and inversion for the matrix R0h by discarding elements away from its
diagonals, or in other words set them equal to zero. This approximation is valid because
sinusoids which are away from each other have little or no interference.

In Figure 3.3 we plot in log scale the average (over 300 runs) magnitude of the (R0h)ik
elements as a function of their distance from the main diagonal (since the matrix is
Toeplitz the elements of any given diagonal are equal). In the aforementioned plot it can
be seen that as we move away from the main diagonal more than four matrix elements, the
average magnitudes are always smaller than 10−4, while the average main diagonal values
are of order 102. One could say that the values away from the diagonal are relatively
small (when compared to the main diagonal). In other words, it can be assumed that in
practice R0h is a strictly diagonally dominant matrix.
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Figure 3.3: The average values of |R0h| in log scale as a function of their distance from
the main diagonal.

Besides, since R0h is Hermitian and strictly diagonally dominant, the Gershgorin
circle theorem states that R0h is also non-singular. It is noteworthy that by setting
the elements which are away from the main diagonal to be equal to zero preserves that
beneficial property of R0h.
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Section 3.2: Harmonic Model

By keeping only K0 diagonals of R0h, the computational cost for the inversion is
expected to be decreased. In this Step we build R0h in a diagonal-by-diagonal way,
which when combined with the fact that R0h is Toeplitz Hermitian allows us to find R0h

by calculating only a single element from about half of the diagonals (one element from
the main diagonal and one element for each one of the upper/lower diagonals). Obviously,
even less computations are needed if we consider the fact that significantly less elements
of R0h are actually computed. Note that if methods for storing sparse arrays are used
then there is a decrease in the amount of memory utilized by the proposed algorithm too.
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3.3 Sinusoidal Model

In this section, we propose methods for decreasing the computational cost of the
Sinusoidal Model (introduced in section 2.2).

3.3.1 SM Step 1: Fast Matrix Multiplication

As a first step, we calculate the elements of R0 analytically. We begin by writing R0

in the following form:

R0 = E0
HWHWE0 . (3.20)

We substitute WHW given by (3.9) to (3.20) and rewrite R0 as follows:

R0 = EH
0 W

HWE0

= EH
0 W

2E0

= W2EH
0 E0 .

(3.21)

Then, the elements of R0 are given by the expression:

(R0)ik =
N∑

n=−N

w2[n]e−j2πnfi/fsej2πnfk/fs

=
N∑

n=−N

w2[n]ej2πn(fk−fi)/fs .

(3.22)

By applying the squared window (3.4) to (3.22) the elements of R0 are written in an
analytical way given by:

(R0)ik = d0

N∑
n=−N

[
ej2π(fk−fi)/fs

]
+ d1

N∑
n=−N

[
ej2π(fk−fi+

fs
2N )/fs

]
+ d1

N∑
n=−N

[
ej2π(fk−fi−

fs
2N )/fs

]
+ d2

N∑
n=−N

[
ej2π(fk−fi+

fs
N )/fs

]
+ d2

N∑
n=−N

[
ej2π(fk−fi−

fs
N )/fs

]
,

(3.23)

where the coefficients d0, d1 and d2 are defined by (3.5), (3.6) and (3.7), respectively.

As before, we proceed by employing a standard mathematical identity for the sum of
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geometric series, seen in (3.13), which yields the following expression for R0:

(R0)ik = d0g0 (2π (fk − fi) /fs)

+ d1g0

(
2π

(
fk − fi +

fs
2N

)
/fs

)
+ d1g0

(
2π

(
fk − fi −

fs
2N

)
/fs

)
+ d2g0

(
2π

(
fk − fi +

fs
N

)
/fs

)
+ d2g0

(
2π

(
fk − fi −

fs
N

)
/fs

)
,

(3.24)

where the auxiliary function g0 (x) is the one introduced in the Harmonic Model and
defined by (3.15).

As with the HM, we now have a formula to calculate directly the elements of R0 and
as a result we can refrain from doing the matrix multiplication in (3.20), which is more
efficient. As noted earlier when introducing the SM, but also from (3.24) it can easily be
deducted that the matrix R0 is Hermitian, thus, taking advantage that form of R0 we
can find R0 by calculating only (2N + 1)N of its elements instead of all (2N + 1)2.

3.3.2 SM Step 2: Faster Computation of E0

In the second step, we propose a way to decrease the computational cost of the
calculation of E0. The computational complexity in terms of N and K will not change
if after this step, however, even though the number of the calculations required does not
change, the calculations required become less complex.

E0 can be written as:

E0 =


(
ej2πf−K/fs

)−N (
ej2πf−K/fs

)−N+1
. . .

(
ej2πf−K/fs

)N(
ej2πf−K+1/fs

)−N (
ej2πf−K+1/fs

)−N+1
. . .

(
ej2πf−K+1/fs

)N
...(

ej2πfK/fs
)−N (

ej2πfK/fs
)−N+1

. . .
(
ej2πfK/fs

)N



=


cos (2π(−N)f−K/fs) . . . cos (2πNf−K/fs)

cos (2π(−N)f−K+1/fs) . . . cos (2πNf−K+1/fs)
...

cos (2π(−N)fK/fs) . . . cos (2πNfK/fs)

+

j


sin (2π(−N)f−K/fs) . . . sin (2πNf−K/fs)

sin (2π(−N)f−K+1/fs) . . . sin (2πNf−K+1/fs)
...

sin (2π(−N)fK/fs) . . . sin (2πNfKω0/fs)

 .

(3.25)

From the above we can see that either way R0 is written, the most time-consuming
part of the computation is the estimation of sines and cosines, or equivalently, of expo-
nentials. The computational acceleration stems from the fact that the solution ck (n) of
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the following second-order difference equation [26]:

ck (n)− 2 cos (2πfk/fs) ck (n− 1) + ck (n− 2) = 0, n = 3, 4 . . . , (3.26)

with initial conditions

ck (1) = cos (2πfk/fs) , ck (2) = cos (4πfk/fs) , (3.27)

is given by
ck (n) = cos (2πnfk/fs) , n = 1, 2, . . . . (3.28)

Moreover, using ck (1) = sin (2πfk/fs) and ck (2) = sin (4πfk/fs) as initial conditions
results in ck (n) = sin (2πnfk/fs). Thus, using the above equations, the computation of
each trigonometric function is reduced to a simple multiplication.

3.3.3 SM Step 3: R0 Matrix Approximation

In our previous calculations for the SM no approximations were performed. However,
by considering small approximation errors can allow us to further decrease the computa-
tional load. Working similarly as in the HM case in Section 3.2.3, we take advantage of
the fact that sinusoids which are away from each other have little interference.

The role of illustrating the effect of that realization is bestowed upon Figure 3.4.
Which Figure shows the averaged (over 300 runs) values of | (R0)ik | in a log scale, as a
function of their distance from the main diagonal. Since now the matrix is not Toeplitz,
an additional average has been taken depending on how many elements with that distance
exist. For instance, a (2K+1)×(2K+1) matrix has 2K+1 elements in the main diagonal,
2 ·2K elements with a distance of one from the main diagonal, 2 ·(2K−1) with a distance
of two and so on, until we reach the two furthermost elements whose distance from the
main diagonal is 2K . In this Figure, it can be also seen that the average magnitude of
all the elements that have a distance greater than five elements from the main diagonal is
lower than 10−4, while the elements in the main diagonal have an average magnitude of
order 104. Thus, we can then safely assume that the values away from the main diagonal
can be considered to negligible compared to the values closer to and on the main diagonal.

So in practice R0 has a strictly dominant main diagonal. If we also consider the fact
that R0 is Hermitian then it is invertible, according to the the Gershgorin circle theorem,
an important property of R0 that is kept intact if we remove elements that are away from
the main diagonal.

Thus, if we keep only K0 of the diagonals of R0, the inversion is expected to be
performed much more efficiently. In this Step we build R0 in a diagonal-by-diagonal
fashion, which when combined with the fact that R0 is Hermitian it allows us to form
R0 by calculating only half of the diagonals (the main diagonal and the upper/lower
diagonals). Obviously, even less computations are performed if we consider the fact that
significantly less elements of R0 are actually computed. Note that, if methods for storing
sparse arrays are used then there is a decrease in the amount of memory utilized by the
algorithm.
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Figure 3.4: The average values of |R0| in log scale as a function of their distance from
the main diagonal.
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3.4 Quasi-Harmonic Model

In this section, we will describe the process implemented to accelerate the computation
of the Quasi-Harmonic Model coefficients (introduced in section 2.3).

3.4.1 QHM Step 1: Fast Matrix Multiplication

We start by calculating the elements of R = EHWHWE analytically. Considering
the QHM case (the time-varying model) we have:

[
E0h|E1h

]H
WHW

[
E0h|E1h

]
=

[
R0h R1h

RH
1h R2h

]
, (3.29)

where the sub-matrices R0h, R1h and R2h are given by:

R0h = EH
0hW

HWE0h , (3.30)

R1h = EH
0hW

HWE1h , (3.31)

R2h = EH
1hW

HWE1h . (3.32)

As far as (3.30) is concerned we have shown in section 3.2.1 that the matrix multiplica-
tion can be surpassed by calculating the elements of R0h directly via (3.14). Our purpose
is to find similar expressions that will allow us to compute immediately the elements of
R1h and R2h as well.

Working in similar fashion, we substitute (3.9) the squared window WHW, to (3.31)
and (3.32) and rewrite R1h and R2h as follows:

R1h = W2EH
0hE1h , (3.33)

R2h = W2EH
1hE1h . (3.34)

Doing this, the elements of R1h and R2h are given by:

(R1h)ik =
N∑

n=−N

w2[n]e−j2πnif0/fsnej2πnkf0/fs

=
N∑

n=−N

w2[n]nej2πn(k−i)f0/fs ,

(3.35)

(R2h)ik =
N∑

n=−N

w2[n]ne−j2πnif0/fsnej2πnkf0/fs

=
N∑

n=−N

w2[n]n2ej2πn(k−i)f0/fs .

(3.36)
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By applying a parameterized squared window, as defined by equation (3.4) to (3.35)
and (3.36) we obtain the following expressions:

(R1h)ik = d0

N∑
n=−N

n
[
ej2π(k−i)f0/fs

]
+ d1

N∑
n=−N

n
[
ej2π((k−i)f0+

fs
2N )/fs

]
+ d1

N∑
n=−N

n
[
ej2π((k−i)f0−

fs
2N )/fs

]
+ d2

N∑
n=−N

n
[
ej2π((k−i)f0+

fs
N )/fs

]
+ d2

N∑
n=−N

n
[
ej2π((k−i)f0−

fs
N )/fs

]
,

(3.37)

(R2h)ik = d0

N∑
n=−N

n2
[
ej2π(k−i)f0/fs

]
+ d1

N∑
n=−N

n2
[
ej2π((k−i)f0+

fs
2N )/fs

]
+ d1

N∑
n=−N

n2
[
ej2π((k−i)f0−

fs
2N )/fs

]
+ d2

N∑
n=−N

n2
[
ej2π((k−i)f0+

fs
N )/fs

]
+ d2

N∑
n=−N

n2
[
ej2π((k−i)f0−

fs
N )/fs

]
.

(3.38)

where the coefficients d0, d1 and d2 are given by equations (3.5), (3.6) and (3.7), respec-
tively.

By employing the standard mathematical identity for the sum of geometric series, it
can be proved that:

N∑
n=−N

nan = − aN − a−N

(a1/2 − a−1/2)2
+N

aN+1/2 + a−(N+1/2)

a1/2 − a−1/2
. (3.39)

Using the above equation, the elements of R1h show up, thus they can be computed
without performing the summation. Similarly, it can be proved:

N∑
n=−N

n2an = N2a
N+1 + a−(N+1)

(a1/2 − a−1/2)2
−(N+1)2

aN + a−N

(a1/2 − a−1/2)2
+2

aN+1/2 − a−(N+1/2)

(a1/2 − a−1/2)3
(3.40)

Then, the elements of R2h are computed. Thus, it can be written in a more compact
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form, that the elements of the sub-matrices Rmh, m = 0, 1, 2 are given by2:

(Rmh)ik = d0gm (2π (k − i) f0/fs)

+ d1gm

(
2π

(
(k − i) f0 +

fs
2N

)
/fs

)
+ d1gm

(
2π

(
(k − i) f0 −

fs
2N

)
/fs

)
+ d2gm

(
2π

(
(k − i) f0 +

fs
N

)
/fs

)
+ d2gm

(
2π

(
(k − i) f0 −

fs
N

)
/fs

)
,

(3.41)
wherem = 0, 1, 2 and the auxiliary function g0 (x) is given by (3.15). While, the remaining
auxiliary functions g1 (x) and g2 (x) are defined as follows:

g1(x) =

{
j sin(Nx)

2 sin2(x/2)
− jN cos((2N+1)x/2)

sin(x/2)
, x 6= 0

0, x = 0
, (3.42)

g2(x) =

{
N2 cos((N+1)x)+(N+1)2 cos(Nx)

2 sin2(x/2)
− sin((2N+1)x/2)

2 sin3(x/2)
, x 6= 0

N(N + 1)(2N + 1)/3, x = 0
. (3.43)

Finally, due to the fact that the computations of trigonometric functions are expensive,
(both sines and cosines are required to be calculated) the computation of (3.41) can be
accelerated by considering the following identities [28]:

cos (θ ± δ) = cos (θ)− [α cos (θ)± β sin (θ)] ,

sin (θ ± δ) = sin (θ)− [α sin (θ)∓ β cos (θ)] ,
(3.44)

where α and β are precomputed coefficients defined in terms of δ,

α = 2 sin2 (δ/2) ,

β = sin (δ) .
(3.45)

Thus, the sines and cosines of only one of the five terms in (3.41) is required, while the
remaining terms are computed using the above formulas.

3.4.2 QHM Step 2: Faster Computation of E0h and E1h

As it has been more thoroughly shown in section 3.2.2, we have already introduced a
faster way of computing E0h by rewriting it as a sum of sines and cosines. That enables
us to estimate quickly the matrix elements using the solution of a difference equation.
Thus, instead of computing exponentials or trigonometric functions (except of course the
initial conditions of the difference equations), the computation of E0h elements has been
replaced by (faster to calculate) multiplications. Obviously, having computed E0h, the
elements of E1h are given by (E1h)nk = n (E0h)nk in O (NK) multiplications (or more
precisely in (2K + 1) (2N + 1) multiplications).

2 An alternative way to find the elements of R1h and R2h is to set ωik = 2πn (k − i) f0/fs. Then,

we can see that ∂(R0h)ik
∂ωik

= nj(R0h)ik = j(R1h)ik. Similarly, for the derivative of R1h: ∂(R1h)ik
∂ωik

=

nj(R1h)ik = j(R2h)ik. Thus, the respective relations can used to find g1 and g2 by employing the
Dirichlet kernel g0: ∂g0

∂ωki
= jg1 and ∂g1

∂ωki
= jg2. Thus g1 is the second derivative of the Dirichlet kernel

multiplied by j and −g2 its second derivative.
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Section 3.4: Quasi-Harmonic Model

3.4.3 QHM Step 3: RQHM Matrix Approximation

During the previous steps no approximation errors were introduced. The act of allow-
ing small errors to the results enables us to accelerate even further the process of finding
the amplitude coefficients for the Quasi-Harmonic Model. Working in the same way as
for the Harmonic Model in section 3.2.3, we will discard certain elements of the matrix to

be inverted (RQHM =

[
R0hR1h

RH
1hR2h

]
for the QHM) and replace them with zeros. In the HM

we turned the matrix to be inverted (R0h in that case) into a K0-band matrix by discard-
ing elements that were away from the main diagonal more than K0 elements. Turning
RQHM to a band matrix would seem a natural extension. However, in HM we reached
that realization by taking advantage of the fact that sinusoids that are away from each
other have little interference. Considering that, we see that another workaround should
be implemented in this case.

In Figures 3.3, 3.5 and 3.6 we show in log a scale the average, over 300 executions,
magnitude of the (R0h)ik, (R1h)ik and (R2h)ik matrix elements, respectively, as a func-
tion of the distance of the individual element from the main diagonal. Since all of the
Rmh, m = 0, 1, 2 matrices are Toeplitz, all the elements on a given diagonal are equal.
Figure 3.3 shows that the elements in the main diagonal have an average magnitude at the
order 102, while by moving away from the main diagonal more than five elements results
in a reduction of the magnitude at approximately10−5. We can easily see (by substituting
g0 (x) from (3.15) to (3.41)) that, by construction, R1h has zeros in the main diagonal.
However, in Figure 3.5 we can see that the elements of the upper- and sub-diagonal have
an average magnitude of order 102, while by moving away from the diagonal more than
five elements results in reduction of the magnitude value to 10−2. Concerning the last
Figure 3.6, it can be observed that the main diagonal has an average magnitude of about
106, while by moving away from the main diagonal more than five elements results in
reducing its value to 100.

Therefore, it can be said that the average magnitude values decrease as we move away
from the main diagonal. Following the same principle as in the HM would mean that the
technique should be applied to each sub-matrix of RQHM individually. This is translated
into keeping K0 diagonals from R0h, R1h and R2h. The other elements which are not
close enough to the main diagonal are not computed and set to zero in an effort to reduce
the computational load. In this Step we build the Rmh,m = 0, 1, 2 matrices in a diagonal-
by-diagonal way, which when combined with the fact that Rmh are Toeplitz Hermitians
it allows us to form Rmh by calculating only one element per diagonal for about half
of the diagonals (one element for the main diagonal and one element per upper/lower
diagonals).
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Figure 3.5: The average values of |R1h| in log scale as a function of their distance from
the main diagonal.
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Figure 3.6: The average values of |R2h| in log scale as a function of their distance from
the main diagonal.
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3.5 Generalized Quasi-Harmonic Model

In this section, we introduce the techniques implemented to accelerate the computa-
tion of the Generalized Quasi-Harmonic Model amplitude coefficients (introduced back
in Section 2.4).

3.5.1 GQHM Step 1: Fast Matrix Multiplication

First, we calculate the terms of R = EHWHWE analytically. Considering the GQHM
case (the aharmonic time-varying model) results in the following equation:[

E0|E1

]H
WHW

[
E0|E1

]
=

[
R0 R1

RH
1 R2

]
, (3.46)

where the sub-matrices R0, R1 and R2 are given by:

R0 = EH
0 W

HWE0 , (3.47)

R1 = EH
0 W

HWE1 , (3.48)

R2 = EH
1 W

HWE1 . (3.49)

As far as (3.47) is concerned, we have shown in Section 3.3.1 that the matrix multipli-
cation can be surpassed by calculating the elements of R0 directly via (3.24). Our purpose
is to find similar expressions that will allow us to compute immediately the elements of
R1 and R2 as well.

Working in a similar fashion, we substitute (3.9), which gives the squared window
WHW, to (3.48) and (3.49) and rewrite R1 and R2, respectively, as follows:

R1 = W2EH
0 E1 , (3.50)

R2 = W2EH
1 E1 . (3.51)

Next, we compute to find the elements of R1 and R2 using the following expressions:

(R1)ik =
N∑

n=−N

w2[n]e−j2πnfi/fsnej2πnfk/fs

=
N∑

n=−N

w2[n]nej2πn(fk−fi)/fs ,

(3.52)

(R2)ik =
N∑

n=−N

w2[n]ne−j2πnfi/fsnej2πnfk/fs

=
N∑

n=−N

w2[n]n2ej2πn(fk−fi)/fs .

(3.53)
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By employing the parameterized squared window from (3.4) in (3.52) and (3.53) we
obtain:

(R1)ik = d0

N∑
n=−N

n
[
ej2π(fk−fi)/fs

]
+ d1

N∑
n=−N

n
[
ej2π(fk−fi+

fs
2N )/fs

]
+ d1

N∑
n=−N

n
[
ej2π(fk−fi−

fs
2N )/fs

]
+ d2

N∑
n=−N

n
[
ej2π(fk−fi+

fs
N )/fs

]
+ d2

N∑
n=−N

n
[
ej2π(fk−fi−

fs
N )/fs

]
,

(3.54)

(R2)ik = d0

N∑
n=−N

n2
[
ej2π(fk−fi)/fs

]
+ d1

N∑
n=−N

n2
[
ej2π(fk−fi+

fs
2N )/fs

]
+ d1

N∑
n=−N

n2
[
ej2π(fk−fi−

fs
2N )/fs

]
+ d2

N∑
n=−N

n2
[
ej2π(fk−fi+

fs
N )/fs

]
+ d2

N∑
n=−N

n2
[
ej2π(fk−fi−

fs
N )/fs

]
.

(3.55)

where the coefficients d0, d1 and d2 are given by equations (3.5), (3.6) and (3.7), respec-
tively.

As before, the standard mathematical identity for the sum of geometric series is used.
Employing (3.39), the elements of R1 show up, thus they can be computed without
performing the summation. In a similar way, utilizing (3.40), the elements of R2 are
computed.

Thus, in compact form, the elements of the sub-matrices Rm, m = 0, 1, 2 are given
by:

(Rm)ik = d0gm (2π (fk − fi) /fs)

+ d1gm

(
2π

(
fk − fi +

fs
2N

)
/fs

)
+ d1gm

(
2π

(
fk − fi −

fs
2N

)
/fs

)
+ d2gm

(
2π

(
fk − fi +

fs
N

)
/fs

)
+ d2gm

(
2π

(
fk − fi −

fs
N

)
/fs

)
,m = 0, 1, 2

(3.56)
where the auxiliary functions g0 (x), g1 (x) and g2 (x) are given by (3.15), (3.42) and
(3.43), respectively.

Finally, due to the fact that the computations of trigonometric functions are expensive,
the fact that both sines and cosines are required to be calculated, enables us to decrease
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the computational cost of (3.56) by exploiting the same identities utilized in the QHM
model, given by (3.44). Thus, the sines and cosines of only one of the five terms in (3.56)
are required, while the remaining terms are computed using the above formulas.

3.5.2 GQHM Step 2: Faster Computation of E0 and E1

As it has been thoroughly shown in section 3.3.2, we have already introduced a faster
way of computing E0 by rewriting it as a sum of sines and cosines. Taking under consid-
eration the form of arguments of these trigonometric functions we are able to estimate
quickly the matrix elements using the solution of a difference equation. Thus, instead
of computing exponentials or trigonometric functions, the computation of E0 has been
replaced by (faster to calculate) multiplications. Obviously, having computed matrix E0,
the elements of E1 are given by (E1)nk = n (E0)nk with its cost being one multiplication
per array element. Thus we have replaced the O (NK) exponential or trigonometric cal-
culations with an equal number of (computationally cheaper) multiplications, for both
E0h and E1h.

3.5.3 GQHM Step 3: RGQHM Matrix Approximation

During the previous steps no approximation errors were introduced. Working in the
same way as in the SM in 3.3.3, we discard certain elements of the matrix to be inverted

(RGQHM =

[
R0R1

RH
1 R2

]
for the GQHM) and replace them with zeros. In the SM we turned

the matrix to be inverted (R0 in that case) into a K0-band matrix by discarding elements
that were far apart from the main diagonal more than K0 elements. Turning RGQHM to
a band matrix would be suitable. However, that realization in the HM was reached by
considering the fact that sinusoids which are placed away from each other have a little
interference. With that in mind, it is realized that a more complex variant of the same
technique is required.

In Figures 3.4, 3.7 and 3.8 we can see in a log scale the average (over 300 runs)
magnitude of the (R0)ik, (R1)ik and (R2)ik matrix elements respectively as a function of
the distance of the element from the main diagonal. Since the Rm, m = 0, 1, 2 matrices
are not in general Toeplitz and the elements of any given diagonal should have different
values, a different average has been taken depending on how many elements at a given
distance from the main diagonal exist. For instance, any (2K+ 1)× (2K+ 1) matrix Rm

has 2K+1 elements in the main diagonal, 2 ·2K elements with a distance of one from the
main diagonal, 2 · (2K − 1) with a distance of two elements and so on, until we reach the
two furthermost elements that have a distance of 2K from the main diagonal. In Figure
3.4 it can be seen that the elements in the main diagonal have an average magnitude of
104, while as we are moving away from it more than five elements it results in a magnitude
reduction to values about 10−4. We can easily see (by substituting g0 (x) from (3.15) to
(3.56)) that by construction, R1 has zeros in its main diagonal. However, Figure 3.7
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shows that the elements of the upper- and sub-diagonal have average an measure of order
104, while moving away from the diagonal more than five elements results in reducing its
value to 10−1. Regarding the Figure 3.6, it can be observed that the main diagonal has
an average magnitude of about 108, while by moving away from the diagonal more than
five elements, results in reducing it at the order of 102.
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Figure 3.7: The average values of |R1| in log scale as a function of their distance from
the main diagonal.

Hence, from the above figures we can safely deduct that the average magnitude values
decrease as we move away from the main diagonal. Following the same principle as in
the SM would mean that the technique should be applied to each sub-matrix of RGQHM

individually. This is equivalent to keeping K0 diagonals from R0,R1 and R2. The other
elements that are not close enough to the main diagonal are not computed and set to zero
in an effort to reduce the computational load. In this step we build the Rm,m = 0, 1, 2
matrices in a diagonal-by-diagonal manner which, when combined with the fact that
Rm are Hermitian, it allows us to construct Rmh by calculating only about half of the
diagonals (the main diagonal and the upper/lower diagonals).
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Figure 3.8: The average values of |R2| in log scale as a function of their distance from
the main diagonal.
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Evaluation

4.1 Computational Complexity

In this section, we start by analyzing the computational complexity of our proposed al-
gorithms. Without any of our enhancing steps, which case is from now on denoted as Step
0, the total computational complexity of the LS solution is of orderO (NK2 +K3 +NK),
if we take into account that W is diagonal. The first term, O (NK2), arises from the mul-
tiplications from which the Rm, m = 0h, 1h, 2h, 0, 1, 2 arrays are yielded, if computed
directly from: (2.12), (2.38), (2.39), (2.25), (2.51) and (2.52). If Step 1 is used, each
element of Rm is computed in constant time (O (1)), instead of O (N). Thus, the com-
plexity of finding the R matrices is reduced to the order of O (K2) for the non-harmonic
cases. While, for the harmonic cases taking advantage of the Hermitian Toeplitz forms
of Rm, m = 0h, 1h, 2h reduces the order to O (K).

The term O (NK) is presented when calculating the E matrix, which depending on
the model can be E0h,E0,

[
E0h|E1h

]
or
[
E0|E1

]
. That which in practice burdens the

CPU when computing the E matrices, is the fact that each element calculation requires
the usage of exponential or trigonometric functions. By exploiting Step 2, we achieve
the computation of the sequences sin (2πnfk/fs) and cos (2πnfk/fs), for k = −K, . . . ,K
and n = −N, . . . , N (or sin (2πnkf0/fs) and cos (2πnkf0/fs) for the harmonic cases),
by using approximately 8NK multiplications (2 multiplications per element of E0. It is
noteworthy that, assuming that the multiplication has complexity M (d) 1, where d the
length of the numbers to be multiplied in digits, the complexity of calculating an exponen-
tial or a trigonometric function varies between O

(
d1/2M (d)

)
, O
(
d1/3 log2(d)M (d)

)
and

O
(
log2(d)M (d)

)
. Considering the asymptotically best case scenario ( O

(
log2(d)M (d)

)
)

for the single call of a trigonometric function, the calculation of E0h and E0 without
the usage of Step 2 requires O

(
KN log2(d)M(d)

)
operations, while after Step 2 it is

reduced to O (KNM(d)). From the calculation E1h and E1 we have the same gain,

1Depending on the multiplication algorithm used, the complexity M(d) represents at the worst case
a complexity of order O

(
d2
)

and at the best case O (d log (d) log (log(d))).
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since the direct method does not take advantage of the relation between E0h and E1h:
(E1h)nk = n (E0h)nk (and between E0 and E1 respectively: (E1)nk = n (E0)nk). Thus,
while it takes at best O

(
KN log2(d)M(d)

)
operations (or O

(
KNd1/3 log2(d)M(d)

)
at

worst) to find E, after the implementation of Step 2 even for the time-varying models it
reduces to O (KNM(d)) operations.

The remaining term O (K3) stems from the inversion of the case dependent ma-
trix R, which has dimensions (2K + 1) × (2K + 1) for the HM and SM models and
(4K + 2) × (4K + 2) for the time-varying QHM and GQHM. The act of allowing the
approximation of the R matrix by its K0-banded counterpart, reduces the cost of its in-
version to O (K2

0K), if the positions of the zeroed elements are taken into account. Also,
in Step 3 the fact that the Rm,m = 0h, 1h, 2h, 0, 1, 2 are constructed in a diagonal-
by-diagonal fashion, enabled us to take advantage of the Hermitian property of the
matrices and calculate only (K0 − 1)/2 + 1 diagonals. In total, the complexity was
reduced from O (NK2 +K3 +NK) to O (K2 +K2

0K +NK), for the general cases and
to O (K +K2

0K +NK), for the harmonic cases.
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4.2 Synthetic signals

In the following, we evaluate the performance of the proposed algorithm in a set of
synthetic signals as follows:

s [n] =
K∑
k=0

cos (2πnfk/fs) , n = −N, . . . , N , (4.1)

where fs = 16000 Hz, which is a typical value for the sampling frequency. The parameters
K and N vary in the following sets K ∈ {10, 20, . . . , 60} and N ∈ {150, 175, . . . , 300},
respectively.

For the special case, of harmonic frequencies, fk = kf0, k = −K,−K+1, . . . , K−1, K,
the fundamental frequency f0 is chosen uniformly from the interval [85, 255] Hz, which
are typical values of fundamental frequency for the human speech.

For the general case, when the frequencies fk have no relation to one another, we set
f0 = 0 and the rest of the frequencies (for k = −K,−K + 1, . . . ,−1, 1, . . . , K − 1, K)
are uniformly chosen from the interval

(
85, fs

2

)
Hz under the conditions that every two

frequencies should be at least 85 Hz apart and that fk−1 < fk.

The experiments were performed on a computer equipped with an Intel Core 2 6600
processor at 2.4 GHz and a memory of 2GB. Note that only a single core of the CPU
was used to ensure accuracy of the results. The operating system was Windows XP
Professional (32 bit), while experiments were implemented using the MATLAB software.

4.2.1 Mean Square Error

In the following, we evaluate the estimation performance for the model parameters
using the Mean Square Error (MSE) between the values estimated by employing the direct
approach and the values we get when our accelerated algorithms are used. Assuming that
x̂ is the estimated value of x, then the MSE of the estimator is defined as:

MSE(x̂) = E
[
|x̂− x|2

]
, (4.2)

where E[.] indicates the mean value. The MSE is widely used in the design of algorithms
and can assess the quality of an estimator in terms of its variation and unbiasedness.

In this experiment we analyzed 42000 arbitrarily created signals using the method
described in the previous section (1000 per N and K case). Then, we calculated the
average MSE for every modification and every individual model and model parameter.
The results can be seen in Table 4.1. Note that Step 1 corresponds to the case where
the elements of the matrices Rm, m = 0h, 1h, 2h, 0, 1, 2 are computed quickly using the
aforementioned auxiliary functions g0, g1, g2 and (3.44). Step 2 refers to the additional
improvement of accelerating the computation of E0h for the harmonic and E0 for the

47



Chapter 4. Evaluation

general cases by using the difference equations (3.17) and (3.26), respectively, as well as
Step 1 included. Finally, the set of Steps 3-K0 for K0 = 3, 5, 7 indicated that the methods
described in Steps 1 and 2 were implemented and in addition that the Rm matrices are
K0-diagonalized (Step 3).

In Table 4.1 we can see that the error corresponding to the Steps 1 and 2 is very small
and should be considered an unavoidable arithmetic error, especially when we consider
the fact that all the calculations done in those steps were exact. Since approximations
are performed at Steps 3-3, 3-5 and 3-7 a greater error is introduced, as expected. On
the other hand, taking under consideration the fact that we approximated a matrix with
its K0-diagonal counterpart the error is kept at acceptable levels.

HM SM QHM GQHM
a a a b a b

Step 1 2.511e-015 2.511e-015 3.779e-012 3.553e-012 1.028e-013 6.658e-015
Step 2 2.402e-015 2.402e-015 3.779e-012 3.553e-012 1.664e-013 1.261e-014
Step 3-7 3.651e-006 3.651e-006 4.819e-003 1.010e-003 6.042e-004 3.653e-005
Step 3-5 1.485e-005 1.485e-005 1.868e-002 2.824e-003 1.186e-003 6.599e-005
Step 3-3 1.220e-004 1.220e-004 2.625e-002 2.030e-003 1.209e-002 6.207e-004

Table 4.1: Average MSE for each individual model and parameter compared to the direct
LS solution.

4.2.2 Signal-to-Reconstruction Error Ratio

Through MSE we get an indication of how well the parameters are estimated. How-
ever, our main concern is how much the synthesized signal resembles the original signal.
For this purpose, we used another 42000 signals generated as described in section 4.2.
We analyzed and re-synthesized these signals and compared the re-synthesized with the
original one using the Signal-to-Reconstruction Error Ratio (SRER) defined as:

SRER = 20 log10

σ(s)

σ(s− y)
, (4.3)

where s is the original signal, y is the reconstructed signal and σ(.) is the standard
deviation which is defined by σ(s) =

√
E [(s− E[s])2]. In Table 4.2, we can see the

resulting SRERs. Note that Step 0 is the case where no improvements are implemented.
Therefore, Step 0 represents the highest value that can be reached. As we can see, the
SRER values for Steps 1, 2 are hardly reduced as expected, since no approximations are
performed. In steps 3-K0 we can see that the SRER varies from 70 to 90 dB at the worst
case and from 105 to 120 dB at the best case. Even considering the worst case scenario
(72 dB) there is no significant loss of the SRER.
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HM SM QHM GQHM

Step 0 277.43 dB 272.79 dB 279.44 dB 274.96 dB
Step 1 277.41 dB 272.64 dB 277.93 dB 271.38 dB
Step 2 277.10 dB 272.64 dB 274.37 dB 270.51 dB
Step 3-7 119.77 dB 125.94 dB 106.55 dB 112.89 dB
Step 3-5 107.85 dB 111.16 dB 94.73 dB 97.93 dB
Step 3-3 90.25 dB 86.20 dB 77.03 dB 72.06 dB

Table 4.2: Average SRER.

4.2.3 CPU time

Having studied the reliability of the parameter values and the reconstructed signals
obtained by our proposed accelerations, in the following section we will focus on examin-
ing whether the actual process accelerated in terms of the required time. We randomly
generated 42000 signals in the manner described in section 4.2 and analyzed these sig-
nals to find their amplitude coefficients. In Table 4.3, we observe the average execution
time for each improvement. For convenience, Table 4.5 presents the relative CPU time
improvements as a percentage. The improvement is computed with respect to the time it
took to directly analyze the signals through the direct usage of the Least Squares method
(Step 0).

As we can see in 4.5, from Step 0 to Step 1 we achieve an improvement of 45% both
for the HM case, of 55% for the QHM and the improvements for the SM and GQHM cases
are 6% and 26%, respectively. The reason for this difference in performance stems from
the fact that sub-matrices Rm are Toeplitz in the harmonic case. Step 2 offers almost
the almost same improvement in performance in all the models as expected, since it is
almost model independent. As it can be noticed in the second line of Table 4.4, step 2
saves about 2 ms in the GQHM and about 2.5 ms in all the other cases. The Steps 3-K0

are always faster at about 80-85% faster.

HM SM QHM GQHM

Step 0 8.575 ms 8.650 ms 23.609 ms 23.736 ms
Step 1 4.666 ms 8.115 ms 10.569 ms 17.482 ms
Step 2 1.973 ms 5.454 ms 7.983 ms 15.455 ms
Step 3-7 1.474 ms 1.744 ms 4.155 ms 4.668 ms
Step 3-5 1.416 ms 1.620 ms 3.712 ms 4.092 ms
Step 3-3 1.397 ms 1.568 ms 3.424 ms 3.729 ms

Table 4.3: Average CPU times.
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HM SM QHM GQHM

Step 0 - Step 1 3.909 ms 0.535 ms 13.040 ms 6.254 ms
Step 1 - Step 2 2.693 ms 2.661 ms 2.586 ms 2.026 ms
Step 2 - Step 3-7 0.499 ms 3.711 ms 19.455 ms 19.068 ms
Step 2 - Step 3-5 0.557 ms 3.834 ms 19.898 ms 19.643 ms
Step 2 - Step 3-3 0.576 ms 3.886 ms 20.185 ms 20.007 ms

Table 4.4: CPU time differences between every step and the previous one.

HM SM QHM GQHM

Step 1 45.583 % 6.184 % 55.232 % 26.349 %
Step 2 76.991 % 36.946 % 66.185 % 34.887 %
Step 3-7 82.810 % 79.841 % 82.402 % 80.335 %
Step 3-5 83.481 % 81.270 % 84.279 % 82.759 %
Step 3-3 83.705 % 81.871 % 85.496 % 84.291 %

Table 4.5: CPU time improvement of every step in percentage related to Step 0.

4.2.4 Noisy Signals

In the following, we test the robustness of the proposed algorithms in the case of
noisy signals In particular, we examine whether the approximation reduce the SRER
when applied to noisy signals. Again, we employed 42000 signals randomly generated
as described in section 4.2 corrupted by additive white Gaussian noise, such that the
Signal-to-Noise Ratio (SNR) of the original signal decreased to 10, 20, . . . , 80 dB. SNR is
defined in similar a fashion as SRER:

SNR = 20 log10

σ(so)

σ(so − s)
, (4.4)

where so is the original synthetic signal and s the noisy signal, which is also the signal to
which the analysis is performed.

Tables 4.6 - 4.13 demonstrate the average SRER, the SNR varies from 5, 10, 20, . . . ,80
dB. In most cases, the SRER is almost the same with the value given by Step 0 (our
reference value, since it has no speed ups, thus no noise is induced by an approximation).
Only, the tridiagonal case of Step 3 (Step 3-3) tends to deviate noticeably, especially for
the SNR values of 70 and 80.
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HM SM QHM GQHM

Step 0 8.20 dB 8.20 dB 9.56 dB 9.84 dB
Step 1 8.20 dB 8.20 dB 9.56 dB 9.84 dB
Step 2 8.20 dB 8.20 dB 9.56 dB 9.84 dB
Step 3-7 8.20 dB 8.20 dB 9.53 dB 9.84 dB
Step 3-5 8.20 dB 8.20 dB 9.56 dB 9.83 dB
Step 3-3 8.20 dB 8.20 dB 9.51 dB 9.54 dB

Table 4.6: Average SRER with additive noise (SNR=5).

HM SM QHM GQHM

Step 0 12.44 dB 12.49 dB 13.85 dB 14.13 dB
Step 1 12.44 dB 12.49 dB 13.85 dB 14.13 dB
Step 2 12.44 dB 12.49 dB 13.85 dB 14.13 dB
Step 3-7 12.44 dB 12.49 dB 13.83 dB 14.12 dB
Step 3-5 12.44 dB 12.49 dB 13.82 dB 14.10 dB
Step 3-3 12.44 dB 12.49 dB 13.71 dB 13.84 dB

Table 4.7: Average SRER with additive noise (SNR=10).

HM SM QHM GQHM

Step 0 22.09 dB 22.14 dB 23.49 dB 23.77 dB
Step 1 22.09 dB 22.14 dB 23.49 dB 23.77 dB
Step 2 22.09 dB 22.14 dB 23.49 dB 23.77 dB
Step 3-7 22.09 dB 22.14 dB 23.46 dB 23.77 dB
Step 3-5 22.09 dB 22.14 dB 23.44 dB 23.74 dB
Step 3-3 22.09 dB 22.14 dB 23.27 dB 23.29 dB

Table 4.8: Average SRER with additive noise (SNR=20).

HM SM QHM GQHM

Step 0 32.05 dB 32.10 dB 33.45 dB 33.74 dB
Step 1 32.05 dB 32.10 dB 33.45 dB 33.74 dB
Step 2 32.05 dB 32.10 dB 33.45 dB 33.74 dB
Step 3-7 32.05 dB 32.10 dB 33.39 dB 33.72 dB
Step 3-5 32.05 dB 32.10 dB 33.33 dB 33.66 dB
Step 3-3 32.05 dB 32.10 dB 33.00 dB 32.81 dB

Table 4.9: Average SRER with additive noise (SNR=30).
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HM SM QHM GQHM

Step 0 42.05 dB 42.10 dB 43.45 dB 43.73 dB
Step 1 42.05 dB 42.10 dB 43.45 dB 43.73 dB
Step 2 42.05 dB 42.10 dB 43.45 dB 43.73 dB
Step 3-7 42.05 dB 42.10 dB 43.30 dB 43.68 dB
Step 3-5 42.05 dB 42.10 dB 43.17 dB 43.50 dB
Step 3-3 42.04 dB 42.07 dB 42.45 dB 41.98 dB

Table 4.10: Average SRER with additive noise (SNR=40).

HM SM QHM GQHM

Step 0 52.05 dB 52.10 dB 53.45 dB 53.73 dB
Step 1 52.05 dB 52.10 dB 53.45 dB 53.73 dB
Step 2 52.05 dB 52.10 dB 53.45 dB 53.73 dB
Step 3-7 52.05 dB 52.10 dB 53.15 dB 53.57 dB
Step 3-5 52.05 dB 52.10 dB 52.86 dB 53.18 dB
Step 3-3 51.98 dB 51.92 dB 51.41 dB 50.55 dB

Table 4.11: Average SRER with additive noise (SNR=50).

HM SM QHM GQHM

Step 0 62.05 dB 62.10 dB 63.45 dB 63.73 dB
Step 1 62.05 dB 62.10 dB 63.45 dB 63.73 dB
Step 2 62.05 dB 62.10 dB 63.45 dB 63.73 dB
Step 3-7 62.05 dB 62.10 dB 62.89 dB 63.32 dB
Step 3-5 62.04 dB 62.08 dB 62.28 dB 62.55 dB
Step 3-3 61.62 dB 61.32 dB 59.54 dB 58.07 dB

Table 4.12: Average SRER with additive noise (SNR=60).

HM SM QHM GQHM

Step 0 72.05 dB 72.10 dB 73.45 dB 73.73 dB
Step 1 72.05 dB 72.10 dB 73.45 dB 73.73 dB
Step 2 72.05 dB 72.10 dB 73.45 dB 73.73 dB
Step 3-7 72.04 dB 72.09 dB 72.40 dB 72.84 dB
Step 3-5 71.96 dB 71.99 dB 71.20 dB 71.36 dB
Step 3-3 70.37 dB 69.75 dB 66.23 dB 64.03 dB

Table 4.13: Average SRER with additive noise (SNR=70).
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HM SM QHM GQHM

Step 0 82.05 dB 82.10 dB 83.45 dB 83.73 dB
Step 1 82.05 dB 82.10 dB 83.45 dB 83.73 dB
Step 2 82.05 dB 82.10 dB 83.45 dB 83.73 dB
Step 3-7 81.99 dB 82.05 dB 81.48 dB 81.95 dB
Step 3-5 81.49 dB 81.53 dB 79.13 dB 79.27 dB
Step 3-3 77.63 dB 76.57 dB 71.09 dB 68.03 dB

Table 4.14: Average SRER with additive noise (SNR=80).
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4.3 Voice Signals

We illustrated the competence of the various Sinusoidal Models to analyze synthetic
signals with and without the speed-up methods proposed. In this section we shall examine
how well the models perform with real speech signals. Obviously, the time improvements
have little difference with those of the synthetic signals and are not presented again. Our
focus will be given in the reconstruction quality, which again is measured in terms of the
SRER as previously by (4.3).

Contrary to the synthetic signals case, the frequency values of the sinusoids are un-
known. Thus, the additional step of frequency estimation was required before estimating
the amplitudes of the signal. For the Harmonic Case a variation of the YIN algorithm
was used. The YIN algorithm estimates the fundamental frequency [1]. For the general
case we performed a simple peak picking to the spectrum of the signal (found the K
maximum values).

The recordings analyzed included various voiced utterations to ensure that the har-
monic part of the signal was the dominant one, since no signal/noise separation was
performed. For all the cases (both harmonic and non-harmonic) we set K = 60. The
test set consists of signals with a sampling frequency fs = 44100 Hz. For the harmonic
models we set N = 352 and for the general models we set N = 573. This distinction
is performed because (as we elaborated in 1.3) the frequency estimation methods used
to detect the non-harmonic frequencies present approximation issues when using smaller
windows. Erroneous frequency values have as an effect the significant reduction of the
SRER, since the error affects both the process of the amplitude estimation (requires the
frequencies as input) and the reconstruction of the signal.

HM QHM

Step 0 30.81 dB 49.23 dB
Step 1 30.81 dB 49.23 dB
Step 2 30.81 dB 49.23 dB
Step 3-7 30.81 dB 47.41 dB
Step 3-5 30.81 dB 42.37 dB
Step 3-3 30.80 dB 25.99 dB

Table 4.15: Average SRER for voiced speech using HM and QHM (N = 352)

In Tables 4.15 and 4.16 we can see the SRER for the harmonic and the general models.
We can see that the time-varying models are always better as expected. But what is of
great interest is that the SRER values do not vary significantly between step 0 (the
reference values) and the next steps. With one exception being step 3-3 which in the
harmonic case reduces the SNR from 42.3 dB (at step 3-5) to 25.9 dB. In general, it can
be said that the speed up methods can be safely used in practice.
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SM GQHM

Step 0 31.26 dB 36.30 dB
Step 1 31.26 dB 36.30 dB
Step 2 31.26 dB 36.30 dB
Step 3-7 31.26 dB 36.30 dB
Step 3-5 31.26 dB 36.09 dB
Step 3-3 31.25 dB 35.87 dB

Table 4.16: Average SRER voiced speech using SM and GQHM (N = 573)
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Conclusions and Future Work

In the present work our goal was to enhance the performance of the amplitude es-
timation for sinusoidal models. We began by doing some of the calculations manually,
rendering a matrix multiplication redundant by finding a direct formula for the resulting
elements of R. For the Harmonic models, that also enabled us to exploit the Toeplitz
form of the matrices to be calculated in order to avoid unnecessary calculations. Then, we
rewrote the matrix E comprised of exponentials, into a matrix consisting of trigonometric
functions. Observing the pattern of the arguments of the trigonometric functions, allowed
us to replace the calculations of these functions with simpler and faster multiplications
by utilizing a differential equation. Following these steps we managed to reduce the com-
putation times for the (simpler) Harmonic and Sinusoidal models by about 77% and 37%
respectively. The time-varying Quasi Harmonic and Generalized Quasi-Harmonic Models
had a reduction of 66% and 35% each.

In an effort to further reduce the computational cost of the Least Squares method
for the computation of unknown complex parameters, we started by performing approx-
imations of the matrices to be inverted (R). Turning the matrices to be inverted into
band matrices (or for the time-varying case into blocks of band matrices) was meaningful
in more than one ways. First, it decreased both the computation time of the matrix
(less elements to be computed) and the inversion. Second, the sinusoids that are away
from each other have a little interaction which results in a matrix of which the elements
away from the main diagonal have a smaller magnitude than the ones that are closer to
the main diagonal. For the time-varying models we discussed that the equivalent action
meant that we turn the sub-matrices of R in band form. That step, when combined with
the previous ones, decreased the computation time at about 80% - 85% depending the
model and the length of the band allowed.

In addition, we showed that neither the calculations done by hand nor the approx-
imations performed induced great distortions to the re-synthesized signal. The same
comparison was fulfilled for real speech signals, which deducted that in practice the dis-
tortion induced by the frequency approximations was greater than the error introduced
by the approximations.
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As future research directions we are interested in designing a analysis/synthesis system
using sinusoidal models, which would incorporate the proposed improvements. Then,
one could testify whether these acceleration processes add artifacts to the re-synthesized
signal, which are generally not detected by the SRER but easily heard by the human ear.
This of course implies the implementation of fast frequency estimation techniques, which
do not act as bottlenecks.

Undoubtedly, the possibility of additionally hastening of the estimation of the am-
plitude coefficients process is also worth investigating. Faster inversion of the case de-
pendent matrix R could be achieved if the special forms it obtains are exploited. The
special categories seen in practice depend on the model. Additionally, if Step 3-K0 is
utilized, since it turns the matrix either in a K0-diagonal or in a block matrix consist-
ing of K0-diagonal sub-matrices, another special form arises. Thus, the particular types
that appear are Hermitian Toeplitz matrix, matrix consisting of 4 Hermitian Toeplitz
sub-matrices, Hermitian K0-diagonal (banded) matrix, matrix consisting of 4 Hermitian
K0-diagonal sub-matrices Hermitian Toeplitz K0-banded matrix and matrix consisting of
4 blocks of Hermitian Toeplitz K0-diagonal sub-matrices. The usage of lookup tables is
a mean that could also help achieve even better results in terms of computational speed,
however their usage is restricted to the harmonic models.
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