LOGIC SYNTHESIS OF CONCURRENT CONTROLLER SPECIFICATIONS

PAVLOS M. MATTHEAKIS

SUPERVISOR: CHRISTOS P. SOTIRIOU

OVERVIEW

- Motivation
- Background
- MSFSMs
- Synthesis
- Verification
- Optimization
- Results
- Conclusions and Future Work

STATE EXPLOSION

Logic Synthesis requires specification's complete state space

State space's size is exponential compared to the specification

SPECIFICATION AND STATE CONFLUENCE

 Changes at the Concurrent Specification Level Have Unpredictable Results at the State Space

DECOMPOSABILITY

Complete Specification P=15 State Space=33

• Concurrent Specification Decomposition is Unpredictable as it is Evaluated with Specification Level Metrics, e.g. number of places.

IMPORTANCE

OVERVIEW

- Motivation
- Background
- MSFSMs
- Synthesis
- Verification
- Optimization
- Results
- Conclusions and Future Work

PTNET OPERATION

PTNET OPERATION

PTNET OPERATION

CONTROL MODELS EXPRESSABILITY

CONTROL MODELS IMPLEMENTABILITY TO CLOCKED LOGIC

CONTROL MODELS IMPLEMENTABILITY TO SELF-TIMED LOGIC

¹K. Y. Yun and D. L. Dill, "Automatic synthesis of extended burst-mode circuits", IEEE TCAD, 1999

²J. Cortadella et al., "Logic Synthesis of Asynchronous Controllers and Interfaces", Springer-Verlag, 2002.

³D. Sokolov et al., "Direct Mapping of Low-Latency Asynchronous Controllers from STGs", IEEE TCAD, 2007

⁴D. Wist et al., "Signal transition graph decomposition: internal communication for speed independent circuit implementation", IET Computers & Digital Techniques, 2011

⁵E. Pastor et al. "Structural Methods for the Synthesis of Speed-Independent Circuits", IEEE TCAD, 1998

OVERVIEW

- Motivation
- Background
- MSFSMs
- Synthesis
- Verification
- Optimization
- Results
- Conclusions and Future Work

MULTIPLE SYNCHRONIZED FSMS

Novel Model for Concurrent Control Specifications

- Parallel Tasks Described with FSMs
- Synchronization explicitly described
 - Transition Barriers, Wait States
- Polynomial Synthesis and Verification Paths

MSFSMS SYNCHRONIZATION PRIMITIVES

 $\rightarrow Ri \quad Ro \rightarrow$ $\leftarrow Ai \quad Ao \leftarrow$ $\downarrow \qquad \downarrow$ $E \quad \downarrow$ $\rightarrow I \quad O \rightarrow$

OVERVIEW

- Motivation
- Background
- MSFSMs
- Synthesis
- Verification
- Optimization
- Results
- Conclusions and Future Work

OVERVIEW

PTNet Synthesis Flow to Synchronous Circuit

а

X

SC₁

С

PTNet

PTNet to S-Component Decomposition

S-Component to FSM Mapping

Synchronization Primitive Extraction

Synchronization Integration

24

PTNet to S-Component Decomposition

S-Component to FSM Mapping

Synchronization Primitive Extraction

Synchronization Integration

PTNet

PTNet to S-Component Decomposition

S-Component to FSM Mapping

Synchronization Primitive Extraction

Synchronization Integration

PTNet

PTNet to S-Component Decomposition

S-Component to FSM Mapping

Synchronization Primitive Extraction

Synchronization Integration

27

PTNet to S-Component Decomposition S-Component to FSM Mapping Synchronization Primitive

Extraction Synchronization

Integration

STEPS (3/4)

PTNet to S-Component Decomposition

S-Component to FSM Mapping

Synchronization Primitive Extraction

Synchronization Integration **STEPS (4/4)**

PTNet to S-Component Decomposition

S-Component to FSM Mapping

Synchronization Primitive Extraction

Synchronization Integration

FINAL RESULT

OVERVIEW

PTNet Synthesis Flow to Asynchronous Circuit

STEPS 1/3

1. Choose a signal (Ri) and form all the consecutive transition pairs (Ri+,Ri-) (Ri-,Ri+)

PTNet to S-Component Decomposition S-Component to BM-FSM Mapping Synchronization Primitive Extraction

Synchronization Integration

PTNet

STEPS 1/3

1. Choose a signal (Ri) and form all the consecutive transition pairs (Ri+,Ri-) (Ri-,Ri+)

2. For each pair (Ri+,Ri-) (i)remove all concurrent PTNet components (ii)DFS to connect pair's transitions PTNet to S-Component Decomposition S-Component to BM-FSM Mapping Synchronization Primitive Extraction

Synchronization Integration

PTNet

STEPS 1/3

Ao+

Ri-**↓** Ri+

Ro+

1. Choose a signal (Ri) and form all the consecutive transition pairs (Ri+,Ri-) (Ri-,Ri+)

2. For each pair (Ri+,Ri-) (i)remove all concurrent PTNet components (ii)DFS to connect pair's transitions

3. Remove all unmarked PTNet components and their corresponding arcs PTNet to S-Component Decomposition S-Component to BM-FSM Mapping Synchronization Primitive Extraction

Synchronization Integration

SComponent

Ао-

PTNet

SCover

PTNet to S-Component Decomposition S-Component to BM-FSM Mapping Synchronization Primitive Extraction

Synchronization Integration

PTNet to S-Component Decomposition S-Component to BM-FSM Mapping Synchronization Primitive Extraction Synchronization

Integration

FSM1				Ao	
	Ai	Ro	S5	0	
S1	0	0	S6	0	
S2	0	1	S7	1	
S3	1	1	S8	1	
S4	1	0	S 9	0	

COMPLEXITY

OVERVIEW

- Motivation
- Background
- MSFSMs
- Synthesis
- Verification
- Optimization
- Results
- Conclusions and Future Work

INTERACTING FSMS TO PTNETS

а

0

a-

0-

SCover

SC_a

Interacting FSMs

b

b-

SC_b

PTNet

MSFSM VERIFICATION

S5

S10

45

MSFSM VERIFICATION

MSFSM VERIFICATION

OVERVIEW

- Motivation
- Background
- MSFSMs
- Synthesis
- Verification
- Optimization
- Results
- Conclusions and Future Work

50

FSM_{min}

X-COMPATIBLES

- Two transitions are X-Compatible if they are concurrent and mutually inclusive.
 - t_1 and t_1 ' are X-Compatible

X-COMPATIBLES EXTRACTION

DFS From entry to exit

DFS From entry to exit

Form X-Compatibles

OVERVIEW

- Motivation
- Background
- MSFSMs
- Synthesis
- Verification
- Optimization
- Results
- Conclusions and Future Work

RESULTS

Global State Space vs. MSFSM State Space

 Transforming a PTNet to MSFSMs and then to a synthesizable equivalent does not suffer from the state explosion issue.

ASYNCHRONOUS SYNTHESIS SYNTHETIC BENCHMARK

N Parallel Handshake Controllers

M Sequential Controllers Per Pipeline

Synchronized at the M stage

• **Expose** unveils the solution space between the direct mapping approaches and the ones which require the complete state space

EXECUTION TIME

• Expose execution time scales with the size of the initial specification

CONTROL CIRCUITS AREA

Benchmark	Petrify	Optimist	Expose
alloc-outbound	66	258	30
c3	12	198	13
count2	Irresolvable CSC	302	178
dff	44	304	20
duplicator	93	228	111
full	44	264	102
half	43	198	148
monkey	N/A	1148	181
rpdft	34	214	25
semi-decoupled	86	242	208
vbe6a	132	732	237

IZATION AREA

Literal Count

Applying the introduced transformations at the MSFSM level predictably reduces area.

66

• Applying the introduced transformations at the MSFSM level typically increases performance.

67

OVERVIEW

- Motivation
- Background
- MSFSMs
- Synthesis
- Verification
- Optimization
- Results
- Conclusions and Future Work

CONCLUSIONS

Novel Control Specification Model, MSFSMs

Key for Concurrent Specifications Synthesis and Verification

Logic Synthesis Tool, Expose, Targeting Synchronous and Asynchronous Logic

Optimization Operations with Predictable QoR

FUTURE WORK

Logic Synthesis of Mixed Synchronous and Asynchronous Circuits

Examination of the Concurrency / Area Trade-Off Unveiled by the X-Compatibles Optimization

Expansion of the supported Asynchronous Timing Models

Speed Independent