
University of Crete
Department of Computer Science

Speech Emotion Recognition with
Convolutional Neural Networks

B.Sc. Thesis
Marianna Velessioti

Advisor: Yannis Stylianou
Supervisor: George Kafentzis

Περίληψη

Η ομιλία αποτελεί μία από τις πιο εκφραστικές μορφές επικοινωνίας. Οι εναλλαγές στη
χροιά, τον τόνο, την ταχύτητα με την οποία μιλάμε, όταν πρόκειται για προφορικό λόγο, αυξάνουν
καθοριστικά την εκφραστικότητα μας. Αυτή η παραγλωσσική πληροφορία μας δίνει τη δυνατότητα
να εκφράσουμε σκέψεις και προθέσεις πέραν του λεκτικού περιεχομένου. Μια πληθώρα
χαρακτηριστικών της φωνής απαρτίζουν το συναίσθημα που εμπεριέχεται σε αυτή, με αποτέλεσμα
να γίνεται αντιληπτή η χαρά, η λύπη, η πλήξη, ο θυμός και άλλα συναισθήματα του ομιλητή.

Στην παρούσα πτυχιακή εργασία θα εισάγουμε το θέμα της συναισθηματικής ομιλίας στον
τομέα της Επεξεργασίας Φωνής και θα ακολουθήσει μια ανάλυση με τη χρήση ενός Τεχνητού
Νευρωνικού Δικτύου. Για την εξαγωγή συναισθήματος από το σήμα της φωνής έχουν
χρησιμοποιηθεί διάφορες μέθοδοι Μηχανικής Μάθησης, ωστόσο εμείς προτείνουμε ένα
Συνελικτικό Νευρωνικό Δίκτυο, που παίρνει ως είσοδο εικόνα και εξάγει κατανομές
συναισθημάτων, από τις οποίες συμπεραίνουμε την τελική ταξινόμιση. Κάνουμε χρήση επίσης μιας
πληθώρας βάσεων δεδομένων, για την εκπαίδευση και την αξιολόγηση του μοντέλου, καθεμία από
τις οποίες ενδέχεται να υποστηρίζει διαφορετικό αριθμό (και είδος) συναισθημάτων. Ωστόσο το
πλήθος τους είναι πεπερασμένο και αναμένεται να εξάγουμε ένα τη φορά για κάθε ηχογράφηση
ομιλίας.

Η τεχνική που ακολουθούμε περιγράφεται αναλυτικά, με τις λεπτομέρειες και τα trade-offs
της, καθώς και μέθοδοι για βελτίωση της απόδοσης και την ανάκτηση αμερόληπτων
αποτελεσμάτων. Παρουσιάζονται, επιπροσθέτως, οι διαδικασίες της δειγματοληψίας και της
προεργασίας των δεδομένων προτού αυτά εισαχθούν στο Νευρωνικό Δίκτυο. Τελος, παρατίθενται
αποτελέσματα των πειραμάτων που διεξάχθηκαν έπειτα από ανάλυση δεδομένων για να
αξιολογηθεί το δίκτυο, για κάθε βάση δεδομένων ξεχωριστά.

Abstract
Speech consists one of the most expressive forms of communication. The alternations

in the tone, the volume, the speed, when it comes to oral speech, significantly increase one’s
expressiveness. This paralinguistic information allows the speaker to express thoughts and
intentions apart from the verbal content. A variety of voice traits make up the emotion
contained in it, resulting in perceived joy, sadness, boredom, anger and more.

In this thesis, we introduce the subject of the expressive speech in the context of
Speech Processing and we follow up with an analysis using a form of Artificial Neural
Network. For the extraction of emotion from speech, a variety of Machine Learning
techniques gives interesting research outcomes. However, we propose a Convolutional
Neural Network, that takes image input and outputs emotion distributions, from which we
conclude in the final classification. We also make use of a variety of databases, for the
training and evaluation of the model, where each of them might support different number
(and type) of emotions. However, their number is finite and we expect to extract one at a
time -one for each speech recording.

The technique we follow is described in detail -with all the implicated trade-offs- as
well as methods for performance improvement and the acquisition of unbiased results.
Furthermore, we present the processes of data sampling and preprocessing before they get
fed into the Neural Network. Finally, results of the experiments performed for the evaluation
of the network are presented for each database separately.

Contents

Title

Abstract

1. Introduction
 1.1 Human Speech
1.2 Emotion in human speech
1.3 Extraction of emotion from speech

1.3.1 Emotion Literature and Classic Methods
1.3.2 Deep Learning Methods
1.3.3 Data Bases

 1.4 Objective of the work
 1.5 Outline

2. Convolutional Neural Networks
2.1 Introduction
2.2 Training and assessment

2.2.1 Layers
2.2.2 Optimization methods
2.2.3 Overfitting
2.2.4 Dropout
2.2.5 Cross-validation

2.3 Sampling
2.4 Preprocessing
2.5 Data Augmentation & Performance
2.6 Model Architecture

3. Experiments and Results
3.1. Berlin
3.2. AESI
3.3 SAVEE
3.4 TESS
3.5 CaFE
3.6 RAVDESS

4. Conclusion and Future Work

References

Web sources & more

Chapter 1

Introduction

1.1 Human Speech

The human voice has two main characteristics; it can be produced by the human body
and it can be perceived as a signal. These mechanisms are related to each other inside
the human brain. As long as our brain receives the voice signals, it creates patterns
that help us recognize henceforth similar signals.
In engineering, we are interested in the processing of this signal in order to create
useful applications. Speaking about language, we refer to something different than
plain voice. The language has structure, while the voice does not. Speech is therefore a
structured form of the human voice that is produced using a language syntax.

In terms of signal processing, it is widely accepted that voice can be modeled with an
input A that is given to a system B and the result is an output signal C, as shown in
the figure 1 below. The vibration of the vocal folds produces a varying airflow which
may be treated as a periodic signal A, called source, that produces a spectrum of
equally-spaced frequency peaks or harmonics, starting with a fundamental frequency
F0. The resonance frequencies of the vocal tract (F1, F2, F3) are called formants and
they can be displayed as spectral peaks in the frequency response of the vocal tract
filter. This source signal is input to a system B (the vocal tract). The tract behaves like
a variable filter. Its response is different for different frequencies and the frequency
response may be further adjusted by changing the position of the tongue, jaw etc.

1

Fig.1 : speech apparatus (top), source-filter model (middle), frequency domain representation
(below) [1]

Resonance peaks (A1, A2, A3) add gain to specific frequencies of the harmonic
spectrum. The input signal and the vocal tract, together with the radiation properties of
the mouth, face and external field, produce the sound output C. These resonances can
be determined approximately from the formants (peaks) in the envelope of the sound
spectrum. Given a different spectrum A with higher or lower fundamental frequency,
the frequency of the output spectrum C will be different as well.

According to the source-filter theory, the vocal-tract filter becomes a linear time-
invariant (LTI) system, and an output signal y(t) can be expressed by the convolution
of an input signal x(t) and the impulse response of the system h(t). In discrete time:

That is described with the convolution equation:

The system with impulse response h[n] modifies the signal x[n] in the appropriate way
so that the output signal y[n] can be rendered differently each time. The role of the
‘system’ is played by the vocal tract. For instance, we set our mouth and articulators in
a way to pronounce the phoneme /a/, but in a different way to pronounce the
phoneme /o/.

1.2 Emotion in human speech

This thesis does not focus on features of plain voice but on structured speech, which in
fact, includes information about the emotional state of the speaker. This means speech
does not only bear a message but also paralinguistic information. This is important
because we can understand the emotional condition of the speaker and consider it as a
factor in order to make the appropriate decisions. Furthermore, the emotion as a
phenomenon colours speech and act as a necessary ingredient for natural two-way
communication between humans.

2

There have already been developed multiple systems that process the speech signal
and draw conclusions for the emotional state of the speaker using feature extraction.
Systems can use audio only, text only (context-based), image only (face recognition)
or a combination of these types of features (multimodal). Focusing on audio only
systems, most of them rely on specific features extracted from the speech signal and
fed into a classification algorithm.
It would be very useful to build systems that can extract the emotional state of a
speaker directly from his/her speech signal, without the necessity of linguistic analysis
-just the way that the human brain does!

1.3 Extraction of emotion from speech

One step beyond plain speech recognition lies the recognition of subjective patterns of
speech such as the emotion. For extracting emotion from speech signals, algorithms
that focus on identifying patterns in human speech have been developed. The speech
signal that corresponds to each emotion is found to have different characteristics.
Patterns in speech are described by features; features are sets of numbers that
collectively and compactly represent characteristics of the speech signal. In the
literature, features such as formants, zero-crossing rate, pitch, speech rate, energy, and
loudness are often used [6]. However, more sophisticated features such as LPC
coefficients, MLPC coefficients, Teager-Kaiser energy, PLPCs, MFCCs, filterbanks,
chroma vectors, and other spectral properties (centroid, flux, spread, entropy) have
been successfully used [9, 15, 24]. These data are meant to be extracted
“automatically” by the respective pattern recognition system.

1.3.1 Emotion Literature and Classic Methods

Βefore the outburst of CNNs, that are reviewed extensively in the next chapter, aefore the outburst of CNNs, that are reviewed extensively in the next chapter, a
variety of machine learning methods had been developed and used in practice, which
offer a great deal of research outputs for speech emotion recognition so far.
Classification techniques based on PCA (Principle Component Analysis) [18], LDA
(Linear Discriminant Analysis) [19], SVMs (Support Vector Machines) [17, 20], kNN
(k-Nearest Neighbors) [13, 14], GMMs (Gaussian Mixture Modelling) [9, 16], HMMs
(Hidden Markov Models) [17], and ANNs (Artificial Neural Networks) [10, 11], are
briefly reviewed.

Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) are
two major techniques used for dimensionality reduction. These methods reduce the
dimensionality by projecting the original feature space into a smaller subspace
through a transformation. According to the first one, a linear classifier that separates
the data into the different classes of a dataset has to be found. This is reduced to a

3

problem of optimization of a cost function and is usually implemented using iterative
optimization methods (such as Gradient Descent).

PCA is a method for compressing data into a frame that captures the essence of the
original data. In fact, converts the correlations (or the lack of correlation) among the
data into a lower dimension; usually in 2-D or 3-D. The samples that are highly
correlated cluster together. Some studies in speech emotion recognition adopted PCA
to analyze the feature sets [18]. Others use LDA, which actually performs better than
PCA in many applications [3, 5]. However, the reduced dimensionality must be less
than the number of classes, which consists a limitation for the technique [8].
A feature selection technique named Sequential Forward Selection [6] combines the
nearest mean and Bayes classifier where class PDFs are approximated via Parzen
windows or modelled as Gaussians. After selecting the best features, the
dimensionality is reduced by applying PCA for less computational complexity.

Support Vector Machines (SVMs) is a natural extension of LDCs (Linear
Discriminant Classifiers) which provides good generalisation properties even for a
large feature vector. The main idea of SVMs is to move the data into a higher
dimension and use a Support Vector Classifier (SVC) that separates the higher
dimensional data into groups. They use Kernel Functions, such as the Polynomial
Kernel, to transform the original input set to a high dimensional feature space and
systematically achieve an optimum classification in the new feature space with the
SVC. The results of a relevant survey [7] highlight that the technique can achieve high
emotional classification scores on both male and female speech.

k-Nearest Neighbors (k-NN) classifiers are also popular since the very first studies
[13, 14]. According to this algorithm, a sample is classified by a plurality vote of its
neighbors, with the sample being assigned to the class that is most common among the
k -already classified- samples whose feature vector has closer values to the new
observation. k is a positive, usually small integer. Note that training data normalization
and weight assignment to the contributions of the neighbors has been proposed to
improve the accuracy dramatically. k-NN turned out to be efficient for acted and non-
acted emotional speech but, in accordance with LDCs, show problems with “the
increasing number of features that leads to regions of the feature space where data is
very sparse” [4].

A very powerful and popular soft clustering algorithm is the Gaussian Mixture
Modeling [16] which is based on the Gaussian (normal) distribution. In effect, each
cluster is modeled according to a different Gaussian. This model is commonly
extended to fit a vector of unknown parameters after a several number of iterations
upon the data. This flexible and probabilistic approach to model the data inflects that
rather than having hard assignments into clusters, like on k-means clustering, each
data point can be generated by any of the distributions with a corresponding

4

probability. A research [9] upon the performance of GMMs utilises spectral features of
the data and models each emotion as a mixture of Gaussian densities. This method
performed better than k-NN for the Berlin emotional database.

Hidden Markov Models have been used widely for speech recognition and emotional
speech recognition [2, 3, 17] as well as for a wider variety of applications for
sequence modeling. They can be considered as a subclass of the framework of
Dynamic Bayesian Networks (DBNs). It is yet another probabilistic model based on
the Bayes’ theorem that implicates the different states that make up a given dataset. As
we feed in evidence about the observed acoustic signal and we run probabilistic
inference over this model what we get out is the most likely set of -in our case-
phonemes that give rise to the speech signal in question. The overall model can be
viewed as graph with finite states -that correspond to phonemes- and transitions,
whose weight values represent the probability P(stateX | stateY) i.e. the probability of
stateX being the next state given that the stateY is true. While they seem unstructured
at the level of random variables, there is a perceived structure that manifests in the
sparsity of the conditional probabilities and also in terms of repeated elements within
the transition matrix. In the emotional speech recognition case, this means that the
same “phoneme” can occur in multiple different acoustic signals and then we can
replicate that structure across the different places where the same pattern can be used
in the signal.

Finally, Artificial Neural Networks (ANNs) is the most used non-linear discriminative
classifier together with decision trees [1]. This model was firstly designed to simulate
the way the human brain analyzes and processes information. ANNs have self-learning
capabilities that enable them to produce better results as more data become available.
Relevant surveys on classic ANN based emotion classification and recognition have
provided interesting results with decent classification accuracy for the most common
emotional states [10, 11].

1.3.2 Deep Learning Methods

Speaking about ANNs, the modern bibliography tends to suggest models that aim to
approach the human brain functionality. In effect, our brain can effortlessly recognize
an image of a number, a shape, or an animal because it is trained to recognize these
elements from a very young age. Thus, our study, closely related to neural networks, is
initially inspired by the human brain, probably the most vital and complex among the
human organs, able to recognize objects/patterns with an incredibly intelligent way.

Considering it as a system, the brain network gets its input from the visual cortex and
then it processes the snapshot it receives internally. As soon as it receives again an
image of a similar object (of the same category) it will most probably “recognize” it.

5

The more the images of objects of the same category it receives, the easier for the
brain to recognize similar objects in the future, even if it perceives them for the first
time. Our visual cortex resolves these as representing the same concept. This happens
until the process of recognition becomes trivial for our brain.

Such an idea led to the outburst of Deep Learning, a popular, modern day batch of
techniques and methods for pattern recognition. Many giant companies (like Google,
Facebook, Amazon, YouTube) use Deep Learning at the core of their services in order
to upgrade the level of data manipulation and services [25].

The first modern neural nets that were used, known as DNNs (Deep Neural
Networks), were composed of simple dense layers. Afterwards, the introduction of
convolutional, max pooling and other fully connected layers presented a significant
improvement that performed more effectively for special classification purposes.
Convolutional Neural Networks (CNNs) for instance, are good for image recognition.
Long short-term memory networks (LSTM) on the other hand are found to be good
for speech recognition.

Deep Neural Networks
DNNs are typically feedforward networks in which data flows from the input layer to
the output layer without looping back. They consist of an input and an output layer of
neurons with inner fully connected layers. A typical DNN is shown in Fig. 2.

Fig. 2: DNN layers (a), Flow of information between the DNN layers (b) [2]

The layers in between are called “hidden layers”. An artificial neural network is called
“deep” when the hidden layers are more than one (usually they are multiple). The
above network consists of n hidden layers each one of 96 nodes. Each node is

6

connected to all the nodes of the next layer. Each one of those connections has its own
weight associated with a neuron. Also each node has a bias term. “Learning” is
referred to finding the right weights and biases of the network and is achieved during
the part of the network’s training that is called backpropagation.
The classification data feed the network through the input layer and what we expect
from the output is a number that indicates the right class. For an emotional speech
recognition model, each neuron of the last layer represents the probabilistic estimation
of the system on how much the given image corresponds to the given emotion.

Activations in one layer determine the activations of the next layer. Namely, each
node called “neuron” holds a value (or set of values) and each connection holds a
relevant weight. Accordingly, each node of a hidden layer is going to receive a
weighted sum calculated from the previous layer, described as follows:

When we compute a weighted sum like this, the result might be any number. For these
networks however, we want the activations to be some value between [0 , 1]. The
range is selected for two reasons: first to introduce non-linearities and second to
obtain a probabilistic output. This is why we use a function that squishes the real
number line into this range. A common function that does this is the sigmoid function:

 Fig. 3: The sigmoid activation function

Apparently, the very negative values converge to 0 and the very positive ones
converge to 1.
Therefore the new computed sum is enclosed by the “activation” function and
becomes as follows:

7

The weights indicate what pixel pattern this neuron in the next layer is picking up on,
and the “Bias” scalar indicates how high the weighted sum needs to be before the
neuron starts getting meaningfully active. That is just the connection of one neuron
with all the neurons of the previous layer. In linear algebra:

By calculating the inner product for each row with the vector and then adding the
biases we get a vector where each value corresponds to a neuron. After wrapping up
these results by an activation function, for instance a sigmoid (as shown above) or
ReLU, we get an activation layer ready to pass through the next layer. Thanks to the
activation functions, neural networks are effective in modeling nonlinear mappings.

Training
During training, data may pass through the network multiple times. The number that
indicates one single feedforward passage of full trainset is called an epoch. In one
epoch, data can be split to smaller batches that feed the network all at once. The
overall dataset can be split into training, validation and test data. In order to evaluate
a model we use performance metrics, like accuracy. The training accuracy, is the
average accuracy the network achieves in one training epoch on the validation
(tuning) subset, while the test accuracy is the average accuracy of the network for a
given test set (separate from the train set) after one training period. In both cases a
forward propagation happens and once the final calculated values reach the output
layer, we normally possess a number that represents the possibility for each class to be
the right one (and finally pick the one with the highest possibility). A significant
distinction here, is that during training we also have backpropagation, which means
that the network is updating its weights and biases, while during testing we do not.
The only purpose in the last case is to educe the results from a network that has
previously learnt to recognize the target patterns. Every single train statistic (mean
accuracy, standard deviation) contributes to the overall accuracy of the epoch.
Moreover, data can be labeled (hold the name of the class) or unlabeled. During
training, data -usually- are labeled. When we use a validation set (different than the
trainset) to pass data through the network after the training process, these data are also
labeled. By making this step, we aim to examine whether our network performs
“overfitting” upon the training set. That is, to test whether our network makes a
sufficiently accurate classification into data in which it has not yet been trained, or it
fits exactly against its training data in a way that leads to misclassifications over the
new data. This behavior is explained more extensively in a subsequent section of
Chapter 2. Finally, the testing data are fed into the network, which are unlabeled. In

8

fact, it is really common for the test set to perform the activity of the validation and
testing at the same time.

1.3.3 Data Bases

The majority of emotional speech data collections encompasses six or seven emotions,
although the emotion categories are much more in real life. Although today there are
two predominant approaches for the emotion representation, we followed the
approach that categorizes the emotions in discrete classes. The other approach
categorizes each emotion according to a tuple of speech specifications; arousal and
valence. Respecting the first approach, the most common emotions are: anger, fear,
sadness, joy and surprise. Non-basic emotions are called ‘‘higher-level’’ emotions and
they are rarely represented in emotional speech data collections. In order to validate
our model we used a variety of datasets.

The overall datasets we used for our experimental work are briefly the following:

Berlin
German database consisting of 535 samples. The emotions it provides are 'neutral',
'anger', 'boredom', 'disgust', 'fear', 'happiness' and 'sadness'.

AESI
Greek database consisting of 696 samples. The emotions it provides are 'anger', 'fear',
'joy', 'neutral' and 'sadness'.

SAVEE
English database consisting of 480 samples. The emotions it provides are 'anger',
'fear', 'disgust', 'neutral', 'happiness', 'sadness' and 'surprise'.

TESS
British english database consisting of 2800 samples. The emotions it provides are
'anger', 'fear', 'disgust', 'neutral', 'happiness', 'sadness' and 'surprise'.

CaFE
French database consisting of 936 samples. The emotions it provides are 'anger',
'disgust', 'happiness', 'neutral', 'fear', 'surprise' and 'sadness'.

RAVDESS
English database consisting of 1140 samples. The emotions it provides are 'neutral',
'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust' and 'surprise'. For this dataset
specifically, we had to eliminate the long silences at the beginning and at the end of
the signals, as they spoiled the performance when using augmentation.

In further detail:

9

The Berlin Emotion Speech Database (BES) is the most often used database in the
emotional speech processing community. It is an acted emotional content database
created by the audio recordings of ten actors; five male and five female of age 21-35
years.

Athens Emotional States Inventory (AESI) [see web resources, 6] is a dataset in
Greek containing audio recordings of five categorical emotions. The items of the AESI
consist of 35 sentences each having content indicative of the corresponding emotion.
The resulting data include recordings from 20 participants (12 male, 8 female), which
resulted in 696 utterances.

Surrey Audio-Visual Expressed Emotion (SAVEE) database [see web resources, 7]
has been recorded as a pre-requisite for the development of an automatic emotion
recognition system. The database consists of recordings from 4 male actors in 7
different emotions, 480 British English utterances in total.

Toronto Emotional Speech Set (TESS) [see web resources, 8] is a collection of 200
target words spoken in the carrier phrase "Say the word _____' by two actresses (aged
26 and 64 years). Recordings were made of the set portraying each of seven emotions.
There are 2800 stimuli in total.

The Canadian French Emotional (CaFE) speech dataset [see web resources, 9]
contains six different sentences, pronounced by six male and six female actors, in six
basic emotions plus one neutral emotion, composing 936 utterances in total. The six
basic emotions are acted in two different intensities.

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
[web resources, 10] contains recordings of 24 actors (12 male, 12 female), vocalizing
two lexically-matched statements in a neutral North American accent. The different
emotions count to 8 and the vocal channel is either speech or song. There are also two
different emotional intensities provided (except neutral emotion). For our
experimental work, we used the audio-only modality format, which contains 1440
utterances. Nevertheless, the RAVDESS collection includes 7356 files in total (1440
speech, audio-only + 1012 song, audio-only + 2880 speech, video + 2024 song,
video).

All databases were sampled at 16kHz, except CaFE that was initially sampled at
192kHz (we used the downsampled version of 48kHz) and SAVEE at 44.1kHz.
However they were both resampled to 16kHz for consistency reasons.
Whether the classification model is speaker dependent, that is, the training corpus
includes speech samples from the same speaker, is a matter of choice, as we can
choose to remove completely a speaker from the training set and add them only to the
test set. However, a real-life emotion recognition system should be speaker-
independent [12].

10

1.4 Objective of the work

Developing and training a neural network has been initially inspired by the human
brain functionality -in order to deploy effective systems analogous to the effectiveness
of the human brain to recognize patterns. However, the relation between the biological
brain and the deep neural networks nowadays is negligible. The objective of our work
consists of the computer-based extraction of speech emotion using a convolutional
neural network.

1.5 Outline

The rest of this thesis report is organized as follows. Chapter 2 introduces the idea of
convolutional neural networks as well as their functionality in depth by analysing
more extensively the training process. For this purpose, we shall describe its
components and methods that are used for training and optimization. The same
chapter details issues of sampling and preprocessing. It also presents the architecture
of our model for speech emotion recognition as well as performance issues.
Experimental results of the network’s overall performance for all the data bases in
combination with the related confusion matrices, are presented and discussed in
Chapter 3. Finally, Chapter 4 gives concluding remarks.

11

Chapter 2

Convolutional Neural Networks

2.1 Introduction

Convolutional Neural Networks have been one of the most influential innovations of
the last decade in the field of Data Science and Computer Vision. It has been an
efficient technique for pattern recognition and works in a remarkably effective way for
image inputs. In fact, the term usually refers to a 2-dimensional CNN which is used
for image classification. But there are two other types of Convolution Neural
Networks used in the real world, which are 1-dimensional and 3-dimensional CNNs.

Fig. 4: The core of a Convolutional Neural Network for image input [3]

The difference between a simple DNN, as described in the introduction section, and a
CNN lies in the hidden layers part. Convolutional layers are different from standard
(dense) layers of canonical ANNs, and they have been invented to receive and process
pixel data.

12

The input layer consists of the image we want to classify and the output layer is a fully
connected layer that outputs the predicted class. Intermediate layers perform
convolutional and pooling operations consecutively. Note, that such a model requires
image data as input, while the data we possess are speech. In this case, one has to
make the appropriate transformations in order to conform with this architecture.

2.2 Training and assessment

Respectively with the description of the training process in the introduction, which is
similar for all the neural networks, the overall data are divided into a training and a
test set. For the network training, 90% of the dataset is usually used, while the rest
10% is used for testing. This happens in a loop of 10 folds each one constituted of a
90-10 analogy of the data set. This method is called cross-validation and is explained
in more detail in paragraph 2.2.5.
For the assessment, we usually consider the validation loss or validation accuracy
throughout cross-validation, and of course, the test set, for whom the evaluation we
shall choose a metric such as the accuracy (for balanced datasets) or f1-score (for
imbalanced datasets).

2.2.1 Layers

A convolutional neural network normally consists of three major layers; convolution
layer, pooling layer and a fully connected layer. The first two layers can be repeated
depending on the depth of the network. The last one is usually placed at the end as a
simple dense layer.

Convolutional layers are the layers where filters are applied to the original image, or
to other feature maps in a deep CNN. This is where most of the user-specified
parameters are in the network. The most important parameters are the number and the
size of the kernels. Kernels are basically the filters that are applied on a small region
of the image. The kernel size here refers to the width x height of the filter mask.
Common choices for kernel size are 3x3 (below case) and 5x5. The values in the
filter/kernel are called weights. Each weight determines how important the pixel is in
forming the output image (feature map).

13

The convolution operation above, between the original input matrix (a) and the filter
(b) is applied successively upon 3x3 areas of the input matrix. By default, a filter
starts at the upper left corner of the image with the left-hand side of the filter sitting on
the far left pixels of the image. The filter is then stepped across the image one column
at a time until the right-hand side of the filter is sitting on the far right pixels of the
image. The “sliding” of the filter upon the matrix is called stride, and is usually equal
to 1. When the stride is 2 or more (though this is rare in practice), then the filters move
2 or more pixels at a time. The result is the matrix (c) that consists the output “image”
of the convolutional layer and is used as an input for the next layer. Actually no
convolution is performed, but a cross-correlation. The following calculations are
performed to produce the upper right digit of the output matrix (c):

The size of the output image is based on the formula: (I – F + 2P)/S + 1
Here in the example the input size (I) is 5, filter (F) is 3, padding (P) is 0, and stride(S)
is 1. So the output size = (5 – 3 + 0) / 1 + 1 = 3 (matrix c).

Fig. 5: simple convolution upon MNIST handwritten digit (top),
multiple convolutions (below) [4]

In order to extract the most important features through network training, we perform
multiple convolutions, each using a different filter, which will result in the creation of
many distinct feature maps. The latter ones are the convolved output matrices that
contain information about the predominant features. We finally stack all these feature
maps together and get the output of the convolution layer.

14

In realistic examples, however, there is a significant disadvantage. The corner pixels
do not contribute as much in feature detection. Furthermore, while the filter is sliding
over the input image it performs linear computation which can apparently reduce the
dimensionality of the initial matrix in the process of extracting the important features.
For this reason, the need arose to add some padding around the outline of the image,
in order to keep the original dimensions throughout convolutions, and train the
network with the most important features subsequently.

Fig. 6: Zero padding added to image

It is usually useful to have a pad such that the size of the convolved output is same as
the input size. So the size of the feature map is controlled by 3 parameters that we
need to decide before the convolution step: depth (the number of filters we use), stride
and zero-padding.

In the normalization step that follows, we apply the activation function; ReLU
(Rectified Linear Unit) / Sigmoid. An image may have pixel values ranging from 0 –
255. However, neural networks work best with scaled “strength” values between 0 and
1. In practice the input image to a CNN is a grayscale image ranging in pixel values
between 0 (black) and 1 (white). Converting an image from a pixel value range of 0 –
255 to a range of 0 – 1 is called normalization. In CNN the normalized input image is
filtered and then a convolutional layer is created. Pixel values in the filtered image
may fall into different ranges that may contain negative values as well, so to take care
of this we apply the activation function. In CNN we often use ReLU (instead of
Sigmoid) which simply turns negative pixel values to 0. Convolution is a linear
operation -element wise matrix multiplication and addition- so we account for non-
linearity by introducing a function like ReLU.

The main goal of the pooling layer, that follows the convolution layer, is
dimensionality reduction, meaning reducing the size of an image by keeping a single
value from a given window. The most common type of pooling layer is the
maxpooling layer. This operation breaks an image into smaller patches, and returns
the pixel with maximum value from a set of pixels within a patch, subsampling the
input matrix. A maxpooling layer is defined by a patch size and stride. For a patch size

15

of 2×2 and a stride of 2, this window will perfectly cover the image. A simple example
of 4x4 input matrix is shown in Fig. 7.

 Fig. 7: Max Pooling

The last layer of CNN is the fully connected layer. Every output that is produced at
the end of the last pooling layer is an input to each node in this fully connected layer.
The role of the fully connected layer is to produce a list of class scores and perform
classification based on image features that have been extracted by the previous
convolutional and pooling layers. So, the last fully connected layer will have as many
nodes as there are classes and the sum of output probabilities from the fully connected
layer is 1.

2.2.2 Optimization methods

Deep learning is an iterative process. With so many parameters to tune and methods to
try, it is important to be able to train models fast, in order to quickly complete the
iterative cycle. This is key to increasing the speed and efficiency of a machine
learning model. Hence the importance of optimization algorithms such as stochastic
gradient descent, min-batch gradient descent, gradient descent with momentum and
the Adam optimizer, among others. These methods make it possible for our neural
network to learn, however, some of them perform better than others -for specific
purposes- in terms of speed.
Essentially what we need to do is to compute the loss, which represents how poorly
the model performs each time, and try to minimize it, because a lower loss means our
model is going to perform better. The process of minimizing (or maximizing) any
mathematical expression is called optimization.

Optimizers are algorithms or methods used to change the attributes of the neural
network such as weights and learning rate to reduce the losses and to provide the most
accurate results possible. They solve optimization problems by minimizing the cost
function. A cost function is a single value, not a vector, because it rates how good the
neural network did as a whole with respect to the expected output.
Specifically, the latter one is a function with the following parameters:

C(W, B, Sr, Er)
where W is our neural network's weights, B is our neural network's biases, Sr is the
input of a single training sample, and Er is the desired output of that training sample
[11].

16

Initially, it is impossible to know exactly what our model’s weights should be right
from the start. But there are methods proposed in the literature on how to initialize a
DNN [26]. All the optimization algorithms below can be used when training a
machine learning model for minimization of the network’s loss and configuration of
its optimal parameters subsequently.

Gradient descent

Gradient descent is an optimization algorithm for finding a local minimum of a
differentiable function. It is used to find the values of a function’s parameters
(coefficients) that minimize the loss/cost function as far as possible. The gradient
descent method starts by defining the initial parameters’ values and thereafter it
utilizes calculus to iteratively adjust the values so they minimize the given cost
function (Least Squares for instance). The weight is initialized using some
initialization strategies and is updated with each epoch according to the update
equation.

The above equation computes the gradient of the cost function J(θ) with respect to the
parameters / weights θj for the entire training dataset. θj essentially represents the step
size, α is the learning rate, and the partial derivative of the cost function above
represents the slope.

Fig. 8: Gradient descent for minimizing the cost function [12]

17

Our aim is to get to the bottom of our graph, or to a point where we can no longer
move downhill – a local minimum.

The size of the steps gradient descent takes into the direction of the local minimum is
determined by the learning rate, which figures out how fast or slow we will move
towards the optimal weights. It is important to assign an appropriate value to the
learning rate -neither too big nor too small- because if the steps it takes are too big, it
may not reach the local minimum as it will bounce back and forth between the convex
function of gradient descent (see left image below). If we set the learning rate to a
very small value, gradient descent will eventually reach the local minimum but that
may take a while (see right image below).

Fig. 9: The results of big learning rate (left) and small learning rate (right)
throughout gradient descent [13]

Stochastic Gradient Descent (SGD)

SGD algorithm is an extension of the Gradient Descent and it overcomes some of the
disadvantages of the GD algorithm. Gradient Descent has a disadvantage that it
requires a lot of memory to load the entire dataset of n-points at a time to compute the
derivative of the loss function. In the SGD algorithm derivative is computed taking
one point at a time.

For each training example x(i) and label y(i), SGD performs a parameter update as
follows:

18

Fig. 10: GD vs SGD [14]

the star denotes a minimum of the cost

For each example above, we take a Gradient Descent step. On the left, we have
Gradient Descent (1 step per entire training set) and on the right we have Stochastic
Gradient Descent (1 point per step). SGD leads to many oscillations to reach
convergence, but each step is a lot faster to compute for SGD than for GD, as it uses
only one training sample (in contrast with the whole batch for GD). Typically, to get
the best out of both we use Mini-batch gradient descent (MGD) which looks at a
smaller number of training set examples at once.

Mini-batch gradient descent (MB-SGD)

MB-SGD algorithm is an extension of the SGD algorithm and it overcomes the
problem of large time complexity in the case of the SGD. MB-SGD takes a batch of
points or subset of points from the dataset to compute the derivate. For every mini-
batch of n training examples it performs a following update:

The update of weight is dependent on the derivate of loss for a batch of points. The
updates in the case of MB-SGD are much noisy because the derivative is not always
towards minima. MB-SGD divides the dataset into various batches and after every
batch, the parameters are updated. This way, it reduces the variance of the parameter
updates, which can lead to more stable convergence, and can make use of highly
optimized matrix optimizations common to state-of-the-art deep learning libraries that
make computing the gradient w.r.t. a mini-batch very efficient.

Common mini-batch sizes range between 50 and 256, but can vary for different
applications. Mini-batch gradient descent is typically the algorithm of choice when
training a neural network.

19

Fig. 11: SGD vs Mini-batch GD [15]

“+” denotes a minimum of the cost

Gradient descent with momentum

Gradient descent with momentum involves applying exponential smoothing to the
computed gradient. This will speed up training, because the algorithm will oscillate
less towards the minimum and it will take more steps towards the minimum.
The algorithm does this by adding a fraction γ (gamma) of the update vector of the
past time step to the current update vector:

Now, the weights are updated by θ = θ – υt. Note that some implementations exchange
the signs in the equations.
The momentum term γ (usually set to 0.9 or a similar value) increases for dimensions
whose gradients point in the same directions and reduces updates for dimensions
whose gradients change directions. As a result, we gain faster convergence and
reduced oscillation.

Adaptive Moment Estimation (Adam)

Adam [21] is another optimization method that computes adaptive learning rates for
each parameter. In addition to storing an exponentially decaying average of past
squared gradients υt, Adam also keeps an exponentially decaying average of past
gradients mt, similar to momentum. Whereas momentum can be seen as a ball running
down a slope, Adam behaves like a heavy ball with friction, which thus prefers flat
minima in the error surface [22]. We compute the decaying averages of past and past
squared gradients mt and υt respectively as follows:

mt and vt are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively, hence the name of the method.

20

2.2.3 Overfitting

Having such a large number of parameters inside a neural network has another
drawback: overfitting. Overfitting is a phenomenon that occurs when a machine
learning algorithm attaches too much to the training data provided and loses the ability
to generalize. The neural network must learn different interpretations for something
that is possibly the same. However, when the model trains for too long on sample data
or when the model is too complex, it can start to learn the “noise,” or irrelevant
information, within the dataset. When the model memorizes the noise and fits too
closely to the training set, the model becomes “overfitted,” and it is unable to
generalize well to new data. If that is the case, then it will not be able to perform the
classification or prediction tasks that it was intended for.

Low error rates and a high variance are good indicators of overfitting. In order to
prevent this type of behavior, part of the training dataset is typically set aside as the
“test set” to check for overfitting. If the training data has a low error rate and the test
data has a high error rate, it signals overfitting.

2.2.4 Dropout

It is quite common for a deep neural network to train for a significant time period, or
train without enough data. A fully connected layer occupies most of the parameters,
and hence, neurons develop co-dependency amongst each other during training which
curbs the individual power of each neuron leading to overfitting of the training data.

In machine learning, regularization is way to prevent overfitting. Regularization
reduces this behavior by adding a penalty to the loss function. By adding this penalty,
the model is trained such that it does not learn interdependent set of features weights.
Dropout is a method that offers a computationally cheap and effective regularization
method to reduce overfitting and improve generalization error in deep neural networks
of all kinds, by randomly dropping out neurons during training (Fig. 11 below).
Hence, it helps reducing interdependent learning amongst the neurons.

Specifically, during the training phase, for each hidden layer, for each training sample,
for each iteration, dropout forces the network to “ignore” (zero out) a random fraction,
p, of nodes and corresponding activations. During test phase, the network uses all
activations, but reduces them by the same factor p (to account for the missing
activations during training).

21

Fig. 12: Neural network before (a) and after
(b) applying dropout [27]

Implementing dropout is easy, if there is a fully connected layer at the end of the
convolutional network. The Keras Dropout layer randomly sets input units to 0 with a
frequency of rate at each step during training time. Parameter ‘rate’ is a float between
0 and 1 that describes the fraction of the input units to drop. ‘noise_shape’ is a 1-D
integer tensor representing the shape of the binary dropout mask that will be
multiplied with the input and finally the ‘seed’ is a Python integer to use as random
seed. The default interpretation of the dropout hyperparameter ‘rate’ is the probability
of training a given node in a layer, where 1.0 means no dropout, and 0.0 means no
outputs from the layer. A good value in general for dropout in a hidden layer has been
found to be between 0.5 and 0.8.

2.2.5 Cross-validation

Cross-validation is a resampling procedure used to evaluate machine learning models
on a limited data set. The procedure has a single parameter called k that refers to the
number of groups that a given data set is to be split into. As such, the procedure is
often called k-fold cross-validation. When a specific value for k is chosen, it may be
used in place of k in the reference to the model, such as k=10 becoming 10-fold cross-
validation.

It is a very popular technique as it is simple and, at the same time, it generally results
in a less biased or less optimistic estimate of the model skill than other methods, such
as a simple train/test split. In k-fold cross-validation, the dataset passes through the
network as many times as k indicates, in a way that each time (among the k-folds) the
test set used for the evaluation is different. Hence the network is trained multiple times
upon different training and test data, which however belong to the same dataset.

22

Fig. 13: k-fold cross-validation when k=5 [12]

In the example above, the blue squares constitute the evaluation part which, in this
case, is the 1/5 of the dataset, and the rest of them are the training folds. As we can
observe, at every row the evaluation set is different and the performance of every fold
may vary. The average of the performances (k=5 overall) is calculated as the final
estimated performance of the model.
Cross-validation is a useful technique when we don’t possess enough data for our
training -which happens very often in practice- or we want to evaluate our model more
objectively with low cost. There are many variations of the technique, like the Leave-
one-out Cross-Validation (LOO), which as the title dictates leaves one sample out of
the whole dataset to use for evaluation and uses the rest of them for training.
Obviously, in this case, the number of folds equals the number of instances in the
dataset. Nevertheless, the most popular and adequately efficient case is 10-fold cross-
validation, that we also use in our speech emotion recognition model.

2.3 Sampling

In this paragraph, we are going to introduce topics of the speech sampling process,
which is conducted in order to constitute the datasets we use. The emotion per se, is
educed by the speech signal that has been sampled under the appropriate conditions.
Usually, persons that express these records are specialized actors in order for the
emotion to be as much as real and spontaneous. These records are stored on a database
so that we can use them to create subsequently spectrogram images (the actual input
of the network).

23

According to a research [23], acted speech from professionals is the most reliable
because professionals are trained to color speech by emotions and such emotions have
a great amplitude or strength. Nevertheless, when the emotion is acted, it cannot be
absolutely correlated to real conditions. The best practice is to get our samples from
real situations, so we can work with datasets that include spontaneous records of
speech, which yet has privacy constraints of personal data. In fact, the most important
finding so far is the lack of data for research on spontaneous/real-life speech, both in
terms of data collections and features.
On the other hand comes the trade-off of emotional subjectivity; assigning one
emotion to one situation seems fluid problem because as mentioned, emotions are
subjective and secondly, in natural situations emotions can be contrasted [1]. In any
case, by using a plurality of data bases we hope to achieve unbiased results as far as
possible.

2.4 Preprocessing

Since our research is on speech and the emotion that frames it, the initial signals are
converted for the needs of feeding the CNN, so the final samples that are given to the
network are in image format. More specifically, our data are imprinted on the visual
representation of the spectrum of frequencies of each speech signal as it varies with
time; that is a special type of representation that is called spectrogram. Spectrograms
are turned into images in order to feed the neural network.

Fig. 14: Wide-band spectrogram from the Berlin dataset in gray scale.
Emotion: anxiety/fear

24

The spectrum of speech reveals information on the formants, that are one of the
quantitative characteristics of the vocal tract. This is the reason we used wideband
spectrograms instead of narrowband, as we can educe more information related to the
vocal cords. Narrowband spectrograms on the other hand, provide information about
the individual harmonics of the voice source.

Fig. 15: A wide-band (top) and narrow-band (middle) spectrograms
are shown along with the speech signal from a female speaker (bottom),

 used to derive them. The spoken sentence is: "to the third class" [20]

The spectrogram of Fig. 14 is an example of the images we use for our training,
however we implement some transformations before sending them to the model. The
final resolution of our images is 129x129 pixels which is a relatively low resolution
resulting from data compression. We also transform the spectrogram to the range 0-4
kHz and apply z-normalization at the end. So, for instance, the spectrogram of Fig. 14
after the preprocessing procedure is transformed as shown in Fig. 16.

By the way, after each layer the initial image is reduced and resized, it changes
according to the DNN specifications. Namely, convolutional layers sequentially
downsample the spatial resolution of images while expanding the depth of their
feature maps. This series of convolutional transformations can create much lower-
dimensional and more useful representations of images than what could possibly be

25

hand-crafted. So what we get in the first layer with 129x129 pixel neurons undergoes
extensive processing throughout the next DL procedure (training).

Fig. 16: Spectrogram after reducing length (left),
and after resizing and z-normalization (right)

2.5 Data Augmentation & Performance

The broader idea of Data Augmentation encompasses a suite of techniques that
enhance the size and quality of training datasets such that better Deep Learning
models can be built using them. It consists a data-space solution to the problem of
limited data, which is evident for many data bases we used, and the problem of
overfitting that also leads to misclassification all along the model evaluation.

Some of the data bases we used do not contain the number of samples we need to have
representative results, so we used data augmentation with adding small noise to the
signals, without changing other speech features. Instead of performing image
augmentation, we augmented the original speech signals by including white Gaussian
noise of 15dB SNR (at a given Signal-to-Noise Ratio). This way, the initial set of
samples augmented to 2x and then to 10x for more extensive and unbiased training.

To avoid misclassifications caused by silence injection at the beginning and at the end
of the speech signal, after the augmentation of the dataset by adding noise, we used a
Voiced-Unvoiced-Silence detector (VUS) in MATLAB that calculates the energy of
each 30 ms frame of the signal and eliminates the silent frames, and the total duration
of the audio by extension. This step was especially useful for the RAVDESS data
base, whose original samples include signigicantly long silences at the beginning and
at the end of the signal. Before silence detection, it seemed that the network was
learning the noise we injected through augmentation.

26

What we need is to train our model with minimum memory and time resources as well
as achieve simplicity. Performance may vary from one dataset to another. Also the
increase of the number of epochs optimizes the results. However, our focus is to keep
the network simple without adding extra layers and also keep the number of epochs
stable to 100. Data augmentation manages to “fake” a bigger dataset, although it
increases a lot training time.

2.6 Model Architecture

The network we propose is being trained to recognize emotions, providing a classifier
algorithm of a CNN with two convolutional layers. After each convolution follows the
max pooling layer as well as padding. This network is called 2-dimensional CNN
because the kernel slides along 2 dimensions on the data. The activation function we
use after the convolution is ReLU. Filter sizes may vary; they are 5x5 matrices but for
some data sets we observe that 10x10 filters on the first layer perform as well
decently. The base architecture with the corresponding parameter values is shown in
the flowchart below. The value of dropout is set to 0.2, however, the bigger the
augmentation we had, the bigger the dropout we used so it reached as well the value
of 0.5 for the ten-fold datasets.
We implement the model using the keras library with our modifications. All
experiments are run on a single GPU. All the models are trained/tested based on the
same implementation as shown in Fig. 17. This simple architecture consists the core
of our network and achieves the results listed in Chapter 3.

27

 Fig. 17: Convolutional Neural Network architecture flowchart

28

Chapter 3

Experiments and Results

In this section we will review some measurements of the model’s performance and
make relative conclusions regarding the results. Berlin Emotional Speech (BES) is the
first dataset that we worked with and thereafter we also turned to other datasets in
order to validate the model’s performance more thoroughly.

The results of each dataset for different runs of the model are shown below. Accuracy
results and confusion matrices of the latest runs are listed at the end of the chapter for
each dataset.

Berlin

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 57.570 +-4.949

5x5 5x5 0.3 x2 77.888 +-4.884

5x5 5x5 0.5 x10 87.720 +-4.709

10x10 5x5 0.2 no 58.224 +-4.117

10x10 5x5 0.3 x2 77.944 +-6.554

10x10 5x5 0.5 x10 87.458 +-7.852

AESI

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 80.714 +-1.498

5x5 5x5 0.3 x2 84.511 +-10.649

5x5 5x5 0.5 x10 91.595 +-3.565

29

10x10 5x5 0.2 no 79.571 +-2.478

10x10 5x5 0.3 x2 88.649 +-2.711

10x10 5x5 0.5 x10 92.529 +-2.983

SAVEE

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 42.604 +-2.612

5x5 5x5 0.3 x2 49.542 +-6.831

5x5 5x5 0.5 x10 68.771 +-5.653

10x10 5x5 0.2 no 45.521 +-2.836

10x10 5x5 0.3 x2 53.667 +-8.756

10x10 5x5 0.5 x10 70.625 +-4.934

TESS

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 99.464 +-0.505

5x5 5x5 0.3 x2 88.450 +-3.434

10x10 10x10 0.2 no 97.982 +-2.606

10x10 10x10 0.3 x2 67.425 +-35.368

10x10 5x5 0.2 no 99.018 +-0.918

10x10 5x5 0.3 x2 87.614 +-4.426

CaFE

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 25.426 +-3.790

5x5 5x5 0.3 x2 65.256 +-9.469

5x5 5x5 0.5 x10 71.100 +-9.157

10x10 5x5 0.2 no 25.000 +-2.540

10x10 5x5 0.3 x2 58.739 +-7.121

10x10 5x5 0.5 x10 73.098 +-6.482

30

RAVDESS

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 63.646 +-2.914

5x5 5x5 0.3 x2 59.160 +-4.868

5x5 5x5 0.5 x10 61.264 +-6.213

10x10 5x5 0.2 no 66.285 +-2.367

10x10 5x5 0.3 x2 55.014 +-6.366

10x10 5x5 0.5 x10 59.611 +-5.470

As we can observe our learning method has a different effect on each dataset, but still
works better for datasets with higher amount of samples. This verifies that neural
networks achieve higher classification accuracy as the given data increases. TESS that
achieves the best results, is the biggest dataset between all of them, and additionally,
its speech signals are similar except a few words -usually- at the end of the phrase.
What actually changes between phrases of the same linguistic content is the prosody
of the voice, which is the essential substance of the emotion.
Another factor that must not be neglected is that the number of emotions in the data
collections is not the same for all of them. It varies from 5 to 8, and -as known- the
more the choices, the less the possibility of choosing the right one incidentally. AESI
contains the least emotional states. On the other hand, RAVDESS contains the most.

Accuracy results and Confusion Matrices:

31

 Berlin: mean accuracy and standard deviation

 AESI: mean accuracy and standard deviation

 CaFE: mean accuracy and standard deviation

 RAVDESS: mean accuracy and standard deviation

32

 SAVEE: mean accuracy and standard deviation

 TESS: mean accuracy and standard deviation

33

Chapter 4

Conclusion and Future Work
The computational paralinguistic task of recognizing the emotion states from human
speech is indeed a challenging problem. Namely, it is not about a classic programming
or mathematical problem that is solved with structural logic, instead it is about
something that requires a learning process. A non-negligible fact is that the human
emotions hide a factor of subjectivity and also increased complexity. In this case, the
field of Artificial Intelligence and Deep Learning shall be implicated, as the ever
evolving machines may be capable to spot patterns that even a human individual could
not recognize.
In the present thesis, we started by introducing the human speech and the speech
production system. Our research does not focus on characteristics of plain voice but
on structured speech, which in fact contains emotional payload. Hence, we proposed a
methodology for the recognition of speech emotion using Convolutional Neural
Networks. Specifically, we experimented with simple end-to-end architectures within
the Keras framework along with data augmentation. We started by explaining the
whole concept of Deep Neural Networks, as well as the most commonly used, already
existing Machine Learning techniques proposed in bibliography, and ended up by our
unique model implementation, functionality, trade-offs and optimization elements. By
explaining the training and evaluation procedures, the reader of this report shall be
capable to understand and evaluate the final results of the experimental process. The
network achieves indeed a state-of-the-art accuracy in speech emotion recognition
using different datasets for testing and a cross-validation practice that creates a
reliable and unbiased surface.
This work can be utilized in the broad area of Human-Computer Interaction, in Virtual
Reality (VR) environments, Telecommunication systems and many more multimedia
applications. As a thesis subject, it shall also trigger future academic study upon a
multi-language dataset. So far, we evaluated our model using one single dataset -with
its own characteristics- each time. The next step would be the combination of these
emotional datasets (or parts of them) and, moreover, to try some different ways in

34

augmenting the data. As an ultimate goal we set the pushing of those architectures to
their limits, in order to observe their potential behavior and achieve higher
performances.

References

[1] Sierro Hervé, “Extracting emotions from speech signal: State of the art” -

Seminar Paper, University of Friburg, 2012

[2] Dimitrios Ververidis and Constantine Kotropoulos, “Emotional speech

recognition: Resources, features, and methods”, published by Elsevier B.V.,

Sept. 2006

[3] Moataz El Ayadi, Mohamed S. Kamel, Fakhri Karray, “Survey on speech

emotion recognition: Features, classification schemes, and databases”, Pattern

Recognition, Volume 44, Issue 3, 2011.

[4] Schuller B., Batliner A., Steidl S., Seppi D. “Recognising realistic emotions

and affect in speech: State of the art and lessons learnt from the first

challenge.”, Speech Communication, 53(9-10):1062–1087, Feb. 2011

[5] Mitngyu You, Chun Chenr, Jiajun Bul, Jia Liul, Jianhua Tao, “A

Hierarchical Framework for Speech Emotion Recognition”, IEEE international

symposium on industrial electronics, Montreal CA, 9-13 July, 2006.

[6] Dimitrios Ververidis, Constantine Kotropoulos and Ioannis Pitas, “Automatic

Emotional Speech Classification”, IEEE International Conference on Acoustics,

Speech, and Signal Processing, Montreal CA, 17-21, May 2004.

[7] Yashpalsing Chavhan, M. L. Dhore and Pallavi Yesaware, “Speech Emotion

Recognition Using Support Vector Machines”, International Journal of Computer

Applications, Feb. 2010

[8] R. Duda, P. Hart, D. Stork, “Pattern Classification”, John Wiley and Sons,

Jan. 2001

[9] Rahul B. Lanjewar, Swarup Mathurkar and Nilesh Patel, “Implementation

and Comparison of Speech Emotion Recognition System Using Gaussian Mixture

Model (GMM) and K-Nearest Neighbor (K-NN) Techniques”, published by

Elsevier B.V., 2015

35

[10] Mudasser Iqbal, Syed Ali Raza, Muhammad Abid, Furqan Majeed and Ans

Ali Hussain, “Artificial Neural Network based Emotion Classification and

Recognition from Speech”, International Journal of Advanced Computer Science

and Applications. 11, 2020.

[11] S.A. Firoz, S.A. Raji and A.P. Babu, “Automatic Emotion Recognition from

Speech Using Artificial Neural Networks with Gender-Dependent Databases”,

International Conference on Advances in Computing, Control, and

Telecommunication Technologies, Dec. 2009

[12] Jan Rybka and Artur Janicki, “Comparison of speaker dependent and

speaker independent emotion recognition”, International Journal of Applied

Mathematics and Computer Science, Dec. 2013

[13] F. Dellaert, T. Polzin, and A. Waibel, “Recognizing emotion in speech” in

Proc. ICSLP, Philadelphia, PA, 1996, pp. 1970 – 1973

[14] V. Petrushin, “Emotion in speech: Recognition and application to call

centers”, Artificial Neural Net. Engr. (ANNIE), 1999

[15] Md. Kamruzzaman Sarker, Kazi Md. Rokibul Alam and Md. Arifuzzaman,

“Emotion Recognition from Human Speech: Emphasizing on Relevant Feature

Selection and Majority Voting Technique”, Khulna University of Engineering and

Technology, 2018

[16] Ivan J. Tashev, Zhong-Qiu Wang and Keith Godin, “Speech emotion

recognition based on Gaussian Mixture Models and Deep Neural Networks”,

IEEE, 2017 Information Theory and Applications Workshop (ITA), Feb. 2017

[17] Yi-Lin Lin and Gang Wei, “Speech emotion recognition based on HMM and

SVM”, IEEE, 2005 International Conference on Machine Learning and

Cybernetics, pp. 4898-4901, Vol. 8, Aug. 2005

[18] Ajit P. Gosavi and S.R. Khot, “Emotion recognition using Principal

Component Analysis with Singular Value Decomposition”, IEEE, 2014

International Conference on Electronics and Communication Systems (ICECS),

Feb. 2014

[19] J. Mao, Y. He and Z. Liu, "Speech Emotion Recognition Based on Linear

Discriminant Analysis and Support Vector Machine Decision Tree," 2018 37th
Chinese Control Conference (CCC), pp. 5529-5533, July 2018

36

https://ieeexplore.ieee.org/author/37085522298
https://ieeexplore.ieee.org/author/38666788800

[20] Chavhan, Yashpalsing & Dhore, Manikrao & Pallavi, Yesaware, “Speech

Emotion Recognition Using Support Vector Machines”, International Journal of

Computer Applications, Feb. 2010

[21] Kingma, D. P., & Ba, J. L. (2015), “Adam: a Method for Stochastic

Optimization”, International Conference on Learning Representations, 1–13

[22] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S.

(2017), “GANs Trained by a Two Time-Scale Update Rule Converge to a Local

Nash Equilibrium.” in Advances in Neural Information Processing Systems 30

(NIPS 2017)

[23] Lech Margaret, Stolar Melissa, Best Christopher, Bolia Robert, “Real-Time

Speech Emotion Recognition Using a Pre-trained Image Classification Network:

Effects of Bandwidth Reduction and Companding”, Frontiers in Computer

Science, 2020

[24] Namrata Dave, “Feature extraction methods LPC, PLP and MFCC in speech

recognition”, International Journal For Advance Research in Engineering And

Technology, Jul 2013

[25] Paul Covington, Jay Adams, Emre Sargin, “Deep Neural Networks for

YouTube Recommendations”, ACM Conference on Recommender Systems, Sep

2016

[26] Wadii Boulila, Maha Driss, Mohamed Al-Sarem, Faisal Saeed, Moez

Krichen, “Weight Initialization Techniques for Deep Learning Algorithms in

Remote Sensing: Recent Trends and Future Perspectives”, Feb 2021

[27] Srivastava, Nitish, et al. “Dropout: a simple way to prevent neural

networks from overfitting”, JMLR 2014

Web sources & mores

[1] Reproduced by Joe Wolfe, BSc Qld, BA UNSW, PhD ANU, School of Physics, The
University of New South Wales, Sydney

[2] https://www.mdpi.com/2073-4433/10/11/718/htm

[3] https://cezannec.github.io/Convolutional_Neural_Networks/

[4]https://becominghuman.ai/from-human-vision-to-computer-vision-convolutional-neural-
network-part3-4-24b55ffa7045

37

https://becominghuman.ai/from-human-vision-to-computer-vision-convolutional-neural-network-part3-4-24b55ffa7045
https://becominghuman.ai/from-human-vision-to-computer-vision-convolutional-neural-network-part3-4-24b55ffa7045
https://cezannec.github.io/Convolutional_Neural_Networks/
https://www.mdpi.com/2073-4433/10/11/718/htm

[5] https://www.topcoder.com/blog/convolutional-neural-networks-in-pytorch/

[6] https://robotics.ntua.gr/aesi-dataset/

[7] http://kahlan.eps.surrey.ac.uk/savee/

[8] https://tspace.library.utoronto.ca/handle/1807/24487

[9] https://zenodo.org/record/1478765#.YTln8PwzY5k

[10] https://smartlaboratory.org/ravdess/

[11] http://neuralnetworksanddeeplearning.com/

[12]https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-
8820568eada1

[13] https://www.educative.io/edpresso/learning-rate-in-machine-learning

[14] https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-part-
2/

[15] https://datascience-enthusiast.com/DL/Optimization_methods.html

[16] https://keras.io/api/layers/regularization_layers/dropout/

[17]https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-
networks/

[18] https://medium.com/analytics-vidhya/cross-validation-techniques-bacb582097bc

[19]https://www.researchgate.net/figure/A-wide-band-top-and-narrow-band-middle-
spectrograms-are-shown-along-with-the-speech_fig22_242685014

38

https://www.researchgate.net/figure/A-wide-band-top-and-narrow-band-middle-spectrograms-are-shown-along-with-the-speech_fig22_242685014
https://www.researchgate.net/figure/A-wide-band-top-and-narrow-band-middle-spectrograms-are-shown-along-with-the-speech_fig22_242685014
https://medium.com/analytics-vidhya/cross-validation-techniques-bacb582097bc
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://keras.io/api/layers/regularization_layers/dropout/
https://datascience-enthusiast.com/DL/Optimization_methods.html
https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-part-2/
https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-part-2/
https://www.educative.io/edpresso/learning-rate-in-machine-learning
https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1
https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1
http://neuralnetworksanddeeplearning.com/
https://smartlaboratory.org/ravdess/
https://zenodo.org/record/1478765#.YTln8PwzY5k
https://tspace.library.utoronto.ca/handle/1807/24487
http://kahlan.eps.surrey.ac.uk/savee/
https://robotics.ntua.gr/aesi-dataset/
https://www.topcoder.com/blog/convolutional-neural-networks-in-pytorch/

	Resonance peaks (A1, A2, A3) add gain to specific frequencies of the harmonic spectrum. The input signal and the vocal tract, together with the radiation properties of the mouth, face and external field, produce the sound output C. These resonances can be determined approximately from the formants (peaks) in the envelope of the sound spectrum. Given a different spectrum A with higher or lower fundamental frequency, the frequency of the output spectrum C will be different as well.
	According to the source-filter theory, the vocal-tract filter becomes a linear time-invariant (LTI) system, and an output signal y(t) can be expressed by the convolution of an input signal x(t) and the impulse response of the system h(t). In discrete time:
	Athens Emotional States Inventory (AESI) [see web resources, 6] is a dataset in Greek containing audio recordings of five categorical emotions. The items of the AESI consist of 35 sentences each having content indicative of the corresponding emotion. The resulting data include recordings from 20 participants (12 male, 8 female), which resulted in 696 utterances.
	Stochastic Gradient Descent (SGD)
	Adaptive Moment Estimation (Adam)

