
UNIVERSITY OF CRETE - HERAKLION GREECE

DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF SCIENCES AND ENGINEERING

A Formal Theory for Reasoning
About Action, Knowledge and Time

by

Theodore Patkos

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

September 2010

UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

A Formal Theory for Reasoning About Action, Knowledge and Time

Dissertation submitted by

Theodore Patkos
in partial fulfillment of the requirements for

the PhD degree in Computer Science

Author:

Theodore Patkos, University of Crete

Examination Committee:

Dimitris Plexousakis, Professor, University of Crete

Grigoris Antoniou, Professor, University of Crete

Ioannis Tsamardinos, Assistant Professor, University of Crete

George Vouros, Professor, University of Aegean

Antonis Argyros, Associate Professor, University of Crete

Nick Bassiliades, Associate Professor, Aristotle University of Thessaloniki

Manolis Koubarakis, Associate Professor, National and Kapodistrian University

of Athens

Approved by:

Panagiotis Trahanias

Chairman of Graduate Studies

Heraklion, September 2010

iii

A Formal Theory for Reasoning About Action, Knowledge and Time

Abstract: Aiming at achieving a proper regulation of their behavior in real-world

environments, participating agents need to reason not only about the specifications

of the environment they inhabit, but also about their own knowledge concerning

its current state by exploiting information acquired at run-time. Considering the

highly dynamic nature of most complex domains, the study of knowledge evolution

over time is a critical aspect. In this thesis, we develop a unified formal theory of

action, knowledge and time using the language of the Event Calculus and automate

the process of reasoning about a wide range of commonsense phenomena.

Traditionally, epistemic reasoning has been structured around the highly ex-

pressive but computationally expensive "possible worlds" specifications. Recent

theories adopt alternative representations for knowledge, dismissing the accessibil-

ity relation of possible worlds and promising more efficient reasoning in classes of

restricted expressiveness. The framework we propose combines the full expressive

power of the possible worlds semantics with the benefits of alternative approaches,

building on a proper handling of a type of causal dependencies that emerge among

partially known world aspects. We investigate the properties of these so called

hidden causal dependencies and develop a provably sound and complete axiom-

atization that is independent of the underlying formalism. We show correctness

properties by studying the correlation of the theory with an epistemic formalism

that implements the standard definition for knowledge, based on a recently pro-

posed branching version of the Event Calculus.

Furthermore, we investigate a number of different extensions of the basic

axiomatization augmenting the mental state of intelligent agents with essential

cognitive skills, such as the ability to remember and forget, to reason about

physical actions, to handle complex ramifications in partially observable domains,

and others. We demonstrate the potential of the theory by modeling complex

benchmark problems proposed in relevant literature, as well as scenarios that

emerge in the highly demanding nascent field of Ambient Intelligence. Finally,

we also describe the design of a reasoner that can accommodate both epistemic

and online reasoning and present a way to implement the framework using logic

programming languages.

iv

Keywords: Reasoning about Change and Causality, Epistemic Reasoning,

Event Calculus, Cognitive Robotics, Ambient Intelligence

Supervisor:

Dimitris Plexousakis

Professor of Computer Science

University of Crete

Μια Τςπική Θεωπία Σςλλογιζηικήρ με βάζη ηη Δπάζη,

ηη Γνώζη και ηο Χπόνο

Πεπίληψη: Με ζηόρν ηελ επίηεπμε κηαο νξζά νξηζκέλεο ζπκπεξηθνξάο ζε

ξεαιηζηηθά πεξηβάιινληα, νη κεηέρνληεο πξάθηνξεο απαηηείηαη λα εθηεινύλ

δηεξγαζίεο ζπιινγηζηηθήο όρη κόλν ιακβάλνληαο ππόςε ηηο πξνδηαγξαθέο

ηνπ πεξηβάιινληνο ζην νπνίν επηδξνύλ, αιιά θαη κε βάζε ηε γλώζε πνπ

δηαζέηνπλ γηα ηελ ηξέρνπζα θαηάζηαζε, αμηνπνηώληαο πιεξνθνξία πνπ

απνθηάηαη ζε ρξόλν εθηέιεζεο. ΢πλππνινγίδνληαο ηελ ηδηαίηεξα δπλακηθή

θύζε ησλ πεξηζζόηεξσλ ζύλζεησλ πεδίσλ, ε κειέηε ηεο θιηκάθσζεο ηεο

γλώζεο ζε ζρέζε κε ην ρξόλν ζπληζηά κηα εμίζνπ θξίζηκε παξάκεηξν. ΢ηα

πιαίζηα ηεο παξνύζαο δηαηξηβήο αλαπηύζζνπκε κηα ενοποιημένη ηςπική

θεωπία δπάζηρ, γνώζηρ και σπόνος κε ρξήζε ηνπ Λνγηζκνύ ΢πκβάλησλ θαη

απηνκαηνπνηνύκε ηε δηαδηθαζία ζπιινγηζηηθήο γηα έλα επξύ θάζκα

θαηλνκέλσλ θνηλήο ινγηθήο.

Παξαδνζηαθά, ε ζπιινγηζηηθή γλώζεο πξνδηαγξάθεηαη γύξσ από ηελ

ηδηαίηεξα εθθξαζηηθή, αιιά δαπαλεξή ππνινγηζηηθά κέζνδν ησλ πηζαλώλ

θόζκσλ. Η ηξέρνπζα έξεπλα πηνζεηεί ελαιιαθηηθέο αλαπαξαζηάζεηο γηα ηε

γλώζε, απαιείθνληαο ηε ζρέζε πξνζβαζηκόηεηαο ησλ πηζαλώλ θόζκσλ θαη

παξέρνληαο εγγπήζεηο απνδνηηθήο εμαγσγήο ζπκπεξαζκάησλ ζε θιάζεηο

πεξηνξηζκέλεο εθθξαζηηθόηεηαο. Σν πιαίζην εξγαζίαο πνπ πξνηείλνπκε

ζπλδπάδεη ηελ πιήξε εθθξαζηηθή δύλακε ηεο ζεκαζηνινγίαο ησλ πηζαλώλ

θόζκσλ κε ηα νθέιε ησλ ελαιιαθηηθώλ πξνζεγγίζεσλ, βαζηδόκελν ζηνλ

απνδνηηθό ρεηξηζκό κηαο θαηεγνξίαο αηηηαηώλ εμαξηήζεσλ πνπ αλαθύπηνπλ

κεηαμύ παξακέηξσλ θόζκνπ πνπ είλαη κεξηθώο αληηιεπηέο. Εμεηάδνπκε ηηο

ηδηόηεηεο απηώλ ησλ επνλνκαδόκελσλ κπςθών αιηιακών εξαπηήζεων θαη

αλαπηύζζνπκε κηα νξζή θαη πιήξε αμησκαηνπνίεζε, αλεμάξηεηε ηνπ

ππνθείκελνπ θνξκαιηζκνύ κνληεινπνίεζεο. Η απόδεημε ησλ ηδηνηήησλ

νξζόηεηαο επηηπγράλεηαη κέζσ ηεο ζπζρέηηζεο κε έλα λέν θνξκαιηζκό πνπ

πινπνηεί ηνλ θαζηεξσκέλν νξηζκό γλώζεο θαη βαζίδεηαη ζηελ πξνζθάησο

πξνηαζείζα έθδνζε ελόο δηαθιαδηδόκελνπ Λνγηζκνύ ΢πκβάλησλ.

Επηπξόζζεηα, κειεηάκε έλα πιήζνο επεθηάζεσλ ηεο βαζηθήο

αμησκαηνπνίεζεο πνπ επαπμάλνπλ ηε λνεηηθή ηθαλόηεηα επθπώλ πξαθηόξσλ

κε ζεκαληηθέο γλσζηηθέο δεμηόηεηεο, όπσο ηελ ηθαλόηεηα δηαηήξεζεο ή

απώιεηαο γλώζεο, ηε δπλαηόηεηα ζπιινγηζηηθήο σο πξνο θπζηθέο ελέξγεηεο,

ην ρεηξηζκό ζύλζεησλ παξελεξγεηώλ ζε κεξηθώο παξαηεξήζηκα πεξηβάιινληα

v

θ.α. Παξνπζηάδνπκε ηε δπλακηθή ηεο ζεσξίαο κέζσ κνληεινπνίεζεο

πξνβιεκάησλ αλαθνξάο ζε ζπλαθή πεδία, θαζώο επίζεο κέζσ ζελαξίσλ πνπ

αλαθύπηνπλ ζηελ ηδηαίηεξα απαηηεηηθή πεξηνρή ηεο Δηάρπηεο Ννεκνζύλεο.

Σέινο, παξνπζηάδνπκε ην ζρεδηαζκό ελόο εξγαιείνπ ζπιινγηζηηθήο πνπ

κπνξεί λα ππνζηεξίμεη απόθηεζε γλώζεο ζε πξαγκαηηθό ρξόλν θαη

πεξηγξάθνπκε ηνλ ηξόπν πνπ κπνξεί λα πινπνηεζεί ην επξύηεξν πιαίζην

εξγαζίαο κε ρξήζε γισζζώλ ινγηθνύ πξνγξακκαηηζκνύ.

Λέξειρ-κλειδιά: ΢πιινγηζηηθή Αιιαγήο θαη Αηηηόηεηαο, Επηζηεκηθή

΢πιινγηζηηθή, Λνγηζκόο ΢πκβάλησλ, Γλσζηαθή Ρνκπνηηθή, Δηάρπηε

Ννεκνζύλε

Επόπηεο Καζεγεηήο:

Δεκήηξεο Πιεμνπζάθεο

Καζεγεηήο Επηζηήκεο Τπνινγηζηώλ

Παλεπηζηήκην Κξήηεο

vi

Dedication

To my parents Lazaros and Eygenia

Σηοςρ γονείρ μος Λάζαπο και Εςγενία

vii

viii

ix

Acknowledgements

Throughout this endeavor towards defending a thesis, a Ph.D. candidate has to face issues

that are not exclusively related to research. While some important mental challenges are of

academic nature, others that emerge in everyday life may equally have impact on the final

objective. What seems to be a lonely process often requires the collective and harmonious

participation of people that contribute to their own "area of expertise". These people that

have affected my life in Crete I wish to thank next.

Probably the only person who played a decisive role to almost all aspects that deter-

mined my progress over the last years is my supervisor Professor Dimitris Plexousakis.

His academic advices, his reasoning and directions always created new enthusiasm for in-

vestigating the problems that we have set and stimulated extra motivation for harder work.

But in addition, on certain difficult occasions I have also been taught from his paradigm

the essence of being supportive, discreet and to show trust in oneself. I own a huge debt of

gratitude to Professor Plexousakis for giving me the opportunity to work with him.

I would also wish to thank Professor Grigoris Antoniou not only for the time he has de-

voted in reviewing my dissertation, but also for entrusting me with many research activities

from which I have gained valuable experiences. Our inspiring meetings and his excellent

theoretical knowledge have let me profit a lot.

I extent my deep appreciation also to Assistant Professor Ioannis Tsamardinos, the third

member of my advisory committee, for our collaboration from the beginning, his guidance

and also his friendly will to discuss a variety of topics.

Furthermore, I feel fortunate to have collaborated and discussed relevant matters with

Associate Professors Nick Bassiliades and Antonis Argyros. Their way of seeing science

and approaching problems have influenced my view of Artificial Intelligence. I am also

indebted to the other members of my examination committee, Professor George Vouros and

Associate Professor Manolis Koubarakis, for their care in my work and their constructive

comments.

This work was supported by a graduate fellowship from the Institute of Computer Sci-

ence (ICS) of the Foundation for Research and Technology Hellas (FORTH), as well as

by the Maria Manasaki legacy’s fellowship of the University of Crete, which I want to ac-

knowledge for providing financial assistance and technical equipment. In addition, I wish

to acknowledge the help and support from the secretariat and the administrators of the

department of Computer Science and ICS-FORTH.

x

I would also like to thank all my friends and colleagues at FORTH and the University

of Crete with which I have shared hours of work and joy. Special reference should be made

to Antonis Bikakis, a talented researcher, an exceptional character and a dear friend. From

the most stringent research problem to the most philosophical consideration and from any

kind of sport to any kind of -unhealthy- Greek habit Antonis has always been best company.

Big thanks should also go to George Flouris and Alex Artikis, two of the most dedicated

and intelligent young researchers I have met. They were always willing to consider my

questions and suggest ideas.

Many other friends in Crete and Thessaloniki have offered big help and this dissertation

would not have been completed without their generous assistance in all kinds of matters.

I own much to Kassy with her unique personality and the special way of judging matters.

I also thank Adamantia for the memorable times and her endless support. Antonis, Kassy

and Adamantia have stood by me on good and difficult occasions and often tolerated me

when things got rough. Also thanks to Thomas Skylogiannis, Adam Arvelakis, Nick Xan-

thopoulos, Anastasis Oulas, Amalia Foka, "Tzortzis" Konstantinides, "Panaes" Papadakos,

Kwstas Varsos and Manos Kalaitzakis, as well as to Stelios Bagios, Thomas Kappas and

Eirini Nestori for all the times we spent hanging out.

Finally, my family deserves my deepest gratitude and appreciation. My parents,

Lazaros and Eygenia, along with my sister Annie and her husband George, have offered

tremendous mental and physical support and materialized their sincere love in many ways

over all these years. Their persistence in showing commitment, integrity and devotion

under all circumstances has set a perfect example for my future life. This dissertation is

dedicated to them.

xi

Let us dare to face the situation. Man has become superman. He is a superman because

he not only has at his disposal innate physical forces, but also commands, thanks to

scientific and technological advances, the latent forces of nature which he can now put to

his own use...

...However, the superman suffers from a fatal flaw. He has failed to rise to the level of

superhuman reason which should match that of his superhuman strength. He requires

such reason to put this vast power to solely reasonable and useful ends and not to

destructive and murderous ones...

...the essential fact which we should acknowledge in our conscience, and which we should

have acknowledged a long time ago, is that we are becoming inhuman to the extent that

we become supermen.

Albert Schweitzer - Nobel Peace Prize Lecture, 1952

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Contribution and Technical Results 4

1.2.1 Application Domain . 6

1.3 Thesis Outline . 7

2 Background Material and Literature Review 9

2.1 Action Theories for Complex Environments 10

2.1.1 Introducing the Field: Fundamental Problems 10

2.1.2 Review of Formalisms for Reasoning about Action and Change . . 12

2.1.3 Time and Concurrency . 17

2.1.4 Non-determinism and Uncertainty 18

2.1.5 Sensing, Knowledge and Belief Revision 20

2.1.6 Linear vs Branching Time Representation 21

2.1.7 Discussion and Comparative Study 22

2.2 Reasoning about Knowledge with Epistemic Modal Logic 28

2.2.1 Possible Worlds Semantics . 28

2.2.2 Basic Knowledge Axioms . 29

2.2.3 The Problem of Logical Omniscience 31

2.3 Ambient Intelligence . 32

2.3.1 Characteristics of Ambient Intelligence Environments 32

2.3.2 Challenges for AI . 34

3 Review of State-of-the-Art 37

3.1 Possible worlds-based Epistemic Action Theories 37

3.2 Alternative Approaches . 41

4 Discrete Event Calculus Knowledge Theory 47

4.1 Preliminaries . 48

4.1.1 General Notational Conventions 48

4.1.2 Discrete Time Event Calculus . 48

4.2 Core DECKT . 51

xiv Contents

4.2.1 Axiomatization . 53

4.3 Hidden Causal Dependencies . 56

4.3.1 Creation of HCDs . 58

4.3.2 Expiration of HCDs . 62

4.4 Formal Definition of Epistemic Domain Descriptions 68

4.5 Summary . 71

5 Property Analysis 75

5.1 A Possible Worlds-based Theory for the Event Calculus 76

5.1.1 Branching Discrete Event Calculus 76

5.1.2 Branching Time Event Calculus Knowledge Theory 77

5.2 Correctness Properties . 79

5.3 Complexity Analysis . 82

5.3.1 On Event Calculus Query Processing 82

5.3.2 Classic Event Calculus Without Knowledge 84

5.3.3 Possible Worlds Approach . 86

5.3.4 DECKT Approach . 87

5.3.5 Discussion of Results . 89

5.3.6 General Complexity Results for the Event Calculus 91

5.4 A Note on Decidability Issues . 94

6 Theory Extensions 97

6.1 Sensing Inertial and Continuously-Changing World Features 98

6.1.1 Inertial Fluents - Remembering and Forgetting 99

6.1.2 Non-Inertial and Functional Fluents 100

6.1.3 Context-dependent Inertia . 102

6.2 Context-Dependent and Potential Actions 104

6.2.1 Trigger Axioms, epot and Knowledge 105

6.3 Defining Ability . 107

6.3.1 Problem Characterization . 108

6.3.2 Action Narrative . 110

6.3.3 Termination Condition . 111

6.3.4 Non-Deterministic Actions . 111

6.3.5 Establishing Ability . 114

6.4 Summary . 115

Contents xv

7 Use Cases and Implementation Issues 117

7.1 Shanahan’s Circuit and Complex Knowledge Ramifications 118

7.1.1 The Ramification Problem in Action Theories 118

7.1.2 Partially Observable Shanahan’s Circuit 120

7.2 Reasoning in Ambient Intelligence Environments 124

7.2.1 A Reasoning Framework for Ambient Intelligence 124

7.2.2 Run-time Action Validation and Constraint Handling 126

7.2.3 Uncertainty and Temporary Knowledge Example 130

7.2.4 Other Examples . 134

7.3 Implementation Issues . 137

7.3.1 Requirements and Desirable Features 138

7.3.2 SAT-based DECReasoner . 141

7.3.3 Custom Jess-based Event Calculus Reasoner 143

8 Conclusions 147

8.1 Synopsis of Contributions . 147

8.2 Directions for Future Research . 149

A Proofs of Theorems and Propositions 151

A.1 DECKT Correctness Property . 151

A.1.1 Preliminaries . 151

A.1.2 Proofs . 152

A.2 Propositions . 160

A.3 An Algorithm for Efficient Inference with HCDs 162

A.4 Computing the Number of State Constraints 164

B Source Code 167

B.1 Syntactically Extended Epistemic Fluents within DECReasoner 167

B.2 Extending DECReasoner’s Ontology . 174

B.3 Jess-based Event Calculus Reasoner . 176

Bibliography 179

List of Figures

4.1 Action e initiates fluent f if f ′ holds. 57

4.2 Event e initiates the previously known to be false fluent f , under the con-

dition that f ′ holds. 59

4.3 Event e initiates f1, resulting to the expiration of the HCD. 62

4.4 Event e initiates fluent f . 64

4.5 Event e1 initiates fluent f if f1 holds, while e2 initiates f1 if f2 holds. 65

4.6 Event e terminates f given that f holds before the event’s execution. 65

5.1 Worlds accessible by the successor situation after (a) ordinary or (b) sense

actions. 78

5.2 Relation between the action formalisms and their epistemic extensions un-

der different bridging sets of axioms. 79

5.3 Axiom M2 constraints the accessibility relation among situations permis-

sible by Moore’s formulation of possible worlds in action theories. 81

5.4 Reasoning process with the Event Calculus 83

5.5 Event Calculus languages of different expressiveness and their complexity

classes (source: [Cervesato 2000]). 92

7.1 (a) Thielscher’s circuit, (b) Shanahan’s circuit. 119

7.2 Knowledge evolution within Shanahan’s circuit with vicious cycles and

delayed effects. 120

7.3 The event-based Ambient Intelligence reasoning framework architecture. . 125

A.1 Accessible worlds before and after the occurrence of event e; intermediate

stage for proving Lemma 1. 154

List of Tables

2.1 Comparing Calculi for Reasoning About Action 26

2.2 Characteristic axioms and rules of inference of knowledge. 30

4.1 DECKT Axiomatization Overview . 73

7.1 Defined specification axioms for application verification. 127

Chapter 1

Introduction

Contents
1.1 Motivation . 2

1.2 Thesis Contribution and Technical Results 4

1.2.1 Application Domain . 6

1.3 Thesis Outline . 7

In his 1890 classic "The sign of the four" Sir Arthur Conan Doyle opens with another

characteristic demonstration of Sherlock Holmes’ keen deduction skills that always left

Watson amazed - and a bit irritated by the sense of naturalness that Holmes usually as-

sumed: some coin or key marks on an expensive watch seem enough to reveal a careless

and untidy owner who kept hard objects in the same pocket; the hundreds of scratches

around the key-hole of the inner plate indicate that the key usually slipped, a customary

for drunkards; worse, the four pin-pointed scratched numbers upon the inside of the watch

case, obviously made by pawnbrokers, leave few doubts about the owner’s life habits; fi-

nally, the initials, suggesting Watson’s long deceased father and dated as old as the watch,

disclose Watson’s eldest brother as its owner, as jewelry usually descent to the eldest son!

Even in this short passage, Sherlock justifies why he appreciated highly three virtues for

ingenious commonsense inferencing, the powers of observation, deduction and knowledge.

It seems that Doyle was echoing the sentiments of future AI researchers who, faced with

the task of creating intelligent autonomous agents for solving complex problems, struggle

to endow their creations with such cognitive skills. Agents operating in complex dynamic

worlds often need to achieve control over partially observable and uncertain environments

and to reason about the knowledge at hand - much like an investigator. Managing infor-

mation acquired through sensing has proven to be a substantial skill. This thesis proposes

2 Chapter 1. Introduction

a formal framework for commonsense reasoning in dynamic and partially observable do-

mains based on knowledge about the -direct and indirect- effects of actions and of physi-

cally triggered events, as well as on world observations obtained at run-time.

1.1 Motivation

The formal account of knowledge has been a fascinating active field of research in philos-

ophy, computer science and in other disciplines, as well. The common objective has been

the investigation of various manifestations of epistemic concepts, such as knowledge and

belief, and the ability to reason by exploiting their inherent properties. Within AI, a mul-

titude of logic formalisms have extended epistemic modal logics for the single and multi

agent case, suggesting axiom systems to provide solutions for well-known issues, such as

the problem of logical omniscience or the matter of belief change.

The study of these issues has resulted in significant accomplishments, but also in the

emergence of novel and more demanding challenges that have enormous impact on the

directions that AI research is adopting. One such field, which has concentrated the fo-

cus of attention recently, studies the relationship between knowledge and action. While

formalisms for reasoning about knowledge tell agents how to adjust their beliefs given

observations about changes of an environment, they do not deal with issues, such as rea-

soning about the properties of the actual actions that cause the changes, which introduce

high-level agent programming and planning requirements. In dynamic systems, where one

or more agents manage different skills and coordinate their actions to achieve a certain

state of affairs, action theories allow for reasoning about the state and changes of the en-

vironment, the notion of causality, about potential effects of actions, action preconditions,

qualifications and many others. Incorporating a formal account of knowledge in action the-

ories is essential for modeling subtle real-world applications, where agents need to acquire

knowledge and decide upon their actions at execution time.

Within this context research in the field of reasoning about action and knowledge has

made quantum leaps in the last decade. Powerful frameworks with very expressive formal

accounts for knowledge and change and elegant mathematical specifications have been de-

veloped, motivated primarily by the adaptation of the standard possible worlds semantics

in formal action theories. Still, their application to practical implementations raises legiti-

mate concerns, due to their dependence on a computationally highly demanding structure:

1.1. Motivation 3

according to the possible worlds specifications, in a domain of n atomic formulae deter-

mining whether a formula is known potentially requires 2n distinguishable worlds to check

truth in. Aiming at efficiency, contemporary progress explores alternative characterizations

of knowledge. An increasing number of recent approaches either focuses on classes of

restricted expressiveness in order to perform tractable reasoning or sacrifices logical com-

pleteness with respect to the standard possible worlds semantics.

However, the restrictions imposed on these alternative approaches fail to cover cer-

tain important aspects of commonsense reasoning. Unknown preconditions of context-

dependent effects of actions introduce a type of uncertainty that is difficult to handle ef-

ficiently with alternative knowledge representations. Upon action execution knowledge

about the effect is lost if the preconditions are unknown, still it becomes contingent on

them; obtaining knowledge about the context through sensing may provide information

about whether the effect was actually affected. This dependency, which we name hidden

causal dependency (HCD), is inherently modeled in possible worlds by appropriately de-

creasing the number of accessible worlds, without necessarily causing any explicit change

to the agent’s epistemic state. Alternative approaches concentrating primarily on explicit

knowledge effects and complete context knowledge seem less susceptible to such causal

dependencies. The situation becomes even harder if physically occurring events are con-

sidered that are only triggered when the world is at a particular state. In this case the agent

should also be in position to reason about the potential triggering of such events if its partial

knowledge about the world neither precludes nor justifies the event occurrence.

Furthermore, previous work in literature has mainly concentrated on reasoning about

knowledge when sense actions occur, but did not thoroughly elaborated on the temporal as-

pect of knowledge. In real-world systems, though, temporal constraints are usually ubiqui-

tous and for the agent to perform effectively an explicit representation of time and the abil-

ity to deal with information about the actual course of events are crucial [Chittaro 2000].

The very nature of most environments involves dynamically changing context, information

becoming outdated as time passes and events occurring at specified time instances, more

often than not concurrently with other events. In order to ensure that the behavior of ratio-

nal agents is properly regulated and also to prove the ability to achieve assigned objectives

in a dynamic, real-world environment, a formal account of knowledge, action and time is

essential.

4 Chapter 1. Introduction

1.2 Thesis Contribution and Technical Results

In this thesis we propose a knowledge theory1, based on a highly influential action for-

malism, the Event Calculus, that does not manipulate possible worlds. The theory, named

Discrete Event Calculus Knowledge Theory (DECKT), is a unified framework of action,

knowledge and time devised for reasoning non-monotonically about conditional and indi-

rect knowledge effects, knowledge-producing (sense) actions, ramifications of knowledge,

as well as loss of knowledge caused by non-deterministic events. Moreover, exploiting

the linear time structure provided by the Event Calculus, the framework builds on the in-

teraction of knowledge and time, in order to express temporal knowledge and delayed

knowledge effects, cumulative and canceling knowledge effects of concurrent events or

knowledge about continuously changing world aspects. Derivations involving disjunctive

or existentially quantified formulae are still supported as in possible worlds-based theories,

but when reasonably restricted the proposed theory can also perform efficient reasoning.

The result is a theoretical framework with well defined correctness properties and also

a theory that can be applied to practical implementations to enhance the mental state of

intelligent agents.

Furthermore, we extend the basic axiomatization in several ways. An account for

physically-triggered events is provided, for the case of agents that are uncertain whether the

events actually occur or not, still having to reason about their potential effects. Moreover,

sensing is extended to consider not only inertial aspects as in most related studies, but also

aspects that may change their value in a continuous fashion. An investigation of the notion

of ability within such domains is also provided. The resultant framework of action and

knowledge is applicable to far more expressive domains as compared to current alternative

approaches, still being suitable for practical implementations. To demonstrate its potential,

we apply the theory to one of the most challenging ramification benchmark problems pro-

posed in literature, as well as to the emerging field of Ambient Intelligence that introduces

novel and highly demanding requirements. Finally, we develop a tool and a methodology

to enable the automation of the process of reasoning with the epistemic notions introduced

in the framework.

From a more technical standpoint, this thesis contributes the following results with re-
1The difference to a theory that handles belief is that knowledge is always correct, while beliefs may not

reflect the actual state of the world and an agent should possess a mechanism to revise beliefs that turn out to

be false. This issue is further exemplified in Sections 2.1.5 and 2.2.1.

1.2. Thesis Contribution and Technical Results 5

spect to the line of research in the broader field of knowledge representation and reasoning:

1. We develop a unified framework for automated temporal, epistemic and causal rea-

soning in very expressive classes of dynamic and uncertain domains enabling the

representation of a multitude of commonsense phenomena. To this end we exploit

the reasoning potential of the Event Calculus and extend its basic ontology with epis-

temic features. The formalism is suitable for practical implementations as it relies on

an efficient alternative treatment of knowledge as opposed to the standard possible

worlds specifications.

2. We establish a translation of possible worlds into a generic form of implication rules,

i.e., HCDs, so that all information obtained by adding or removing worlds (i.e., set of

world properties) can equally be acquired by reasoning with HCDs. We provide ev-

idence that HCDs are more appropriate for practical implementations for reasoning

in partially observable domains in terms of computational complexity and resources

required. Revisiting initial attempts to formulate dependencies among world aspects

without possible worlds (e.g., [Thielscher 2005b]), we investigate the intuition be-

hind the evolution of knowledge with possible worlds over time and end up with an

axiomatization that is independent of the underlying logic language.

3. We provide formal evidence that the proposed framework derives sound and com-

plete conclusions with respect to the standard definition for knowledge that imple-

ments the possible worlds semantics. To obtain this result, we create an epistemic

version of the Event Calculus that adopts the latter approach, building on the re-

cently developed branching version of the calculus by Mueller [Mueller 2007b], and

investigate the correlation between the two epistemic theories. In addition, we also

axiomatize extensions that go beyond the expressiveness of the possible worlds, such

as the ability to forget.

4. Setting off from existing approaches to model state knowledge in action theories, we

investigate advanced aspects of commonsense reasoning, such as complex knowl-

edge ramifications and indeterminate occurrences and effects of events. To demon-

strate the potential of the theory we study problems of both theoretical and practical

value. We model a well known benchmark problem of the field of cognitive robot-

ics, namely Shanahan’s circuit [Shanahan 1999a], extending it with a treatment of

partial knowledge and progressing the current state of research. Furthermore, we

6 Chapter 1. Introduction

apply the theory to scenarios that emerge in the nascent and highly demanding field

of Ambient Intelligence that introduce real-world challenges.

5. Finally, an elaboration on how HCDs and the axiomatization in general can be imple-

mented is provided, discussing also a modeling that is generic enough to be translated

to any prolog- or lisp-like syntax. An online reasoner for modeling the mental state

of autonomous agents has been designed adopting this approach that supports both

epistemic and online reasoning tasks, two highly desirable features for our domains

of interest.

1.2.1 Application Domain

The present study has been primarily motivated by the challenges raised by the emerging

research field of Ambient Intelligence. The Ambient Intelligence paradigm, formulated by

a number of projects and initiatives that were announced at the early 2000s, proposes a

shift in computing towards a multiplicity of communicating devices disappearing into the

background, providing an intelligent, augmented environment, where the emphasis is on

the human factor. For decades, humans had to continuously adapt themselves to their sur-

rounding technology, in order to make the best out of it. Ambient Intelligence technologies

have the potential to create intelligent environments with the ability to proactively adapt to

humans, serve their needs and goals, and communicate with them utilizing novel means.

This paradigm implies a seamless medium of interaction, advanced networking technology

and efficient knowledge management, in order to deploy an environment that is aware of

the characteristics of human presence and the diversities of personalities, and also capable

of responding intelligently to spoken or gestured indications of need or desire.

The Ambient Intelligence paradigm has generated an enabling multidisciplinary re-

search field that envisages to bring intelligence to everyday environments and facilitate

human interaction with devices and the surrounding. Artificial Intelligence has a decisive

role to play for the realization of this vision promising commonsense reasoning and better

decision making in dynamic and highly complex conditions, as advocated by recent studies

[Ramos 2008]. Within Ambient Intelligence environments human users do not experience

passively the functionalities of smart spaces, instead they participate actively in it by per-

forming actions that change its state in different ways. At the same time, the smart space

itself and its devices are expected to perform actions and generate plans either in response

1.3. Thesis Outline 7

to changes in the context or to predict user desires and adapt to user needs.

A key concept for such environments is the notion of context. Context describes any

information that can be used to characterize the situation of an entity. An entity is a person,

place or object that is considered relevant to the interaction between a user and applica-

tion, including the user and applications themselves, while a system is context-aware if it

uses context to provide relevant information and/or services to the user, where relevancy

depends on the user’s task [Abowd 1999]. Therefore, contextual information may refer

to a multitude of different dimensions, which can be classified as external and internal

[Prekop 2003], or else physical and logical [Hofer 2003], depending on whether hardware

sensors or high-level inference is used to specify them. The former (external or physi-

cal) may involve location, light, sound, movement, touch, temperature, pressure, identity,

time, device and many others, while the latter (internal or logical) may refer to a user’s

task/activity, preferences, intentions, emotional state, social environment and other.

It is reasonable to expect that context in large-scale Ambient Intelligence systems may

often be ambiguous or completely unknown, especially considering the highly dynamic

nature of such domains. Therefore, reasoning needs to incorporate both epistemic and

temporal dimensions; whenever sensing is not available, knowledge needs to be derived

through commonsense inference, considering the most recent information about the world

and the effects of known actions. The causal description of a domain in particular is es-

sential for enabling planning tasks in order to achieve a desirable state of affairs, especially

when the required information is not available at plan time, but can only be obtained at

run-time. A formal treatment of these notions is imperative, in order to ensure that the

behavior of such systems is properly regulated and prove their properties.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2 a review of the three main fields of

research is provided, namely action theories, epistemic modal logics and Ambient Intel-

ligence, whose convergence constitutes the domain of interest of this work. At the same

time, we also attempt an outline of the wider context within which this study contributes.

In Chapter 3 we focus on relevant literature and discuss the advantages and limitations of

action theories that implement epistemic reasoning. In Chapter 4 we lay the theoretical

foundations for the Discrete Event Calculus Knowledge Theory. We first introduce the

8 Chapter 1. Introduction

preliminaries of the theory and then present the formal axiomatization along with numer-

ous explanatory examples. Chapter 5 provides an analysis of the properties of the theory

in terms of soundness, completeness and complexity matters. Towards this end, a possible

worlds-based Event Calculus theory is also developed at the beginning of the chapter. In

Chapter 6 we investigate significant extensions of the framework, in order to accommodate

more expressive domains. In particular, we consider sense actions about aspects of the

world that may change in a continuous fashion, we integrate a treatment about triggered

actions, which, in the face of incomplete knowledge, require potential actions to be intro-

duced and, finally, we formally define the ability of an agent to achieve its objectives in a

partially observable environment. In Chapter 7 we examine different use case scenarios for

complex domains. We further discuss the means to implement the knowledge theory both

in terms of existing reasoning tools for the Event Calculus, as well as with the help of a

recently proposed reasoner developed during the course of this thesis. Finally, Chapter 8

summarizes the main points of the thesis and discusses future research directions.

The main conclusions and limitations identified from surveying the various formalisms

presented in Chapters 2 and 3 for practical application appear in [Patkos 2007a] and

[Patkos 2007b] and motivated the present research. A preliminary version of the basic

axiomatization of the theory as given in Chapter 4 has been published in [Patkos 2008],

whereas the axiomatization of Chapter 4 in conjunction with the main conclusions of Chap-

ter 5, which constitute the core part of the thesis have been published in [Patkos 2009a].

The extension of knowledge-producing actions for non-inertial world aspects presented in

Chapter 6 appear in [Patkos 2009b], while the extension of trigger actions along with the

treatment of HCDs of Chapter 4 and the representation of Shanahan’s circuit given in Chap-

ter 7 are currently under consideration for publication in [Patkos 2010b]. Finally, the basic

formulation of the use cases for the field of Ambient Intelligence presented in Chapter 7

appear in [Patkos 2010a] and [Patkos 2011].

Chapter 2

Background Material and Literature

Review

Contents
2.1 Action Theories for Complex Environments 10

2.1.1 Introducing the Field: Fundamental Problems 10

2.1.2 Review of Formalisms for Reasoning about Action and Change . . 12

2.1.3 Time and Concurrency . 17

2.1.4 Non-determinism and Uncertainty 18

2.1.5 Sensing, Knowledge and Belief Revision 20

2.1.6 Linear vs Branching Time Representation 21

2.1.7 Discussion and Comparative Study 22

2.2 Reasoning about Knowledge with Epistemic Modal Logic 28

2.2.1 Possible Worlds Semantics . 28

2.2.2 Basic Knowledge Axioms . 29

2.2.3 The Problem of Logical Omniscience 31

2.3 Ambient Intelligence . 32

2.3.1 Characteristics of Ambient Intelligence Environments 32

2.3.2 Challenges for AI . 34

The present chapter provides background material necessary to follow the main con-

cepts and theories of this thesis, reflecting also the wider context within which the study

contributes. It comprises three main topics, the intersection of which constitute the domain

of interest: action theories and their extensions, epistemic modal logics and Ambient In-

telligence. For each of them we introduce the issues and problems that need to be tackled,

the general directions of research and also discuss prominent approaches along with their

limitations.

10 Chapter 2. Background Material and Literature Review

2.1 Action Theories for Complex Environments

To study the dynamics of changing worlds, research in AI has established techniques of dif-

ferent form, ranging from purely space searching and procedural to probabilistic, to deduc-

tive. Within a logical knowledge representation dynamic domains are formalized around

the notions of action and causality, based on which AI attempts to automate the process of

reasoning about commonsense knowledge, i.e., knowledge of how the world works. Rea-

soning about action and change is a fundamental field of research within AI, placed -but

not restricted- in the area of cognitive robotics, that studies the logical characterization of

the concepts of action, change and causality, as well as the planning of action sequences

to accomplish a given task. Cognitive robotics is a reply to the criticism that knowledge

representation and reasoning has been overly concerned with reasoning in abstract and not

concerned enough with the dynamic world of an embodied agent [van Harmelen 2007].

Action theories have made significant progress beyond the classical planning para-

digm [Ghallab 2004], relaxing many of its simplifying assumptions and defining theoret-

ical foundations to model more complex domains. This section elaborates on knowledge

representation and reasoning techniques from the action-based point of view, providing a

review of several formalisms that have been developed, driven mainly by theorem proving

techniques. The objective is to present the distance that has been traveled by the different

approaches in addressing the general problems that AI faces in implementing common-

sense reasoning theories for dynamic domains with increasing complexity. Alongside the

survey, we also provide justification for our choice to use the Event Calculus as the under-

lying formalism for the knowledge theory we develop in this thesis.

2.1.1 Introducing the Field: Fundamental Problems

The design of declarative approaches to commonsense reasoning and planning is a relevant

field of research in AI since its beginnings. The general idea is to create intelligent au-

tonomous agents that are able to represent all kinds of knowledge about the world and use

this knowledge to infer commonsense conclusions about a wide range of phenomena, such

as preconditions and effects of actions, concurrent actions, natural events, nondeterminism

and others. As it turns out, there are significant difficulties that need to be overcome in

order to formalize a domain with some logical language, before even considering axioma-

tizing complex phenomena. A simple description of the effects of an action with a formal

2.1. Action Theories for Complex Environments 11

language requires not only the representation of those world aspects that are affected, but

also those that do not change their truth value. The straightforward solution of declaring ex-

plicitly all effects and non-effects of actions does not scale well with the size of the domain,

therefore any action theory needs to incorporate some decent solution. This issue is com-

monly known as the frame problem introduced by McCarthy and Hayes [McCarthy 1987].

To respond to the explosive number of axioms introduced by theorem proving-based plan-

ners in the straightforward approach, several alternatives have been proposed along the

way, some of which will be discussed in the following subsections.

Axiomatizing the effects of actions is hardly restricted to a solution to the frame prob-

lem. In the context of reasoning about action, one needs not only to concentrate on the

effects explicitly described by their associated effect axioms, but also infer indirect effects,

derived by some general knowledge of dependencies among world aspects. Capturing

efficiently the potentially unbounded number of consequential effects of actions defines

the essence for a solution to the ramification problem. Furthermore, one must specify

the conditions under which the effects will take place after executing an action, without

exhaustively enumerating all potential preconditions. This is known as the qualification

problem, stated by McCarthy [McCarthy 1977]. In particular, an agent needs not consider

unexpected qualifications for an action, unless there is evidence that they may arise.

In their well known study Lin and Reiter [Lin 1994] argue that ramification and qualifi-

cation constraints are closely related, not only syntactically, as they can both be expressed

in terms of state constraints, but also by the fact that the ones may cause the others to

arise and vice versa. Incorporating a uniform solution for all three problems is a challeng-

ing task, in order to implement action frameworks for commonsense reasoning. Indeed,

many solutions require precise assumptions; for instance, while many existing approaches

to the frame problem are monotonic, the qualification problem inherently requires a non-

monotonic solution that enables the agent to retract its initial expectations when things do

not proceed as expected. Additionally, complex ramifications are hardly limited to state

constraints, but may refer for example to triggers and delayed effects. A recent survey of

these issues can be found in the introductory part of [Vo 2005], while a brief discussion on

the development of solutions to the ramification problem is also provided in Section 7.1.1

of this thesis.

12 Chapter 2. Background Material and Literature Review

2.1.2 Review of Formalisms for Reasoning about Action and Change

Axiomatizations of domains using action theories can serve several types of reasoning

tasks, such as predicting the outcome of given action sequences, explaining observations

or finding a situation in which certain goal conditions are met. Depending on the desirable

outcome, the inputs may involve a description of the world, a description of the agent’s

goal and/or a description of the possible actions that can be performed, in some formal

language. Quoting Thielscher’s informal definition, an action theory consists of a formal

language that allows adequate specifications of action domains and scenarios, and it tells

us precisely what conclusions can be drawn from these specifications [Thielscher 2000b].

As the objective is to express the dynamics of the world, most theories include a more or

less implicit general notions of time, change and causality. Below, we review some of the

most important formalisms, along with their extensions on handling important common-

sense phenomena (Table 2.1 at the end of this section summarizes the results). The theories

are usually variations of the predicate calculus; yet, the propositional STRIPS language can

be considered as a predecessor in the field.

STRIPS. STRIPS [Fikes 1971] is probably an action representation, rather than an

action description language. The STRIPS representation describes the initial state of world

with a complete set of ground propositions. It provides a set of operators, their associated

operator descriptions and a data structure called a database that acts as a snapshot of the

world. Operators serve as representations of actions and they map databases into databases.

For a given STRIPS operator, this mapping is intended to capture the effects of the action

represented by the operator; when applied to a given world state (database), it produces

a new world state that is intended to represent the way the world will be after the action

corresponding to the operator is performed. It is restricted to goals of attainment that are

defined as propositional conjunctions. All world states satisfying the goal formula are

considered equally good. A domain theory, i.e., a formal description of the actions that

are available to the agent, completes a planning problem. The description is a function

from action names to operators that define a propositional conjunction of fluent names

(preconditions) and a consistent conjunction of literals (effects). As a result, each action is

specified by so called add- and delete-lists containing fluents that express the preconditions

and effects, accordingly.

Although STRIPS enjoys the simplicity of its semantics, it is very restrictive in terms

of expressiveness, severely limiting the type of actions that an agent wishes to represent.

2.1. Action Theories for Complex Environments 13

The propositional STRIPS planning language has been formalized and the complexity

of the problems that can be specified in this language has been analyzed by Lifschitz in

[Lifschitz 1986]. Note, however, that STRIPS constitutes the core of PDDL (Planning Do-

main Description Language), the standardized syntax used in the AIPS planning competi-

tions, and many current planners still employ the STRIPS formulation of planning prob-

lems and variations of it, such as the action description language ADL [Pednault 1989].

Situation Calculus. The Situation Calculus, first proposed in [McCarthy 1968] and

formalized in [Levesque 1998] and [Reiter 2001a], is a first-order language with some

second-order features, designed for the representation of dynamically changing worlds, in

which all changes are the result of named actions performed by agents. A possible world

history, which is simply a sequence of actions, is represented by a first-order term called

a situation. A distinguished binary function do(α, s) denotes the successor situation to s

resulting from performing the action a. Relations and functions whose truth values vary

from situation to situation are called relational and functional fluents, respectively. Ac-

tions, situations and fluents are the main ingredients of the Situation Calculus formalism

that provide a complete treatment of reasoning about action.

Each action α(x⃗) is described by two axioms. The Action Precondition Axiom, which

states under what conditions is the action executable and the Successor State Axiom, which

describes how fluents change when the action is performed. These axioms characterize all

the conditions under which action a causes fluent f to become true (respectively, false)

in the successor situation and completely describe the causal laws for f . The Successor

State and the Action Precondition Axioms, in conjunction with unique name axioms for

actions compose the proposed solution for handling the representational frame problem in

Situation Calculus applied in the general case (i.e., where actions are deterministic and

primitive), as originally shown in [Reiter 1991]. This axiomatization requires (| f | + |a|)
axioms in total, compared with the roughly (2 × |a| × | f |) axioms that would otherwise be

required to explicitly state each frame axiom, where | f | is the number of fluents and |a|
the number of actions. Finally, a complete Situation Calculus theory D also includes a

set of domain independent foundational axioms that define situations, as well as axioms

describing what is true in the initial situation.

To utilize action theories in practice, a family of high-level programming languages for

intelligent agents has been developed, where each language implements a corresponding

formalism. The intuition is to abstract the process of planning, where, instead of per-

14 Chapter 2. Background Material and Literature Review

forming a search among all possible action sequences that might achieve a goal state,

a high-level domain-dependent program can be applied to guide the planning procedure

through certain paths. This program acts as a sketch of a plan that gives strong clues or

restrictions about the intended solution. For the Situation Calculus this language is Golog

[Levesque 1997] that combines elements from classical programming (conditionals, loops,

etc.) with expressions that denote action formulas and non-deterministic constructs, such

as choice between two actions, choice of action arguments and iteration. Existing imple-

mentations use successor state axioms when evaluating conditional statements in a Golog

program, as well as pure regression to evaluate a fluent condition. As a consequence, the

evaluation of a condition in general depends on the length of the history and the number of

fluents, whose past values have an influence on the conditional statement.

Fluent Calculus. Although successor state axioms of the Situation Calculus suffice to

solve the representational frame problem, which concerns the efforts to specify the non-

effects of actions, they fail to address the inferential frame problem for actually computing

these non-effects. The solution to the inferential frame problem was first introduced in the

equational logic programming formalism of [Hölldobler 1990] that later reformulated by

Thielscher and became known as Fluent Calculus [Thielscher 1998, Thielscher 1999b].

The Fluent Calculus is a many-sorted predicate logic language that in addition to ac-

tions, situations and fluents also defines a sort for states. Unlike the Situation Calculus, the

Fluent Calculus distinguishes the notions of state and situation; the latter contains a his-

tory of actions that have been performed, while the former refers to the actual fluents that

hold. A function S tate(s) denotes the state in situation s. Each situation has an associated

state, i.e., the world can be in the same state in different situations, but the state in every

situation is unique. States are reified by representing fluents and states as terms, instead of

atoms. Based on this notion, the frame problem is solved by State Update Axioms, which

define the effects of an action as the difference between the state prior to the action and

the successor one, formalizing an equational relation between states at consecutive situ-

ations. Under the assumption that positive and negative effects are disjoint, state update

axioms are a provably correct solution to the frame problem. In addition, extensions of the

Fluent Calculus to accommodate the ramification and the qualification problems have been

presented, e.g. in [Thielscher 2000b], along with a provably correct axiomatization.

To design intelligent agents that reason and plan on the basis of the Fluent Calculus,

a high-level programming method, called FLUX [Thielscher 2005a], has been developed,

2.1. Action Theories for Complex Environments 15

which uses the paradigm of constraint logic programming. It comprises a method for en-

coding incomplete states along with a technique for updating these states according to a

declarative specification of the elementary actions and sensing capabilities of an agent.

The main difference between the Flux and Golog languages is that the former adopts the

progression principle to evaluate conditions in agent programs, in contrast to regression

applied in Golog. Progression through state update axioms enables Flux programs to scale

up well to long action sequences performed by agents, thus managing more efficiently high

computational load.

Event Calculus. Another logic-based framework for representing and reasoning about

actions that has recently attracted much attention, is the Event Calculus, originally pro-

posed by Kowalski and Sergot [Kowalski 1986]. Like the previous calculi, the Event Cal-

culus considers actions (also called events) and fluents. In addition, this first-order language

also defines a sort for timepoints, which are used to axiomatize expressions, such that flu-

ents are true if they have been initiated by an event occurrence at some earlier timepoint.

A central feature of the Event Calculus is a possibly incomplete specification of a set of

actual event occurrences, called a narrative. Based on narratives and the use of circum-

scription [Lifschitz 1994] to tackle the frame problem, the calculus is capable of represent-

ing a variety of phenomena more naturally and also to perform non-monotonic reasoning,

as described in many works, such as [Mueller 2006] and [Shanahan 1999b]. The frame

problem, in particular, is avoided by application of the commonsense law of inertia, which

states that fluents maintain their truth value unless affected by some event.

To date, the Event Calculus has been reformulated in a variety of dialects and applied

in a multitude of contexts, such as cognitive robotics, web service composition, perva-

sive computing, education, video games and many others. An extensive list of references

of such formulations and extensions can be found in [Miller 2002] and [Mueller 2006],

which also summarize how variants of the calculus may be expressed as classical logic

axiomatizations to handle a broad set of phenomena. Moreover, tools exists that use the

Event Calculus for automated reasoning about action and change, such as the DECRea-

soner solver presented in [Mueller 2004] that performs deduction and abduction reasoning

through satisfiability applying a method for encoding discrete event calculus problems into

propositional conjunctive normal form. Another system is the E-RES system [Kakas 2000]

that implements the E action language [Kakas 2002, Kakas 1997], which is based on the

calculus ontology. In fact, Miller and Shanahan [Miller 2002] have defined conditions un-

16 Chapter 2. Background Material and Literature Review

der which an E domain description matches an Event Calculus domain description, in that

they entail the same fluent truth values. Finally, recently a solver that casts Event Cal-

culus descriptions into Answer Set Programming (ASP) reasoning task has been released

[Kim 2009].

The Event Calculus differs in many ways from the Situation and the Fluent Calculus,

but most significantly by the representation of time. The Event Calculus uses a linear time

structure, where all events are considered to be actual, in contrast to the branching time

structure of Situation and the Fluent Calculi, where each event may give rise to a different

possible future and events are considered to be hypothetical. Another distinctive feature

is that the basic ontology of the Event Calculus does not support functional fluents, rather

they can only be represented by means of appropriately constrained relational fluents. A

more elaborate comparison of these formalisms is discussed below in Section 2.1.6.

Action Languages. Motivated by an increasing number of initial formulations of ac-

tion formalisms being erroneous or permitting unintended and counterintuitive conclusions,

especially regarding causality matters, a class of action theories has been developed that is

independent of a specific axiomatization. Building on formal validation methods, the in-

tension of this family of languages was to ensure that the encoding of any domain will yield

correct results, thus permitting the assessment and comparison of the variety of different

approaches that coexist in the field. Although initially they were used to established re-

sults for a restricted class of domains, recent formalisms have high expressiveness, natural

language-like syntax and clear formal semantics.

The semantics are based on the theory of causal explanation proposed in

[McCain 1997], which distinguishes between the claim that a formula is true and the

stronger claim that there is a cause for it to be true. The result of such causal reasoning

is that some properties of classical implication do not hold for causal implication. For in-

stance, causality is non-monotonic, not reflexive, contraposition cannot be applied to causal

implication, while transitivity can neither be allowed not forbidden [Schwind 1999]. Gel-

fond and Lifschitz [Gelfond 1998] provide an overview of causal languages, starting with

the action description language A, the first high-level action language introduced in the

literature, which only supports one sort of expressions of the form A causes L if F, where

A is an action name, L a literal and F a conjunction of literals (possibly empty). One exten-

sion ofA is the action language C [Giunchiglia 1998], which provides additional language

expressions, besides direct effects of actions, such as dependencies between fluents.

2.1. Action Theories for Complex Environments 17

2.1.3 Time and Concurrency

The temporal aspect is an important property for action and change, therefore extensions

for most actions theories have been proposed that include actions occurring at specific

timepoints, have duration or occur concurrently.

Situation Calculus. The pure Situation Calculus handles actions sequentially and

atemporally. Although restrictive, this theory is sufficient enough to express interleaved

concurrency by introducing instantaneous actions that initiate and terminate the relational

fluent, thus representing the process -but not the explicit duration- of performing an action

[Reiter 2001a]. Interleaved occurrence of concurrent actions is appropriate if the outcome

is independent of the order, in which the actions are interleaved. Still, no explicit represen-

tation of time is considered.

The extension of the sequential Situation Calculus with an explicit representation of

time has been accomplished by adding a temporal argument to all instantaneous actions,

denoting the actual time at which they occur [Pinto 1994]. Moreover, to represent concur-

rent actions and natural event occurrences (exogenous actions) in the Situation Calculus,

the sort action of simple actions is distinguished from a new sort of concurrent actions

[Reiter 1996]. Thus, an additional set of foundational axioms for the new sort, analogous

to situation terms, is defined and the successor state axioms are generalized in a straight-

forward manner. The work in [De Giacomo 2000] axiomatizes the transition semantics

leading to an extension of the implementation language Golog for concurrent actions. In

[Papadakis 2002] Papadakis and Plexousakis propose an extension to the temporal Situ-

ation Calculus to handle concurrent instantaneous actions and actions with duration with

effects occurring in any of the possible future situations resulting from an action’s execu-

tion.

Fluent Calculus. The corresponding, to the classical Situation Calculus, notions

for concurrent and continuous actions, applied to the Fluent Calculus, are presented in

[Thielscher 1999a, Thielscher 2001b], where, in a similar fashion, time is parameterized

as an argument of fluents and actions and new sorts for concurrent actions and arithmetic

operations are added to the original language. State update axioms for concurrent actions

are recursive, terminating with the base case of the empty action. Using recursive axioms,

the effect of actions that occur simultaneously can be inferred by considering each of them

independently, along with any additional positive or negative effects. Based on this formal

18 Chapter 2. Background Material and Literature Review

theory, an extension of the FLUX programming language to integrate both deliberate and

natural actions into a single method for the planning and execution of actions, is presented

in [Martin 2003].

Event Calculus. All axiomatizations of the Event Calculus reify the temporal argu-

ment to represent the time instant of event occurrences, enabling a more natural handling

of temporal propositions. For instance, among the predicates defined in the calculus are

the HoldsAt(f , t) denoting that fluent f is true at timepoint t, Happens(e, t) expressing

that event e occurs at timepoint t, Initiates(e, f , t) (Terminates(e, f , t)) representing that,

if event e occurs at t, then fluent f will be true (resp. false) after t, and others. This han-

dling of time is inherently represented in the formalism’s basic ontology, in contrast to the

Situation or Fluent Calculus, permitting any Event Calculus domain description to accom-

modate a wide range of temporal phenomena, such as direct, indirect and delayed effects of

actions, concurrent events, events with duration, continuous change, triggered events etc.

Furthermore, the time variable may belong either to the integers or to the reals sort.

Similarly, the Event Calculus-based action description language E incorporates this

time structure to reason about partially ordered event occurrences. Yet, it does not employ

the full expressive power of the formalism; E cannot declare effects that persist over a time

span or represent delayed effects, as argued in [Papadakis 2002].

Action Languages. The dynamic causal law of action language C described in the

previous section captures the interaction of concurrent actions as a set of simultaneous ac-

tions, without an explicit representation of the temporal dimension. The action language

C+ [Giunchiglia 2004] that has evolved from C, is an important recent formalism that pro-

vides a uniform model for supporting, in addition to indirect effects and non-deterministic

actions, also conditionals and concurrent actions. It can express both boolean and multi-

valued, additive fluents and provides a more compact representation of several practical

problems. Closely related is the recent planning language K [Eiter 2003a, Eiter 2004].

2.1.4 Non-determinism and Uncertainty

There is another critical dimension that should not be neglected when facing reasoning

about actions for agents in dynamic real-world environments, that of uncertainty. Uncer-

tainty may refer both to the initial state of the world and to the result of actions performed

by an agent. The former aspect, which also deals with issues of partial observability, is

2.1. Action Theories for Complex Environments 19

studied in the next subsection, whereas below we review how non-determinism can be

used to model ambiguous action effects.

Situation Calculus. Pinto et al. [Pinto 2000] have proposed an extension to the stan-

dard Situation Calculus to incorporate indeterminism and actions with uncertain effects,

based on a formalism-independent model for representing actions and change. The model

decomposes indeterminate actions into a non-deterministic part and its possible outcomes

and also associates a probability distribution to the outcomes. In [Mateus 2001] this work is

further extended to consider domains in which the set of outcomes of an action are discrete,

continuous or mixed, resulting to the Probabilistic Situation Calculus. A probabilistic vari-

ant of the action language Golog, called pGolog, has been proposed in [Grosskreutz 2000].

Fluent Calculus. The Fluent Calculus has been extended in a more straightforward

manner to handle non-deterministic actions, as described in [Thielscher 2000a]. In order to

model actions with alternative, but finite, outcomes a generalization of simple state update

axioms that uses disjunction of possible equational relations between a state and its suc-

cessor is generated. Moreover, there are actions, whose effect may involve a certain degree

of vagueness. This uncertainty about effects can be expressed by existentially quantifying

(and possibly restricting) one or more parameters of them that model an uncertainty factor.

Event Calculus. A convenient way to represent nondeterministic effects in the Event

Calculus is to use deterministic fluents that follow the solution pattern specified for han-

dling the frame problem. As already mentioned, within this calculus the frame problem

is addressed by enforcing the commonsense law of inertia. Specifically, when a fluent

is subject to this law, its truth value is preserved as time progresses, unless the fluent is

affected by some event. By releasing a fluent from the law of inertia, its truth value is

allowed to fluctuate in an arbitrary fashion and therefore may or may not be the same

as it was in previous timepoints. As a result, releasing effects of actions from the law

of inertia enables the introduction of uncertainty to domain theories. Apart from this

approach, there are other alternatives, such as the use of disjunctive event axioms of

the form Happens(e, t) ⇒ Happens(e1, t) ∨ ... ∨ Happens(en, t) with apparent results

[Mueller 2006].

Action Languages. The action language C+ introduced before is expressive enough

to support non-deterministic effects of actions. Recent extensions of C+ aim at combin-

ing both qualitative and quantitative uncertainty in a uniform framework for reasoning

20 Chapter 2. Background Material and Literature Review

about actions. Qualitative uncertainty is represented by forming a set of possible alter-

natives, while quantitative uncertainty is expressed through a probability distribution on a

set of possible alternatives. Representative examples are the PC+ [Eiter 2003b] and GC+
[Finzi 2005] action languages. Moreover, Ferraris and Giunchiglia [Ferraris 2000] have

proposed a simple extension to the STRIPS formalism allowing for specifying actions with

non-deterministic effects. All these languages are highly usable in modeling uncertain do-

mains, but are not flexible enough to incorporate treatment for other aspects.

2.1.5 Sensing, Knowledge and Belief Revision

Significant research effort in the field has concentrated on extending action theories to

incorporate sensing or knowledge-producing actions, i.e., actions whose effects change

the mental state of an agent rather that the actual state of the world. Since these studies

are highly relevant to this thesis’ work, related literature is discussed in detail in the next

chapter. As an introductory remark we just mention that most of the frameworks are based

on the possible worlds semantics, described in Section 2.2.1 of this chapter, and present

complete solutions to the frame problem for knowledge. As a result, memory emerges as a

side-effect: a fluent remains known, unless something relevant has changed.

Reasoning about knowledge assumes that the agent’s knowledge and sensor results are

always correct and newly acquired information does not contradict with existing knowl-

edge. This is often a very strong assumption, therefore some studies have suggested ex-

tensions that include some sort of belief revision. In [Shapiro 2000] the Situation Calculus

model is extended to reason about belief rather than knowledge and a similar approach

concerning the Fluent Calculus has been formalized in [Jin 2004]. Still, these efforts do

not propose solutions to the analogue of the frame problem in the context of belief. This

is developed in [Scherl 2005] where it is argued that greater expressivity, than offered by

the Situation Calculus, is needed, in order to be able to quantify over fluents and states.

The Fluent Calculus, on the other hand, can be utilized to form a successor state axiom

for beliefs that also models the case where the result of the sensing action contradicts the

current state of knowledge generating a set of states that are both consistent with the result

of the sensing action and minimally close to a state which was belief accessible prior to the

sensing action.

2.1. Action Theories for Complex Environments 21

2.1.6 Linear vs Branching Time Representation

In this section we elaborate on the properties of the different time representations and how

they influence reasoning with the corresponding formalisms. As already stated, the classi-

cal Situation Calculus, as well as the Fluent Calculus, use a branching time representation,

where all actions are considered hypothetical. A point in time in the Situation Calculus is

represented by a situation (sequence of actions), and each new action may give rise to a

different possible future. In the Event Calculus, on the other hand, there is a single time

line on which events occur and all events are considered to be actual events. A temporal

ordering of event occurrence formulae in the Event Calculus constitutes a narrative of ac-

tual events. In other words, the Situation Calculus relates fluents to situations, while the

Event Calculus relates fluents to timepoints belonging to the real time line.

In the mid nineties the subject of reasoning with the different temporal representations

and, as a consequence the relation between the two calculi, was a vivid research topic. In

[Van Belleghem 1995, Van Belleghem 1997] and latter in [Chittaro 2000] a detailed analy-

sis of the relation between the Situation and Event Calculus was attempted, concluding that

they are indeed very similar, but, in contrast to previous to the time studies, with impor-

tant differences, as well. The problem is on counterfactual or hypothetical reasoning. For

instance, statements of the form "If A had happened, then B would have held", can be cor-

rectly represented in theories with branching time structure, where one can simultaneously

talk about several possible evolutions of the world. Still, the Situation Calculus suffers from

other forms of restrictions for counterfactual reasoning, as shown in [Van Belleghem 1997]

(e.g., when non-deterministic actions are used).

On the other hand, the Event Calculus has the advantage of facilitating representation

of continuous change, with respect to the Situation Calculus; in the Event Calculus we

only need to add an extra axiom describing such change, without modifying the existing

axioms. It is possible to extend the Situation Calculus to deal with continuous change as

well, though the extension requires more substantial modifications to the formalism than

in Event Calculus [Van Belleghem 1995].

Circumstances in which the different formulations of the two calculi are important do

occur sometimes even within a discrete time structure, as, for instance, when confronting

ramifications. The Event Calculus is better suited to deal with at least a large class of

ramifications in a correct way, without other additions or modifications to the framework,

22 Chapter 2. Background Material and Literature Review

as opposed to the Situation Calculus and despite the existence of several ways to overcome

these problems, such as the assumption of a notion of previous state of the world.

There are many studies that incorporate the time representation of the one calculus to

the other. Pinto and Reiter [Pinto 1995], for instance, endow the branching structure of

time, implicit in the Situation Calculus formalism, with a time line, presenting a formal-

ization of the Situation Calculus enriched with a predicate "actual" that identifies a path

of situations describing the world’s true evolution. An initial attempt for a branching time

Event Calculus was presented in [Levy 1998]. A more elaborate study has been conducted

by Mueller [Mueller 2007b] who modified the classical logic Event Calculus to yield a new

formalism that instead of linear, uses branching time and supports reasoning about hypo-

thetical events, just like Situation Calculus. Finally, one should also mention the recent

work of Thielscher for a unifying action calculus [Thielscher 2010], which is independent

of a specific solution to the Frame Problem and is shown to be general enough to encom-

pass a variety of different action representation formalisms. Most notably, it abstracts from

the underlying time structure (branching or linear) and thus can be instantiated with both

Situation Calculus-style approaches as well as Event Calculus-like languages. In so do-

ing, this general calculus provides a uniform method for translating a variety of specific

formalisms into each other.

To conclude, most comparative studies argue that a linear time structure is often bet-

ter suited for modeling real world domains. The conclusion is based on the fact that it is

in general more efficient to state explicitly when events occur or define partial orderings

among them, than reasoning on several different action sequences that may require to up-

date the global state of the world whenever something happens, even if the narratives are

completely independent from each other.

2.1.7 Discussion and Comparative Study

The problem of representing and analyzing the dynamics of complex domains and manag-

ing certain of its properties has proven to be an essential, as well as a difficult one for AI

scientists. So far, a multitude of formal methods have been presented that can be used to

capture different aspects, such as goals, actors and actions, responsibilities and constraints.

It has also been described how they adapt to the diversity of real-world conditions that

constitute the domain, such as to express temporal constraints, uncertainty and sensing.

2.1. Action Theories for Complex Environments 23

We have emphasized on the use of intuitive and mathematically formal approaches, since

they allow IS engineers to produce detailed, formal specifications of ambient computing

processes. Formal models, in which concepts are defined rigorously and precisely, permit

the use of mathematics, in order to verify that the specifications possess certain correctness

properties, such as that constraints are maintained during process execution or that goals

can be satisfied given the knowledge available. Table 2.1 below, although not exhaustive,

summarizes the properties of the three main formalisms for reasoning about action, pre-

senting a compact comparative overview of their abilities to deal with the different aspects

of commonsense reasoning.

Nonetheless, despite their advancements, most approaches suffer from serious imped-

iments when applied to real-world conditions, raising skepticism and creating a topic of

enduring debate among computer science researchers. The increased complexity of the

reasoning mechanisms forces most approaches to trade expressiveness for simplicity and

broadness for efficiency, limiting the impact of their applicability to small-scale implemen-

tations. While the progress accomplished on reasoning about action and automated plan-

ning has been rapid, researchers have found great difficulty in integrating separate models

for handling aspects such as nondeterminism and uncertainty, concurrency, natural actions,

knowledge and beliefs, sensing actions and continuous change in one unified model. As ar-

gued by Thielscher [Thielscher 2000c], most extensions to the problems have in fact been

investigated in isolation and combining co-existing models for different phenomena is a

very challenging task.

An essential step towards refining state-of-the-art approaches for complex domains and

facilitating the sharing of reasoning tools and libraries, is to understand the space of pos-

sible formalisms and where each formalism is situated in it. The literature is rich with

notable relevant surveys and comparative studies concerning planning techniques, e.g.,

[Pollack 1999, Bresina 2002, Boutilier 1999, Blythe 1999, Gelfond 1998, de Weerdt 2005,

Ghallab 2004]. Furthermore, there is real interest in identifying mappings and logical

equivalences between the different formalisms. Schiffel and Thielscher in [Schiffel 2006]

develop a formal translation between domain axiomatizations of the Situation Calculus

and the Fluent Calculus and present a Fluent Calculus semantics of Golog programs,

thus facilitating the comparison of extensions made separately for the two calculi, such

as concurrency handling, or even to translate extensions made only for one of the cal-

culi to the other. Other studies, such as [Baader 2005] and [Liu 2006], attempt to de-

24 Chapter 2. Background Material and Literature Review

velop an action language based on description logics that can be viewed as a fragment

of the Situation Calculus. The objective is to find fragments of action theories that are

decidable, while maintaining the well-established solutions to the frame problem and

being sufficiently expressive to be useful in applications. This topic is further investi-

gated in Section 5.4. In [Classen 2006], a translation of an ADL problem description,

which is a fragment of PDDL, into a basic theory of ES , a variant of the Situation Cal-

culus, where situations occur only in the semantics, is presented. Furthermore, a ver-

sion of Fluent Calculus, sufficiently expressive to capture the broad formalized seman-

tics of the Features-and-Fluents framework, is presented in [Witkowski 2006], that pro-

vides a translation function that maps any scenario expressed in this ontological class

into a Fluent Calculus axiomatization. Much work has also been conducted on show-

ing how the Event Calculus corresponds to the Situation Calculus, as in [Kowalski 1997,

Kristof Van Belleghem and Marc Denecker and Danny De Schreye 1995].

Summarizing, the Situation Calculus is one of the most widely adopted formalisms that

for many years has steered research in the field and still is the source of novel ideas, since

many inspiring researchers work on it. However, acknowledging the effort required in ap-

plying theory to practice when confronting the complexity of real-world domains, one can

identify restrictions that limit its applicability to reasoning with short action sequences.

Already, newer extensions replace entirely regression with progression to achieve more

efficient reasoning and provide solutions to problems for which regression is in general

inappropriate, such as the projection problem [Vassos 2008]. The Fluent Calculus, on the

other hand, owes much of its good reputation to the use of progression that, in conjunction

with the explicit representation of states, can be accorded a high level of expressiveness

and efficiency for the different extensions that usually advance those of the Situation Cal-

culus. Moreover, its implementation by means of the Flux programming language has

achieved significant results. Nevertheless, both these calculi cannot easily provide unified

ontologies that integrated solutions for most of the problems encountered in commonsense

domains. The Event Calculus, on the other hand, is more flexible in expressing a multitude

of domains in its core ontology. Also the temporal aspect should not be disregarded. The

explicit treatment of time is crucial for real-world applications. Arguably, each approach

has different strong assets with respect to the others; in this thesis we employ the Event Cal-

culus, as it is highly usable, comprehensive and handles inherently most of the important

phenomena of reasoning about action and change, as underscored in recent studies (e.g.,

[Mueller 2007a]). Furthermore, active research in implementing reasoners for this calcu-

2.1. Action Theories for Complex Environments 25

lus is combined with recent achievements in other fields of logic programming, resulting

in highly efficient new reasoners that exploit fast satisfiability or answer-set programming

planners.

26 Chapter 2. Background Material and Literature Review

Ta
bl

e
2.

1:
C

om
pa

ri
ng

C
al

cu
li

fo
rR

ea
so

ni
ng

A
bo

ut
A

ct
io

n
Si

tu
at

io
n

C
al

cu
lu

s
Fl

ue
nt

C
al

cu
lu

s
E

ve
nt

C
al

cu
lu

s

B
as

ic
O

nt
ol

og
y

E
xt

en
si

on
s

B
as

ic
O

nt
ol

og
y

E
xt

en
si

on
s

B
as

ic
O

nt
ol

og
y

E
xt

en
si

on
s

N
at

ur
e

m
on

ot
on

ic

se
co

nd
-o

rd
er

fir
st

-o
rd

er
m

on
ot

on
ic

fir
st

-

or
de

r

fir
st

-
an

d
se

co
nd

-

or
de

r

no
n-

m
on

ot
on

ic

fir
st

or
de

r

-

Fr
am

e
Pr

ob
le

m
su

cc
es

so
r

st
at

e

ax
io

m
s

-
st

at
e

up
da

te
ax

-

io
m

s

-
in

er
tia

,
ci

rc
um

-

sc
ri

pt
io

n

-

R
am

ifi
ca

tio
n

st
at

e,
ca

us
al

,

tr
ig

ge
r

co
n-

st
ra

in
ts

-
st

at
e,

ca
us

al
,

tr
ig

ge
r

co
n-

st
ra

in
ts

-
st

at
e,

ca
us

al
,

tr
ig

ge
r

co
n-

st
ra

in
ts

,d
el

ay
ed

eff
ec

ts

Q
ua

lifi
ca

tio
n

L
im

ite
d

[L
in

19
94

]

-
A

bn
or

m
al

flu
en

ts

-
A

bn
or

m
al

flu
en

ts

D
eg

re
es

of
A

b-

no
rm

al
ity

Te
m

po
ra

l
R

ep
re

se
nt

a-

tio
n

im
pl

ic
it

(s
e-

qu
en

tia
la

ct
io

ns
)

ex
pl

ic
it

[P
in

to
19

95
,

Pa
pa

da
ki

s
20

02
]

im
pl

ic
it

ex
pl

ic
it

[T
hi

el
sc

he
r1

99
9a

,

T
hi

el
sc

he
r2

00
1b

]

ex
pl

ic
it

-

Ti
m

e
St

ru
ct

ur
e

br
an

ch
in

g
ac

tu
al

tim
el

in
e

[P
in

to
19

95
]

br
an

ch
in

g
lin

ea
rt

im
e

br
an

ch
in

g
tim

e

[M
ue

lle
r2

00
6]

C
ou

nt
er

fa
ct

ua
l

R
ea

so
n-

in
g

ex
cl

ud
in

g
no

n-

de
te

rm
in

is
m

w
ith

tim
e

[P
in

to
19

95
]

ca
n

be
su

p-

po
rt

ed

-
-

B
D

E
C

[M
ue

lle
r2

00
6]

C
on

cu
rr

en
cy

in
te

rl
ea

ve
d

ex
pl

ic
it

[R
ei

te
r1

99
6,

Pa
pa

da
ki

s
20

02
]

in
te

rl
ea

ve
d

ex
pl

ic
it

[T
hi

el
sc

he
r2

00
1b

]

ex
pl

ic
it

2.1. Action Theories for Complex Environments 27

Si
tu

at
io

n
C

al
cu

lu
s

Fl
ue

nt
C

al
cu

lu
s

E
ve

nt
C

al
cu

lu
s

B
as

ic
O

nt
ol

og
y

E
xt

en
si

on
s

B
as

ic
O

nt
ol

og
y

E
xt

en
si

on
s

B
as

ic
O

nt
ol

og
y

E
xt

en
si

on
s

A
ct

io
ns

w
ith

D
ur

at
io

n
im

pl
ic

it

[R
ei

te
r2

00
1a

]

ex
pl

ic
it

[P
ap

ad
ak

is
20

02
]

-
ex

pl
ic

it

[T
hi

el
sc

he
r2

00
1b

,

W
itk

ow
sk

i2
00

6]

im
pl

ic
it

3-
ar

gu
m

en
t

H
ap

pe
ns

N
on

-d
et

er
m

in
is

m
&

U
n-

ce
rt

ai
nt

y

-
pr

ob
ab

ili
st

ic

[P
in

to
20

00
]

-
di

sj
un

ct
io

ns

w
ith

de
gr

ee
s

[T
hi

el
sc

he
r2

00
0a

]

ex
pl

ic
it

K
no

w
le

dg
e

&
Se

ns
in

g
-

K
flu

en
t

[S
ch

er
l2

00
3]

-
K

S
ta

te
flu

en
t

[T
hi

el
sc

he
r2

00
0d

]

-
pa

rt
ia

l
so

lu
tio

n

[F
or

th
20

04
]

B
el

ie
fU

pd
at

e
-

re
st

ri
ct

ed

[S
ha

pi
ro

20
00

]

-
re

lia
bi

lit
y

de
-

gr
ee

[J
in

20
04

,

Sc
he

rl
20

05
]

-
-

R
el

at
io

na
l/

Fu
nc

tio
na

l

Fl
ue

nt
s

Y
es
/Y

es
-

Y
es
/Y

es
-

Y
es
/N

o
(c

on
-

st
ru

ct
ed

)

-

Im
pl

em
en

ta
tio

n
G

ol
og

C
on

-,
In

di
-,

cc
-,

p-
G

ol
og

Fl
ux

-
SA

T-
ba

se
d

D
E

C
R

ea
so

ne
r,

A
SP

-b
as

ed
,

on
lin

e
re

as
on

er

E-
R

E
S

28 Chapter 2. Background Material and Literature Review

2.2 Reasoning about Knowledge with Epistemic Modal Logic

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about

knowledge. Knowledge modeling is usually structured around the possible-worlds speci-

fications and the application of Kripke semantics, which provide a very intuitive approach

to understanding the process of reasoning and analyzing complex systems. The general

syntax and semantics of this logic of knowledge are succicently described next, along with

the set of properties that will later be of importance to the theory that we develop in the

thesis.

2.2.1 Possible Worlds Semantics

The idea of applying the possible worlds semantics to model knowledge and belief was

originally due to Hintikka [Hintikka 1962]. The intuitive idea of this paradigm is to ac-

knowledge in the semantics that things might have happened differently from the way they

did in fact happen. Thus, besides the true state of affairs (actual world), there are other

possible states. Under this interpretation, an agent is said to know a fact if this is true in all

the states that it considers possible. The language that is employed to formalize these ideas

is typically some variation of propositional modal logic1. Such a language PL uses a set P

of primitive propositions (p, q, r, ...) to represent basic facts about the world. Technically, a

language is just a set of formulae (ϕ, ψ...). To express knowledge statements, we augment

the language by modal operators K1, ..,Kn, where n (≥ 1) is used to declare the knowledge

obtained by different agents. Starting from the primitive propositions in PL, we form more

complicated formulae by closing off under negation, conjunction and the modal operators

for knowledge or belief. The statement that an agent does not know whether ϕ holds means

that it considers both ϕ and ¬ϕ possible.

To give semantics to sentences in PL, a Kripke structure is usually employed. A Kripke

structure M for a system of n agents is a tuple < S, π,R1, ..,Rn >, where S is a set of

possible worlds or states and π is an interpretation that associates each world in S with a

truth assignment. That is, for each state w ∈ S, π(w)(p) is a mapping from a primitive letter

p ∈ P to {true, false}. Each Ri is a binary (accessibility) relation on S that captures the

possibility relation according to agent i. Thus, wRiw1 holds if agent i considers world w1

1The material in this section is largely taken from [Fagin 2003].

2.2. Reasoning about Knowledge with Epistemic Modal Logic 29

possible when in world w. In addition, to capture what it means for a formula to be true at

a given world in a structure the relation |= is be defined, where (M,w) |= ϕ means "ϕ is true

at M,w" or "ϕ holds at M,w". Some of the clauses defined using |= are as follows:

(M,w) |= p iff π(w)(p) = true

(M,w) |= ¬ϕ iff (M,w) ̸|= ϕ
(M,w) |= ϕ ∧ ψ if both (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= Kiϕ iff (M,wi) |= ϕ for all w1 such that wRiw1

2.2.2 Basic Knowledge Axioms

The Distribution Axiom. One important property of the definition of knowledge is that

each agent knows all the logical consequences of its knowledge. If an agent knows a and

knows that a implies b, then both a and (a⇒ b) are true at all worlds it considers possible.

This axiom allows us to distribute the K operator over implication and it follows that

(K) |= (Ka ∧ K(a⇒ b)⇒ Kb)

The Necessitation (or Knowledge Generalization) Rule. Agents know all the formu-

lae that are valid in a given structure. If a is true at all the possible worlds of structure M,

then a must be true at all the worlds that an agent considers possible in any given world in

M, so it must be the case that Ka is true at all possible worlds of M. More formally,

(RN) For all structures M, if M |= a, then M |= Ka

From this we can deduce that if a is valid, then so is Ka. This rule is very different from

the formula (a ⇒ Ka), which says that if a is true, then the agent knows it. An agent does

not necessarily know all things that are true, however, agents do know all valid formulae.

Intuitively, these are the formulae that are necessarily true, as opposed to the formulae that

just happen to be true at a given world.

The Knowledge (or Truth) Axiom. Although an agent may not know facts that are

true, it is the case that if an agent knows a fact, then it is true. This property has been taken

by philosophers to be the major one distinguishing knowledge from belief. Formally:

(T) |= Ka⇒ a

30 Chapter 2. Background Material and Literature Review

Table 2.2: Characteristic axioms and rules of inference of knowledge.

Consistency Axiom (D). If we want to model the notion of belief, then we ought to

drop axiom (T), but add an axiom capturing the fact that an agent does not believe false:

(D) ¬K(f alse), or equally

Ka⇒ ¬K¬a

The Positive Introspection Axiom. Agents can do introspection regarding their

knowledge, i.e., they know what they know.

(4) |= Ka⇒ KKa

The Negative Introspection Axiom. Agents know what they do not know.

(5) |= ¬Ka⇒ K¬Ka

Although a number of additional properties follow from the basic axioms, in a precise

sense these properties completely characterize the definition of knowledge, as far as the

K operators are concerned. There exists a very strong relationship between these axioms

and the properties of the accessibility relation Ri between worlds of the Kripke structure.

Specifically, different axiom systems that combine subsets of the aforementioned axioms

can be defined, according to the properties that we wish to infuse to the accessibility re-

lation (Table 2.2). Yet, in any of them the Distribution Axiom and the Necessitation Rule

are two properties that seem forced on us by the definition for knowledge of the possible-

worlds approach.

2.2. Reasoning about Knowledge with Epistemic Modal Logic 31

To conclude, the construction of an axiom system for knowledge consists of the fol-

lowing axioms and inference rules, as well:

(A1) All tautologies of propositional calculus

(MP) From a and (a⇒ b) infer b (modus ponens)

2.2.3 The Problem of Logical Omniscience

The notion of possible worlds as a means to represent knowledge and belief has been exten-

sively studied in the last decades, giving rise to formal ways of reasoning with epistemic

properties. The success attained by the resulting epistemic and doxastic modal logics is

based on the fact that it provides a very intuitive and expressive approach to model the

mental state of intelligent agents. On the other hand, the commitment to Kripke semantics

introduces serious side-effects, such as the well known problem of logical omniscience. In

brief, logical omniscience requires an agent to know all logical consequences of its beliefs

(i.e., the agent is a perfect reasoner and its beliefs are closed under implication) and all

valid sentences (including tautologies). Apparently, these properties are too pretentious to

expect for practical agents with limited resources (computational intractability) and may

also lead to unrealistic cognitive capabilities (irrelevant beliefs).

The partiality or incompleteness of possible worlds has been traditionally accepted in

the AI literature as an intuitive property, in order to alleviate logical omniscience-related

problems, since the agent may be unaware of certain facts, may have limited resources or

may ignore some relevant rules (e.g., the agent may have not been told what the rule of

Modus Ponens is). Inconsistency is a totally different matter: the agent may focus in a

subset of its beliefs (context) to draw conclusions that are consistent within the context,

but inconsistent otherwise. Human believers are rarely consistent, they often have beliefs

a and b, where a |= ¬b, without being aware of the implicit inconsistency. Konolige

[Konolige 1986] argues that logical consistency is much too strong a property for resource

bounded reasoners, she thinks that being non-contradictory (not believing a and ¬a at the

same time) is the most one can reasonably demand; if a theory is expressed in first-order

logic, it is not even decidable in general whether it is consistent or not. As McArthur

points out in [McArthur 1988], computationally logical omniscience results in intractabil-

ity or, for the first-order case, undecidability. As a result, many approaches to mitigate the

logical omniscience problem have been suggested, based either on a syntactic or a semantic

32 Chapter 2. Background Material and Literature Review

treatment of the epistemic notions (relevant surveys and comparative studies can be found

in [Moreno 1998, Sim 1997, Halpern 2007, Halpern 2008]).

2.3 Ambient Intelligence

In the early 2000s, a number of initiatives, projects and research reports were announced

around the globe that even their titles suggested the fact that Information Technology was

on the verge of a shift towards a new research trend. The EU-funded "Disappearing Com-

puter" initiative2, the W3C "Device Independence" activity3 and the National Academy of

Science "Embedded Everywhere" research agenda [National Research Council Staff 2001],

all made public at 2001, were indicative of an attempt to articulate a more technology-

transparent and user-centered research endeavor. This attempt was mainly driven by the

ubiquitous computing paradigm, a term coined by Mark Weiser’s 1991 vision of a new

generation of computer systems [Weiser 1991]. Today, the main tenets of this nascent

field have been clearly formulated, leading to the emergence of the highly-evolving multi-

disciplinary domain of Ambient Intelligence following the trends of ubiquitous and context-

aware computing. Indicative of this attempt to articulate a more technology-transparent and

user-centered reality is the intensive research that is being conducted to realize pragmatic

infrastructures and novel technologies, as well as the increasing volume of journal and

conference papers that explore the frontiers of computing under this context.

2.3.1 Characteristics of Ambient Intelligence Environments

For decades, humans had to continuously adapt themselves to their surrounding technol-

ogy, in order to make the best out of it. The vision of Ambient Intelligence assumes a

shift in computing towards a multiplicity of communicating devices disappearing into the

background, providing an intelligent, augmented environment, where the emphasis is on

the human factor.

Ambient Intelligence stems from the convergence of a multitude of disciplines: dis-

tributed intelligence, ubiquitous computing, dynamic networks and ubiquitous communi-

cations, intelligent human-computer interaction and intuitive user-friendly interfaces. The

2The Disappearing Computer: http://www.disappearing-computer.net/
3Device Independence: http://www.w3.org/2001/di/

2.3. Ambient Intelligence 33

field was initially promoted by a number of reports published by the European Information

Society Technologies Advisory Group4 (ISTAG) and has expanded significantly since. It

visualizes an intelligent ubiquitous computing space, where a distributed network of po-

tentially hidden sensors, intelligent devices and interfaces provides presence- and context-

aware services to humans, adapting and responding to their needs, preferences, habits and

gestures in a seamless, unobtrusive notion. The vision of worlds embedded with smart

components that can understand human behavior and respond intelligently to spoken or

gestured indications of desire signalled the emergence of numerous projects that empha-

sized on the use of sensing technology and the need to collect and interpret detected data.

Profound projects, such as IBM’s BlueEyes5 and MIT’s Project Oxygen6, have made es-

sential initial contributions on this difficult task.

Of dominant relevance in the attempt to efficiently interpret and act upon sensed data

is the exploitation and management of context-sensitive information, which characterizes

the interaction between humans and their surrounding environment. In close collaboration

with sensing, recent advancements in network technology and wireless communications

have enabled the rapid growth of context-awareness, not solely restricted on location re-

lated information, but extended to other parameters that determine a particular situation,

such as movement, light, audio, humidity and others. The objective of this technological

development is the creation of a highly personalized future society, where both humans and

devices will be characterized by semantic profiles in order to model and share their desires,

abilities and specifications. The MyCampus [Sadeh 2006] is an indicative project that aims

at implementing a context-aware computing infrastructure for providing services adapt-

able to user needs and based on semantic information stored in profiles, called e-Wallets

[Gandon 2004].

Beneath this high level consideration of the Ambient Intelligence vision, IS scientists

can identify a multitude of computer science challenges that such device- and computation-

rich environments entail. The accomplishment of the desirable level of "smartness" and the

implementation of intelligent computing has been set as a high priority from the very begin-

ning. Projects such as Philips HomeLab [Marzano 2003], Georgia Tech’s Aware Home7

and Gator Tech Smart House [Helal 2009], are being conducted under the guideline of

4IST Advisory Group (ISTAG): http://cordis.europa.eu/fp7/ict/istag/home_en.html
5IBM Blue Eyes Project: http://www.almaden.ibm.com/cs/BlueEyes/index.html
6MIT Project Oxygen: http://oxygen.lcs.mit.edu/
7Georgia Aware Home: http://awarehome.imtc.gatech.edu/

34 Chapter 2. Background Material and Literature Review

building smart systems to augment and respond intelligently to human behavior. The expert

can recognize numerous issues introduced by intelligent computing: the need to deploy al-

gorithms that enable mobile devices to engage in ad hoc communications; to collaborate in

order to achieve common and complex objectives; to reason about their actions and knowl-

edge potentially in a distributed manner; to contribute resources in a conservation-efficient

manner. This is just a subset of the facets that synthesize the field.

Of course, the very idea of ambient computing has also raised a number of social and

ethical concerns, as well. The humanistic notion of machine interaction and the privacy

and trust issues of Ambient Intelligence require significant and long term underpinning

research that is subject to focused research communities.

2.3.2 Challenges for AI

The Ambient Intelligence paradigm has generated an enabling multidisciplinary research

field that envisages to bring intelligence to everyday environments and facilitate human

interaction with devices and the surrounding. Artificial Intelligence has a decisive role to

play for the realization of this vision promising commonsense reasoning and better deci-

sion making in dynamic and highly complex conditions, as advocated by recent studies

[Ramos 2008]. Within AmI environments human users do not experience passively the

functionalities of smart spaces, instead they participate actively in it by performing actions

that change its state in different ways. At the same time, the smart space itself and its de-

vices are expected to perform actions and generate plans either in response to changes in

the context or to predict user desires and adapt to user needs.

Ambient Intelligence follows on from work in AI. While there have been significant ad-

vancement in many of the involved disciplines for computational intelligence individually

over the last years, arranging a physical environment where mobile and stationary devices

communicate and cooperate to achieve common objectives has proven to be a laborious

task for the research community. Although much success has been achieved in defining

theoretical frameworks for the fields of distributed AI, agent teamwork and coalition for-

mation, planning and reasoning about actions and cooperative problem solving, the advent

of ubiquitous and context-aware computing has introduced new, more practical challenges,

pushing research in these fields to its limit. Often, current algorithms cannot accommodate

the burgeoning complexity inherent in real-world ambient systems, since they typically

2.3. Ambient Intelligence 35

rely on restricted models and simplifying assumptions, which do not apply in realistic con-

ditions. The majority of deployed Ambient Intelligence systems do not achieve the desired

level of intelligence in understanding and reacting to human behavior, stumbling on the

restrictions of current methodologies and technology used. Already works are being pub-

lished that question the logic and rational behind some of our larger expectations; Rogers

[Rogers 2006], for instance, argues that the progress in Ubiquitous Computing research has

been hampered by intractable computational and ethical problems and that the field needs

to broaden its scope, setting and addressing other goals that are more attainable.

When research on planning within the AI community established the classical planning

problem for the development of techniques for agents to generate courses of action in order

to reach a desirable world state, it adopted a number of simplifying assumptions to delimit

the domain. Some of these assumptions were very restrictive. The planning agent was

considered omniscient, possessing knowledge about all relevant facts of its environment.

Its actions were deterministic, atomic and simultaneous, they had neither temporal extent

nor fixed times of occurrence. The environment was assumed static and the only source of

change in the environment was the agent itself, while no other exogenous event occurred.

In addition, the agent possessed perfect domain and initial state knowledge. The goals

presented to it remained unchanged throughout the processes of planning and execution

and were categorical, i.e., they were either achieved or not. Of course, these simplifications

do not persist in realistic planning situations and must be relaxed or completely eliminated

when adapting planners to Ambient Intelligence systems.

We can recognize certain challenges and limitations that must be addressed for real-

izing the Ambient Intelligent paradigm. We can no longer rely on a complete description

of the world domain that will allow us to have well-defined theoretical foundations for

reasoning about action and planning. Participating agents have limited perceptions to ac-

quire knowledge about the initial and running state of the world, the availability of actions

and their effects, and the accuracy of sensing actions, leading to contradicting belief states

between situated agents that, nevertheless, must cooperate in performing joint activities.

Moreover, the closed world assumption is a luxury that tends to be abandoned, since ex-

ogenous actions are important cause of world state change.

Distributed planning is an intricate part of the ambient computing environment. Un-

fortunately, several requirements restrain the applicability of planning algorithms, such as

limited computing resources, issues related to trust and privacy about sharing common

36 Chapter 2. Background Material and Literature Review

plans and contributing available resources to others and also the inability in sharing com-

mon plan representations and action decompositions. Even the nature of communication

between entities designates different approaches according to various conditions; we can-

not adopt a centralized plan coordination scheme when mobile devices negotiate in ad hoc

manner to achieve a state of affairs, nor can we suggest broadcasting messages among team

members when power preservation is a valuable metric.

Mobility is another aspect that renders an Ambient Intelligence system highly com-

plex and dynamic. Mobility refers to situations where computing devices are constantly

moving in the environment and their expectancy to participate in teamwork is completely

depended on the duration of their connection to the network. This challenge has side ef-

fects on many parameters that influence planning tasks constituting planning an ongoing,

dynamic process requiring plan and execution interleaving, as well as efficient monitoring

and backtracking mechanisms.

This is just a brief introduction to the listing of problems that the research community

tries to harness, some more attainable than other. If we take into consideration the vari-

ety of Ambient Intelligence scenarios that necessitate both user-initiated and automatically

generated service provisioning, potentially requiring proactive planning and real-time exe-

cution monitoring, we might understand the reason why our current efforts, as considerable

as they have been, they still do not match up to our expectations, as Greenfield also argues

in [Greenfield 2006]. In this thesis we construct a theory that can contribute to many of

theses issues, while laying the ground for future extensions to accommodate even broader

requirements. In particular, focusing on the single agent case, we assume reasoning about

a great variety of commonsense phenomena occurring in an Ambient Intelligence envi-

ronment under partial observability and run-time knowledge update. Although we treat

sensing as an accurate process, this assumption can be lifted in future extensions. Further-

more, having a complete and formal characterization of an agent’s mental state, we provide

the ingredients for studying multi-agent collaboration based on introspection and common

knowledge.

Chapter 3

Review of State-of-the-Art

Contents
3.1 Possible worlds-based Epistemic Action Theories 37

3.2 Alternative Approaches . 41

The previous chapter surveyed the progress in the broader field of action theories, and

also described the general characterization of epistemic notions within modal logics. As the

present thesis is targeted on the integration of these two fields into a unified epistemic action

theory, this chapter studies in more detail frameworks that contribute towards this line of

research. Initial attempts to formalize the epistemic effects of actions on the agent’s mental

state adopted the standard possible worlds approach. Highly expressive frameworks have

been developed, treating sensing as a form of action to enable high-level cognitive tasks.

Nevertheless, these frameworks introduce serious computational issues that render them

inappropriate for practical implementations. Contemporary progress explores alternative

knowledge representations disengaged from the possible worlds specifications, promising

more efficient reasoning. In the following two sections we review frameworks of both cat-

egories presenting a historical development of the field up until state-of-the-art approaches

and discuss main features and limitations.

3.1 Possible worlds-based Epistemic Action Theories

Probably the first work that motivated research for the creation of epistemic action theories

is due to Moore [Moore 1985], who presented an adaptation of the possible worlds seman-

tics in formal action theories treating the accessibility relation between possible worlds as

a fluent. Based on initial versions of the Situation Calculus, Moore’s axiomatization de-

scribes how the knowledge of an agent may change after executing sensing or ordinary

38 Chapter 3. Review of State-of-the-Art

actions. In particular, the number of accessible related worlds remains unchanged upon

ordinary action occurrences, but reduces as appropriate when sense actions occur, in order

to reflect the new knowledge; after sensing only those worlds where the sensed fluent has

the same truth value as the result obtained by the action remain accessible related.

This approach has influenced a multitude of studies since. Scherl and Levesque further

investigated knowledge and sensing actions in the context of the Situation Calculus, pro-

viding a solution to the frame problem for this type of actions [Scherl 1993, Scherl 2003].

Introducing the epistemic fluent K and defining its semantics, they proved a number of

properties that the specification enjoys. For instance, they showed that sense actions only

affect the mental state of the agent and do not change the state of the world, they elabo-

rated on the result of memory preservation of inertial aspects and they also showed how

regression can be applied to sense actions. The same framework has been further extended

to accommodate the notion of ability to achieve an objective [Lespérance 2000]. One of

the impediments of the approach, though, was that it did not distinguish between the actual

effects of actions and what the agent knows about these effects.

This issue has been investigated more thoroughly in the work of Thielsher within the

context of the Fluent Calculus [Thielscher 2000d]. Providing a relatively similar definition

of knowledge, based on states instead of situations, i.e., collection of fluents rather than

action sequences, Thielscher also proposed a solution to the inferential, in addition to the

representational frame problem for knowledge. In a similar to the Situation Calculus style,

for the definition of knowledge no single initial situation in the tree of alternative worlds

is maintained, instead a forest of trees is structured each with its own initial situation. The

theory can employ an inference scheme for specifying what is known and not known about

the successor situation in an elegant way distinguishing between the de dicto and the de

re interpretation, along with an extension of the notion of ability defined for the Situation

Calculus.

A framework with increased expressive capabilities was presented by Lobo et al.

[Lobo 2001] that introduced the action description language Ak, an extension of the high

level language A to also handle sense actions and knowledge. In contrast to the previ-

ous approaches, this framework also incorporated conditional sensing, actions with non-

deterministic effects that cause knowledge to be removed from the set of facts known by

the agent, as well as preconditions of effects rather than just on actions. The semantics of

epistemic states defined in Ak resembles Kripke structures, therefore it is comparable to

3.1. Possible worlds-based Epistemic Action Theories 39

the previous calculi. On the other hand, the framework is more general and it is not possible

to differentiate between the actual effects of actions and what an agent knows of them nor

does it investigate complex ramifications and triggered actions, as we study in this thesis.

A similar approach has also been suggested in [Baldoni 2001, Baldoni 2004], but with

the difference that epistemic evolution is studied from the modal logic standpoint. Specifi-

cally, Baldoni et al. described a modal action theory, in which actions were represented by

modalities and belief (rather than knowledge) operators were ruled by the KD modal logic,

resulting in the traditional three-valued Kripke-based models for state interpretations. The

formalism could accommodate non-determinism and effect ambiguity, loss of knowledge

and complex actions and could be used to provide provably correct conditional plans for

execution with DyLOG. Still, in contrast to the previous approaches and the theory we de-

velop in this thesis, it could not be used to represent disjunctive knowledge or to distinguish

between the agent’s mental state and the actual world state.

Extensions of epistemic action theories also deal with issues related to multiple agents

[Shapiro 2002], group-level epistemic modalities [Kelly 2008] and others. Nonetheless,

none of the aforementioned frameworks study the interaction of sensing and time, which is

essential in most real-world applications. The results of sensing occur at a particular point

in time, may have a predefined duration of validity and may even be different depending on

other, potentially concurrent, sensing or non-sensing actions. This has been acknowledged

in the work of Zimmerbaum and Scherl [Zimmerbaum 2001], who proposed a unified log-

ical theory of knowledge, sensing, time and concurrency within Situation Calculus. The

framework introduced interesting issues, but its applicability was limited, as the theory fol-

lowed an alternative model for the treatment of time than the more widely used approach

proposed by Pinto and Reiter [Pinto 1995]. This was due to the difficulty the authors en-

countered in combining the different extensions in this calculus. The Event Calculus, on

the other hand, provides a unified framework that handles many aspects of commonsense

reasoning, especially those related to time. It uses a linear time representation, where all

events are considered to be actual, which is more suitable for real-world implementations,

as opposed to the branching time representation of the Situation and the Fluent Calculi.

In addition, probably the most significant limitation of the approaches mentioned above

is related to the representation of knowledge. They all share a common definition of seman-

tics based on the possible worlds model and perform reasoning by adapting the accessibility

relation over possible worlds, in order to determine if a formula is true or not in each of

40 Chapter 3. Review of State-of-the-Art

them. Inevitably, the efficiency of theorem proving of knowledge formulae raises many

concerns; with n atomic formulae, there are potentially 2n distinguishable worlds to check

truth in1. Despite the fact that all these rigorous frameworks provide very expressive formal

accounts for knowledge and change, from the computational standpoint their application to

practical implementations is less promising. Aiming at tractability, contemporary progress

in the field explores alternative characterizations of knowledge, focusing on restricting ex-

pressiveness or sacrificing logical completeness, as regards to the standard possible worlds

specifications.

Son and Baral [Son 2001], for instance, investigated a way to alleviate complexity is-

sues by proposing the representation of an agent’s state of knowledge at different levels of

approximations. As with Lobo et al., they extended the action language A with a treat-

ment of knowledge and the introduction of sense actions (they too named their resultant

language Ak). Instead of using the full expressiveness of Kripke structures, they used

a simpler formulation to define their semantics leading to a smaller and more manage-

able state space. Moreover, they presented a type of approximate progression that leads

to sound but incomplete future states. Following a rather similar motivation Claßen and

Lakemeyer [Claßen 2009] adapted the logic of limited belief SL [Liu 2004] in the context

of the Golog language. The authors exploit the idea of iterative deepening on levels of

implicit beliefs based on an agent’s explicit beliefs, thus achieving efficient reasoning with

incomplete first-order theories. The approach enjoys tractability properties when restrict-

ing the KB in a proper form (described in the next subsection) and is based on regression,

with progressive reasoning being in the author’s future plans. In relation to our work, each

approximation can be considered as augmenting a state with HCDs of different complex-

ity. Still, the approaches are less general and do not consider knowledge-loosing actions

or non-determinism. Ak in particular was intended as a high-level language to act as a

benchmark formalism among epistemic theories and is restricted to the propositional case.

On the other hand, the distinction between explicit and implicit beliefs that is attempted in

these two latter approaches has also been shown to be an important leverage for addressing

aspects of the logical omniscience problem; this line of research is an interesting direction

for our work as well, where HCDs can assist in building iterative levels of derived implicit

knowledge.

Recently, Son et al. [Son 2005] also proposed a set of approximations, with emphasis

1A more elaborate complexity analysis can be found in Section 5.3.

3.2. Alternative Approaches 41

on handling domains that incorporate state constraints, a parameter not extensively inves-

tigated by previous approaches. Their study approached the field from the point of view of

conformant planning and used the action languageAL. In contrast to previous conformant

planners, their intension was not to compile away state constrains, in order to preserve

expressiveness. They managed to reduce the complexity of planning to time polynomial

with respect to the number of fluents (the state space remains exponential to the number

of fluents) by means of two approximations that are sound (but incomplete), even in the

presence of incomplete initial situations. The approximations investigate the inertial part

of the domain focusing on what possibly holds or what possibly changes, respectively. The

approach can also be extended to support concurrent and non-deterministic actions. With-

out introduction of these approximations, a standard conformant planner would require a

double exponential state space to the number of fluents, which renders model checking

to a co-NP complete problem, even without state constraints. Again, the main source of

complexity is in handling incomplete information, which the planner models as a set of al-

ternative possible states. Moreover, the epistemic part of a domain is not explicitly modeled

nor are more complex ramifications beyond state constraints, as we do in this thesis.

3.2 Alternative Approaches

To alleviate the computational intractability of reasoning under the possible worlds spec-

ifications, as well as to address other problematic issues, such as the logical omniscience

side-effect, alternative approaches for handling knowledge change have been proposed that

are disengaged from the accessibility relation. These theories are rapidly moving from spe-

cialized frameworks to an important research direction, still they adopt certain restrictions

about the type of knowledge formulae or domain classes that they can support.

A preliminary attempt to provide new insight to epistemic action theories was based

on redefining knowledge in terms of interval arithmetics [Funge 1999]. Interval-valued

epistemic fluents were incorporated in the Situation Calculus to express uncertainty about

the value of ordinary fluents confined within (sometimes) maximally restricted and dynam-

ically altered intervals, based on interval arithmetic operations.

In [Petrick 2002a] a knowledge-based planner for domains with incomplete knowledge

and sense actions was presented. The framework was based on a first-order generalization

of STRIPS in order to perform inferencing tasks by modeling actions as database updates

42 Chapter 3. Review of State-of-the-Art

in a forward-chaining fashion and was later extended to accommodate postdiction infer-

encing, along with other representational enhancements [Petrick 2004]. The actions were

considered as knowledge-level modifications to the agent’s mental state, rather than as

physical-level updates to the world state, thus lost their relation to their causal implica-

tions. Instead, in our approach actions maintain their full physical-level specifications,

whereas knowledge modification is treated at a meta-level for extending their causal spec-

ifications with epistemic notions. To improve computational efficiency the expressiveness

of the framework was restricted, so that only certain fixed types of disjunctive knowledge

could be represented, while the inferential mechanism was incomplete. In particular, only

"exclusive-or" knowledge of literals were permitted; exactly one of the literals of a disjunc-

tive knowledge formula could be true. Despite the limitations, the planner could represent

a wide range of interesting problems providing useful insight in the problem of planning

under incomplete knowledge.

Maybe the most influential approach towards an alternative formal account for reason-

ing about knowledge and action is due to Demolombe and Pozos-Parra [Demolombe 2000]

who introduced two different knowledge fluents to explicitly represent the knowledge that

an ordinary fluent is true or false. Working on the Situation Calculus, they treated knowl-

edge change as changing each of these fluents individually, the same way ordinary fluent

change is performed in the calculus, thus reducing reasoning complexity by linearly in-

creasing the number of fluents. Nevertheless, the expressive power of the representation

was limited to knowledge of literals, while it enforced knowledge of disjunctions to be

broken apart into knowledge of the individual disjuncts.

Petrick and Levesque [Petrick 2002b] proved the correspondence of this approach to

the possible worlds-based Situation Calculus axiomatization for successor state axioms

of a restricted form. Specifically, equivalence is obtained only when the conditions under

which a fluent changes its truth value contain no fluent (context-free theories) or fluents in a

restricted disjunctive normal form (literal-based theories). Moreover, in the same study the

authors defined a combined action theory that extended knowledge fluents to also account

for first-order formulae when disjunctive knowledge is tautology-free, still enforcing it to

be broken apart into knowledge of the individual parts. Recently, a decomposition property

of even more expressive classes of action theories has been suggested, based on the notion

of a Cartesian situation, that simplifies certain complex types of disjunctive formulae into

equivalent components that only mention fluent literals [Petrick 2008]. Intuitively, from

3.2. Alternative Approaches 43

the situations that an agents considers as possible cartesian are pairs that differ on the value

of only one instantiated fluent, while the values of all other fluents are identical. The price

to pay is a requirement of definite knowledge of some of the disjunction components.

Regression used by standard Situation Calculus is considered impractical for large se-

quences of actions and introduces restrictive assumptions, such as closed-world and do-

main closure, which are problematic when reasoning with incomplete knowledge. Recent

approaches deploy different forms of progression. Liu and Levesque [Liu 2005] for in-

stance, study a class of incomplete knowledge that can be represented in so called proper

KBs (i.e., KBs consisting of a finite set of formulae of the form ∀(e → ρ) or ∀(e → ¬ρ),

where ρ ranges over atoms excluding equality and e ranges over quantifier-free formulae

whose only predicate is equality) and perform progression on them. The idea is to focus

on domains where a proper KB will remain proper after progression, so that an efficient

evaluation-based reasoning procedure can be applied. Domains where the actions have lo-

cal effects (i.e., when the properties of fluents that get altered are contained in the action)

provide such a guarantee. The approach is efficient and sound for local effect action theo-

ries, still proper KBs under this weak progression do not permit some general forms of dis-

junctions to emerge, such as HCDs that we investigate in this thesis. The solution may even

be complete when queries are in a certain normal form and the theory is context-complete

(i.e., when there is complete knowledge about the context of context-dependent actions,

at least at the time of action occurrence). The latter restriction is raised in [Vassos 2007],

but with an extra cost of explicitly listing all possible values of each fluent, essentially

rendering the theory propositional. Still, the local effect assumption seems too restrictive

for realistic scenarios, while it is not clear how simple or more complex ramifications can

be supported. Recently, Vassos et al. [Vassos 2009] investigated an extension to theories

with incomplete knowledge in the Situation Calculus where the effects are not local and

progression is still appropriate for practical purposes.

Beyond the Situation Calculus, knowledge update that resembles the previous approach

is also suggested by Amir and colleagues [Amir 2003] that perform progression of belief

states, rather than enumerating all possible worlds in every belief state and update each of

those states separately in order to generate the updated belief state. The difference is that

they present algorithms for complete or approximate recursive state estimation (or logical

filtering as it is also named) in the context of non-deterministic actions as well, both for

the propositional [Amir 2003] and the first-order case [Shirazi 2005]. Correctness of the

44 Chapter 3. Review of State-of-the-Art

approach for answering queries uniform in the situation term is proved. Still, in contrast to

our framework, the objective is not to develop a complete theory of knowledge and action

where both the mental states of an agent and the real state of the world can be represented,

but rather to focus on the epistemic inference capabilities of the agent. Moreover, complex

ramifications and potential actions are not investigated.

Dependencies between unknown preconditions and effects have been incorporated in

an extension of the FLUX programming language [Thielscher 2005a], which is used to

implement efficient action theories with incomplete states based on the Fluent Calculus

semantics. The extension, presented in [Thielscher 2005b], handles dependencies by ap-

pending implication constraints to the existing store of constraint handling rules, in a spirit

very similar to the HCDs proposed in the present study. The emphasis is on building an

efficient constraint solver, thus restricting expressiveness in a less broad class of domains.

Moreover, it is not clear how the extensive set of complicated implication rules defined

follow on from the properties of possible worlds. Initiating from a common ground, in the

present study we provide a more intuitive and extensive mapping of the two approaches,

revealing how their characteristics correlate.

Apart from Thielscher’s work, the recent study by Forth and Shanahan [Forth 2004] is

highly related to the framework proposed in this thesis. Extending the preliminary inves-

tigation of [Shanahan 2001], Forth and Shanahan utilized knowledge fluents in the Event

Calculus to specify when an agent possesses enough knowledge to execute an action in a

partially observable environment. Although their theory was based on a different Event

Calculus axiomatization than we use here, described in [Shanahan 1999b], which treats

nondeterminism in an alternative manner, the introduction of epistemic axioms share the

same objective, i.e, to capture knowledge change as ordinary fluent change. Still, their in-

tention was to handle ramifications in order to determine which fluents to sense and when,

focusing on a closed and controlled environment; they did not provide a complete theory

about knowledge within the Event Calculus. Specifically, an agent was only assumed to

perform "safe" actions, i.e., actions for which enough knowledge about its preconditions

was available. In an open environment the occurrence of exogenous actions might also

fall under the agent’s attention, whose effects are dependent on -unknown to it- precondi-

tions. It is not clear how knowledge evolves in terms of such uncertain effects, neither how

knowledge about disjunction of fluents can be modeled.

Furthermore, the theory proposed by Forth and Shanahan cannot handle situations

3.2. Alternative Approaches 45

when an action might have multiple effects, dependent on different sets of preconditions.

For instance, the action of opening a switch may cause a light to become lit if it was not

lit before and also a relay to become activated if it was not activated before. These ef-

fects are the result of a single action occurrence and are independent to each other, but

only dependent to the preconditions given. It is not clear how the theory would behave

if the agent knew one of the preconditions, but not the other; would the action be consid-

ered a "possible" one or not? In either case, it is evident that an agent’s knowledge should

not only refer to a specific action, but also to the possible effects that can be achieved by

it. Finally, in their approach the fundamental axioms of the Event Calculus about fluent

persistence have been extended to accommodate the occurrence of non "possible" actions,

action for which an agent does not have enough knowledge about. The choice of basing

the persistence of ordinary fluents on what the agent knows or does not know seems less

intuitive, since knowledge, by definition, has no effect on the domain. Our proposed the-

ory, on the other hand, attempts a broader treatment of knowledge evolution within open

environments, unifying a wide range of commonsense reasoning phenomena that might

happen.

Chapter 4

Discrete Event Calculus Knowledge

Theory

Contents
4.1 Preliminaries . 48

4.1.1 General Notational Conventions 48

4.1.2 Discrete Time Event Calculus . 48

4.2 Core DECKT . 51

4.2.1 Axiomatization . 53

4.3 Hidden Causal Dependencies . 56

4.3.1 Creation of HCDs . 58

4.3.2 Expiration of HCDs . 62

4.4 Formal Definition of Epistemic Domain Descriptions 68

4.5 Summary . 71

In this chapter we develop the basic axiomatization of the Knowledge Theory for agents

operating in dynamically changing, partially observable and uncertain worlds. The theory

uses the Event Calculus as an underlying formalism. We start by describing the basic tenets

of the discrete time Event Calculus axiomatization and continue with an in depth analysis

of the knowledge theory, splitting it in two sections: one defining the foundational meta-

axioms for knowledge effects and another capturing causal dependencies among unknown

fluents, called hidden causal dependencies. The formal definition of a domain description

with epistemic concepts is given in Section 4.4. The complete axiomatization is summa-

rized in the last section. Throughout the chapter various examples are given to exemplify

concepts where necessary.

48 Chapter 4. Discrete Event Calculus Knowledge Theory

4.1 Preliminaries

4.1.1 General Notational Conventions

In the sequel of this thesis predicate symbols, function symbols and constants start with an

uppercase letter, while variables start with a lowercase letter. Moreover, as we are going

to define different sorts, all variables belonging to one sort are represented with the same

letter with subscripts where necessary. Within all formulae free valuables are implicitly

universally quantified.

The expression
∧ fi∈S [P(fi)] stands for P(f1)∧ ...∧P(fn) for all fi ∈ S , where S a set of

n fluents and n ≥ 0 unless otherwise stated. In the particular case where n = 0 then S = ∅,
meaning that no P(fi) predicate is included in the formula containing the initial conjunctive

expression. Similar is the treatment of
∨ fi∈S [P(fi)]. In certain situations reference to the set

S is omitted completely, as it will be clear from the context. Finally, the notation P1 ≡ P2

defines P1 as an abbreviation for P2; all occurrences of the expression P1 are to be replaced

with the expression P2.

4.1.2 Discrete Time Event Calculus

The Event Calculus is a narrative-based first-order predicate calculus for reasoning about

action and change. A number of different dialects have been proposed that are summarized

in [Shanahan 1999b] and [Miller 2002]. All versions share the same ontology, in which

events cause changes in the environment within an independently defined time structure.

Intuitively, changes in the world may be due to the direct result of named actions performed

by agents, external stimulus or the indirect result of state constraints. The Event Calculus

applies the principle of inertia, which captures the property that things tend to persist over

time unless affected by some event; when released from inertia, a fluent may have a fluctu-

ating truth value. It also uses circumscription [Lifschitz 1994] to solve the frame problem

and support default reasoning, i.e., reasoning in which a conclusion is reached based on

limited information and later retracted when new information is available.

Our account of action and knowledge is formulated within the circumscriptive linear

Discrete Event Calculus (Definition 4.1) that is extensively described in [Mueller 2006]1.
1The syntax given in [Mueller 2006] defines some additional predicates and axioms that allow for broader

domains; we restrict our consideration only to those aspects accounted for in the rest of the thesis.

4.1. Preliminaries 49

It is a discrete version of the classical Event Calculus [Miller 2002] and assumes a many-

sorted first-order language, which uses events to indicate changes in the environment, flu-

ents to denote time-varying properties and a timepoint sort, which is a subsort of the integer

number sort. A set of predicates is defined to express which fluents hold when (HoldsAt),

which events happen (Happens), what their effects are (Initiates, Terminates, Releases)

and whether a fluent is subject to the law of inertia or released from it (ReleasedAt). If a

fluent is initiated or terminated it becomes inertial at the next time instant. In the sequel,

variables of the sort event are represented by e, fluent variables by f and variables of the

timepoint sort by t, with subscripts where necessary.

Definition 4.1 (Discrete Event Calculus) The domain-independent Discrete Event Calcu-

lus axiomatization (DEC) restricts the timepoint sort to the integers and consists of the

following 8 axioms

Influence of Events on Fluents

(DEC1) Happens(e, t) ∧ Initiates(e, f , t)⇒
HoldsAt(f , t + 1)

(DEC2) Happens(e, t) ∧ Terminates(e, f , t)⇒
¬HoldsAt(f , t + 1)

(DEC3) Happens(e, t) ∧ Releases(e, f , t)⇒
ReleasedAt(f , t + 1)

(DEC4) Happens(e, t) ∧ (Initiates(e, f , t) ∨ Terminates(e, f , t))⇒
¬ReleasedAt(f , t + 1)

Inertia of HoldsAt

(DEC5) HoldsAt(f , t) ∧ ¬RealeasedAt(f , t + 1)∧
¬∃e(Happens(e, t) ∧ Terminates(e, f , t))⇒
HoldsAt(f , t + 1)

(DEC6) ¬HoldsAt(f , t) ∧ ¬RealeasedAt(f , t + 1)∧
¬∃e(Happens(e, t) ∧ Initiates(e, f , t))⇒
¬HoldsAt(f , t + 1)

Inertia of ReleasedAt

(DEC7) RealeasedAt(f , t)∧
¬∃e(Happens(e, t) ∧ (Initiates(e, f , t) ∨ Terminates(e, f , t)))⇒

50 Chapter 4. Discrete Event Calculus Knowledge Theory

ReleasedAt(f , t + 1)

(DEC8) ¬RealeasedAt(f , t) ∧ ¬∃e(Happens(e, t) ∧ Releases(e, f , t))⇒
¬ReleasedAt(f , t + 1)

�

Axioms (DEC1-4) express the influence of event occurrences on the state of fluents, axioms

(DEC5,6) enforce the commonsense law of inertia for the truth values of fluents, while

(DEC7,8) enforce inertia for the ReleasedAt() predicate. According to the axiomatization,

if a fluent has been initiated or terminated by means of an effect axiom it cannot change its

truth value indirectly (e.g., due to a state constraint), unless it is released beforehand.

It should be noted here that although the knowledge theory we develop in this thesis

is based on the discrete time variant of the Event Calculus, no particular restriction would

prevent us from using the continuous time axiomatization instead. In fact, the two for-

malisms are proved logically equivalent if the timepoint sort is restricted to the integers

([Mueller 2004]). Our choice was mainly motivated by reasons of simplicity and because

reasoners for the former formalism are widely available. Furthermore, only the timepoint

sort is restricted to the integers in the discrete time variant; other sorts may freely use the

real number sort.

A particular domain description, as will be formally defined in Section 4.4, consists of

an axiomatization describing the commonsense domain of interest, observations of world

properties at various times and a narrative of known world events. For instance, positive,

negative and release effect axioms describe the conditions under which an event e initiates,

terminates or releases a fluent f at timepoint t, respectively:

∧i[HoldsAt(fi, t)]⇒ Initiates(e, f , t)∧i[HoldsAt(fi, t)]⇒ Terminates(e, f , t)∧i[HoldsAt(fi, t)]⇒ Releases(e, f , t)

Fluents f⃗i express the set of preconditions. Even when the conjunction of preconditions

does not hold, event e may still happen, but it will not have the intended effect.

4.2. Core DECKT 51

4.2 Core DECKT

The Discrete Event Calculus Knowledge Theory (DECKT) assumes agents acting in dy-

namic, non-deterministic environments, having accurate but potentially incomplete knowl-

edge about the state of world aspects and able to perform knowledge-producing actions

[Scherl 1993], actions that cause loss of knowledge, as well as actions with context-

dependent effects. Knowledge is treated as a fluent, namely the Knows fluent, expressing

which ordinary fluents and fluent formulae are known to the agent. To employ a theory of

knowledge the Knows fluent is ruled by the knowledge (T) and the distribution (K) axioms

of modal logic, with no addition of positive or negative introspection axioms, i.e., we con-

centrate on the epistemic state of an agent about dynamically changing facts of the world.

The formulation of these axioms using Event Calculus syntax is as follows:

(T) HoldsAt(Knows(f), t)⇒ HoldsAt(f , t)

(K) HoldsAt(Knows(f1), t) ∧ HoldsAt(Knows(f1 ⇒ f2), t)⇒ HoldsAt(f2, t)

Intuitively, knowledge about a fluent is always correct and knowledge derivation is closed

under logical consequence, i.e., it is complete and consistent. Full adoption of modal

logic’s S4 or S5 axiomatic systems is desirable for studying the theoretical properties of

our knowledge theory, but not necessary for implementation purposes. In fact, certain

strong assumptions imposed by such systems, such as the necessitation rule or even the

reflexivity property, can be relaxed, sacrificing completeness for efficiency or resulting in

a theory about belief. As we see later on, these axioms need not always be explicitly

stated in the theory, rather they can be implicitly expressed by appropriately structuring the

axiomatization. Furthermore, for any fluent fi it is the case that:

(P1)
∧i[HoldsAt(Knows(fi), t)]⇔ HoldsAt(Knows(

∧i fi), t)

(P2)
∨i[HoldsAt(Knows(fi), t)]⇒ HoldsAt(Knows(

∨i fi), t)

The treatment of knowledge in our theory is based on the closed-world assumption

on knowledge, which is interpreted as follows; an agent initially possesses a collection of

sentences in its knowledge base which describes truths about the external world. Beginning

with these sentences, everything that the agent knows involves this collection, as well as

the sentences that follow logically from it. Whatever knowledge does not follow logically

from the initial collection of knowledge is regarded as lack of knowledge. As the agent

52 Chapter 4. Discrete Event Calculus Knowledge Theory

interacts with the environment and performs ordinary and sensing actions, its knowledge

base is continuously augmented by sentences asserting knowledge about the outcomes of

those actions. Thus, lack of knowledge does not only appeal to the initial state, but is also

relative to the agent’s behavior. This is characterized by Reiter as a dynamic closed-world

assumption ([Reiter 2001a], chapter 11).

As already mentioned, direct action effects, modeled as positive or negative effect ax-

ioms, cause the effect fluent to become inertial (DEC4), while indirect effects, expressed

as state constraints, assume that the effect fluent be released. In order to enable the appli-

cation of epistemic inferences for both direct and indirect action effects in an elaboration

tolerant manner, i.e., without having to write additional rules for each new axiom added to

the theory, the Knows fluent is always released from inertia in DECKT. Nevertheless, its

state is never allowed to fluctuate, rather the axiomatization ensures that knowledge about a

fluent is restricted by some state constraint at all times. To model knowledge about inertial

world aspects, the KP fluent (for "knows persistently") is introduced. In brief, direct action

effects affect the KP fluent, while indirect effects and ramifications of knowledge, owed to

state constraints, may interact with the Knows fluent explicitly.

Notation: Before proceeding with the axiomatization we specify some notational con-

ventions used for the DECKT axiomatization. Let C denote the context of a positive,

negative or release effect axiom (the set of precondition fluents), i.e. C = { f1, ..., fn},
n ≥ 0 (we omit to specify the axiom it refers to as it will be clear from the context).

Let C(t)+ be the subset of known preconditions from C at a given time instant t, i.e.,

C(t)+ = { f ∈ C|HoldsAt(Knows(f), t)}. Finally, let C(t)− = C \ C(t)+ be the set of pre-

condition fluents that the agent either does not know or knows that they do not hold at time

instant t. Consequently, C(t)+ ∩C(t)− = ∅ and C = C(t)+ ∪C(t)− for any time instant t. We

also define a number of abbreviations. A fluent f is known whether it holds iff it is known

to be true or known to be false (similarly for KPw):

(Kw) HoldsAt(Kw(f), t) ≡ HoldsAt(Knows(f), t) ∨ HoldsAt(Knows(¬ f), t)

(KPw) HoldsAt(KPw(f), t) ≡ HoldsAt(KP(f), t) ∨ HoldsAt(KP(¬ f), t)

Moreover, an event e affects or may affect a fluent f if there is some positive, negative or

release effect axiom none of whose preconditions f⃗i is known false:

(KmA) KmA f f ect(e, f , t) ≡

4.2. Core DECKT 53

KmInitiate(e, f , t) ∨ KmTerminate(e, f , t) ∨ KmRelease(e, f , t)

where

(KmI) KmInitiate(e, f , t) ≡ Initiates(e, f , t) ∧ ¬HoldsAt(Knows(
∨ fi∈C ¬ fi), t)

and similarly for KmTerminate(e, f , t) and KmRelease(e, f , t). These latter abbreviations

define epistemic predicates that do not cause any actual effect to f .

4.2.1 Axiomatization

DECKT consists of the axiom sets described below (see also Table 4.1 in Section 4.5).

Knowledge and the law of inertia.

Knowledge is released from inertia at all times.

(KT1) ReleasedAt(Knows(f), t)

Knowledge persistence.

This axiom captures the correlation between the Knows and the KP fluent, introduced as a

state constraint to the theory. KP is always subject to inertia.

(KT2) HoldsAt(KP(f), t)⇒ HoldsAt(Knows(f), t)

Events with known preconditions.

If an agent knows all preconditions of a deterministic action, then it also knows its effect.

KP(f) and KP(¬ f) cancel one another to preserve consistency.

Specifically, for a positive effect axiom
∧ fi∈C[HoldsAt(fi, t)]⇒ Initiates(e, f , t):

(KT3.1) Happens(e, t) ∧∧ fi∈C[HoldsAt(Knows(fi), t)]⇒ Initiates(e,KP(f), t)

(KT3.2) Happens(e, t) ∧∧ fi∈C[HoldsAt(Knows(fi), t)]⇒ Terminates(e,KP(¬ f), t)

Similarly, for a negative effect axiom
∧ fi∈C HoldsAt(fi, t)⇒ Terminates(e, f , t):

(KT3.3) Happens(e, t) ∧∧ fi∈C[HoldsAt(Knows(fi), t)]⇒ Initiates(e,KP(¬ f), t)

(KT3.4) Happens(e, t) ∧∧ fi∈C[HoldsAt(Knows(fi), t)]⇒ Terminates(e,KP(f), t)

54 Chapter 4. Discrete Event Calculus Knowledge Theory

Knowledge-producing (sense) events.

Sense actions provide knowledge about the truth state of fluents.

(KT4) Initiates(sense(f),KPw(f), t)

From (KT4), Kw(f) is derived, due to (KT2), (Kw). By definition, sensing actions affect

only the mental state of an agent and cause no effects on the domain. Intuitively, a sense

action is a non-deterministic binary choice; from the point of view of the agent there are

two possible outcomes and consequently epistemic states, one informing the agent that f

is true and another that it is false.

Events with uncertain effects.

If an action with deterministic effects occurs, which (a) has at least one precondition whose

truth value the agent does not know (hence, the agent does not know whether the effect

axiom is triggered), (b) there is no precondition that the agent knows it does not hold

(otherwise, the agent would have been certain that the effect axiom would not be triggered)

and (c) the agent does not already know the potential new truth value of the effect fluent,

then the agent dismisses its knowledge about the state of the effect. This is the case of

deterministic fluents with unknown preconditions. Note that we implicitly assume C , ∅;
if there are no precondition fluents, then the effect is always deterministically affected,

falling under the scope of the (KT3) axioms. Formally, for positive effect axioms:

(KT5.1)
∨ fi∈C[¬HoldsAt(Kw(fi), t)] ∧ ¬HoldsAt(Knows(

∨ fi∈C ¬ fi), t)∧
¬HoldsAt(Knows(f), t) ∧ Happens(e, t)⇒
Terminates(e,KPw(f), t)

Similarly, for negative effect axioms:

(KT5.2)
∨ fi∈C[¬HoldsAt(Kw(fi), t)] ∧ ¬HoldsAt(Knows(

∨ fi∈C ¬ fi), t)∧
¬HoldsAt(Knows(¬ f), t) ∧ Happens(e, t)⇒
Terminates(e,KPw(f), t)

Moreover, for actions with non-deterministic effects, i.e., whenever∧ fi∈C[HoldsAt(fi, t)] ⇒ Releases(e, f , t), axiom (KT5.3) below expresses that if

none of the preconditions is known not to hold (either the effect’s preconditions are

unambiguously satisfied or the agent does not know if they are satisfied; in either case

knowledge about the effect is lost), then the agent cannot infer the state of the effect:

4.2. Core DECKT 55

(KT5.3) ¬HoldsAt(Knows(
∨ fi∈C ¬ fi), t)] ∧ Happens(e, t)⇒ Terminates(e,KPw(f), t)

Knowledge minimization.

In DECKT knowledge is derived either from direct actions effects (axiom sets (KT3-6))

that affect the KP fluent or indirectly from state constraints of the form HoldsAt(ϕ1, t) ⇒
HoldsAt(ϕ2, t) that affect the Knows fluent according to (K). As knowledge about a formula

is always released from inertia, we need a way to prevent the Knows fluent from fluctuating

whenever knowledge cannot be inferred, i.e., whenever no domain state constraint is known

to be triggered to produce either HoldsAt(Knows(ϕ2), t) or HoldsAt(Knows(¬ϕ2), t). To

obtain this result, we apply a form of default reasoning, assuming that by default at any

timepoint knowledge about a fluent formula does not hold. Axiom (KT7) below performs

exactly such a minimization to the extension of the Knows fluent (in a style similar to

performing circumscription to a formula for the purpose of minimizing the extension of a

predicate).

Let ϕ1(f⃗i), ϕ2(f⃗ ′j) denote arbitrary formulae whose only free variables are fluents f⃗i, f⃗ ′j
and which do not mention epistemic fluents. Axiom (KT7) is structured as follows:

(KT7) HoldsAt(Kw(ϕ1(f⃗i)), t)⇔
∃ f ′1 , ..., f ′n(HoldsAt(Knows(ϕ2(f⃗ ′j)), t)∧

HoldsAt(Knows(ϕ2(f⃗ ′j)⇒ (¬)ϕ1(f⃗i)), t))∨
HoldsAt(KPw(ϕ1(f⃗i)), t)

where f ′1 , ..., f ′n (0 ≤ n ≤ j) are those fluents in ϕ2(f⃗ ′j) that do not appear in ϕ1(f⃗i). The

intuition is that an agent knows a formula iff there exists some state constraint known to be

triggered at that particular time instant (therefore (KT2) is also accounted for).

By grounding (KT7) to the set of available state constraints of a particular domain

axiomatization, its instantiation can significantly simplify the whole complexion and com-

plexity of the axiom. This set is well defined, still it may be modified online accord-

ing to occurring events and context. Proposition 3 in Section 7.3.1 prescribes exactly

how the axiom can be grounded to a particular domain. As an example suppose that

the only available to an agent state constraints are HoldsAt(f1, t) ⇒ HoldsAt(f , t) and

¬HoldsAt(f2, t)⇒ HoldsAt(f , t), then (KT7) for f will be formulated as follows:

HoldsAt(Kw(f), t)⇔ HoldsAt(Knows(f1 ∨ ¬ f2), t) ∨ HoldsAt(KPw(f), t)

Notice that the disjunction of the bodies of the state constraints is required to be known, not

56 Chapter 4. Discrete Event Calculus Knowledge Theory

just knowledge about the individual disjuncts: according to (P2), this is a much stronger

statement that needs to be accounted for that may lead to knowledge about f .

The following example creates a flavor of how the previously introduced axiom sets

work together to achieve commonsense behavior given a domain axiomatization:

Example 4.1. Consider a domain where a robot can open a door if it stands in front

of it. The positive effect axiom HoldsAt(f ′, t) ⇒ Initiates(e, f , t) is applied to describe

this situation, where fluent f denotes that a door is open, f ′ denotes that a robot stands

in front of that door and e is the action of pushing gently anything that stands in front

of the robot. Imagine that initially the agent only knows that the door is closed, i.e.,

HoldsAt(KP(¬ f), 0) (or HoldsAt(Knows(¬ f), 0) due to (KT2)). If Happens(e, 0), the

robot will lose its knowledge about f at t=1, due to (KT5.1). Instead, if it first senses its

position with regard to the door, i.e., Happens(sense(f ′), 0) ∧ Happens(e, 1), then (KT4)

will provide definite knowledge whether the robot stands in front of the door or not at t=1

and, if it does then the agent will also know the state of the door at t=2, due to (KT3.1,2),

i.e., HoldsAt(Kw(f ′), 1) ∧ HoldsAt(Kw(f), 2). �

4.3 Hidden Causal Dependencies

The DECKT axiomatization presented so far enables the derivation of sound knowledge

about context-dependent effects of actions, even when the conditions are unknown. Nev-

ertheless, these epistemic inferences are not complete in certain situations, as compared

to the possible worlds specifications. Completeness breaks down in situations that are not

always apparent in the immediate epistemic state after an action execution, but may be de-

tected in future timepoints. Such situations emerge when the effect or action preconditions

are unknown to the agent. Consider the following example:

Example 4.2. Continuing from Example 4.1, assume now that the agent is unaware of

both f ′ and f initially. Its epistemic state is illustrated in Figure 4.1 after different action

occurrences2. Sensing f ′ at t = 0 leads to two sets of two possible worlds depending on

the truth value of f ′; either s′11a, s
′1
2a where f ′ becomes known to be true and f remains

2We adopt a schematic representation to illustrate the set of worlds (or states) that an agent considers

possible at a particular time instant, according to the possible-worlds approach. Recall that a fluent is known

if it has the same truth value in all possible worlds. Below the dashed line the known to the agent formulae

are shown and in certain cases fluents that are unknown are displayed for emphasis. Each possible world s is

4.3. Hidden Causal Dependencies 57

Figure 4.1: Action e initiates fluent f if f ′ holds.

unknown, or s′11b, s
′1
2b where f ′ becomes known to be false and f remains unknown. On the

other hand, if the agent executes action e before sensing f ′ three possible worlds remain

at t = 1. Sensing f ′ after that will not affect its epistemic state concerning the individual

fluents that will again be the same as when sensing f ′ at t = 0. Notice, though, that now

there is only one world at the contingency resulting from f ′ being true, namely world s2
1a.

This means that although in the general case the agent does not know for sure whether f

holds at t = 2, in the particular situation where f ′ was true initially, the agent has sufficient

information to also infer that f is known to be true as well (if it finds out that it was standing

in front of the door then it can infer that the door is open after the action). In other words,

although we cannot claim that f is known at t = 2 after the two-action narrative, we should

still express the fact that if f ′ were known to hold then f would also be known to hold. �

What the previous example reveals is the inherent ability of the possible worlds ap-

proach to incorporate information that is not always evident on the agent’s epistemic state,

but may appear at future timepoints as the number of possible worlds changes. In exam-

ple 4.2 a dependency between f and f ′ is implicitly created after e; knowing f ′ results

in knowing f as well. We name such an implicit dependency hidden causal dependency

(HCD) and represent it as a disjunction (knowledge about disjunctions of fluents), rather

characterized by a serial number (subscript) and the timepoint that it refers to (superscript). If there are two

alternative sets of possible worlds, for instance after a sense action, they are also declared in the subscript and

are schematically separated by a dotted line.

58 Chapter 4. Discrete Event Calculus Knowledge Theory

than an implication. HCDs are primarily caused by the execution of actions with unknown

preconditions, therefore most approaches that dispensed the use of possible worlds choose

to restrict the expressiveness of the underlying action theory to either context-complete

domains, i.e., when the context of occurring actions is completely known at the time of

execution, or context-free domains.

Instead, in DECKT we integrate an approach to deal with such dependencies.

We model the epistemic constraint that a HCD expresses as epistemic disjunctions of

fluents and define a set of axioms that determine how the agent should treat these

clauses of disjunctive knowledge. For instance, in example 4.2 at t = 2 the fact that

HoldsAt(Knows(f ′ ⇒ f), 2) which is implicitly inferred, can be represented by writing

HoldsAt(KP(¬ f ′∨ f), 2). The disjunctive knowledge encodes a notion of epistemic causal-

ity in the sense that if future knowledge brings about f ′ (resp. ¬ f) it also brings about f

(resp. ¬ f ′).

Notice that we use the auxiliary KP fluent to capture this type of temporal knowl-

edge. This way we can manipulate any disjunctive knowledge in a uniform manner, as

described in the following subsections3. In the sequel we study the procedure of reason-

ing with HCDs; considerations will be given as to when they are created, when they are

destroyed and what knowledge should be preserved when an HCD is destroyed. Knowl-

edge preservation, in particular, is of critical importance, as HCDs may be involved in

complicated interactions, potentially producing knowledge about other fluents. It is crucial

to understand that although HCDs denote temporary implication relations, the knowledge

that they produce is accurate and may be subject to inertia; actions affecting fluents of a

HCD may destroy the dependency, but will not affect any information that might have been

produced. This is the main difference between HCDs and domain state constraints, which

have permanent validity and any change in the state of fluents involved in the body of the

constraint will definitely affect its head. The former characterize how the state of the world

has evolved at a particular time instant, while the latter how it should be at all times.

4.3.1 Creation of HCDs

Whenever an action with a context-dependent effect occurs, with preconditions unknown

to the agent then a HCD is created. For brevity, we assume in the rest that no action affects
3This study develops a more general approach than the one proposed in [Patkos 2009a], dismissing com-

pletely the Implies fluent introduced there to exclusively characterize HCDs.

4.3. Hidden Causal Dependencies 59

Figure 4.2: Event e initiates the previously known to be false fluent f , under the condition

that f ′ holds.

the preconditions at the same time, except, of course, if one of the effect’s precondition is

the effect fluent itself. We distinguish the following situations.

4.3.1.1 Positive effect axioms:
∧i[HoldsAt(fi, t)]⇒ Initiates(e, f , t)

If an action with a positive effect occurs none precondition of which is known to be false,

yet some are unknown to the agent, and the effect is not already known to be true, then a

HCD is created between the unknown preconditions and the effect:

(KT6.1.1) ¬HoldsAt(Knows(f), t)∧
¬HoldsAt(Knows(

∨ fi∈C ¬ fi), t) ∧
∨ fi∈C[¬HoldsAt(Kw(fi), t)]⇒

Initiates(e,KP(f ∨∨ f j∈C(t)− ¬ f j), t)

In other words, we augment the theory with a disjunctive knowledge formula that, consid-

ering axiom (KT2), is equivalent to HoldsAt(Knows(
∧ f j∈C(t)− f j ⇒ f), t + 1) but is more

conveniently handled. See, for instance, Example 4.2 above. At timepoint t = 1, after the

execution of e (KT6.1.1) is triggered to produce HoldsAt(KP(¬ f ′ ∨ f), 1) which results in

HoldsAt(Knows(f ′ ⇒ f), 1). Notice also that the conditions that trigger axiom (KT6.1.1)

also trigger (KT5.1); this way, although the latter leads to loss of knowledge concerning

the state of the effect, the former delimits this loss according to the occurring action.

Example 4.3. Consider now the case illustrated in Figure 4.2. Now the agent knows

initially that the effect does not hold before the action, e.g., that the door is closed. This

has as a result that after the action execution, the door is open if and only if the robot had

been standing in front of the door at t = 0. In other words, at t = 1 we have that (f ′ ⇔ f),

i.e., in addition to the HCD between ¬ f ′ and f , another one is created between f ′ and ¬ f .

60 Chapter 4. Discrete Event Calculus Knowledge Theory

Notice how this is confirmed by the possible worlds approach as even fewer worlds remain

at the resulting state. �

From the latter example it becomes evident that a HCD is also created between an

effect fluent and its unknown preconditions when an action initiates that effect, given that

the agent knew that the effect did not hold before the action. For instance, by sensing that

a door, which was known to be closed, has become open after performing the PushGently

action, the robot can infer that it must have been standing in front of the door, i.e., the

action’s preconditions must be true:

(KT6.1.2) HoldsAt(Knows(¬ f), t)∧
¬HoldsAt(Knows(

∨ fi∈C ¬ fi), t) ∧
∨ fi∈C[¬HoldsAt(Kw(fi), t)]⇒∧ f j∈C(t)− Initiates(e,KP(¬ f ∨ f j), t)

As before, instead of augmenting the theory with
∧ f j∈C(t)−[HoldsAt(Knows(f ⇒ f j), t +

1)], we write
∧ f j∈C(t)−[HoldsAt(Knows(¬ f ∨ f j), t + 1)]. Axiom (KT6.1.2) is triggered

along with (KT6.1.1), resulting in the creation of an epistemic biimplication relation among

the preconditions and the effect fluent. Returning to example 4.3, these two axioms model

exactly the agent’s epistemic state after the action execution, namely that the agent knows

that f is true iff f ′ is true4.

4.3.1.2 Negative effect axioms:
∧i[HoldsAt(fi, t)]⇒ Terminates(e, f , t)

The situation is similar for negative effect axioms with the difference that instead of f the

HCDs are created for ¬ f .

(KT6.1.3) ¬HoldsAt(Knows(¬ f), t)∧
4At this point it is appropriate to comment on the structuring of formulae for HCDs in the general case. In

this study we implicitly assume one effect axiom per effect fluent in order to facilitate readability of the HCD

formulae. In the general case, there might be multiple effect axioms with different contexts. In this case, a

HCD is created if none of the precondition sets is completely known (otherwise, there is no point in creating

the HCD) and there is at least one set where some precondition is unknown while no precondition in the same

set is known to be false. One HCD is created for each such set between its unknown preconditions and the

effect. In addition, if the effect is known not to hold, one more HCD is created comprising the effect and the

disjunction of the conjunction of each set’s unknown preconditions. By gathering all effect axioms of the same

fluent into one axiom with preconditions expressed in DNF, the previous analysis becomes more clear. Still,

we avoid this generalization by the simplifying assumption.

4.3. Hidden Causal Dependencies 61

¬HoldsAt(Knows(
∨ fi∈C ¬ fi), t) ∧

∨ fi∈C[¬HoldsAt(Kw(fi), t)]⇒
Initiates(e,KP(¬ f ∨∨ f j∈C(t)− ¬ f j), t)

(KT6.1.4) HoldsAt(Knows(f), t)∧
¬HoldsAt(Knows(

∨ fi∈C ¬ fi), t) ∧
∨ fi∈C[¬HoldsAt(Kw(fi), t)]⇒∧ f j∈C(t)− Initiates(e,KP(f ∨ f j), t)

Example 4.4. Let the negative effect axiom HoldsAt(f1, t) ∧ HoldsAt(f2, t) ⇒
Terminates(e, f , t) and imagine that an agent knows initially that f , f1 hold but does

not know whether f2 holds, i.e., HoldsAt(Knows(f), 0) ∧ HoldsAt(Knows(f1), 0) ∧
¬HoldsAt(Kw(f2), 0). In this case, C = { f1, f2}, while C(0)− = { f2}. After

Happens(e, 0) both (KT6.1.3,4) will be triggered resulting in HoldsAt(KP(¬ f2∨¬ f), 1)∧
HoldsAt(KP(f ∨ f2), 1), which is equivalent to HoldsAt(Knows(f2 ⇔ ¬ f), 1). �

4.3.1.3 Release axioms:
∧i[HoldsAt(fi, t)]⇒ Releases(e, f , t)

It is trivial to see that in the case of non-deterministic effects a HCD is only created if

the agent has prior knowledge about the effects. Specifically, only if it initially knows f ’s

truth value and at some future time after the action it senses that some preconditions do not

hold, then this knowledge should be preserved (or, in other words, only if it senses that the

previously known effect fluent has changed its truth value will the agent be certain that the

preconditions must have been true):

(KT6.1.5) HoldsAt(Knows((¬) f), t)∧
¬HoldsAt(Knows(

∨ fi∈C ¬ fi), t) ∧
∨ fi∈C[¬HoldsAt(Kw(fi), t)]⇒∧ f j∈C(t)− Initiates(e,KP((¬) f ∨ f j), t)

4.3.1.4 Trigger axioms:
∧i[HoldsAt(fi, t)]⇒ Happens(e, t)

A trigger axiom causes an event to occur whenever the world is at a particular state. The

event may have different effects described by positive, negative or release axioms. There-

fore, we can expect e’s preconditions to be added to the effect preconditions and treat the

creation of HCDs in the way described in the previous subsections. Note though that, as

we explain in Section 6.2, whenever the preconditions of a trigger action are unknown to

the agent, instead of e a new action is executed, called epot (potential e) causing the effect

to become unknown.

62 Chapter 4. Discrete Event Calculus Knowledge Theory

Figure 4.3: Event e initiates f1, resulting to the expiration of the HCD.

4.3.2 Expiration of HCDs

In contrast to state constraints that introduce implication relations that must be satisfied

at all times, HCDs are valid only for limited time periods, as they are created due to the

agent’s given epistemic state. Specifically, the dependency is valid for as long as the in-

volved fluents remain unaffected by occurring events; if some event may modify them the

dependency may expire (still, some knowledge can be preserved depending on the situa-

tion, as we see later on).

Example 4.5. Let an event e such that Initiates(e, f1, t) and let an agent knowing

initially a HCD expressing that HoldsAt(Knows(f1 ∨ f2 ∨ f3), 0) (Figure 4.3). After the

execution of action e, the agent’s epistemic state dictates that f1 is known to be true and

moreover the HCD expires, since the remaining possible worlds cannot support any epis-

temic inferences concerning fluents f2 and f3. This should come as no surprise, since by

modifying any unknown fluent of a disjunction, the agent cannot be certain if this was the

one to contribute to its truthfulness. �

4.3.2.1 HCD Termination

If an event occurs that affects or may affect any of the fluents involved in a HCD then this

HCD is no longer valid:

(KT6.2.1) HoldsAt(KP(
∨d fd), t) ∧ Happens(e, t) ∧∨d[KmA f f ect(e, fd, t)]⇒

4.3. Hidden Causal Dependencies 63

Terminates(e,KP(
∨d fd), t)

4.3.2.2 HCD Reduction

Although all fluents of a newly created HCD are unknown to the agent, some of them

may become known either through sensing or indirectly due to state constraints, as time

progresses (direct fluent modification would trigger (KT6.2.1), leading to the termination of

the HCD). Let D denote the set of fluents involved in an HCD and D′(t) denote those fluents

that are not directly known at t. For instance, suppose HoldsAt(KP(
∨d fd), t) then D =

{ f1, .., fd} and D′(t) = { f ∈ D|¬HoldsAt(KPw(f), t)}. This set is critical for the DECKT

axiomatization as it captures knowledge that may change in an implicit manner. To see why

imagine that at some timepoint t we have a HCD stating that HoldsAt(Knows(f1 ∨ f2), t)

and also HoldsAt(KP(¬ f1), t). This means that ¬ f1 is known explicitly and f2 is known

indirectly, i.e., D = { f1, f2} and D′(t) = { f2}. If an event e affects f2 at timepoint t, the HCD

will expire at t + 1, still knowledge about f1 will remain since the KP fluent is inertial. On

the other hand, if an event e′ affects f1 the HCD will expire, but knowledge about f2 will

be lost, as there will be no other rule to support it. This is inappropriate, therefore we need

to acknowledge the existence of the D′(t) set and treat its fluents with special care.

Depending on the type of action and the related context there are situations where al-

though an HCD becomes invalidated there may still be knowledge that should be preserved.

Specifically, if before the action the agent knows that the fluent that may be affected does

not hold, then this fluent did not contribute to the HCD in the first place, therefore the re-

maining unknown components of the disjunction should create a new HCD, assuming of

course that none of them is concurrently affected:

(KT6.2.2) HoldsAt(KP(
∨d fd), t) ∧ Happens(e, t)∧∨d[KmA f f ect(e, fd, t) ∧ HoldsAt(Knows(¬ fd), t)]∧

¬∃e′(Happens(e′, t) ∧∨d[KmA f f ect(e, fd, t) ∧ ¬HoldsAt(Kw(fd), t)])⇒
Initiates(e,KP(

∨ f ′d∈D
′(t) f ′d), t)

That is, if an action affects or may affect a fluent of a disjunction that is known to be false,

then the remaining components of the disjunction form a new HCD.

Example 4.6. Slightly modifying Example 4.5 above, imagine that now the agent

initially knows that f1 does not hold (Figure 4.4). The agent is aware that f1 does not

64 Chapter 4. Discrete Event Calculus Knowledge Theory

Figure 4.4: Event e initiates fluent f .

contribute to the HCD, therefore after an event e destroys the HCD, a new dependency is

created between the remaining unknown fluents. This case is treated by axiom (KT6.2.2).

�

4.3.2.3 HCD Expansion

Notice now the particular situation where a context-dependent event occurs, the precondi-

tions of which are unknown to the agent and its effect is part of an HCD. In this case, the

agent cannot be certain whether the HCD has been affected by the event or not, as this de-

pends on the truth value of the preconditions. In fact, the HCD becomes contingent on the

set of precondition fluents; if the preconditions prove to be false, the original HCD should

still be applicable, otherwise it must be invalidated, according to the previous analysis. In

order to handle this situation we need to dismiss the original HCD, based on (KT6.2.1), but

in addition to create a new one that also incorporates the negation of the action’s unknown

preconditions. As a result, by obtaining knowledge about the preconditions (through sens-

ing for instance) the agent can distinguish whether the original dependency should persist

or not.

Example 4.7. Let actions e1, e2 such that HoldsAt(f1, t) ⇒ Initiates(e1, f , t) and

HoldsAt(f2, t) ⇒ Initiates(e2, f1, t). Let also an agent that initially knows none of f ,

f1, f2. As shown in Figure 4.5, after executing action e1 at t = 0 and e2 at t = 1, the

agent still does not have knowledge about any of the involved fluents, despite the fact

that the number of possible worlds has been reduced. More specifically, after execution

of e1 fluent f becomes contingent on its precondition f1, due to (KT6.1.1). Therefore,

we have that HoldsAt(Knows(f1 ⇒ f), 1). For the same reason, after e2, we have that

HoldsAt(Knows(f2 ⇒ f1), 2). But now, the implication relation between f and f1 becomes

4.3. Hidden Causal Dependencies 65

Figure 4.5: Event e1 initiates fluent f if f1 holds, while e2 initiates f1 if f2 holds.

Figure 4.6: Event e terminates f given that f holds before the event’s execution.

contingent on f2. If f2 holds, the execution of e2 affects f1. If it does not hold, e2 will not

have the intended effect, i.e., f1 will not be altered, and the original dependency should

remain valid. �

It becomes clear that the unknown preconditions of a context-dependent effect should

result in the expansion of any HCD that includes that effect. Before modeling this situation

though, one must notice an important contingency: the agent uses these preconditions to

determine whether the original HCD should be applicable or not; what if this distinction

cannot be made? Such a situation may be, for instance, the result of an action occurrence

that leads to a world state where the precondition fluents have the same truth value regard-

less of the world state before the action.

Example 4.8. Imagine the effect axiom HoldsAt(f , t) ⇒ Terminates(e, f , t) (eg. the

action of closing a door if it is open) and an agent knowing initially (f ∨ f1), where f1

66 Chapter 4. Discrete Event Calculus Knowledge Theory

an arbitrary fluent, without knowing any of these fluents individually (Figure 4.6). After

the execution of action e fluent f will not hold regardless of its previous state: if initially

HoldsAt(f , t) the effect axiom will be triggered resulting in ¬HoldsAt(f , t + 1); on the

other hand, if ¬HoldsAt(f , t) the effect axiom will not be triggered and ¬HoldsAt(f , t + 1)

will again emerge due to inertia (the door will be closed after the action). Since f may be

affected by e the original HCD must be abandoned, still no expanded HCD is created as

the truth value of f cannot be used to distinguish the different contingencies. Nevertheless,

notice that in such a setting the agent should know that ¬HoldsAt(f , t+1), which is indeed

derived by the axiomatization, due to (KT6.1.3): HoldsAt(Knows(¬ f ∨ ¬ f), t + 1). �

Considering the above discussion, we can now formalize the appropriate axiomatiza-

tion for HCD expansion. First, we introduce the following abbreviation stating that a fluent

may become inverted by an occurring event:

(INV) KmInverted(f , t) ≡
∃e(Happens(e, t) ∧ (E f f ectPredicate(e, f , t) ∨ KmRelease(e, f , t)))

where, for a fluent literal f and its corresponding atom F, E f f ectPredicate(e, f , t) denotes

KmTerminate(e, F, t) when f = F, and KmInitiate(e, F, t) when f = ¬F. Notice that

the KmInverted predicate is completely independent of the truth value that a fluent may

have at any time instant. For example, for an effect axiom of the form HoldsAt(f1, t) ⇒
Initiates(e, f , t) we are interested whether KmInverted(f1, t) is true, while for the axiom

¬HoldsAt(f1, t)⇒ Initiates(e, f ′, t) we should seek whether KmInverted(¬ f1, t) holds.

Hence, for any action e that initiates, terminates or releases a fluent of a HCD, if some

of its preconditions are unknown to the agent, i.e., C(t)− , ∅, and the unknown precondi-

tions f⃗ j of the effect fluent are not or may not be inverted, then a new HCD is created that

considers all the components of the original HCD along with the unknown preconditions

of e’s effect axiom:

(KT6.2.3) HoldsAt(KP(
∨d fd), t) ∧ Happens(e, t)∧∨d[KmA f f ect(e, fd, t) ∧ ¬HoldsAt(Kw(fd), t)]∧

¬HoldsAt(Knows(
∨ fi∈C ¬ fi), t) ∧ ¬(

∧ fi∈C(t)−[KmInverted(fi, t)])⇒∧ fi∈C(t)−[Initiates(e,KP(fi ∨
∨ f ′d∈D

′(t) f ′d), t)]

Intuitively, since any HCD represents an epistemic implication relation, axiom (KT6.2.3)

4.3. Hidden Causal Dependencies 67

creates a nested implication relation with head the original HCD and body the negated

unknown preconditions of the effect axiom that may affect that HCD.

Example 4.7. (cont’d) After event e2 occurs, the HCD between f and f1 expires, due

to (KT6.2.1), still a new one is being created (or more accurately, the old HCD becomes

contingent on f2), due to (KT6.2.3). This results in HoldsAt(Knows(f2∨¬ f1∨ f), 2) (more

clearly HoldsAt(Knows(¬ f2 ⇒ (f1 ⇒ f)), 2)). �

Example 4.8. (cont’d) On the other hand, for the HCD (f ∨ f1) of this example, all con-

ditions in the body of (KT6.2.3) are satisfied at t, except one: it holds that KmInverted(f , t),

due to the effect axiom. Therefore, no expanded HCD is created (the original HCD expires

though, due to (KT6.2.1)). �

Yet another more general example is the following.

Example 4.9. Let HoldsAt(f1, t) ⇒ Initiates(e, f2, t) and HoldsAt(f1, t) ⇒
Terminates(e′, f2, t) and initially HoldsAt(Knows(¬ f2 ∨ f1), 0) but neither f1 nor f2 are

known.

If Happens(e, 0) we get:

HoldsAt(Knows(¬ f1 ∨ f2), 1) due to (KT6.1.1) and

HoldsAt(Knows(f1 ∨ ¬ f2 ∨ f1), 1) due to (KT6.2.3) because f1 is unknown and the origi-

nal HCD becomes dependent on it. The formulae are equivalent to HoldsAt(Knows(f2 ⇔
f1), 1).

If Happens(e′, 0) occurred instead, then similarly we get:

HoldsAt(Knows(¬ f1 ∨ ¬ f2), 1) due to (KT6.1.3) and

HoldsAt(Knows(f1 ∨ ¬ f2 ∨ f1), 1) due to (KT6.2.3). These formulae are equivalent to

HoldsAt(Knows(¬ f2), 1), i.e., the agent knows that f2 will not hold regardless of f1’s state.

�

4.3.2.4 Transitivity

Finally, we also need to consider the transitivity property of implication relations. When-

ever an agent knows that f1 implies f2 and f2 implies f3 there is an implicit relation stating

that also f1 implies f3. If an action happens that affects f2 the two original HCDs will ex-

pire due to (KT6.2.1), still the relation between f1 and f3 that has been established should

persist. This is formalized in the following axiom:

68 Chapter 4. Discrete Event Calculus Knowledge Theory

(KT6.2.4) HoldsAt(Knows(f ∨ (
∨i fi)), t) ∧ HoldsAt(Knows(¬ f ∨ (

∨ j f j)), t)∧
Happens(e, t) ∧ KmA f f ect(e, f , t)⇒
Initiates(e,KP(

∨ fi′∈D′(t) fi ∨
∨ f j′∈D′(t) f j), t)

4.3.2.5 Application of the HCD Axiomatization

The following example is illustrative of the axiomatization’s potential in broad domains,

combining HCDs with general epistemic disjunctions treated as HCDs.

Example 4.10. Let HoldsAt(f1, t) ⇒ Initiates(e, f2, t) and HoldsAt(f3, t) ⇒
Terminates(e, f4, t) and initially HoldsAt(KP(f1 ∨ f3), 0), but no single fluent is known

whether it holds. After Happens(e, 0) both effect axioms might be triggered, still the agent

cannot know which. Therefore, although none effect is known to hold, their disjunction is

known. Specifically:

HoldsAt(Knows(¬ f1 ∨ f2), 1), due to (KT6.1.1) and (KT2),

HoldsAt(Knows(¬ f3 ∨ ¬ f4), 1), due to (KT6.1.3) and (KT2),

as well as HoldsAt(Knows(f1 ∨ f3), 1), due to inertia.

From these formulae HoldsAt(Knows(f2 ∨ ¬ f4), 1) is also inferred as a derivation.

Imagine now that an event e′ occurs at t=1 that terminates f1 (uncondition-

ally). Then, at t=2 all HCDs that include f1 will expire. Specifically, we have that

¬HoldsAt(Knows(f1∨ f3), 2), due to (KT6.2.1), as well as ¬HoldsAt(Knows(¬ f1∨ f2), 2),

for the same reason. Here is the tricky part. At this point, knowledge about (f2∨¬ f4) is not

supported by any rule and could get lost, which would be an incorrect result, as this is estab-

lished knowledge and no event affected it. Axiom (KT6.2.4) avoids the inconvenience by

retaining the correlation among the remaining fluents. In particular, from the expired HCDs

that included f1 and ¬ f1, it obtains HoldsAt(Knows(f3∨ f2), 2). From this formula and the

fact that HoldsAt(Knows(¬ f3∨¬ f4), 2) due to inertia, again HoldsAt(Knows(f2∨¬ f4), 2)

can be inferred. �

4.4 Formal Definition of Epistemic Domain Descriptions

We now formally define an epistemic domain description to represent both domain knowl-

edge and also the agent’s mental state. First, we extend the standard Event Calculus signa-

ture describing the commonsense domain to also accommodate the notion of knowledge.

4.4. Formal Definition of Epistemic Domain Descriptions 69

Definition 4.2 (Event Calculus Epistemic Axiomatization) We define an Event Calculus

axiomatization with knowledge and sensing actions taking the form5

D = E ∪ M ∪ Ξ ∪ Σ ∪ ∆2 ∪ Θ ∪Ω ∪ Ψ

where

1. E is a conjunction of domain independent Event Calculus axioms, such as (DEC1-8)

2. M is a conjunction of

• knowledge axioms, resulting from the properties of the Knows relation, and

• the necessitation rule, if required6

3. Ξ is the conjunction of the foundational axioms of the Discrete Event Calculus

Knowledge Theory introduced in this chapter, as well as axioms for trigger axioms

that are introduced in subsequent chapters, as extensions of the basic theory. The set

Ξ comprises Ξ1, which is the conjunction of (KT3-6) knowledge axioms and (TR3)

for the effects of potential actions, Ξ2 denoting the conjunction of (KT1,2,7) axioms,

and Ξ3 for the (TR1,2) axioms on potential action occurrences.

4. Σ is a conjunction of

• positive effect axioms, i.e.,
∧i HoldsAt(fi, t)⇒ Initiates(e, f , t)

• negative effect axioms, i.e.,
∧i HoldsAt(fi, t)⇒ Terminates(e, f , t)

• release axioms, i.e.,
∧i HoldsAt(fi, t)⇒ Releases(e, f , t)

• positive cumulative/canceling effect axioms, i.e.,
∧i HoldsAt(fi, t)∧∧ j(¬)Happens(e j, t)⇒ Initiates(e, f , t)

• negative cumulative/canceling effect axioms, i.e.,
∧i HoldsAt(fi, t)∧∧ j(¬)Happens(e j, t)⇒ Terminates(e, f , t)

• effect constraints, i.e.,
∧i HoldsAt(fi, t) ∧ π1(e, f1, t)⇒ π2(e, f2, t),

where π1, π2 = Initiates or Terminates predicates

5. ∆2 is a conjunction of

• trigger axioms, i.e.,
∧i HoldsAt(fi, t)⇒ Happens(e, t)

5We extend the original notation from [Mueller 2006].
6 "If a formula is a theorem, then so is knowledge about that formula".

70 Chapter 4. Discrete Event Calculus Knowledge Theory

• disjunctive event axioms, i.e., Happens(e, t)⇒ ∨i Happens(ei, t)

6. Θ is a conjunction of cancellation axioms containing predicates Ab1, ..., Abn of the

form
∧i HoldsAt(fi, t)⇒ Ab j(..., t)

7. Ω is a conjunction of unique names axioms

8. Ψ is a conjunction of

• state constraints, i.e.,
∧i HoldsAt(fi, t) or∧i HoldsAt(fi, t)⇒ HoldsAt(f j, t) or

∧i HoldsAt(fi, t)⇔
∧ j HoldsAt(f j, t)

• action precondition axioms, i.e., Happens(e, t)⇒ ∧i HoldsAt(fi, t) and

• event occurrence constraints, i.e., Happens(e1, t) ∧
∧i HoldsAt(fi, t)⇒

(¬)Happens(e2, t) �

The M set employs an axiomatic system similar to a corresponding epistemic modal

logic system. Since we talk about a theory of knowledge, the knowledge axiom in M is

a minimal requirement. Moreover, the set Ξ of axioms prescribes how knowledge should

evolve according to a given observation and narrative and, also, introduces the new type

of knowledge-producing actions as mapping a fluent expression to a knowledge-producing

action. The set of cancellation axioms Θ is used to provide a solution to the qualification

problem.

At this point it is appropriate to consider more carefully the behavior and syntactic

form of sensing actions and expressions. We have already mentioned that a sense action

affects only the agent’s state of knowledge. In particular, we define a sensing action as an

action that causes no changes in the state of the world, but only affects epistemic fluents.

Of course, in a real world system a sensing action may indeed have side-effects on the en-

vironment, thus, one may argue that it is reasonable to allow for sensing actions to produce

changes in the state of ordinary fluents, especially when sensing is interpreted as commu-

nicating information between agents. Still, we can get around these situations by prop-

erly handling side-effects as preconditions of sensing actions, requiring non-knowledge-

producing actions to establish the appropriate conditions for the sense action to occur.

Furthermore, we need to carefully restrict the permissible syntactic form of the fluent

expressions that a sense action may consider. Specifically, for the formal specification of

sense actions, we require that they concern expressions without free variables that contain

4.5. Summary 71

only ordinary relational fluent atoms, and not the Knows fluent. In other words, an agent

can sense sentences about the external world, but not truths about its own knowledge, as

also pointed out in [Reiter 2001b].

Definition 4.3 (Epistemic domain description) Given an axiomatization D, an Event

Calculus epistemic domain description Φ is constructed as follows

CIRC[Σ ∧ Ξ1; Initiates,Terminates,Releases]∧

CIRC[∆1 ∧ ∆2 ∧ Ξ3; Happens]∧

CIRC[Θ; Ab1, ..., Abn] ∧ E ∧ M ∧ Ξ2 ∧Ω ∧ Ψ ∧ Γ1 ∧ Γ2

where

1. ∆1 is the narrative, consisting of a conjunction of

• event occurrence formulae, i.e., Happens(e, t) and

• temporal ordering formulae, i.e., conjunction of timepoint comparisons, such

as t1 ≤ t2, t1 = t2, t1 , t2 etc.

2. Γ1 and Γ2 are the observations, consisting of a conjunction of formulae of the form

HoldsAt(f , t) or ReleasedAt(f , t). Γ1 is the set of (objective) sentences describing

the state of the world being axiomatized, while Γ2 is the set of (subjective) sentences

describing the state of knowledge of the agent. �

That is, the domain description is given by the parallel circumscription (denoted as

CIRC) of the basic predicates, along with the observations of world properties at vari-

ous times. More specifically, fluent expressions in Γ2 consist of sentences of the form

HoldsAt(Knows(f ′), t) or HoldsAt(KP(f ′), t), where f ′ are objective fluent terms. The Γ2

database consists exclusively of sentences declaring what the agent knows about the world

it inhabits, but there are no sentences declaring what it knows about what it knows and so

forth. In a real-world implementation, the set of observations may begin with subjective

sentences only, and Γ1 will be populated by the logical consequences of Γ2.

4.5 Summary

Table 4.1 below summarizes the full DECKT axiomatization for commonsense reason-

ing in dynamic and uncertain domains with actions having context-dependent effects. Ax-

ioms (KT1,2,4,7) introduce the necessary epistemic notions for supporting reasoning about

72 Chapter 4. Discrete Event Calculus Knowledge Theory

knowledge, while the rest extend a domain theory with a set of meta-axioms for distinguish-

ing what is true in the world and what an agent knows to be true. In particular, the (KT3)

and (KT5) sets concentrate on epistemic inferences that can be made about the effect, con-

sidering the available knowledge an agent has about the context. The (KT6) set axiomatizes

the life-cycle of HCDs, i.e., which conditions justify their creation and expiration and what

knowledge must be preserved when actions affect fluents involved in an HCD.

In a nutshell, the procedure of reasoning about knowledge evolves as follows (see also

the examples given in Chapter 7): for any deterministic action with no preconditions or

when the agent knows all preconditions, (KT3.1) and (KT3.2) or (KT3.3) and (KT3.4) are

triggered and knowledge persists until some other event changes it. If the agent happens

not to know at least one precondition while, at the same time, there is no precondition that

it knows it does not hold, then it cannot be certain about the action’s effects, the action is

considered non-deterministic and (KT5.1) or (KT5.2) are triggered. At the same time, a

causal dependency is create between the unknown preconditions and the effect, according

to (KT6.1) axioms. This dependency may interact with other similar relations facilitating

epistemic derivations and resulting potentially in definite knowledge about other fluents

(see Example 7.1.2 about Shanahan’s circuit as an illustrative use case). The dependency

is valid until some event directly changes any of the involved fluents through (KT6.2.1),

still leading to the creation of new dependencies that may either be reduced (KT6.2.2),

expanded (KT6.2.3) or interlaced due to their transitive nature (KT6.2.3). Finally, for ordi-

nary non-deterministic actions, axiom (KT5.3) is applied.

When deterministic effects occur, the KP fluent determines the agent’s state of knowl-

edge by means of the (KT2) axiom. In addition, knowledge can also be inferred using

state constraints. If, however, knowledge about a fluent formula can neither be directly

established nor indirectly, then axiom (KT7) that defines the necessary and sufficient con-

dition for knowledge to hold, dictates the agent’s lack of knowledge about this formula.

Any change in the agent’s KB may cause knowledge to be gained. In subsequent chapters

we also investigate extensions of the theory to accommodate the potential triggering of

physical actions and the ability for an agent to sense continuously changing world aspects,

leading to the construction of a framework that enables the creation of agents that can not

only remember but also forget.

4.5. Summary 73

Table 4.1: DECKT Axiomatization Overview
Name Axiom Description

Knowledge and Inertia (KT1)
Knowledge is always released (but con-

strained).

Knowledge Persistence (KT2)
Knowledge about inertial world aspects is per-

sistent.

Knowledge Minimiza-

tion
(KT7)

A fluent is known if and only if there is direct

or indirect evidence to justify this knowledge.

Knowledge Producing

Actions
(KT4) Sensing Inertial Parameters.

Meta-axioms

Known Preconditions

(KT3.1)
Positive Effect Axioms

(KT3.2)

(KT3.3)
Negative Effect Axioms

(KT3.4)

Hidden Causal Dependencies

Creation

(KT6.1.1)
Positive Effect Axioms

(KT6.1.2)

(KT6.1.3)
Negative Effect Axioms

(KT6.1.4)

(KT6.1.5) Release Axioms

Termination (KT6.2.1) A fluent of a HCD is/may be altered.

Preservation (KT6.2.2)
A fluent of a HCD, known not to contribute,

is/may be altered.

Expansion (KT6.2.3)

A fluent of a HCD may be altered by an event,

whose preconditions are unknown at t, and it

is not inverted at (t+1).

Transitivity (KT6.2.4) A fluent of transitive HCDs is/may be altered.

Chapter 5

Property Analysis

Contents
5.1 A Possible Worlds-based Theory for the Event Calculus 76

5.1.1 Branching Discrete Event Calculus 76

5.1.2 Branching Time Event Calculus Knowledge Theory 77

5.2 Correctness Properties . 79

5.3 Complexity Analysis . 82

5.3.1 On Event Calculus Query Processing 82

5.3.2 Classic Event Calculus Without Knowledge 84

5.3.3 Possible Worlds Approach . 86

5.3.4 DECKT Approach . 87

5.3.5 Discussion of Results . 89

5.3.6 General Complexity Results for the Event Calculus 91

5.4 A Note on Decidability Issues . 94

The knowledge theory we developed in the previous chapter adopts an alternative rep-

resentation for knowledge, dismissing completely the use of the accessibility relation over

possible worlds. Although the latter approach enables the creation of highly expressive

epistemic frameworks, it suffers serious computational inefficiencies raising concerns about

the applicability in real-world implementations. In this chapter we study the correspon-

dence of our theory with the standard possible worlds semantics and prove correctness

results. In order to show that the fluent formulae known are the same in both approaches

after any sequence of actions, we construct a knowledge theory for the Event Calculus

that is based on the possible worlds semantics and provide the means to achieve logical

equivalence.

76 Chapter 5. Property Analysis

An evaluation of the two epistemic approaches is also provided in terms of compu-

tational complexity. Since the main objective of DECKT has been to enable epistemic

reasoning in a way that resembles ordinary non-epistemic reasoning, we present in this

chapter both a complexity analysis of different fragments of the Event Calculus, as well as

an elaboration of the worst and the more realistic situation that specify the computational

effort of model checking tasks. Finally, decidability issues of first-order action theories in

general are discussed. This chapter intends among others to enable the reader to draw a

clearer picture on the issues that DECKT and other similar theories need to face in order to

be implemented in practice.

5.1 A Possible Worlds-based Theory for the Event Calculus

To prove correctness of the DECKT treatment of knowledge in terms of standard possible

worlds semantics we need to show its correspondence to a theory that utilizes the latter

approach. Yet, no such theory existed for the Event Calculus. Moreover, the classical

Event Calculus is based on a linear time representation, where parallel worlds cannot be

imitated. Therefore, in the following sections we construct a knowledge theory that is based

on the recently developed branching discrete Event Calculus (BDEC) [Mueller 2007b] and

study equivalence with DECKT.

5.1.1 Branching Discrete Event Calculus

The branching discrete Event Calculus (BDEC) is a modified version of the linear discrete

Event Calculus (LDEC); in fact, the two formalisms are proved logically equivalent when

appropriately restricted, as we see in Section 5.2. BDEC replaces the timepoint sort with

the sort of situations, lifting the requirement that every situation must have a unique suc-

cessor state. This way, it maintains all properties of the classical Event Calculus, such as

the law of inertia and the ability to reason about a multitude of commonsense phenom-

ena of action and change, but also gains advantages due to the branching time structure,

supporting, for instance, hypothetical reasoning.

The transition from LDEC to BDEC is done by adding an extra argument to predicates

Happens, Releases, Initiates and Terminates specifying the successor situation and also

by introducing the relation S (s1, s2) to express that situation s2 is a successor of s1. We

5.1. A Possible Worlds-based Theory for the Event Calculus 77

take S 0 to denote the initial situation. BDEC’s axiomatization shares the same set of ax-

ioms with LDEC (see Section 4.1.2), with the addition of the notion of situations and a

second order induction axiom similar to the one for the Situation Calculus [Reiter 1993].

Specifically, in addition to the 8 original axioms, where the timepoint sort is replaced by

situations, the new formalism’s axiomatization, also includes:

(BDEC1) ¬S (s, S 0)

(BDEC2) S (s1, s) ∧ S (s2, s)⇒ s1 = s2

(BDEC3) ∀P((P(S 0) ∧ ∀s1, s2(S (s1, s2) ∧ P(s1)⇒ P(s2)))⇒ ∀sP(s))

(BDEC12) HappensB(e, s1, s2)⇒ S (s1, s2)

The first three are generalized Peano axioms, allowing each situation to have one or more

successors. The remaining (BDEC4-11) axioms are trivially formulated from LDEC; for

instance axiom (DEC5) is transformed into:

(BDEC4) S (s1, s2) ∧ HoldsAt(f , s1) ∧ ¬RealeasedAtB(f , s2)∧
¬∃e(HappensB(e, s1, s2) ∧ TerminatesB(e, f , s1, s2))⇒
HoldsAt(f , s2)

5.1.2 Branching Time Event Calculus Knowledge Theory

The Branching Event Calculus Knowledge Theory (BDECKT) that we develop follows

on from Moore’s [Moore 1985] formalization of possible world semantics in action theo-

ries, where the number of K-accessible worlds remains unchanged upon ordinary event

occurrences and reduces as appropriate when sense actions occur. Similar to Scherl

and Levesque’s approach for the Situation Calculus [Scherl 2003], BDECKT generalizes

BDEC in that there is no single initial situation in the tree of alternative situations, but

rather a forest of trees each with its own initial situation. Note, also, that for reasons that

will become clear in the next section, we dismiss non-deterministic effects and only allow

for events with unknown preconditions to occur; although release effect axioms are still

included, we implicitly assume that whenever a known fluent becomes released it remains

known, subject to some state constraint.

To axiomatize knowledge in BDECKT we introduce the predicate K(s′, s) denoting

that world (or situation) s′ is accessible from s. The theory proceeds as follows:

78 Chapter 5. Property Analysis

Figure 5.1: Worlds accessible by the successor situation after (a) ordinary or (b) sense

actions.

Knowledge Definition

(BKT1) HoldsAt(KnowsB(f), s) ≡
∀s′K(s′, s)⇒ HoldsAt(f , s′)

(BKT2) K(s′1, s1)⇒
∃s2, s′2(HappensB(e, s1, s2)⇔ HappensB(e, s′1, s

′
2))

(BKT3) InitiatesB(e, f , s1, s2)⇔ InitiatesB(e, f , s′1, s
′
2)

(BKT4) TerminatesB(e, f , s1, s2)⇔ TerminatesB(e, f , s′1, s
′
2)

(BKT1) is the standard definition for knowledge according to the possible worlds seman-

tics; a fluent is known iff it has the same truth value in all worlds considered possible.

Axiom (BKT2) states that the same event happens in all K-related situations, while axioms

(BKT3) and (BKT4) require for an event to have the same effect, regardless of the situation

it occurs in.

Ordinary events

When an ordinary event occurs in a situation, then all successor situations of the K-related

to it situations (and only them) are K-related to its successor (see Figure 5.1(a), where ver-

tical arrows denote successor situations after event occurrences, while horizontal double-

lined arrows denote situations accessible by the originating situation).

(BKT5) HappensB(e, s1, s2)⇒
(K(s′2, s2)⇔ ∃s′1(S (s′1, s

′
2) ∧ K(s′1, s1)))

Knowledge-producing (sense) events

The action of sensing a fluent ensures that it will be known in the successor situation, i.e.,

it will have the same truth value in all possible worlds (Figure 5.1(b)).

5.2. Correctness Properties 79

Figure 5.2: Relation between the action formalisms and their epistemic extensions under

different bridging sets of axioms.

(BKT6) HappensB(sense(f), s1, s2)⇒
(K(s′2, s2)⇔ ∃s′1(S (s′1, s

′
2) ∧ K(s′1, s1) ∧ (HoldsAt(f , s1)⇔ HoldsAt(f , s′1))))

5.2 Correctness Properties

The DECKT axiomatization is based on the linear Event Calculus that treats knowledge as

a fluent and uses a set of axioms to determine the way this epistemic fluent changes its truth

value as a result of event occurrences and the knowledge already obtained about relevant

context. BDECKT on the other hand is based on a branching time version of the Event

Calculus where knowledge is understood as reasoning about the accessibility relation over

possible situations. Mueller has established a set L of mapping rules between the underly-

ing linear and branching versions of the Event Calculus that we use in our knowledge the-

ories and proved that these two versions can be logically equivalent [Mueller 2007b]. Our

objective in this section is to show that knowledge evolves the same way in both DECKT

and BDECKT, i.e., the set of known formulae is the same after a sequence of actions.

The set L, defined by Mueller, comprises the following axioms, where S L(s1) denotes

the successor situation of s1 in LDEC:

(L1) S (s1, s2)⇔ S L(s1) = s2

80 Chapter 5. Property Analysis

(L2) HappensB(e, s1, s2)⇔ (Happens(e, s1) ∧ S L(s1) = s2)

(L3) InitiatesB(e, f , s1, s2)⇔ Initiates(e, f , s1)

(L4) TerminatesB(e, f , s1, s2)⇔ Terminates(e, f , s1)

(L5) ReleasesB(e, f , s1, s2)⇔ Releases(e, f , s1)

This set restricts BDEC to a linear past, i.e., only one branch at a time can have an equiva-

lent linear axiomatization, which introduces an important limitation to our attempt to relate

DECKT and BDECKT; non-determinism due to release effect axioms cannot be supported,

as it requires new worlds to emerge from a single one. The result is that (BDEC ∧ L) is

logically equivalent to (LDEC ∧ L) (Figure 5.2). Based on this corollary established by

Mueller, our intension now is to show that the two knowledge theories manipulate knowl-

edge change the same way (in contrast to the underlying theories, whose equivalence is

based on an one-to-one mapping of all their axioms). In particular, we concentrate on

proving logical equivalence between axiom sets (KT3,4,5,6) and (BKT5,6) and define a set

M that serves as a bridge between DECKT and BDECKT for that purpose:

(M1) HoldsAt(Knows(f), s)⇔ HoldsAt(KnowsB(f), s)

(M2) S L(s1) = s2 ⇒ (K(s′2, s2)⇒ ∃s′1(S (s′1, s
′
2) ∧ K(s′1, s1)))

(NR) If ⊢ HoldsAt(ϕ, t), then ⊢ HoldsAt(Knows(ϕ), t)

Axiom (M2) relates event occurrences in DECKT with BDECKT’s accessibility relation.

Specifically, it disallows a world to be K-related to worlds other than those whose prece-

dents were K-related to its own precedent (apart from the initial state, of course, which has

no precedent). In other words, it prohibits unexpected world appearances and averts worlds

to be accessibly related to others that belong to future or past situations (Figure 5.3)1. The

necessitation rule (NR) is produced as a side-effect in BDECKT, due to the definition of

knowledge, therefore we need to explicitly include it in the M set in order to accomplish

equivalence.

We can now prove that the conjunction of DECKT, BDEC, LDEC, L and M can provide

all BDECKT epistemic derivations leading to completeness with respect to the possible

worlds semantics and respectively, the conjunction of BDECKT, BDEC, LDEC, L and M

can provide all DECKT epistemic derivations resulting in soundness of DECKT inferences

1The inverse of (M2) is not necessarily true, as it would require for all worlds (s1) that are K-related to the

same world (s′1) to have the same successor (s2)

5.2. Correctness Properties 81

Figure 5.3: Axiom M2 constraints the accessibility relation among situations permissible

by Moore’s formulation of possible worlds in action theories.

(Figure 5.2). For our equivalence results we will use a number of lemmas. The proofs for

the lemmas and theorems that appear in this section are provided in Appendix A.1.

Lemma 1. DECKT ∧ (BKT1 − 4) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (BKT5)

Lemma 2. DECKT ∧ (BKT1 − 4) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (BKT6)

Using Lemmas 1 and 2 we can conclude in the following theorem:

Theorem 1. (Completeness) The DECKT axiomatization produces all BDECKT epistemic

derivations.

Lemma 3. BDECKT ∧ (KT1, 2, 7) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢(KT3.1) ∧ (KT3.2)∧
(KT3.3) ∧ (KT3.4)

Lemma 4. BDECKT ∧ (KT1, 2, 7) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (KT4)

Lemma 5. BDECKT ∧ (KT1, 2, 7) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (KT5.1) ∧ (KT5.2)

Lemma 6. BDECKT ∧ (KT1, 2, 7) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (KT6)

Using Lemmas 3 to 6 we can conclude in the following theorem:

Theorem 2. (Soundness) All epistemic derivations produced by the DECKT axiomatization

are also produced by BDECKT.

As a result, from Theorems 1 and 2 we have established the following corollary

Corollary 1 After any ground sequence of actions with deterministic effects but with po-

tentially unknown preconditions, a fluent formula ϕ is known whether it holds in DECKT

if and only if it is known whether it holds in BDECKT, under the bridging set of axioms L

and M.

82 Chapter 5. Property Analysis

5.3 Complexity Analysis

One characteristic feature of the possible worlds approach is that by reducing the number

of worlds it obtains information about fluents and their temporal relations (see for example

Fig. 4.5). The main disadvantage, though, is the high computational costs, as it requires

a vast number of fluents to be stored and one reasoning task to be performed for each

world after every action. DECKT provides the same information in an alternative way

significantly reducing computational effort: instead of inferring the relations among fluents

from the number of worlds that remain after an action, the DECKT axiomatization follows

the opposite direction by applying a provably correct and complete way to create, maintain

and destroy the relations, progressing a single world. The efficiency of manipulating fluent

dependencies explicitly rather than by means of preserving multiple world instances stems

from the fact that these dependencies are modeled as ordinary fluents and fall under the

influence of classic Event Calculus reasoning.

In this section we provide an analysis of the computational complexity of DECKT

for the process of deriving knowledge formulae and compare it with the standard possible

worlds specifications. A consideration of the worst case scenario, as well as of the more

realistic situation is provided. In addition, since knowledge within DECKT is treated as an

ordinary fluent, we also elaborate on the different complexity classes of the Event Calculus

for general model checking tasks.

5.3.1 On Event Calculus Query Processing

So far we have shown that DECKT can be equivalent in the treatment of knowledge with

possible worlds-based theories; we now show that it is also more suitable for practical

implementations. The objective is to study the complexity of checking whether a fluent or

fluent formula holds after the occurrence of an event sequence in total chronological order,

given a domain theory comprising a fixed set of context-dependent effect axioms and a set

of implication rules (either in the form of state constraints or in the form of HCDs).

We can split the reasoning process for each action into two sub-processes that take

place in two successive stages (Fig. 5.4); first, direct action effects to fluents, specified by

the effect axioms, are determined and then inferences based on the implication rules are

derived. During the first stage, changes to the truth value of fluents refer to the successor

5.3. Complexity Analysis 83

Figure 5.4: Reasoning process with the Event Calculus

timepoint exclusively, therefore cannot affect the preconditions of other effect axioms (no

cycling triggering). Implication rules, on the other hand, implement classical logic infer-

ence. For each of the sub-processes worst case complexity is given by the complexity of

checking whether P∪Din |= F , where P denotes the program (effect axioms or implication

rules, respectively), Din the input database (truth values and inertia state of fluents, as well

as occurring events, i.e., HoldsAt(), ReleasedAt() and Happens() predicates, respectively)

and F a ground set of fluents that constitute the query that needs to be answered in order to

progress reasoning to the next stage. In particular, for all timepoints before the final we are

only interested in atomic fluents that may act as preconditions. For the final timepoint we

could instead seek for deriving whether a formula of ground atoms holds.

Regarding the second inference stage, we note that in order to perform all derivations

from the set of rules, we can apply standard techniques from classical logic inference, such

as resolution. To preserve generality of results, we denote the complexity of this stage as

O(INFS C) or O(INFHCD), based on whether the rules that form program P involve only

the domain state constraints or both state constraints and HCDs, respectively. We revert to

this complexity in Section 5.3.5 below.

Notice that we concentrate our complexity analysis on a reasoning task that is com-

monly met in implementations of epistemic frameworks. In particular, we study update

time reasoning for processing events as they arrive, evaluating operational conditions of

cognitive agents that acquire information and react to changes at execution time. A more

general complexity analysis of reasoning with the Event Calculus under different classes of

expressiveness is provided in Section 5.3.6, where both query time and update time reason-

ing is considered, the narrative of events is not totally ordered and apart from timepoints,

also the determination of time intervals is required. Our primary objective here is to com-

pare the two basic epistemic approaches, namely possible worlds and DECKT, and reveal

their main performance factors under a set of generic assumptions.

84 Chapter 5. Property Analysis

5.3.2 Classic Event Calculus Without Knowledge

We attempt a worst-case complexity analysis of reasoning with the Event Calculus fol-

lowing a simple, yet complete, consideration of the steps involved; typically the complex-

ity can be significantly reduced in practice applying dedicated structures, such as caching

mechanisms or indexes, still we are primarily interested here in creating a reference point

for comparing the two epistemic approaches, as already mentioned. Assuming that all

HoldsAt() predicates are stored as facts in the database that needs to be progressed or

queried, the size of Din for a domain of n fluents is O(n) (similarly for the ReleasedAt()

predicates). Whenever a fluent becomes released but not constrained by some state con-

straint, two or more different KBs need to be maintained to preserve complementary truth

values (the same holds true for disjunctive fluent expressions). Thus, when non-inertial

fluents are involved, in the worse case 2n KBs need to be progressed individually, resulting

in O(n ∗ 2n−1) as the total data size that needs to be stored (a fluent may hold only in half

of the 2n KBs). The query answering process for the Event Calculus can progress based on

the following algorithm:

Algorithm 5.1: For each event ei that occurs at ti and for each individual KB

1. Retrieve all effect axioms for ei:
∧ j[HoldsAt(f j, t)] ⇒ π(ei, f ′, t)?, where π =

Initiates or Terminates or Releases

The objective is to determine which preconditions to search for in step 2. This in-

formation is known at design time and can be modeled as a predetermined set for

each action. Therefore we assume constant time, regardless of the type of action, the

number of effect axioms or the size of the domain.

2. Query the KB for the truth value of the precondition fluents of ei:∧ j[HoldsAt(f j, ti)]?

The intension is to determine which axioms are going to be triggered, i.e., which

effect fluents will change their truth value. The problem of query answering on (un-

typed) ground facts (without rules) reduces to the problem of unifying the query with

the facts, which is O(n), where n is the size of the KB. For instance, Datalog has been

proved to be P-compete to the size of Din, if we keep P fixed (for a variable logic

program P, Datalog is DEXPTIME) [Immerman 1986]. Thus, this step takes linear

time.

5.3. Complexity Analysis 85

3. Determine which fluents are inertial: ¬Released(f , t)?

Inertial fluents that have not been affected by ei in step 2, i.e., they are neither re-

leased nor the event releases them, need to maintain their truth value in the successor

timepoint. As before, the cost of the query is O(n), given that each fluent may either

be released or not. Notice that a fluent may become released in a context-dependent

manner, therefore all KBs need to be queried.

4. Assert in the KB the new truth values of fluents.

As the new truth values refer to the successor timepoint, this step does not involve

any update on existing facts, rather an assertion of facts to an empty KB. Therefore

we assume that it does not contribute to the general complexity of reasoning with the

Event Calculus, rather it takes constant time, regardless of the number of assertions,

as it refers to the entire domain of n fluents.

5. Use state constraints to infer all indirect effects and new models.

This step is characterized by the complexity of S C ∪ Din |= F, i.e., O(INFS C), with

the objective of determining the truth value of those atomic fluents that are released

from the law of inertia (assume r in total), still are ruled by state constraints . Din here

refers to the (n − r) fluents that are subject to the law of inertia (those that have been

affected by ei, as well as those that are transferred unaltered to the next timepoint due

to inertia). Multiple models may be produced owed to the unconstrained released

fluents, i.e., non-inertial fluents that are subject to no state constraint, and are added

to the existing set of KBs.

Summarizing, the complexity of reasoning with the Event Calculus given a sequence

of e actions is characterized by O(e ∗ 2n ∗ (2 ∗ n+ INFS C))2. The fact that query answering

has linear complexity to the number of events has also been proved in [Paschke 2006], for

a restricted class of domains that does not involve the releasing of fluents from the law

of inertia. Following the intuition of Algorithm 5.1 it becomes trivial to reformulate the

2More accurately, as we have mention before, when all n fluents are released the overall size of the 2n KBs

(thus, the total number of accesses to them) will be n ∗ 2n−1 (each fluent will be true in half of the KBs). As a

result, the upper bound for the complexity of progressing a potentially non-deterministic domain of n fluents

given a sequence of e actions in chronological order cannot exceed O(e∗ (n∗2n−1+n∗2n+2n ∗ INFS C)). There

are further similar optimizations that can be identified in Algorithm 5.1, still we are mostly concerned here in

the comparison of the two epistemic approaches, rather than the accurate determination of the complexity of

the classical Event Calculus.

86 Chapter 5. Property Analysis

complexity when no state constraints (step 5) or non-determinism (step 3) are employed in

the domain axiomatization. For the latter case in particular, no exponential number of KBs

need to be maintained, as there will always be a single successor model after each action.

5.3.3 Possible Worlds Approach

According to the possible-worlds specifications, the accessibility relation K is used to de-

termine which worlds can be considered possible from a given situation. Based on the

properties of this relation, knowledge of a formula is understood as the formula having the

same truth value in all possible worlds (axiom (BKT1)). Apart from the potentially differ-

ent truth values of fluents, all worlds are considered to be identical from the standpoint of

the reasoning agent when they are employed to model a particular domain, meaning that

a state constraint is valid in all worlds, an action has always the same context-dependent

effects etc. In general, this definition of knowledge introduces an exponential number of

worlds in which to check truth of a formula, in the number of fluents. More precisely, the

following proposition draws the detailed picture.

Proposition 1. (Model checking of possible worlds) For a domain with n fluents, checking

whether a conjunction of m of them is known requires, at worse, 2n−m worlds to consider if

the conjunction turns out to be known and 2n−m + 1 worlds if it turns out to be unknown.

Checking whether a disjunction of m fluents is known requires, at worse, 2n − 2n−m worlds

to consider if the disjunction turns out to be known and 2n − 2n−m + 1 worlds if it turns out

to be unknown.

For a domain of n fluents, determining all known formulae requires, at worse, 2n worlds to

consider. �

The number of possible worlds depends on the number of unknown fluents, i.e., in a

domain of n fluents, u of which being unknown, we need to store at worse 2u possible

worlds, where u ≤ n. One reasoning task needs to be performed for each of these worlds,

since the same effect axioms of a given domain theory may give rise to different conclusions

in each world. As such, the total size of the KBs of fluents that needs to be maintained at

each timepoint is O(u ∗ 2u−1 + (n− u) ∗ 2u) (in the worst case, an unknown fluent may hold

at most in half of the total 2u worlds, whereas known fluents hold in all of them) or equally

O((2 ∗ n − u) ∗ 2u−1).

Domain without state constraints and non-deterministic events: Steps 3 and 5 of

5.3. Complexity Analysis 87

Algorithm 5.1 can be disregarded as all fluents are inertial. Given a sequence of e actions,

the complexity of query answering whether a conjunctive (resp. disjunctive) formula of m

fluents is known (m being among the initially unknown fluents, m ≤ u) is O(e ∗ 2u ∗ n +

2u−m ∗ n) (resp. O(e ∗ 2u ∗ n + (2u − 2u−m) ∗ n)), as we first need to progress all possible

worlds and then issue a query with cost O(n) to a subset of them3.

Domain with state constraints: The logical inference using as Din the domain fluents

and P the fixed set of state constraints needs to be performed for each possible world.

Thus, following the same analysis as before, the complexity for conjunctive queries is

O(e ∗ 2u ∗ (n + INFS C) + 2u−m ∗ n) (resp. O(e ∗ 2u ∗ (n + INFS C) + (2u − 2u−m) ∗ n) for

disjunctive queries). Notice that even in this simple case where no releasing of fluents may

occur an exponential number of KBs need to be progressed (the same holds true for the

previous case, as well). Instead, the underlying non-epistemic Event Calculus without the

releasing of fluents would have complexity O(e ∗ (2 ∗ n + INFS C)) as only a single KB

would have to be maintained.

Non-deterministic domains: Now step 3 needs to be considered and the complexity

of progression -without the query- becomes O(e ∗ 2u ∗ (2 ∗ n + INFS C)). Additionally,

notice that each fluent that becomes released from the law of inertia causes the number of

possible worlds to double, i.e., u increases by one. As a result, both the size of the KB and

the reasoning effort increase significantly (in the particular situation where the releasing is

context-dependent, then only the worlds where the preconditions hold will be duplicated,

and not the complete set of worlds). Furthermore, as we argue in the sequel, one should

expect that u ≃ n even in the real-world case.

5.3.4 DECKT Approach

DECKT performs one reasoning task using the new axiomatization’s effect axioms and

replaces every atomic domain fluent with the corresponding KP and Knows epistemic

fluents. The former are always subject to inertia and the latter are always released, therefore

step 3 can be disregarded altogether, along with the need to preserve multiple versions of

3Notice that in this case the number of unknown parameters u either remains constant or decreases. It would

be more accurate to capture the change in possible worlds as follows: for the sequence of actions e1, ..., ei the

progression of KBs has cost O(n ∗∑i+1
j=1 2u j), where u j denotes the number of unknown fluents before action e j.

To facilitate readability, we introduce the exponential worst case in our results, which after all acts as an upper

bound.

88 Chapter 5. Property Analysis

KBs for released fluents (the Knows fluents never fluctuate). Furthermore, disjunctive

epistemic expressions are preserved in this single KB without the need to be broken apart,

since all appropriate derivations are reached by means of HCDs. The size of Din for the

first sub-process (step 2) is equal to that of reasoning without knowledge, as we only search

through those Knows fluents that refer to atomic domain fluents. The difference now is that

each domain effect axiom is replaced by 5 new ones: 2 due to (KT3), 1 due to (KT5) and

2 due to (KT6.1). Nevertheless, as with the non-epistemic theory, all we need to query

in order to progress the KB after an action has occurred are the precondition fluents (plus

the effect fluent for some of the axioms). Therefore, as before, the complexity of that step

is O(n), since a single predefined query to a domain of n fluents suffices to provide the

necessary knowledge for all DECKT’s effect axioms mentioned above.

Apart from the epistemic effect axioms, DECKT also introduces axioms for handling

HCDs (KT6.2-4). Since HCDs are treated as ordinary inertial fluents (they are modeled

in terms of the KP fluent), they fall under the influence of traditional Event Calculus in-

ference. For these axioms the necessary knowledge that needs to be obtained is whether

some HCD that incorporates the effect fluent is among the HCDs stored in the KB, whose

size increases as the agent performs actions with unknown preconditions. Let d denote

the number of KP fluents that represent HCDs, then the complexity of querying the KB is

O(d), where d ≤ 2n.

Domain without state constraints and non-deterministic events: HCDs are used to

infer additional knowledge about interrelated fluents and therefore it is possible to produce

knowledge about atomic fluents as well, if combined (see Ex. 4.9). Still, whenever state

constraints are not supported by the theory, the axiomatization allows the HCD-based in-

ference task to be executed only at the timepoint when a query is placed, i.e., after the

sequence of actions. This holds true because axiom (KT6.2.2) can be disregarded, as any

fluent within HCDs will stay unknown and only direct effects may change its value. Con-

sequently, we can transfer incomplete results in favor of efficiency (more HCDs without

considering their correlation) and only study their inference at query time.

Consequently, the complexity of reasoning with DECKT without state constraints is

O(e ∗ (n + d) + INFHCD), where O(INFHCD) is the complexity of logical inference with P

being the program of HCDs, i.e., HCD∪Din |= F. The input is the atomic inertial fluents as

usual, reified in the Knows fluent. Notice that the final inference task can refer only to the

desirable query, therefore the above complexity is also the complexity of query answering;

5.3. Complexity Analysis 89

no extra query to the KB is needed.

Domain with state constraints: When state constraints are incorporated, axiom

(KT6.2.2) cannot be disregarded as before. Due to its dependence on indirect knowledge

effects, the inference task cannot be transferred to the end of the reasoning process, instead

it needs to be executed after every single action. Moreover, it can no longer refer to the

query formula only, but rather to all atomic fluents as they may play the role of precondi-

tions for the successor action. As a result, at the end of the reasoning process we need to

issue a query to the KB of atomic fluents. The complexity of query answering with state

constraints is O(e ∗ (n + d + INFHCD) + n).

We should also remark that the complexity O(INFHCD) is related to the number and

length of HCDs, as we explain later on, that may change from timepoint to timepoint as

events create new HCDs and destroy others. For matters of clarity, instead of introducing

the sum of each different inference task in the previous complexity result for a sequence of

e actions, we implicitly take the most demanding complexity, which would dominate the

general complexity, whatsoever.

Non-deterministic domains: The treatment of non-determinism introduces no addi-

tional complexity to the axiomatization. The KP fluent is always subject to inertia and

whenever a domain fluent is released, its corresponding KP fluents become false according

to axiom (KT3.5). This also means that even when the domain requires reasoning with

the full Event Calculus axiomatization that incorporates the Releases predicate, epistemic

reasoning with DECKT still requires the reduced version without the releasing of fluents.

This computational profit is also reflected on the complexity results between DECKT and

the non-epistemic Event Calculus, as no exponential number of KBs are maintained.

5.3.5 Discussion of Results

We can see that the dominant factor in the complexity of reasoning with possible worlds is

the number u of unknown world aspects. In the worse case u = n resulting in exponential

complexity to the size of the domain; unfortunately, even in real-world implementations

u ≃ n, as we should expect that in large-scale dynamic domains much more world aspects

would be unknown to the reasoning agent than known at any given time instant. Further-

more, since in practice the query formula that needs to be evaluated is often orders of

90 Chapter 5. Property Analysis

magnitude smaller in size than the domain itself [Cervesato 2000], i.e., (n ≫ m), query

answering of either conjunctive or disjunctive formulae is impractical (see Proposition 1).

With DECKT, on the other hand, it is the number of extra fluents capturing HCDs that

dominates the complexity. In fact, although at worst case it can be that d = 2n this is a

less likely contingency to expect in practice: it would mean that the agent has interacted

with all world aspects having no knowledge about all preconditions or that state constraints

that capture interrelated fluents embody the entire domain (so called dominos domains

[Son 2005] which lead to chaotic environments are not commonly met in practice). More-

over, HCDs fall under the agent’s control; even for long-lived agents that perform hundreds

of actions, the HCDs constitute a guide as to which sense actions can provide knowledge

about the largest set of interrelated fluents, thus enabling the agent to manage the size of

HCDs according to available resources.

Apparently, the number and length of HCDs also affects the inference task. Still, the

transition from O(INFS C) to O(INFHCD) has polynomial cost; the complexity of most

inference procedures, such as resolution, is linearly affected when increasing the number

of implication rules, given that the size of the domain remains constant (in Appendix A.3

we construct a custom algorithm to substantiates this result). Finally, one should notice

that even in the worst case one reasoning task needs to be performed for each action.

Specifically, the dominant factor d does not influence the entire reasoning process, as is

the case of 2u possible worlds, significantly reducing the overall complexity. This stems

from the fact that only a single KB -with potentially more fluents- is progressed for each

action, rather than a variable number of KBs that are required when reasoning with possible

worlds.

To summarize, from the computational standpoint the previous analysis creates a flavor

of how demanding model checking of knowledge formulae can be using the possible worlds

specifications and the DECKT theory:

• In the worst case, possible worlds require an exponential number of reasoning tasks

in the size of the domain (n) applying the full Event Calculus, whereas DECKT

performs a single reasoning task on exponentially many fluents applying a reduced

version of the Event Calculus that does not involve the Releases() predicate, thus

permitting only a single KB to be maintained at all timepoints.

5.3. Complexity Analysis 91

• The main source of computational effort in possible worlds resides in lack of knowl-

edge; the most demanding task is to check formulae that turn out to be known (since

all worlds need to be evaluated) in a relatively unknown environment. Unluckily,

this is also the most common case.

DECKT, on the other hand, is mainly affected by state constraints and HCDs. The

most demanding task is to check the truth value of a query when all fluents of a

domain turn out to be interrelated. Still, this is not the common case in real-world

domains, where in order to answer a query we might have to check (m + k) atomic

fluents, where m is the length of the query, k the fluents involved in related state con-

straints with (n ≫ m, k).

Even the number of HCDs cannot grow indefinitely. In Appendix A.4 we show that

the number of distinct state constraints, i.e., the constraints that do not interact with

each other to produce explicit truth about the involved fluents, is bounded by a num-

ber that is exponential in the worse case to the size of the domain.

• Based on our assumptions about realistic domains, model checking with DECKT can

exhibit relatively low complexity, proportional to that of reasoning without epistemic

notions, still maintaining full expressive power of a knowledge theory. Most alter-

native approaches, on the other hand, restrict expressiveness and require that knowl-

edge about disjunctions be decomposed into the individual components. Yet, even if

the theory were restricted to domains where all decompositions are sound, it can deal

with much more expressive commonsense phenomena compared to alternative ap-

proaches, such as non-deterministic effects and trigger events, non-context-complete

theories and can also model time-dependent, potentially delayed, knowledge effects.

5.3.6 General Complexity Results for the Event Calculus

It has already become clear that a substantial computational effort when reasoning with

DECKT is owed to the expressiveness of the underlying Event Calculus formalism. Con-

sidering the multitude of different dialects and extensions of the Event Calculus that have

been proposed in the past we briefly review in this subsection relevant results keeping

track of the different variants. In contrast to the aforementioned analysis, these studies as-

sume the number of fluents constant and focus on the number of events for non-epistemic

domains, motivated by the need to investigate the applicability of a domain theory to prac-

92 Chapter 5. Property Analysis

Figure 5.5: Event Calculus languages of different expressiveness and their complexity

classes (source: [Cervesato 2000]).

tical implementations, where the set of event occurrences can grow arbitrarily, but the set of

relevant properties that provide a characterization of the application domain remains fixed.

Focusing on the basic Event Calculus principles, as given in [Kowalski 1986], ini-

tial considerations evaluated reasoning with a set of events, whose occurrences have the

effect of initiating and terminating the validity of determined fluents. The works of

[Chittaro 1996] and [Cervesato 2000] evaluated the task of deriving maximal validity in-

tervals (MVI) over which a fluent holds uninterruptedly, given a possibly incomplete de-

scription of when events take place and which fluents they affect. This can reasonably be

considered as a model checking problem of establishing whether a formula ϕ holds or not

given an initial knowledge state, where data complexity is characterized by the number n of

occurring events and query complexity is characterized by the size k of the input formula,

i.e., the number of logical operators occurring in ϕ4.

Classes of different expressiveness for the Event Calculus have been studied for query

time reasoning and are presented in Figure 5.5. Specifically, the figure visualizes the results

for the different sublanguages based on whether model checking is trackable or not, where

4Notice that now letters n and k denote different sorts with respect to the previous subsections; we preserve

the original notation of the the work of Cervasato et al.

5.3. Complexity Analysis 93

in the positive case the polynomial upper bound is also provided, otherwise the complexity

class of where each sublanguage belongs to is given. The prefixing of the string "EC"

with any subsequence of the letters Q, C, M and P stands for the inclusion of quantifiers,

connectives, modalities and preconditions, respectively. Modalities in particular are not

commonly used in recent literature, therefore are not further explained here. Finally, BH

denotes the length of the longest path in the (acyclic) dependency graph of fluents for any

sublanguage with preconditions, where edges denote precondition-effect relations among

fluents. The two cubes in the upper part of the figure display the relation between the

different sublanguages, while the ones in the bottom relate them isomorphically to their

complexity classes. Summarizing the findings, we can see that:

• Model checking in the basic Event Calculus (EC), as well as in its extensions with

logical connectives for boolean combinations (CEC), with quantification over events

(QEC) or with preconditions on the effects of events (PEC) are polynomial-time

bound. The same holds true for the extensions that combine preconditions with

logical connectives (CPEC) and preconditions with quantifiers (QPEC).

• Model checking in each of the more expressive extensions that result from their

combinations is PSPACE-complete.

• The (deterministic) time complexity of the model checking procedure is exponential

in the query complexity (length of query formula) for the more expressive sublan-

guages QCEC and QCPEC.

Apart from the classical approach of performing query time temporal reasoning, where

the set of MVIs for a given property are computed based on expensive generate-and-test

strategies, a cached implementation of the Event Calculus (CEC) has also been proposed

in [Chittaro 1996] that extends the classical calculus with a MVI generation and storage

mechanism. According to this approach, MVIs are cached for later use in query processing

and possibly updated when new events are entered in the KB. It is shown that the cost

of querying about sets of MVIs for a given property is linear in the number of events for

that property and more importantly it does not change when context dependency is added.

Specifically, the complexity of query in CEC is linear in the number of n of events, whereas

update processing is shown to be O(nk+3), where k denotes the length of the longest path in

the graph of context-dependent properties.

94 Chapter 5. Property Analysis

More recently, Paschke studied an optimized and much simpler formulation of the

basic Event Calculus without the releasing of fluents, as well as an interval-based Event

Calculus variation and showed linear worst-case complexity in the number of events in the

case of absolute times and total ordering [Paschke 2006]. No preconditions were incorpo-

rated, though. Furthermore, the work in [Dimopoulos 2004] considers ramifications. The

complexity analysis presented in this study is carried out within the language E, which is

based on the Event Calculus ontology, and describes its relation to the logic programming

approach of Answer Set Programming (ASP) [Lifschitz 1999]. Dimopoulos et al. con-

firm the polynomial complexity of a deterministic theory without ramifications, but also

show that deciding whether an E theory with a complete initial state and ramifications has

a model is NP-hard. This is due to the fact that ramifications may cause a theory to have

more than one model. Nevertheless, one should also note the key observation of the authors

that in many classes of theories "reasoning is easier than in the general case"; indeed, in

many domains ramifications can be completely replaced by effect axioms (with the price

of sacrificing entirely the elaboration tolerant nature of the domain axiomatization). The

theories developed by Paschke are an example of such implementations.

To conclude, we have to highlight the prominent result that reasoning with the Event

Calculus can be polynomial in the number of events for many domains that present realistic

formulations. In Section 7.3 we discuss efficient implementations of the Event Calculus, as

well as its relation to Answer Set Programming, which is a recent essential achievement. It

enables research in the field of reasoning with the Event Calculus to take advantage of the

highly efficient ASP solvers that provide both faster and more expressive reasoning with

respect to existing tools.

5.4 A Note on Decidability Issues

We conclude this chapter with a brief elaboration on decidability issues related to reasoning

about actions, as they present an important concern when aiming at real-world implemen-

tations. This is also an interesting research field as well, since the most widely used action

formalisms, such as the Situation, the Fluent and the Event Calculus, are first-order logics

(or even with some higher-order variants) and apparently do not admit decidable reasoning

in the general case.

Most emphasis in relevant literature has been placed on identifying decidable frag-

5.4. A Note on Decidability Issues 95

ments for the Situation and the Fluent Calculus. The appropriate restriction of a theory

to propositional logic for describing the application domain is obviously a reasonable first

step, therefore Ternovskaia [Ternovskaia 1999] presented a reduction of the problem of de-

cidability for the Situation Calculus with propositional fluents to the emptiness problem for

a finite tree automaton, a problem that is provably decidable. Such a restriction to a finite

set of propositional fluents does not work for the Fluent Calculus, though [Lehmann 2000].

Instead, to identify the boundaries of decidability of the Fluent Calculus and establish de-

cidable fragments, relevant research has considered reductions to two-counter machines

based on automata theory or decidable solutions for the monadic entailment problem (i.e.,

entailment of queries without free variables) using labeled trees, as in [Hölldobler 2000]

or even studied the correspondence with Petri-nets [Lehmann 2000]. In addition, restricted

first-order fragments have been identified, e.g., if fluents occur at most once in a state term

and there are finitely many fluent constants.

Recently, another and much more interesting direction of research has been adopted

that aims at integrating action theories and description logics. A decidable fragment of

Situation Calculus, as expressive as DLALCQIO, has been established in [Baader 2005],

later extended to allow general (cyclic) TBoxes and ramifications [Liu 2006]. In fact, even

the plan existence problem has been shown to be decidable in action formalisms based on

this fragment of DL (but with increased complexity) [Milicic 2007]. A different approach,

having strong connections with DL, is presented in [Gu 2007] that restricts the syntax of

the Situation Calculus to a two-variable fragment of the first-order language leading to

decidable solutions for the projection and executability problems even with incomplete

initial knowledge bases.

Similar results for the Event Calculus have not been presented in relevant literature.

One can primarily stay on the abductive proof procedure presented in [Russo 2002] that

reduces the time structure of the Event Calculus to two timepoints guarantying decidabil-

ity of deterministic domains relying on an incomplete initial state description. Results of

this work are highly relevant for the DECKT axiomatization as they do not place serious

restrictions in the expressiveness of the formalism (state constraints are applicable), while

the technique can be used for reasoning tasks that are particularly suitable for DECKT’s

objectives, such as planning or knowledge updates.

To conclude, the aforementioned analysis demonstrates the difficulty in establishing

decidable, while sufficiently expressive, fragments of action theories in general. This ex-

96 Chapter 5. Property Analysis

plains the reason why many implementations adopt strong assumptions, such as the closed

world assumption, or are constructed considering finite domains. On the other hand, in

order to apply such theories to practice, many programming languages for reasoning about

action either permit undecidable reasoning, such as Golog and Flux, or cast the problem to

a propositional form in order to apply for instance SAT solvers, as is the case of DECRea-

soner.

Chapter 6

Theory Extensions

Contents
6.1 Sensing Inertial and Continuously-Changing World Features 98

6.1.1 Inertial Fluents - Remembering and Forgetting 99

6.1.2 Non-Inertial and Functional Fluents 100

6.1.3 Context-dependent Inertia . 102

6.2 Context-Dependent and Potential Actions 104

6.2.1 Trigger Axioms, epot and Knowledge 105

6.3 Defining Ability . 107

6.3.1 Problem Characterization . 108

6.3.2 Action Narrative . 110

6.3.3 Termination Condition . 111

6.3.4 Non-Deterministic Actions . 111

6.3.5 Establishing Ability . 114

6.4 Summary . 115

One motivation for choosing the Event Calculus to build our knowledge theory has been

its ability to model a wide variety of commonsense phenomena in its core ontology. The

formalism’s axiomatization, as described in section 4.4, provides a rich and highly flexible

repertoire of tools for commonsense reasoning in domains with diverse characteristics. In

this section we exploit this advantage of the Event Calculus to extend our basic axioma-

tization in a number of ways. First, we provide a consideration for sensing world aspects

that may be subject to continuous change in a known or unknown fashion; the investiga-

tion results in a framework for building agents that can remember and forget, an important

cognitive skill that goes beyond standard possible-worlds semantics. Next, we also study

physical actions, actions that are automatically triggered when the world is at a particular

98 Chapter 6. Theory Extensions

state. The introduction of potential actions with different epistemic effects becomes a ne-

cessity in order to cope with physical actions when the world state is only partially known

and neither precludes nor justifies their triggering. Finally, having an expressive epistemic

framework for determining the knowledge of an agent under the effect of a multitude of

commonsense phenomena, we concentrate our attention on characterizing what it means

for an agent to be able to achieve an objective, based on its available knowledge and its

reasoning potential.

6.1 Sensing Inertial and Continuously-Changing World Fea-

tures

In previous chapters we presented a unified epistemic framework for reasoning about

knowledge, action and time that only considers sensing about inertial world parameters,

i.e., parameters that are subject to the law of inertia at the time of sensing. This is reflected

by the use of the KP fluent in axiom (KT4). In fact, most studies in relevant literature,

either based on possible worlds or adopting alternative representations for knowledge, han-

dle exclusively such types of sense actions for an agent, as the knowledge obtained is more

easily handled. Nevertheless, such a choice severely limits the reasoning potential of intel-

ligent agents in real-world domains. In the current section we extend the framework with

an account of knowledge-producing actions designated for both inertial and continuously

changing world features, still preserving a uniform reasoning style regardless of the type

of the parameter being sensed.

To distinguish the different cases that may emerge, imagine a moving robot able to

sense world aspects, such as the state of doors, the number of persons around it or its

current position. Knowledge about door states can be preserved in its memory until the

robot becomes aware of some relevant event that changes it, while knowledge about the

other features should be considered invalid after a few moments or even at the next time

instant. Still, it is important for the act of sensing to handle the different contingencies in a

transparent to the robot fashion. The approach that we develop allows for sensing inertial

and continuously changing properties of dynamic and uncertain domains in a uniform style,

providing a level of abstraction to the design of an agent’s cognitive behavior. Moreover,

it augments agents not only with the ability to remember, but also to forget information,

either for the purpose of preserving consistency between the actual state of the world and

6.1. Sensing Inertial and Continuously-Changing World Features 99

the view they maintain in their KB or due to restrictions, such as limited resources, which

pose critical constraints when considering real-world scenarios.

6.1.1 Inertial Fluents - Remembering and Forgetting

In general, a robot’s descriptions of world states involve a large number of components that

are assumed stable between action occurrences maintaining their properties for as long as

occurring events do not affect them. A door remains open until some Close(door) event

happens, while an object’s color persists even when someone lifts it and moves it around.

This intuition is related to the well-known frame problem of action theories, which is con-

cerned with specifying the non-effects of actions (see Section 2.1.1). In the Event Calculus,

the commonsense law of inertia expresses that certain objects tend to stay in the same state,

unless an event happens that changes this state. We refer to fluents that are subject to this

law as inertial defined as follows:

Definition 6.1 (Inertial fluents) A fluent is called inertial if it tends to maintain its truth

value, unless affected by some event. �

An inertial fluent, denoted in the Event Calculus by the expression ¬ReleasedAt(f , t),

is always subject to inertia. One can easily observe that whenever an agent senses an

inertial fluent, the knowledge gained can be stored and preserved in its KB for as long

as no event causes its invalidation. Sensing inertial fluents is a well-formalized task in

most related epistemic action theories. In order to model real-world agents with limited

resources though, the assumption of permanent knowledge preservation is too strong to

accept. Apart from issues related to memory storage capacity, the rate of change in dy-

namic worlds quickly renders information out-of-date, forcing the agent to reconsider its

knowledge about the state of certain objects that ideally could have remained unaltered.

In order to represent the "fading" validity of knowledge-producing actions, we intro-

duce a new sense action that extends the one presented in Chapter 4. This action is captured

by the following three axioms that substitute axiom (KT4) modeled before:

(KT4.1) Happens(sense(f), t)⇒
Happens(remember(f), t) ∧ Happens(f orget(f), t + T (f))

(KT4.2) Initiates(remember(f),KPw(f), t)

(KT4.3) ¬Happens(sense(f), t)⇒ Terminates(f orget(f),KPw(f), t)

100 Chapter 6. Theory Extensions

where T (f) denotes a function that introduces a time delay dependent on f ’s properties

(certain fluents tend to change more often that others). The axiomatization expresses that

whenever an agent senses a fluent, two internal to the agent actions occur that cause knowl-

edge about the state of the fluent to be kept in the memory for a specific time frame. The

remember action produces the traditional sensing effect, while the f orget action’s effect

is canceled if a sense action occurs concurrently (axiom (KT4.3) is a type of negative

canceling effect axiom for that reason, as defined in Definition 4.2).

The above axiomatization provides two alternatives for modeling knowledge-

producing actions for inertial fluents. For the purpose of constructing a theoretical frame-

work the desirable side-effect of unlimited memory persistence of fluents is achieved by

retracting the instance of the f orget action from (KT4.1). Alternatively, an agent may also

be equipped with the mental ability to forget, an essential cognitive skill for practical com-

monsense reasoning, particularly suited for real-world implementations. Furthermore, one

may also use the same axiomatization as a means to sense continuously changing fluents,

as explained next.

6.1.2 Non-Inertial and Functional Fluents

Most current logic-based approaches that study the interaction of knowledge and time focus

on sensing and obtaining knowledge about inertial fluents. Still, this is hardly the case

when reasoning in dynamically changing worlds. Next, we show how the aforementioned

approach can also be applied to a broader class of situations. First, we elaborate on the

characteristics of such situations.

In addition to inertial fluents there are also fluents that change their truth value in an

arbitrary fashion at each time instant. The number of persons entering a building or the

mails arriving daily at a mailbox are typical examples. Such fluents introduce a degree of

uncertainty, as they give rise to several possible models, and can be defined as follows:

Definition 6.2 (Non-inertial fluents) A fluent is called non-inertial if its truth value may

change at each timepoint, regardless of occurring events. �

A non-inertial fluent is always released from inertia and is represented in the Event

Calculus by the predicate ReleasedAt(f , t). A particular use for non-inertial fluents has

been proposed by Shanahan as random value generators in problems, such as tossing

6.1. Sensing Inertial and Continuously-Changing World Features 101

a coin, rolling a dice etc, naming them determining fluents, as they determine non-

deterministically the value of other world aspects [Shanahan 1999b].

For the purposes of epistemic reasoning, sensing non-inertial fluents provides temporal

knowledge that is only valid for one time unit, i.e., it only reflects what is known at the

time of sensing, but not what will be true afterwards. Whenever a robot needs to reason

about the number of persons around it, it must necessarily perform a new sense action to

acquire this information; any previously obtained knowledge may not reflect the current

situation. Still, there is a class of non-inertial fluents that is far more interesting, because it

expresses continuous change that follows a well-defined pattern. Such fluents are utilized

to denote gradual change (or processes, according to [Thielscher 2001b]), for instance to

represent the height of a falling object, the position of a moving robot, the patience of a

waiting person etc. We call this class of fluents functional non-inertial fluents:

Definition 6.3 (Functional fluents) A non-inertial fluent is called functional if its value

changes gradually over time, following a predefined function. �

In order to represent gradual change in the Event Calculus, we first need to release

the involved fluent from inertia, thus allowing its value to fluctuate, and then we apply a

state constraint to restrain the fluctuation, so that the fluent can exhibit a functional be-

havior. For example, to express the change in a robot’s location (on a single axis) while

moving with constant velocity v, we apply the following state constraint concerning the

Position(robot, pos) fluent:

(SC) HoldsAt(Position(Rob, pos), t1) ∧ t > 0⇒
HoldsAt(Position(Rob, pos + (v ∗ t)), t1 + t)

It is easy to observe how axioms (KT4.1-3) can accommodate sensing non-inertial fluents

(both ordinary and functional). One just needs to set T equal to one time unit, causing a

f orget action to occur at the next timepoint and forbidding the newly acquired value to also

refer to subsequent timepoints due to inertia. Nevertheless, as regards to functional fluents

in particular, because of the fact that the value of the sensed fluent is subject to change that

the agent is aware of, knowledge about future values can still be derived. The application

of the distribution axiom (K) along with DEC knowledge theory axioms combines the

narrative of actions and observations with the agent’s cognitive ability.

Example 6.1. The previous discussion illustrates how the problem of sensing the two

non-inertial fluents PersonsNear(robot, num) and Position(robot, pos) can be addressed.

102 Chapter 6. Theory Extensions

Imagine that a robot named Rob performs Happens(sense(PersonsNear(Rob, num)), 0)

and Happens(sense(Position(Rob, pos)), 0) at timepoint 0. By forming the parallel cir-

cumscription of the example’s domain theory (no initial knowledge and the two event oc-

currences) along with Event Calculus, Knowledge Theory and uniqueness-of-names ax-

ioms, we can prove several propositions. First, two, internal to the robot, events will be

triggered for each fluent; a remember event at timepoint 0 and a f orget event at timepoint

1. For the PersonsNear fluent it can also be proved that

(6.1.1) |= ∃xHoldsAt(Knows(PersonsNear(Rob, x)), 1)∧
¬∃xHoldsAt(Kw(PersonsNear(Rob, x)), 2)

due to (KT4.2) and (KT2) at timepoint 0 and (KT4.3), (KT2) and (KT7) at timepoint 1.

The case is different for the robot’s position:

(6.1.2) |= ∃pHoldsAt(Knows(Position(Rob, p)), t)

for all t > 0. This holds true, because, although the f orget action results in

¬HoldsAt(KPw(Position(Rob, pos)), t) for t ≥ 1, axiom (K) transforms (SC) into

(6.1.3) HoldsAt(Knows(Position(Rob, pos)), t1) ∧ t > 0⇒
HoldsAt(Knows(Position(Rob, pos + (v ∗ t))), t1 + t)

Consequently, once Rob senses his position at some timepoint, it can infer future positions,

without the need to perform further sense actions. The state constraint provides all future

derivations, affecting knowledge through (KT7). �

6.1.3 Context-dependent Inertia

We can now formalize complex domains that capture our commonsense knowledge about

changing worlds, where fluents behave in an inertial or non-inertial manner according to

context. For instance, a robot’s location is regarded as a continuously changing entity

only while the robot is moving; when it stands still, the location is subject to inertia. As

a result only while the robot knows that it is not moving can knowledge about its loca-

tion be stored persistently in its KB in the style described in Section 6.1.1. In general,

6.1. Sensing Inertial and Continuously-Changing World Features 103

for any fluent that presents such dual behavior, there usually is some other fluent (or con-

junction of fluents) that regulates its compliance to the law of inertia at each time instant.

For the Position(robot, pos) fluent, for instance, there can be a Moving(robot) fluent that

determines the robot’s motion state. Such regulatory fluents appear in the body of state

constraints to ensure that inconsistency does not arise when inertia is restored. According

to their truth state, the fluent that they regulate can either be subject to inertia and maintain

its value or released from it in order to be subject to a state constraint. To integrate regula-

tory fluents in the theory, (KT4.3) must be extended to ensure that the agent does not forget

a fluent when it knows that the latter is inertial and should be kept in the KB:

(KT4.3+) ¬Happens(sense(f), t) ∧ ¬HoldsAt(Knows(¬ frglr), t)⇒
Terminates(f orget(f),KPw(f), t)

where frglr is f ’s regulatory fluent. Notice that even when the agent is not aware of f ’s

inertia state, i.e., ¬HoldsAt(Kw(frglr), t), the axiom fires and knowledge about f is lost, to

avoid preserving knowledge that does not reflect the actual state.

Example 6.2. Imagine that Rob’s movement is controlled by actions S tart(robot) and

S top(robot) with effect axioms:

(6.2.1) Initiates(S tart(robot),Moving(robot), t)

(6.2.2) Terminates(S top(robot),Moving(robot), t)

While the robot is on the move, its position must no longer be subject to inertia (it will

regain inertia when stopped):

(6.2.3) Releases(S tart(robot), Position(robot, pos), t)

(6.2.4) HoldsAt(Position(robot, pos), t)⇒
Initiates(S top(robot), Position(robot), t)

In addition, the state constraint that determines the location as the robot is moving, with

the Moving fluent playing the regulatory role, is axiomatized as follows:

(6.2.5) HoldsAt(Moving(robot), t1) ∧ HoldsAt(Position(robot, pos), t1)∧
t > 0 ∧ ¬∃t2(Happens(S top(robot), t2) ∧ t1 < t2 < t1 + t)⇒
HoldsAt(Position(robot, pos + (v ∗ t)), t1 + t)

104 Chapter 6. Theory Extensions

As a result, axiom (KT4.3+) will be instantiated as:

(6.2.6) ¬Happens(sense(Position(Rob, pos)), t)∧
¬HoldsAt(Knows(¬Moving(Rob)), t)⇒
Terminates(f orget(Position(Rob, pos)),KPw(Position(Rob, pos)), t)

In brief, (6.2.6) states that the position should be stored if Rob knows that it is not moving.

If, on the other hand, the robot does not possess such knowledge (even if it is unaware

of its current mobility state, due to a potential malfunction), the information acquired will

be retracted one time instant after the sense action. In this case, future knowledge can be

inferred only if some state constraint is available.

Moreover, it can be proved that if Rob knows initially whether it is moving, a single

sense action is sufficient to provide knowledge about all future locations, regardless of any

narrative of S tart and S top actions before or after sensing. And, most importantly, pro-

gramming Rob does not need to also involve programming different procedures depending

on the state of fluents sensed; the knowledge theory abstracts the knowledge evolution

reasoning process to account for both inertial or continuously changing world aspects. �

To conclude, the framework developed in this section aims at (a) offering a level of ab-

straction in the handling of dynamic world aspects by agents, (b) augmenting their mental

skills with the ability to remember and forget and (c) formally treating the temporal aspect

of knowledge, particularly suitable for planning tasks in real-world implementations. The

solution extends previous logic-based approaches, as it investigates a broad range of fluent

types, facilitating the development of the mental layer of cognitive agents (eg. BDI). In

order to convert desires into intentions, an agent must place objectives that are realistic

and appropriate to commit to. Sensing and handling sensed information becomes crucial

in this setting, as sense actions need to be placed at specific time instants during planning,

considering relevant preconditions, the duration of acquired information and the available

contextual knowledge (e.g., see Section 6.3).

6.2 Context-Dependent and Potential Actions

Our analysis so far concentrated on context-dependent agent-driven actions with potentially

unknown preconditions. Nevertheless, in real-world dynamic domains, system evolution is

6.2. Context-Dependent and Potential Actions 105

also due to natural actions, actions that occur at predicted times, provided that no earlier

actions (natural or agent initiated) prevent them from occurring [Reiter 2001a]. In the

Event Calculus a trigger axiom is applied in order to allow for an event to occur as soon as

the world is in a particular state.

The situation becomes complicated in partially known domains. When the agent has

incomplete knowledge about the world it inhabits, it may find itself unable to determine

whether such an action will actually occur or not. Moreover, each contingency may give

rise to significantly different ramifications concerning the state of other fluents. In order to

address this issue, we introduce the notion of potential actions.

6.2.1 Trigger Axioms, epot and Knowledge

To model the agent’s mental state when reasoning with trigger axioms in the presence of

incomplete knowledge, the original domain trigger axioms must be replaced with epistemic

meta-axioms stating that a context-dependent action unambiguously occurs only when all

preconditions are known to hold:

(TR1)
∧i[HoldsAt(Knows(fi), t)]⇒ Happens(e, t)

On the other hand, to accommodate the situation when there is uncertainty about the pre-

conditions, we introduce a new hypothetical action, called epot, for each action e.

According to the DEC axiomatization each time the conditions of a trigger axiom are

satisfied the action occurs. To avoid repeated triggering though, it is standard practice to

specify as one of the action’s effects to be the invalidation of some of the preconditions, thus

blocking the axiom’s future execution until the conditions change again. Apparently, the

assumption of at least one precondition being unknown to the agent is a necessary condition

for the triggering of epot instead of e, but not a sufficient one; a change must occur in the

state of precondition fluents in order for the triggering of epot to be justified. Specifically,

an action needs to happen that causes some of the preconditions which was not known true

(i.e., it was known false or unknown) to become either known true or unknown (in the latter

case, the fluent may have become true, thus the trigger axiom may be triggered). All other

occasions, such as a precondition known to hold becoming unknown, do not justify the

triggering of the axiom.

106 Chapter 6. Theory Extensions

Notice that we also consider the situation where an unknown precondition remains

unknown after an occurring action, which may only lead to a potential triggering if the

action’s effect is of a proper type. If, for instance, the action may terminate a fluent but the

trigger axiom requires it to hold, then even if that fluent remains unknown after the action’s

occurrence the trigger axiom will not fire (it will either become false or remain unaltered).

As a result, for a trigger axiom of the form
∧i HoldsAt(fi, t) ⇒ Happens(e, t), a po-

tential action is triggered under the following condition:

(TR2) (t1 = t2 − 1) ∧ ¬Happens(e, t2) ∧ ¬HoldsAt(Knows(
∨ fi∈C ¬ fi), t2)∧∨ fi∈C[¬HoldsAt(Knows(fi), t1) ∧ KmInverted(¬ fi, t1)]⇒

Happens(epot, t2)

In brief, a potential action occurs whenever the actual action does not happen, none of

the preconditions is known not to hold (i.e., the triggering is possible) and some change

in the preconditions occurs that justifies the axiom’s triggering. Notice that we require

for the negation of some fluent precondition to become inverted, not the precondition it-

self (predicate KmInverted has been defined in Section 4.3.2.3). For instance, if we have

that ¬HoldsAt(f1, t)⇒ Happens(e, t), we need ¬HoldsAt(Knows(¬ f1), t) (either f1 is un-

known or known true), as well as some event e′ to occur such that KmTerminate(e′, f1, t),

i.e., KmInverted(f1, t).

Finally, to correlate an event e with its potential counterpart epot and specifically, to

capture the effect’s uncertainty that results due to the occurrence of a potential action we

declare that whenever epot happens instead of e all direct effects of e become unknown to

the agent. That is, for each positive or negative effect axiom about f we include in the

axiomatization a new effect axiom of the form:

(TR3) ¬HoldsAt(Knows(
∨ fi∈C ¬ fi), t)⇒ Terminates(epot,KPw(f), t)

where f⃗i are f ’s preconditions. Moreover, for each event e such that Initiates(e, f , t) we

also introduce in the axiomatization KmInitiate(epot, f , t) (without considering the pre-

conditions) and similarly, for each event e′ such that Terminates(e′, f , t) we also add

KmTerminate(e′pot, f , t). Keep in mind that the triggering of a potential action, which is

always caused by unknown preconditions, will lead to the creation of HCDs following the

6.3. Defining Ability 107

axiomatization described in Section 4.3. An illustrative example that demonstrates the ap-

plicability of potential actions and epistemic reasoning in the presence of triggered events

is given in Section 7.1.2, where the benchmark domain of Shanahan’s circuit is extended

for the case of partial knowledge.

6.3 Defining Ability

Building on the properties of a formal framework sufficiently expressive to model knowl-

edge effects of actions, sensing and implicit knowledge, we now focus on planning tasks

involving knowledge goals, which ultimately lead us to characterize the notion of ability

for an agent to achieve certain objectives. In the presence of incomplete states and sensing,

planning cannot be considered as finding a linear sequence of actions; it may be necessary

to supplement what is known at plan time by information that can only be obtained at run

time via sensing [Sardina 2004]. Thus, instead of looking for a legal sequence of actions

achieving some goal, Levesque argues that the planner’s task is to return a general program

that the agent can follow and always know how to execute by virtue of its initial knowledge

and the subsequent readings of its sensors [Levesque 1996]. The well-known example of

an agent wishing to get on a flight at the airport is characteristic, as the agent can acquire

the information of which gate to go to only after it has arrived at the airport. The idea is to

provide not just the goal but also general -still understandable by the executor- instructions

on how the goal is to be achieved and leave subtasks to be handled by automatic planners.

As such, a planning problem with incomplete states and sensing actions is the problem of

finding a conditional plan which can be proved to be executable and to achieve the goal

under any circumstances, for different outcomes of sensing [Thielscher 2001a].

Our intention in this section is to study representational issues and provide a formal

characterization of the notions of ability and feasibility of plan execution for expressive do-

mains, rather than deal with algorithms for generating such plans. High-level programs that

act as plan skeletons can be produced by deliberators (e.g., in FLUX [Thielscher 2005a],

IndiGolog [Giacomo 1999] or MetateM [Fisher 2005]) that seek for a strategy to reach a

final state and may involve branching, iteration, sensing etc. The semantics that we de-

velop aim at ensuring that for a potentially non-deterministic domain specification such a

program will always have enough information to continue the execution in a deterministic

fashion and achieve the goal, under certain restrictions. More succinctly, prior to using a

108 Chapter 6. Theory Extensions

program in a plan, we must consider whether we have the knowledge to actually execute

that program.

6.3.1 Problem Characterization

In the domains we investigate, agents are assumed to acquire information about their en-

vironment and expand their KBs as they operate. A good plan for such an agent is the

one that not only achieves the goal, but is also executable, i.e., ensures that the agent has

enough information at every step to know what to do next; even if it can be shown that a

plan must achieve the goal (and terminate), the agent may not have enough knowledge to

execute it [Lespérance 2000].

Imagine the following commonsense scheme devised by Thielscher

[Thielscher 2000d]: suppose that a door is closed but that its state can be altered by

pressing a button next to it. Nonetheless, an agent, call it Blindie, who is unable to sense

the state of the door will not be able, without assistance, to achieve the goal of entering

the next room. For it can never know whether if should press the button or not. Likewise,

unable to achieve the goal will be an agent, call it Dumbie, who can see but does not know

how the button is causally related to the door. For this agent cannot conclude that it simply

must press the button. One can even extend Thielscher’s scheme with a robot Lazie that,

although gifted with the previous capabilities, delays (or hurries excessively) to perform

the actions needed. If the door automatically closes after 10 seconds, a mere sequential

execution of the actions specified by a plan does not suffice for the agent to achieve its

goal; important time constraints are placed as to when to act.

To be more precise, there are three issues that need to be considered when reasoning

about the ability of an agent to achieve certain goals:

• The account of knowledge of an agent must allow for distinguishing between the

actual effects of actions and what the agent knows about these effects. This is a first

and fundamental step in order for an agent to come up with a plan that knows it will

achieve the goal (the case of the Dumbie robot).

• The formal account of knowledge must allow for the agent to reason about what it

currently knows and does not know, and what it will know after sensing (the case

of the Blindie robot). Employing a theory of sensing is an essential advancement

6.3. Defining Ability 109

that leads to the emergence of the concepts of knowledge-producing and conditional

actions. At the very least, an agent must be able to condition its course of actions on

the result of a sensing action.

• A formal account of knowledge must be coupled with an account of time. Issues such

as knowing when to sense, for how long knowledge is up-to-date, when to perform

a particular action and others, are critical in order to determine the ability to achieve

plans in real world situations.

Most existing accounts of knowledge in action formalisms do not cover all aspects,

especially the third one. Lesperance et al. [Lespérance 2000] deal with the second issue

within the Situation Calculus by appealing to the notion of an action selection function σ,

a mapping from situations to primitive actions, understood as prescribing which action the

agent should perform in a situation. An agent can achieve a goal in a situation s if there

exists a function σ such that it knows in s that it can get to a situation where the goal holds

by following σ. The tree chopping example, where unbounded iteration is also involved,

is characteristic to show that although the agent does not know how many chop actions are

necessary to get the tree down, it is able to achieve the goal. Still, they do not consider the

other two issues. Thielscher studies both lack of knowledge about the effects and crucial

world knowledge using the Fluent Calculus [Thielscher 2000d]. Proving non-achievability

relies on induction over situations (a property holds for all situations if it holds initially and

if all actions preserve it) leading to properties that are reachable by an executable sequence

of actions. In this section we develop a unified treatment of all three issues related to ability,

considering in addition situations that may involve non-deterministic effects of actions. We

exploit the fact that the Event Calculus is narrative-based, unlike the standard Situation

and Fluent Calculus where an exact sequence of hypothetical actions is represented. A

narrative is a possibly incomplete specification of a set of actual event occurrences and

temporal orderings [Shanahan 1997] and is essential in the attempt to define the ability of

an agent to achieve a goal in the general case.

We begin our investigation with the following rather generic characterization of ability

that we incrementally refine in subsequent steps. In general, we could state that an agent

can achieve a goal f at time t, denoted as HoldsAt(Can(f), t) if the agent knows that there

exists a valid narrative s, such that, when executed at time t, it will undoubtedly result in a

future world state where the goal is known to be true by the agent. To make this statement

110 Chapter 6. Theory Extensions

more precise we appeal to what it means for the narrative to be valid and the resulting

situation to be undoubtedly reached, especially when non-determinism is involved.

6.3.2 Action Narrative

First we need to determine how the narrative of actions is properly executed. Most existing

approaches in the literature assume that actions are atomic and are executed in isolation

[Lespérance 2000, Thielscher 2000d]. Still, in many cases it is important for the agent to

be able to perform concurrent actions [Zimmerbaum 2001]. For instance, to be able to

take a photograph, an agent must press the button that holds the shutter open and sense

concurrently. The Event Calculus allows for several events to occur at the same time,

permitting also the effects of those events to differ from what the effects would have been

had the events occurred at different times1. Furthermore, the explicit representation of

time within predicates enables the application of temporal ordering formulae in order to

relax the preciseness of an action occurrence or the order of execution of actions within

the narrative. For instance, instead of stating that the PassThroughDoor action must be

performed one timepoint after the action S ense(Door) has returned a positive value, we

can permit for the action to occur at some time within the next 10 timepoints. A narrative

may even permit interleaving of actions.

Consequently, having a narrative ∆1 of a conjunction of event occurrence and temporal

ordering formulae, as given in Definition 3 Section 4.4, we can define a narrative as being

epistemically-valid as follows:

Definition 6.4 (Epistemically-valid Narrative) A narrative ∆1 is epistemically valid under

a given epistemic axiomatization D iff it can be inferred, based on the initial KB Γ2, that no

sequential ordering of the actions involved in the narrative violates any of the constraints

of D, i.e., the epistemic domain description Φ that consists of D, ∆1 and Γ2 is always

consistent. �

Example 6.3. Suppose ∆1 = Happens(e1, t1) ∧ Happens(e2, t2) ∧ (t1 = t2) and

let an axiomatization D that includes the event precondition constraint Happens(e1, t) ∧
1We should note, of course, that since cumulative and canceling effects of concurrent event occurrences are

permitted, the domain axiomatization -and not the knowledge theory- must place restrictions in concurrency to

prohibit inconsistent models to be produced. This is achieved in the Event Calculus by using appropriate state

constraints and event occurrence constraints, when actions consume or provide the same resource at the same

time.

6.3. Defining Ability 111

Happens(e2, t) ⇒ ¬HoldsAt(f , t). The narrative ∆1 is only valid under an epistemic do-

main description Φ where fluent f is known not to hold at t1. On the other hand, for a

Φ′ where f is unknown, although sensing it before executing e1 can provide knowledge

about the fluent, the agent cannot be certain if the resulting domain description would be

consistent, therefore the narrative is not epistemically valid under Φ′. �

Notice also that conditionals may as well occur in the plan skeleton provided by the

narrative, in accordance to the classical notion of planning by deduction. Conditional ac-

tions, by means of the functions i f (f , a) and i f not(f , a), have been introduced in the Event

Calculus in [Forth 2004] to represent that an action a is executed just if the conditional

fluent f holds, or does not hold respectively. Depending on the initial knowledge and the

appropriate inferences, conditionals can be evaluated at plan time or they may introduce a

branching point.

6.3.3 Termination Condition

Second, we must elaborate on the condition that must be satisfied in order for ∆1 to be

considered a successful narrative, reflecting the ability of an agent to achieve a goal.

Achievability means that the acting agent, by virtue of what it knows initially, the sub-

sequent readings of its sensors and the known narrative ∆1, will undoubtedly know that the

goal holds after the occurrence of all actions prescribed by ∆1, i.e.,
∧i Happens(ei, ti) ⇒

∃tHoldsAt(Knows(f), t), where t > max(t1, ..., tn). This is of particular importance given

the possibly non-deterministic outcomes of the actions involved. One must also notice the

highly epistemic-dependent nature of the notion of ability (in contrast to that of a plan,

which when executed in any world satisfying the initial state description, will achieve the

goal, regardless of the agent’s knowledge at the beginning or during plan execution).

6.3.4 Non-Deterministic Actions

Finally, we must also characterize the type of actions that constitute ∆1 so that a successful

final state can unambiguously be reached. It is clear that when only deterministic actions

are involved then the outcome of the execution of the narrative can be determined with

absolute confidence from the agent side, even if these actions have context dependent ef-

fects. We have already shown how HCDs can be combined to produce knowledge about

112 Chapter 6. Theory Extensions

fluents, enabling the agent to deliberate on the outcome of actions with partially known

preconditions (Shanahan’s circuit given in the next chapter is also an illustrative example).

On the other hand, non-deterministic effects of actions in general cannot guarantee a

known final situation. Still, in our investigation of an agent’s ability to achieve a goal we

provide a characterization for a subset of actions with context-dependent non-deterministic

effects that may still enable the agent to specify with confidence the resulting state. In

brief, these are the actions that, given a particular world state, their execution does not

consume any of their preconditions, therefore their execution can be iterated without any

restrictions. Given that the preconditions remain unaffected, the repeated execution of such

actions is guaranteed to eventually result in the desirable effect, after a non-deterministic

period of time (non-deterministic iterations). We call the effects of such actions Iterative

non-Deterministic effects (InDE) under a particular set of preconditions and define them

below.

Definition 6.5 (Iterative non-Deterministic Effects) If fluent f is a context-dependent non-

deterministic effect of action e and C f is its context (potentially containing f), then f is an

Iterative non-Deterministic Effect (InDE) of e at timepoint t under C f if e does not affect

directly or indirectly any fluent in C f except f itself in future timepoints. Formally, given

a domain description Φe, where the only event term in formulae ∆1 is the event e and all

fluents in C f hold at t, then f is InDE of e at t under C f iff Φe ̸|= Γ−C f \ f , where Γ−C f \ f is a

world state where not all fluents in C f , apart from f itself, hold. �

Intuitively, event e has fluent f as InDE if, starting from some timepoint t where all pre-

conditions hold, a future state where some precondition expect f does not hold can never be

reached, given that the only legitimate action is e. In other worlds, the execution of action e

does not affect any of f ’s preconditions, either directly or indirectly. Although finding such

a resulting state using abduction can be a computationally expensive and semidecidable in-

ference task to perform, Russo et al. [Russo 2002] proved that a reduction considering

only two timepoints, current and next, can transform it to fully decidable and tractable,

even when the state at the current timepoint is only partially specified (see also Section

7.2.2 that provides more details about such kind a of inferencing).

Example 6.4. Typical cases of actions with InDE fluents are the action of tossing a

coin or the action of executing a voice command for opening a door within the context of

the agent standing in front of the door. The agent can iteratively execute the same action

and the effect is always subject to non-deterministic change. Another situation is the action

6.3. Defining Ability 113

of chopping a tree that has the non-deterministic effect of the tree being down if the agent

stands in front of the tree, holds an axe and the tree is not already down. Notice that now

the InDE fluent is part of the precondition set, but according to the definition it does not

influence the iteration.

On the other hand, the action of firing a gun does not have as iterative non-deterministic

effect the fluent of shooting down a turkey; after a (predetermined in this case) number of

shots the gun runs out of bullets, still the agent cannot be certain that the gunshot was accu-

rate. Note that Definition 6.5 can trivially be extended to sequences of actions, rather than

a single action, that recycle their resources. For example, assuming unlimited ammunition,

a gun can be fired and reloaded repeatedly, thus converting the latter fluent an InDE one.�

What is important in establishing actions with InDE is the fact that, although the truth

value of the effect is non-deterministically determined, we can be certain that after an -

indefinite- number of iterations the effect will have the desired truth value. That is, if

an agent repeatedly tosses a coin, it can be certain that eventually heads will come up

(for otherwise, non-determinism is violated). Of course, in real-world implementations an

upper bound of iterations can be specified or even percentages can be determined as to how

probable for the desirable effect to turn up is.

Moreover, an effect remains InDE even if any other action that occurs afterwards does

not affect the preconditions (either directly or indirectly). Unfortunately, such actions are

difficult to trace beforehand, as they are domain-dependent and context-sensitive. A type

of action, though, that is domain-independent is any sense action, which by definition does

not affect the state of any fluent.

Proposition 2 If a fluent f is InDE of an action e under C f , it is also InDE of the action

sequence [e; sense(f ′)], where f ′ arbitrary fluent, i.e., Φe ̸|= Γ−C f \ f iff Φe;sense ̸|= Γ−C f \ f . �

Having this property in mind, we can now define a sequence of action occurrences as

InDE-valid as follows:

Definition 6.6 (InDE-valid action sequence) A sequence of actions e1, .., en is InDE-valid

iff

1. whenever an effect f of ei (1 ≤ i < n) is among the context of an e j (where j >

i and no other action happens between ei and e j that affects f), then f is either

deterministic or InDE under some, potentially empty, context set C and all fluents

that constitute C are known upon ei’s execution, and

114 Chapter 6. Theory Extensions

2. after an ei with InDE f , the next action is a sense action that evaluates the truth value

of the non-deterministic effect. The sequence [ei; sense(f)] is executed iteratively for

as long as the effect does not obtain the value required for the context of e j. �

6.3.5 Establishing Ability

Now that we have established the specifications of valid narratives, we can define ability to

achieve a goal as:

Definition 6.7 (Ability) An agent is able to achieve a state where fluent f holds, denoted as

HoldsAt(Can(f), t) iff there exists an InDE- and epistemically-valid narrative ∆1 of events

e1, ..., en, such that

1. the agent will undoubtedly know that the goal f holds after the occurrence of all

actions prescribed by ∆1, i.e.,
∧i Happens(ei, ti)⇒ ∃tHoldsAt(Knows(f), t), where

t > max(t1, ..., tn)

2. the agent at every time instant knows what the next event prescribed by the sequence

∆1 is, whatever the sensing outcomes may be. �

Definition 6.7 is in compliance to previous studies that address the problem of knowing

how to execute a plan, as for instance in [Baier 2006] and [Sardina 2004] that appeal to the

notion of epistemic feasibility. Item 2 describes what Sardina et al. refer to as epistemi-

cally feasible deterministic programs to characterize and formalize the notion that an agent

always knows what the next step to be performed is, regardless of whether the program

terminates or not. The practical significance of the aforementioned account of ability is its

potential to handle challenging aspects of cognitive problems. Once the conditions under

which a narrative is epistemically- and InDE-valid have been defined, they can be used as

constraints on a planner to build plans that are consistent to the semantics of the high-level

programs.

Previous accounts have underscored certain issues that influence the ability of an agent

to reach a goal state; the agent must be able to reason about how sensing will expand

its current knowledge state [Lespérance 2000]; it must reason about its knowledge on the

effects of actions and distinguish between the actual effects and what it knows about them

[Thielscher 2000d]; it must employ a closed coupling of knowledge and time in order to

6.4. Summary 115

know when to sense, for how long knowledge is up-to-date, when to perform a particular

action etc. [Zimmerbaum 2001]; and, also, it must address correctly problems that involve

unbounded iteration [Sardina 2004, Lespérance 2000]. In the aforementioned account of

ability we integrated these issues in a subclass of particularly expressive non-deterministic

domains.

Apparently, finding a way to execute high level programs and planning with incom-

plete states, sensing and conditionals usually involves a considerable search space, where

the class of potential plans is very general. For that reason, based on the high-level pro-

gramming language Flux, Thielscher uses non-deterministic heuristics for planning, where

only those plans are searched which match a given skeleton [Thielscher 2001a]. Back-

tracking over sensing actions that lead to dead ends, the proposed approach can exploit the

characterization of ability to search for suitable sensing actions, in order to solve planning

problems with knowledge goals. Moreover, Sardina et al. [Sardina 2004] consider two

restricted classes of programs that correspond to conformant plans and plans without cy-

cles, respectively. For such classes, the search for epistemically feasible programs can be

limited to programs of a simple tree-like form.

6.4 Summary

Although investigated in isolation, the previous extensions of the main theory glue together

in a harmonious fashion structuring different layers of intelligent agents with potent rea-

soning skills. The DECKT axiomatization augmented with (KT4.1,2,3+) and (TR1,2,3)

axioms is a complete and unified knowledge framework that can confront challenging and

pragmatic commonsense problems of real-world domains. The next chapter illustrates the

broadness of its applicability.

Chapter 7

Use Cases and Implementation

Issues

Contents
7.1 Shanahan’s Circuit and Complex Knowledge Ramifications 118

7.1.1 The Ramification Problem in Action Theories 118

7.1.2 Partially Observable Shanahan’s Circuit 120

7.2 Reasoning in Ambient Intelligence Environments 124

7.2.1 A Reasoning Framework for Ambient Intelligence 124

7.2.2 Run-time Action Validation and Constraint Handling 126

7.2.3 Uncertainty and Temporary Knowledge Example 130

7.2.4 Other Examples . 134

7.3 Implementation Issues . 137

7.3.1 Requirements and Desirable Features 138

7.3.2 SAT-based DECReasoner . 141

7.3.3 Custom Jess-based Event Calculus Reasoner 143

This chapter serves a dual purpose. First, it exemplifies the reasoning mechanism of the

theory and the way the different features and extensions can be integrated to model complex

domains. A significant contribution is the modeling of a challenging benchmark problem

in relevant literature, namely Shanahan’s circuit, which involves ramifications with vicious

cycles and delayed effects. Second, this chapter intends to demonstrate the potential of

the knowledge theory in solving a wide range of commonsense phenomena that are met in

practice. Specifically, the second part discusses how the epistemic reasoning capabilities

are related to the challenging issues posed by Ambient Intelligence domains. We describe

118 Chapter 7. Use Cases and Implementation Issues

different solutions that causality-based approaches can provide within the context of a run-

ning Ambient Intelligence project that takes into account the dynamic and uncertain con-

text in which agent interactions take place. As also indicated specifically in the text, most

scenarios described in the sequel present variations of well-known benchmark problems

of automated logic-based commonsense reasoning. The final part raises implementation

issues and shares the experience gained in adapting the theory to existing reasoners. It also

describes how the framework can be implemented in terms of a custom Event Calculus

reasoner that can support epistemic notions.

7.1 Shanahan’s Circuit and Complex Knowledge Ramifications

The DECKT axiomatization, coupled with HCDs and potential actions, provides significant

cognitive skills to intelligent software agents. To illustrate the potent assets of the theory

we axiomatize a highly demanding ramification domain, extending it with a treatment of

knowledge.

7.1.1 The Ramification Problem in Action Theories

The ramification problem in action theories has an interesting historical development with

a multitude of benchmark scenarios being devised to test and usually surpass the limits of

existing approaches. It concerns the problem of inferring indirect effects of actions, be-

yond those explicitly described by their associated effect axioms, derived by some general

knowledge of dependencies among fluents. Capturing efficiently the potentially unbounded

number of consequential effects of actions defines the essence for a solution to the ramifi-

cation problem. A straightforward, yet powerful for many domains, approach to represent

indirect effects is to use state constraints [Lin 1994, McIlraith 2000], based on minimal

change. These express logical relationships of fluents that hold at all times. For instance,

if a user located in a room holds an object one can infer that the object is also in the same

room. It is interesting to note that state constraints can be used to model certain challeng-

ing domains that some of the more advanced techniques have trouble handling, such as the

gear wheels example [Denecker 1998] that involves mutually dependent fluents.

On the other hand, this method fails to capture causal relations; if a fluent is depen-

dent on more than one other fluents, state constraints are insufficient to determine the

7.1. Shanahan’s Circuit and Complex Knowledge Ramifications 119

Figure 7.1: (a) Thielscher’s circuit, (b) Shanahan’s circuit.

dependent one. More important, in many other domains they may even give rise to un-

intended models. As an early effort to eliminate such problems, a distinction between

primary and derived fluents was proposed. Thielscher [Thielscher 2000b] elaborated on

this approach, but also indicated serious impediments by devising a particular configura-

tion of an electronic circuit, first found in [Thielscher 1997] (Figure 7.1(a)). He suggested

the use of causal constraints in order to work around them, i.e., causal relations that char-

acterize the circumstances (context and triggering effect) under which the occurrence of

an indirect effect is to be expected. Causality has been studied in different logics (e.g.

[Giunchiglia 2004, McCain 1995]) and has even been used in temporal databases, where

actions may have durations or delayed effects (e.g. when consuming alcohol an agent be-

comes drunk after a reasonable amount of time [Papadakis 2002]). In the Event Calculus

in particular, causal constraints have been introduced by means of a new set of predicates,

namely S tarted(f , t) and S topped(f , t) to denote that the fluent f has or is about to get the

intended value [Shanahan 1999a].

Nevertheless, Shanahan [Shanahan 1999a] proved that with a small modification in

Thielscher’s circuit, causal constraints may produce inconsistency. Shanahan’s modified

version of the circuit is shown in Figure 7.1(b) and involves delayed effects and cyclic flu-

ent dependency: if initially switch S 1 is open, but S 2 and S 3 closed, closing S 1 leads to

cycling ramification effects, ought to relay R, that cause light L to repeatedly become lit

and unlit every 2 time points1. Such unstable configurations are usually deployed in prac-

tice to implement oscillating behavior, such as a flashing light or a buzzing sound. Mueller

([Mueller 2006], p. 120) presented a proper behavior for this circuit using Event Calculus

1For simplicity, we assume a special type of relay that closes S 2 if no current flows through it. One could

easily achieve such a behavior by properly connecting a second relay to S 2 that is activated when S 2 opens.

120 Chapter 7. Use Cases and Implementation Issues

Figure 7.2: Knowledge evolution within Shanahan’s circuit with vicious cycles and delayed

effects.

trigger axioms. As already mentioned, these axioms specify the conditions under which

actions are triggered by other actions or by the state of the world (axioms for triggered

events in action theories were first formalized in [Pinto 1998] within the context of the Sit-

uation Calculus). Recently, the Event Calculus has been extended to handle ramifications in

the class of instantaneously propagated mutually interacting effect domains [Forth 2007],

based on a provably sound stratified theory where fluents are ordered in strata and predicate

completion is performed using a prioritized minimization policy. Yet, a question raised by

Shanahan in 1999 concerning his challenging benchmark problem remains still an open

issue: suppose that the initial state of S 3 is unknown, what inferences can be made?

7.1.2 Partially Observable Shanahan’s Circuit

Figure 7.2 displays the conditionally stable negative-cycling domain [Forth 2007] of

Shanahan’s circuit at successive timepoints and augmented with notations representing

epistemic notions. Specifically, fluents that are known to the agent are represented in bold,

unknown fluents in italics with a question mark, while dashed circles mark those fluents

whose epistemic state changes from one timepoint to the next.

7.1. Shanahan’s Circuit and Complex Knowledge Ramifications 121

The domain axiomatization comprises a number of effect axioms

Initiates(Close(s),Closed(s), t) (Sh7.1)

Terminates(Open(s),Closed(s), t) (Sh7.2)

Initiates(Activate(r), Activated(r), t) (Sh7.3)

Terminates(Dectivate(r), Activated(r), t) (Sh7.4)

Initiates(TurnOn(l), Lit(l), t) (Sh7.5)

Terminates(TurnO f f (l), Lit(l), t) (Sh7.6)

and a number of trigger axioms (the latter are succinctly shown in the box on the upper left

corner of Figure 7.2), such as

¬HoldsAt(Lit(L), t) ∧ HoldsAt(Closed(S 1), t) ∧ HoldsAt(Closed(S 2), t)⇒
Happens(TurnOn(L), t) (Sh7.7)

The remaining five trigger axioms (Sh7.8-12) are similarly modeled. As we are interested

in representing the epistemic state of an agent having incomplete initial knowledge we

apply the epistemic meta-axioms presented in previous sections, as described below.

t=0. Initially, the state of all fluents is stationary and known, apart from the state of

switch S 3.

HoldsAt(KP(¬Closed(S 1)), 0) ∧ HoldsAt(KP(Closed(S 2)), 0)∧
HoldsAt(KP(¬Lit(L)), 0) ∧ HoldsAt(KP(¬Activated(R)), 0)∧ (Sh7.13)

¬HoldsAt(Kw(Closed(S 3)), 0)

(in fact, the last component is only given here for emphasis; even if it were omitted it would

still be derived due to (KT7)). Now, let an agent close switch S 1:

Happens(Close(S 1), 0) (Sh7.14)

t=1. From (Sh7.14) and (Sh7.1) axioms (KT3.1,2) are triggered causing the state of

fluent Closed(S 1) to become known true, i.e.,

HoldsAt(KP(Closed(S 1)), 1) or, from (KT2), HoldsAt(Knows(Closed(S 1)), 1) (in the se-

quel, we will only refer to the Knows fluent assuming that (KT2) has been applied). But

now the epistemic state of the preconditions of the first two trigger axioms has changed.

In particular, all preconditions of (Sh7.7) have become known to hold and axiom (TR1)

dictates that action TurnOn(L) is unambiguously executed. On the other hand, precon-

ditions in the second trigger axiom may have become true and, due to (TR2), instead of

Activate(R) the potential counterpart is executed:

Happens(TurnOn(L), 1) (Sh7.15)

Happens(Activatepot(R), 1) (Sh7.16)

122 Chapter 7. Use Cases and Implementation Issues

t=2. While (Sh7.15) produces knowledge about L due to (Sh7.5) and (KT3.1,2),

axiom (Sh7.16) has as a result the state of relay R to become unknown, due to (TR3).

Still, two HCDs are created because of (Sh7.3), generated from (KT6.1.1) and (KT6.1.2):

action Activate(R) has as an effect to initiate R with only unknown precondition flu-

ent S 3 (recall from subsection 4.3.1 that the unknown preconditions of a trigger axiom

for an event are also considered as effect preconditions for all the effect axioms of that

event). That is, for (Sh7.3) C = {Activated(R),Closed(S 1),Closed(S 2),Closed(S 3)},
while C(1)− = {Closed(S 3)}. Therefore, we have that

HoldsAt(Knows(¬S 3 ∨ R), 2) ∧ HoldsAt(Knows(¬R ∨ S 3), 2)

These HCDs are denoted by the biimplication relation (S 3⇔ R) at the bottom of the circuit

at t=2, expressing the epistemic inferences that the agent knows.

At this point, the potential change in the truth state of R justifies a potential triggering

of trigger axiom (Sh7.9), due to (TR2), because R from known false may have become

initiated.

Happens(Openpot(S 2), 2) (Sh7.17)

t=3. As before, two new HCDs are created between R and S 2, due to (KT6.1.3) and

(KT6.1.4), since action Open(S 2) terminates S 2 and the only unknown precondition is R.

This latter potential change in the truth value of S 2 may trigger both the fourth and fifth

axioms.

Happens(TurnO f fpot(L), 3) (Sh7.18)

Happens(Deactivatepot(R), 3) (Sh7.19)

t=4. Before studying the resulting state let us concentrate first on the conse-

quences of the new potential actions according to the HCD axiomatization. As be-

fore, action TurnO f fpot(L) combined with S 2 being unknown and L known produces

HoldsAt(Knows(¬S 2⇔ ¬L), 4), due to (KT6.1.3) and (KT6.1.4). The potential deactiva-

tion of R is more involved. Since R is potentially affected, all existing HCDs that contain

R must expire, due to (KT6.2.1), but the transitivity between S 3 and ¬S 2 is transferred

to the next timepoint, according to (KT6.2.4). The tricky part is that R’s deactivation is

contingent on ¬S 2. Thus, not only a new HCD is created, due to (KT6.1.3), resulting in

HoldsAt(Knows(¬S 2 ⇒ ¬R), 4), but also the previous HCDs become dependent on S 2

according to (KT6.2.3). HoldsAt(Knows(R ⇔ ¬S 2), 3) for instance is transformed into

HoldsAt(Knows(S 2 ∧ R ⇒ ¬S 2), 4) and HoldsAt(Knows(S 2 ∧ ¬S 2 ⇒ R), 4). The latter

is always true, but the former, in conjunction with the newly created HCD, is equivalent

7.1. Shanahan’s Circuit and Complex Knowledge Ramifications 123

to HoldsAt(Knows(¬R), 4)! Indeed, at t=4 R is open in all possible models, regardless

of whether S 3 were initially open or not. Therefore this information becomes part of the

agent’s unambiguous knowledge. Finally, the potential change in the truth value of R may

also trigger axiom (Sh7.12).

t=5. According to (KT6.1.1), where only the precondition fluent S 2 is unknown,

HoldsAt(Knows(¬S 2⇒ S 2), 5) is derived, or else HoldsAt(Knows(S 2), 5). But this time

S2 is also KmInverted (see (INV) definition in section 5.2.3) therefore all previous HCDs

expire and no new ones are created with (KT6.2.3). The only new HCD is due to (KT6.2.4)

that preserves the transitivity relation of the involved fluents. From then on, the procedure

repeats itself.

Summarizing: The example is characteristic, providing insight into the reasoning

mechanism of the theory, illustrating also certain important features. The agent, for in-

stance, is able to make epistemic derivations about the state of specific fluents by interleav-

ing HCDs as time progresses. This is the case of inferring that R is deactivated at t=4 or S 2

closed at t=5, transferring the knowledge from previously created fluent dependencies and

expanding them according to (KT6.2.3). The evolution of interconnected HCDs reduces

to unambiguous knowledge about a fluent without any additional reasoning effort. Fur-

thermore, the existence of HCDs constitutes the agent smarter in dealing with real-world

restrictions and challenges that occur at run-time, as it provides a clearer view of the causal

consequences of its actions and the dependencies that have already been created. Notice

the epistemic state of the circuit at t=3; a single sense action on any of the unknown flu-

ents will allow the agent to perceive the formulation of the entire circuit. In fact, the agent

knows that it is able to obtain complete knowledge even if two out of the three unknown

fluents are out of reach of its sensors. The significance of developing smart plan execu-

tors, capable of performing efficient sensing at run-time, has been acknowledged in many

relevant studies [Levesque 1996, Lespérance 2000, Forth 2004]. Finally, even though it is

possible for a possible worlds-based theory to perform similar reasoning with less efficient

manner, the commonsense phenomena involved in this domain are beyond the scope of

most existing possible worlds-based or alternative epistemic theories.

124 Chapter 7. Use Cases and Implementation Issues

7.2 Reasoning in Ambient Intelligence Environments

The trick to building effective and usable applications for practical problems is in large

part in choosing the right tools. Early in the course of our research within Ambient Intelli-

gence environments we recognized that the novel challenges introduced require techniques

different than applied in traditional IS engineering. The prospect of integrating Artificial

Intelligence methods was evident from the beginning, still we identified that action theo-

ries had a substantial role to play, accentuated by the fact that their targeted application

domains resemble the demands raised in Ambient Intelligence. In this section we describe

a running project in the field of Ambient Intelligence where causality-based reasoning has

or will be used to transcend traditional rule-based reasoning capabilities, concentrating on

the demands for epistemic inferencing. After briefly introducing the project’s rational and

the way the general solution has been approached, we elaborate on the different aspects

where a causality-based knowledge theory can contribute.

7.2.1 A Reasoning Framework for Ambient Intelligence

During the last two years a multi-disciplinary project is running in our institute under the

general context of Ambient Intelligence that combines expertise from different laborato-

ries and research groups, related for instance to vision and perception, human-computer

interaction, speech analysis and others [Dimitris Grammenos 2009]. The Information Sys-

tems laboratory has been assigned the task, among others, to design a centralized rea-

soning framework for application in the AmI system, but also to investigate opportunities

and requirements of reasoning tasks emerging in the ambient environment on mobile and

resource-constraint devices.

The design goals for the centralized reasoning framework have been the efficient repre-

sentation, monitoring and dissemination of any low- or high-level contextual information

in the Ambient Intelligence infrastructure, as well as the support for a number of general-

purpose and domain-specific inferencing tasks. As regards to the task of context manage-

ment in particular, ontology-based models for capturing the meaning and relation of the

basic domain concepts have been combined with rule-based reasoning tools for inferring

high-level contextual knowledge and supporting sensor fusion and context disambigua-

tion functionalities. Yet, based on the experience gained we have identified limitations

7.2. Reasoning in Ambient Intelligence Environments 125

Figure 7.3: The event-based Ambient Intelligence reasoning framework architecture.

of the rule-based reasoning approach to address more challenging and sophisticated is-

sues that emerge in such domains. We currently study the application of causality-based

reasoning and action theories to provide a complete reasoning framework for Ambient

Intelligence. For instance, we consider the Event Calculus for activity recognition pur-

poses, in order to identify event patterns that describe the structure of compound events

built from atomic or other compound event instances. The calculus enables us to ex-

plicitly model and reason about the intervals of composite actions, in order to alleviate

semantic errors that traditional rule-based models introduce, as highlighted by recent stud-

ies [Paschke 2006, Adaikkalavan 2006]. Moreover, causality-based reasoning is also em-

ployed to support design-time application verification, as well as run-time action validation

that will be detailed in the subsequent section.

The hybrid event-based architecture is shown in Figure 7.3 and comprises four main

components; the Event Manager that receives and processes incoming events from the am-

bient infrastructure, the Reasoner that can perform both rule-based and causality-based rea-

soning, the Knowledge Base that stores semantic information represented using ontology-

based languages, and the Communication Module that forwards Reasoner requests for ac-

tion execution to appropriate services. A middleware layer undertakes the role of connect-

ing applications and services implemented by different research groups and with differ-

ent technologies. Services denote standalone entities that implement specific functional-

126 Chapter 7. Use Cases and Implementation Issues

ities about world aspects, such as voice recognition, localization, light management etc.,

whereas applications group together service instances to provide an Ambient Intelligence

experience in smart rooms.

The centralized reasoning component must perform inferencing tasks given the most

up-to-date knowledge about various world aspects. In a highly dynamic domain such as

the one designed for AmI applications, the reasoner should by no means be considered to

be omniscient of all information flowing within the system. Apart from efficiency matters,

there may also be physical restrictions; world aspects may be inaccessible, devices or ser-

vices may be unreachable when needed or they may provide information that is not always

reliable or sufficient, e.g. concerning users’ location or activities. Furthermore, the devices

that users operate in an AmI environment, such as PDAs and laptops, or even autonomous

devices, such as robots and agents, may as well perform inferencing tasks exploiting the

information acquired from the system and based on privacy restrictions. Such devices can-

not store or access all context information and often experience poor communications with

other ambient components. It becomes evident that in order for an AmI system to work in

real-world conditions many of the simplifying assumptions must be lifted and any reason-

ing component must rely on its own current knowledge and reasoning potential. A powerful

as well as efficient knowledge theory in particular may provide significant leverage. In the

rest, we present illustrative examples of the type of deliberations an agent, either being a

robot, a PDA or the large-scale centralized reasoner, can perform.

7.2.2 Run-time Action Validation and Constraint Handling

During our involvement in the project we have acknowledged how important to the man-

agement of an AmI system it is to separate the rules that govern its behavior from the

domain-specific functionalities in order to enable efficient and dynamic adaptation to

changes during development. This stems for the fact that the collaborators that contribute

new facilities possess different backgrounds, potentially different motivations and priori-

ties. In order to preserve robustness and efficiency, we propose a modular approach that

distinguishes the rules that express system policies and restrictions that guarantee a consis-

tent and error-free overall execution at all times, from service specifications that change in

frequent time periods and by a multitude of users, as well as from application specifications

that are usually under the responsibility of non-experts who only posses partial knowledge

7.2. Reasoning in Ambient Intelligence Environments 127

Table 7.1: Defined specification axioms for application verification.

about which the system restrictions are. Table 7.1 shows samples of the type of informa-

tion that these specifications contain. The specifications of services, for instance, retrieved

from the different ontologies, describe the domain and express inheritance relations, in-

stantiations of entities, and potentially context-dependent effect properties. Application

descriptions express primarily the intended behavior of a developed application as a narra-

tive of context-dependent action occurrences. Finally, system restrictions capture assertion

about attributes of system states that must hold for every possible system execution (some-

times also called safety properties [Russo 2002]). Such a restriction is, for instance, that

for as long as the localization service is running inside a room no change in the level of

lighting should be made, as it relies on analyzing camera images.

Having this knowledge description at hand an essential task is to perform application

verification in order to verify that the specifications of AmI applications are in compliance

with the overall system restrictions and detect errors early in the development phase. This

a priori analysis is performed at design-time and can formally be defined as an abductive

reasoning process that tries to find a set P of permissible actions that lead a consistent

system to a state where some of its constraints are violated, given a domain description D,

an application description APi for application i and a set of system constraints C:

D ∧ APi ∧ P |= ∃t¬C(t) where D ∧ APi ∧ P is consistent

In fact, if such a plan is found it acts as a counterexample providing diagnostic information

about violated safety properties. Apparently, such inferences are computationally expen-

128 Chapter 7. Use Cases and Implementation Issues

sive and most importantly semidecidable. Nevertheless, Russo et al. [Russo 2002] proved

that a reduction considering only two timepoints, current (tc) and next (tn), can transform

such an abductive framework to fully decidable and tractable under certain conditions (no

nesting temporal quantifiers):

D(T) ∧ APi(T) ∧C(tc) ∧ P |= ¬C(tn) given a 2-timepoint structure T

This way, we do not need to fully specify the state at time tc; the generated plan P is a

mixture of HoldsAt and Happens predicates without requiring a complete description of

the initial system state, in contrast to similar model-checking techniques.

Example 7.1. A developer uploads an application description file to the system con-

taining, among others, the two axioms shown in Table 7.1. The new application must first

be examined for consistency with respect to the set of restrictions already stored in the

system by service engineers. The developer executes the ApplicationCheck functionality

of the Validator accessible through the middleware, which identifies a potential restriction

violation whenever a user sits on a chair; the event causes the TurnO f f Light action to

occur that conflicts with the Localization being at a Running state (any substantial change

in lighting destabilizes the localization process). As a result, the developer needs to revise

the application, pausing for instance the Localizer before turning off the lights. �

Although application analysis can be accomplished at design-time and in isolation, ac-

tion validation must be performed at run-time considering the available knowledge about

the state of the system, as well as potential conflicts with other applications that might share

the same resources. Causality-based reasoning can contribute to

(a) High-level resource management.

A reasoner for Ambient Intelligence needs to resolve high-level conflicts raised by appli-

cations that request access to the same resource. We introduce axioms to capture integrity

constraints, as below:

∀app1, app2, t HoldsAt(InUseBy(S peaker01, app1), t) ∧
HoldsAt(InUseBy(S peaker01, app2), t)⇒ (app1 = app2)

(b) Ramifications and priorities.

Apart from direct conflicts between applications, certain actions may cause indirect side-

effects to the execution of others. Terminating a service may affect applications that do not

use it directly, instead invoke services that depended on it. Since the reasoner is the only

module aware of the current state of the system as a whole it can detect such unsafe effect

7.2. Reasoning in Ambient Intelligence Environments 129

ramifications and take measures to prevent unintended situations to emerge, either by deny-

ing the initial actions or by reconfiguring certain system aspects. Towards this direction,

actions are executed in terms of prioritization policies.

(c) Uncertainty handling.

In many situations important world parameters may only be partially observable, still any

action taken must guarantee consistent and safe behavior for the system as a whole. Uncer-

tainty may rise at any time and more often than not there is no easy way to resolve it; the

reasoner must make decisions based on partial knowledge. The knowledge theory we de-

velop in this thesis is planned to play an essential role for such type of epistemic reasoning

tasks. Consider the following example.

Example 7.2 Imagine a system constraint requiring for the main room door to be in

locked state iff no user is located inside it.

(7.2.1) HoldsAt(UserInRoom(user, MainRoom), t)⇔
¬HoldsAt(DoorLocked(MainDoor), t)

Information about the user’s presence is obtained only in the main room through a multi-

camera vision localization component. Therefore, one way to infer that a user has exited

the main room is when her last known location was near the door and the door is open:

(7.2.2) HoldsAt(UserNearDoor(user,MainDoor), t)∧
HoldsAt(DoorOpen(MainDoor), t) ∧ Happens(UserLost(user), t)⇒
¬HoldsAt(UserInRoom(user,MainRoom), t + 1)

Otherwise, a S enseUserLocation procedure is invoked to search using alternative means,

such as RFIDs, location of personal devices etc:

(7.2.3) (¬HoldsAt(UserNearDoor(user,MainDoor), t)∨
¬HoldsAt(DoorOpen(MainDoor), t)) ∧ Happens(UserLost(user), t)⇒
Happens(S enseUserLocation(user), t)

Consider the contingency where Happens(UserLost(user),T) occurs at some timepoint

T , still the door is not open and the S enseUserLocation procedure cannot track the user

inside the room, potentially because she is standing behind some obstacle. In such a case

130 Chapter 7. Use Cases and Implementation Issues

where the reasoner is not aware of whether the user has left the room or not, it needs to

perform reasoning based on partial knowledge. Apparently, under this contingency con-

straint (7.1.1) should not be applied as is; it must be reformulated otherwise we run the risk

of resulting in an unintended situation where the user gets temporarily locked in the main

room due to lack of knowledge about the user’s presence. A more appropriate constraint

that takes into consideration partial information would be:

(7.2.4) HoldsAt(Knows(¬UserInRoom(user,MainRoom)), t)⇔
HoldsAt(Knows(DoorLocked(MainDoor)), t)

�

Situations of ambiguous knowledge are very common in Ambient Intelligence systems.

Applying some consideration of knowledge treatment, as provided by DECKT, is crucial.

Notice that the act of sensing can denote just an abstraction for procedures that can provide

relevant information, such as S enseUserLocation or communication between components,

that provide new knowledge.

7.2.3 Uncertainty and Temporary Knowledge Example

Building on the centralized infrastructure already available, current efforts concentrate on

transferring reasoning capabilities to mobile and resource-constraint devices that operate

in a smart space. Such autonomous devices, capable of executing commonsense tasks,

constitute the core of the Ambient Intelligence vision, as they take leading role in do-

mains, such as ambient assisted living for supporting individuals with cognitive or physical

impairments. For such devices reasoning under partial knowledge is a critical factor, as

they experience substantial restrictions not only in storing relevant contextual information,

but even in accessing it. In this and the next section we provide different aspects where

DECKT can be applied to promote the existing AmI scheme, following the personal assis-

tant paradigm. The following example axiomatizes in more detail a typical situation where

the effects of actions are not completely at the disposal of the agent, rather some sort of

sensing is required, while their temporal validity is limited. The scenario goes beyond the

implemented infrastructure of our project, based on next-generation Ambient Intelligence

facilities that are under development.

Example 7.3 In a smart space every user is assumed to be equipped with a virtual

personal assistant, an intelligent agent living in stationary or mobile devices that the user

7.2. Reasoning in Ambient Intelligence Environments 131

interacts with, such as her PDA, cellphone etc, and utilizes relevant information in order

to assist the user. This assistant can be assigned different tasks: it can be instructed to

proactively or reactively invent ways to accomplish user objectives that comply with her

needs, given the specifications of the smart space (planning); it may assist the user while

performing certain tasks and explain the behavior of the system in response to her actions

(postdiction and model finding); it can foresee the result of actions by predicting the user’s

intentions and provide relevant assistance, e.g., suggestions or warnings (projection). The

agent can take advantage of the facilities of the smart space based on certain privacy poli-

cies, such as sensors, services and devices, still we should expect that its knowledge about

the environment is neither complete nor constantly updated, for reasons that may be related

to limited resources, network reliability etc.

First, we start by axiomatizing a portion of the world, without considering any epis-

temic notions. Imagine that for a user to gain administrator privileges for the AmI space

she must first apply an RFID card to the corresponding reader and then speak a valid code

into a microphone located nearby. A safety mechanism provides a time window of 5 sec-

onds for the user to present the correct code after the RFID tag has been recognized:

(7.3.1) Happens(RFCard(ID), t)⇒
Happens(S tartRec(Mic), t) ∧ Happens(S topRec(Mic), t + 5)

(7.3.2) Initiates(S tartRec(Mic),Recording(Mic), t)

(7.3.3) Terminates(S topRec(Mic),Recording(Mic), t)

If the spoken code is correct the procedure is successful and the user obtains full access to

the room, e.g. all doors open automatically when the user approaches. Still, due to noisy

conditions, even a correct pronunciation of the combination does not always guarantee

that it will be successfully recognized. We can represent this uncertainty by releasing the

result of the procedure from the law of inertia, allowing its truth value to fluctuate in future

timepoints:

(7.3.4) HoldsAt(Recording(Mic), t)⇒
Releases(S peak(”3241”), AdminMode(MainRoom), t)

(7.3.5) HoldsAt(AdminMode(MainRoom), t)⇒
Initiates(ApproachDoor(door),Open(door), t)

132 Chapter 7. Use Cases and Implementation Issues

Thus, after the occurrence of the S peak action the truth value of the AdminMode fluent will

fluctuate in future timepoints, resulting in different models, one where the AmI space enters

in Administrator mode and one where no change has occurred. In the former case, all doors

that were initially locked, become unlocked. Notice how the effect of the ApproachDoor

action in (7.3.5) is dependent on the released AdminMode fluent; if the latter does not hold,

the action may still occur but the user runs the risk of encountering a closed door.

Given this domain axiomatization, we can use DECKT to represent inferencing tasks

that the user’s personal assistant, stored on her personal PDA, can perform based on the

available knowledge and its awareness of occurring events. The agent initially knows that

the microphone is switched off and the doors locked:

(7.3.6) HoldsAt(KP(¬Recording(Mic)), 0) ∧ HoldsAt(KP(¬Open(MainDoor)), 0)

We reasonably assume that all non-epistemic fluent terms are subject to inertia in the initial

state. Since no state constraint is applicable, apart from (K2), axiom (KT7) is compiled as:

(7.3.7) HoldsAt(KPw(f), 0)⇔ HoldsAt(Kw(f), 0)

Then, a three-action narrative is generated; the user places her RFID-enabled PDA on the

reader at time 0, speaks into the microphone and approaches the main-room door at time 3.

(7.3.8) Happens(RFCard(ID), 0) ∧ Happens(S peak(”3241”), 1)∧
Happens(ApproachDoor(MainDoor), 3)

We can now prove a number of sentences by forming the parallel circumscriptions

CIRC[(7.3.2 − 5) ∧ (KT3.1 − 4) ∧ (KT5.1 − 3); Initiates, Terminates,Releases]

CIRC[(7.3.1) ∧ (7.3.8); Happens]

in conjunction with (7.3.6,7), uniqueness-of-names axioms, Event Calculus axioms (DEC)

and the remaining axioms of our knowledge theory. For instance, at timepoints >3 the

user’s agent does not know whether the door is open and also at timepoints >5 the agent

knows that the microphone is not recording any more:

7.2. Reasoning in Ambient Intelligence Environments 133

(7.3.9) |= ¬HoldsAt(Kw(AdminMode(MainRoom)), 2)∧
HoldsAt(Knows(¬Recording(Mic)), 6)∧
¬HoldsAt(Kw(Open(MainDoor)), 4)

This result was caused by the triggering of (KT3.1-2) at timepoint 0 and (KT3.3-4) at time-

point 5 for the Recording() fluent, as well as of (KT5.3) at timepoint 1 for the AdminMode()

fluent and (KT5.1) at timepoint 3 for the Open() fluent. In fact, at timepoints >1 there are

two possible models, one in which the room has changed mode and another where no

change has occurred. In both models, though, (7.3.9) reflects part of the agent’s state of

knowledge.

Still, this is not all that the agent can infer. Although for the release axioms (7.3.4)

the preconditions are known, this is not true for the preconditions of (7.3.5), leading to the

creation of a HCD according to (KT6.1.1,2):

(7.3.10) |= HoldsAt(Knows(AdminMode(MainRoom)⇔ Open(MainDoor)), 4)

This HCD may provide useful leverage to the agent. Imagine for instance that the agent

can query the appropriate component of the AmI system about the current state of the

main-room door, much like performing a sense action as defined by the DECKT theory.

By performing this action at timepoint 4, i.e.,

(7.3.11) Happens(S ense(Open(MainRoom)), 4)

and following the same procedure as before now the agent will have knowledge of the

actual state, reflected by the formula:

(7.3.12) |= HoldsAt(Kw(AdminMode(MainRoom), 5)∧
HoldsAt(Kw(Open(MainDoor)), 5)

That is, the agent can keep track of the evolution of the system in response to the user’s

actions and inform her, for instance, if asked, why the door is not open, as well as what

to do next, e.g., to position the PDA at the reader once again (if t>5) or just to restate the

correct code (if there is enough time remaining). �

134 Chapter 7. Use Cases and Implementation Issues

7.2.4 Other Examples

The aforementioned example is a variation of "the Russian Turkey Scenario", as presented

in [Mueller 2006], that deals with non-deterministic effects, in combination with other

challenging scenarios discussed in [Zimmerbaum 2001] where the effects are only valid

for specific time intervals. The idea is to extend such benchmark problems of cognitive

robotics with a treatment of knowledge in partially observable domains and present how

epistemic reasoning can progress. The theory has also been applied to a multitude of other

scenarios that are briefly described next.

1. Released fluents are not the only way to treat non-determinism in the Event Calculus.

Another method is to use determining fluents, as in [Shanahan 1999b]. These fluents,

introduced in Section 6.1.2, are never subject to inertia and play the role of a random

value generator for other fluents. We have used as an example the case of a user

selecting randomly one of the available choices presented on a screen, with an agent

reasoning about the knowledge it can have concerning that choice. Other examples

of this type are the well-known "toss a coin", "roll a dice", "spin the wheel" problems

etc.

2. Considering the dynamics of a domain, an agent can not only derive knowledge

from direct effects of actions, but also indirectly through appropriate ramifications.

Imagine a user picking up her PDA and moving around the premises of a building.

Locating the PDA using the building’s wireless infrastructure might not be possible

at all times, due to insufficient network coverage. Still, its location varies with the

location of the user holding it; knowing the location of the user, the reasoner can also

infer the location of the PDA. Such types of ramification can be accommodated by

the theory both with the technique of primitive and derived fluents or with the use of

state constraints, such as the following:

HoldsAt(Knows(Holding(user, ob ject)), t) ∧
HoldsAt(Knows(InRoom(user, room)), t)⇒
HoldsAt(Knows(InRoom(ob ject, room)), t)

3. Reasoning about only knowing, i.e., what an agent does not know, in the style of

[Lakemeyer 1998], is an important aspect when modeling partially known environ-

ments. Consider an AmI system where two agents are responsible for supporting

7.2. Reasoning in Ambient Intelligence Environments 135

visitors with their interaction. Suppose that a visitor knows that at time t at least one

of the agent is online, but does not know which. The theory can be used to prove both

¬∃xHoldsAt(Knows(Online(x)), t) and HoldsAt(Knows(∃xOnline(x)), t). Usually,

the first sentence is called the de dicto reading, while the second the de re reading.

Lack of knowledge is inferred only by explicitly representing an agent’s knowledge,

allowing also subtle variations in meaning, dependent on the structuring of the quan-

tifiers of the sentence, to be captured.

4. An interesting example that the Event Calculus handles more efficiently as compared

to most other formalisms, is the representation of continuous change. For instance,

it can be proved that if the distance covered by a user at a particular time instant

is known, then the reasoner can also infer the distance at some future timepoint,

provided that it is aware of changes in her Walking state and, of course, the average

walking speed (variation from various "falling object"-related domains). The non-

monotonic nature of the Event Calculus permits accurate proactive reasoning for

such domains, e.g., determining where the user might be located in the near future

and updating the expectations based on newly acquired knowledge. An example of

such setting has been discussed in Section 6.1

5. Furthermore, we have considered another scenario that involves the handling of tem-

porary knowledge, i.e., knowing something for a given time interval only, based on a

variation of the domains discussed in [Zimmerbaum 2001]. Imagine a light that is lit

for 30 seconds, whenever a button is pressed. The light turns off afterwards, except if

the button is pressed again in the meanwhile. We can axiomatize this domain either

using the flexible time representation machinery of the Event Calculus (as shown

in the example of Section 7.2.3) or by applying a more straightforward method of

simulating time counters.

In addition to being able to cope with a multitude of diverse commonsense phenomena,

the epistemic reasoning theory that implements an agent’s cognitive skills needs to support

long lived autonomous operation; agents may need to execute long action sequences un-

der partial information about the environment, whereas access to required world aspects

through sensing may be limited or not available when needed. AmI domains in particular

require from the reasoning agents to lift most simplifying assumptions and confront the

realistic restrictions posed by this challenging field of research. DECKT enables an agent

136 Chapter 7. Use Cases and Implementation Issues

to generate and maintain long chains of dependencies among unknown fluents by creating

and manipulating HCDs. These dependencies are handled as ordinary fluents minimizing

the computational complexity when reasoning and at the same time providing valuable

ramifications when seeking for knowledge about unobservable fluents.

Example 7.4. Among a personal assistant agent’s tasks is to monitor the user’s every-

day activities and provide instructions or activate alerts when exceptional situations are

detected with an as less intrusive manner as possible. Let fluent f1 denote the situation

when the user is cooking, which is derived by fusing relevant contextual information and

user activity in the kitchen. The end of this task, based on the user’s habits, can be detected

from a number of activities that follow a pattern, such as turning off the hot plate, placing

dishes in the sink, opening the tap water etc. Let e1 be the event of entering the living room.

If the user leaves the kitchen while cooking the assistant agent should identify a potential

exceptional behavior, but should not disturb the user yet. Then, if the user picks up the

phone, denoted as e2, an alert should be activated, triggering appropriate actions to inform

the user that there is, for instance, unfinished kitchen activity. If the potential exceptional

situation is captured by fluent f2 and the alter by f3, the previous behavior can be plainly

axiomatized as follows:

(7.4.1) HoldsAt(f1, t)⇒ Initiates(e1, f2, t)

(7.4.2) HoldsAt(f2, t)⇒ Initiates(e2, f3, t)

Assume now that, while at noon, the contextual information coming from the kitchen is

contradicting not allowing the agent to infer either that HoldsAt(f1, T) or ¬HoldsAt(f1,T),

i.e., ¬HoldsAt(Kw(f1), T) and then the user leaves the kitchen and starts making a phone

call. Based on the DECKT axiomatization, the following HCDs are created for timepoints

T ′ > T :

(7.4.3) |= HoldsAt(Knows(f1 ⇒ f2), T ′)∧
HoldsAt(Knows(f2 ⇒ f3), T ′)

Specifically, the agent does not know if an alert should be triggered, still it knows that

if the user was in fact cooking the exceptional situation is a reality. Still, f3 should be a

known fact before disturbing the user. Although there is no direct means of sensing f3,

by determining whether f1 holds the agent can also derive f3 based on the interrelation of

7.3. Implementation Issues 137

HCDs. In conjecturing that there might be work in progress in the kitchen with potential

hazard (e.g., a turned on apparatus), the act of sensing f1 is translated as a check procedure

of all sensitive aspects. �

Notice how HCDs are different from domain state constraints. Rather than being nec-

essarily true at all times, the dependencies they represent are temporary, created only based

on the current knowledge of the agent. They augment its mental state with valuable infer-

ence rules according to context and may as well become invalidated by other actions, as

dictated by DECKT. Alternative approaches that do not deal explicitly with the notions of

actions and causality, such as rule-based approaches, apart from being restricted to less ex-

pressive commonsense phenomena, require the designer to model beforehand all possible

conditions that call for some action to be performed. Instead, as shown in the previous ex-

ample HCDs are created and destroyed automatically, thus providing a more efficient and

intuitive solution for such types of reasoning tasks. Compared to pure statistical approaches

logic inference is highly expressive and computationally more potent in dealing with first-

order representations, which are much richer than propositional ones that characterize most

probabilistic approaches.

7.3 Implementation Issues

The account of knowledge and change we develop provides a theoretical framework for

building rational agents, but also aims at programming reasoning agents for practical im-

plementations. In order to balance theory and application the formal representation of

domain dynamics need to easily be transferred to implementations that require long peri-

ods of execution with a large number of actions and efficient knowledge updating in the

light of new information. To that aspect the progress that is being made on developing

efficient reasoners for the Event Calculus is very important. In this section we report our

experiences on implementing commonsense domains with a highly usable reasoning tool

and identify limitations in applying the full potential of DECKT. We also present the ongo-

ing effort to develop a reasoner that raises these limitations and meets all desirable features

needed to pursue the goal of bridging theory and practice.

138 Chapter 7. Use Cases and Implementation Issues

7.3.1 Requirements and Desirable Features

Faced with the task of implementing the mental state of reasoning agents using logic-

based programming languages, two features are most desirable, in order to exploit DECKT

framework’s full potential:

1. The reasoner must permit nested reification in order to support the modeling of epis-

temic fluents inside Event Calculus predicates. The intension is to allow, for instance,

the epistemic proposition Knows(Open(S 1)) to be treated as a term of a first-order

logic and not as an atom, so that HoldsAt(Knows(Open(S 1)), 0) can be regarded as a

well-formed formula of first-order logic. Although Event Calculus reasoners permit

reification of ordinary relational fluents inside the predicates of the calculus, most of

them do not provide support for deeper levels of reification.

2. Machinery should be available for reasoning to progress incrementally to allow for

run-time execution of knowledge-based programs, so that each time a program inter-

preter adds a new action to its agenda, the reasoner can update its current knowledge

base. This is an essential feature for our targeted implementations, since some of the

agent’s actions will be sense actions that can fully exploit the non-monotonic nature

of the Event Calculus. Although offline reasoning can be used to study the proper-

ties of different domains and simulate the outcome of sensing, a knowledge theory is

most suited for online reasoning execution, where an agent can benefit from planning

with the knowledge at hand, interleaving sensing with ordinary actions and acquiring

the actual outcomes of its actions.

In addition to these desirable features there are also requirements raised by the DECKT

axiomatization that need to be carefully handled when targeting for efficiency. In particular,

axiom (KT7), which rules the behavior of all released Knows fluents, requires special han-

dling. We propose two approaches for implementing DECKT, both of which can provide

efficient solutions.

A. Negation-as-failure. In order to infer all epistemic derivations, dictated by a particu-

lar axiomatic system of modal logic the reasoning procedure must include inference rules,

such as the distribution axiom (K) and the (P1), (P2) properties of knowledge introduced in

Section 4.2. Within DECKT, axiom (KT7) defines the necessary and sufficient conditions

for a formula to be known: there must be some evidence for this knowledge to be produced,

7.3. Implementation Issues 139

that is, either the formula must be known directly by means of the KP fluent or indirectly

through some state constraint known to be triggered. By employing negation-as-failure

as a means to model (KT7), the implementation of dynamic closed world assumption in

DECKT can be straightforwardly implemented. Intuitively, failure to derive either that a

formula is known to be true or known to be false using (KT1-6) and the available state

constraints implies that the formula is unknown. This approach can undoubtedly offer ben-

efits to the developer of epistemic-enabled agents simplifying the design process and it is

adopted in our Jess-based Event Calculus reasoner that we describe in Section 7.3.3, which

exploits certain properties of Jess in order to simulate negation-as-failure. Still, most ex-

isting Event Calculus reasoners are not equipped with negation-as-failure facilities, as this

feature is not among the calculus basic tenets2.

B. KT7 Minimization. The second alternative provides a way to ground axiom (KT7)

to the available state constraints, replacing completely axioms (K), (P1) and (P2). In par-

ticular, (KT7) can be instantiated based on the available domain knowledge, according to

the following proposition:

Proposition 3. (KT7 Minimization) A conjunctive formula ϕ is known to hold iff all indi-

vidual components of ϕ are known to hold. A disjunctive formula ϕ is known to hold iff

i. for all state constraints that contain ϕ or a part of it, the disjunction of the comple-

ments of the subformulae that result after retracting ϕ is known, or

ii. the KP fluent for ϕ or any of its disjunctive subformulae is known to hold.

Proposition 3 provides the guidelines to instantiate (KT7) by considering only those

state constraints that may provide knowledge about the formula and essentially reveals the

main source of computation effort in model checking with DECKT. Consider the following

example:

Example 7.5. Let a domain consisting of six fluents and the state constraints

(7.5.1) ¬ f4 ∨ ¬ f5 ∨ f3

(7.5.2) f6 ∨ f1 ∨ f2

In order to determine if clause (f1 ∨ f2 ∨ f3) is known, according to Proposition 3, the

reasoner can construct (KT7) as follows:

(7.5.3) HoldsAt(Knows(f1 ∨ f2 ∨ f3), t)⇔
2We should note, though, that there are a number of research attempts underway that we are aware of that

aim at implementing an Event Calculus reasoner using Prolog.

140 Chapter 7. Use Cases and Implementation Issues

HoldsAt(Knows((f4 ∧ f5) ∨ ¬ f6), t)∨
HoldsAt(KP(f1 ∨ f2 ∨ f3), t)∨
HoldsAt(KP(f1 ∨ f2), t) ∨ HoldsAt(KP(f1 ∨ f3), t) ∨ HoldsAt(KP(f2 ∨ f3), t)∨
HoldsAt(KP(f1), t) ∨ HoldsAt(KP(f2), t) ∨ HoldsAt(KP(f3), t)

Assuming that all available events may only initiate or terminate (unconditionally) atomic

fluents, then, based on previous discussions about KP, (KT7) for this formula can be sim-

plified even further:

(7.5.4) HoldsAt(Knows(f1 ∨ f2 ∨ f3), t)⇔
(HoldsAt(Knows(f4), t) ∧ HoldsAt(Knows(f5), t))∨
HoldsAt(Knows(¬ f6), t)∨
HoldsAt(KP(f1), t) ∨ HoldsAt(KP(f2), t) ∨ HoldsAt(KP(f3), t)

If, in addition, the reasoner were given as initial knowledge HoldsAt(KP(f1 ∨ f2), 0), then

this disjunction (and only this) should be included in (7.5.4). The same holds true for any

disjunction created as HCD; it should be considered in (KT7), but only for as long as the

HCD remains valid. Notice how this axiom completely substitutes knowledge derivations

due to (K). Moreover, see that in order to determine the values of f4, f5, f6 we may need to

search through the state constraints of these fluents as well (it is the Knows fluent that is

used, not KP). Finally, it can be seen that by checking the fluents required for the initial

disjunction, the reasoner produced knowledge about all subformulae of this disjunction as

well, since they too are reduced to these atomic fluents. �

The previous example points out certain interesting features, such as that in order to

determine the truth value of the query formula the reasoning process may need to search

through all fluents of a given domain. This holds true, because DECKT lays more emphasis

on state constraints among fluents. If all fluents are interrelated, as in the previous example,

it is probable that in order to answer even an atomic query we may have to search through an

exponential number of formulae. Still, as already argued, this is hardly the case in realistic

domains. The properties that are included in state constraints form sets of interrelated

fluents whose size is significantly smaller than that of the domain.

To conclude the requirement analysis, it is also appropriate to comment on a general

limitation of the Event Calculus. In contrast to other calculi, such as the Situation and

the Fluent Calculus, this formalism does not support functional fluents. Of course, one can

7.3. Implementation Issues 141

represent functional properties in terms of relational ones extended with an extra argument,

along with appropriate state constraints to ensure that the fluent is functional, i.e., that the

argument denoting its value will always exist and be unique. For example, the functional

fluent TossDice(d) = x can be represented by the relational fluent TossDice(d, x), enforc-

ing restrictions on the permissible truth values for argument x. Nevertheless, this syntactic

treatment constitutes less intuitive the modeling of sense actions about functional fluents.

Within the Situation Calculus, a special action readτ is introduced to determine the value

of a term τ. Instead, for DECKT a sense action’s denotation would refer to evaluating

all instantiations of the sensed fluent since grounding the extra argument would be of no

practical value. Although notationally less elegant, this approach introduces no further

inconveniences if we rest the theory on the assumption of finite domains of constants.

7.3.2 SAT-based DECReasoner

Reducing reasoning tasks into satisfiability problems has proven to be a decisive leverage

for the implementation of efficient reasoners for the Event Calculus, enabling the inte-

gration of fast SAT solvers. The Discrete Event Calculus Reasoner3 is a representative

example, as well as a highly usable tool, supporting deduction, abduction, postdiction and

model finding for a wide range of problems. For that reason, this reasoner has been ex-

tensively used during the course of this thesis to model use cases for DECKT employing

subsets of its axiomatization. Unfortunately, neither of the previously mentioned desirable

features are supported by DECReasoner, complicating the knowledge-based programming

process. Regarding the first requirement in particular, we have adopted two solutions.

Syntactical treatment of epistemic fluents. Since nested reification is not directly sup-

ported in DECReasoner, we have followed a syntactical approach to express epistemic flu-

ents. For instance, in order to represent the knowledge that an agent may have about proper-

ties, such as Knows(InRoom(ob ject, room)), we introduced two new fluents for each epis-

temic one, namely Knows_InRoom(ob ject, room) and Knows_NotInRoom(ob ject, room).

This way, HoldsAt(Knows_InRoom(ob ject, room), time) can be properly handled with the

classical Event Calculus axiomatization. In Appendix B.1 we provide sample code for

the representation of a non-deterministic domain using this approach, which produces two

models4. Apparently, this approach introduces serious restrictions in terms of practical

3DEC Reasoner http://decreasoner.sourceforge.net (last accessed: August 2010)
4Further examples can be found in http://www.csd.uoc.gr/˜patkos/deckt.htm.

142 Chapter 7. Use Cases and Implementation Issues

value. Although the full DECKT can be represented this way, the programming process

becomes cumbersome when many fluents are involved, especially for the representation

of knowledge about formulae. Even with an automatic parser that translates domain de-

scriptions to epistemic theories, the reasoner would be flooded with far too many fluents to

reason with, thus wasting one of the design objectives of the theory. For smaller domains,

though, the approach is tolerable.

Extending DECReasoner’s Ontology. As an alternative technique to tackle the reifi-

cation problem without syntactically enhancing the language’s propositions, we have ex-

tended the core ontology of DECReasoner with epistemic sorts. In sort, we have defined

an auxiliary set of epistemic predicates, namely KHoldsAt, KInitiates, KTerminates, and

reformulated the foundational Event Calculus axioms to account for these predicates as

well. By exploiting the reasoner’s syntax we have defined a new sort of reified epistemic

fluents that each of the epistemic predicate could treat as ordinary ones. This auxiliary

axiomatization is presented in Appendix B.2, along with an example implementation. Al-

though this approach facilitates the design process of knowledge programs, it is restricted

to the modeling of knowledge about atomic fluents only, thus limiting the expressive power

of the theory. Furthermore, an additional parser is needed to reshape the output returned

by the reasoner, as the epistemic predicates cannot be displayed in the user friendly format

originally designed for ordinary Event Calculus predicates.

Both the aforementioned techniques present limitations concerning the first require-

ment, while there is no solution for the second requirement either. Moreover, a reduction

of Event Calculus theories to satisfiability problems is neither the most efficient nor the

most expressive technique any more. Recently, a reasoner that casts first-order circum-

scription into the general stable model semantics has been released [Kim 2009]. Taking

advantage of the progress in answer set programming and the availability of very fast ASP

solvers the reasoner is shown to outperform both SAT-based solvers and traditional abduc-

tive planners both in terms of breadth of domains that it can be represent and in terms of

efficiency as regards to execution time and number of atoms produced. The result is very

promising as the restrictions imposed by circumscription concerning predicate completion

are tackled and more expressive reasoning tasks exploiting the full Event Calculus can be

computed. Unfortunately, both this reasoner and DECReasoner cannot be used for online

program execution.

7.3. Implementation Issues 143

7.3.3 Custom Jess-based Event Calculus Reasoner

Ultimately, we have concluded that in order to model the expressiveness of a theory of

knowledge and exploit the full potential of HCDs the reasoner must offer both high-level

modeling and low-level programming flexibility with respect to the aforementioned fea-

tures. For instance, HCDs require efficient handling of list constructs to be provided by

the syntax of the underlying logic programming language. For that purpose, our current

effort concentrates on building an Event Calculus reasoner that can support reification of

epistemic predicates on different levels (thus enabling introspection in the future) and in-

cremental progression of execution. The reasoner is based on Jess5, a very efficient rule

engine that implements the Rete algorithm for rule matching.

Specifically, we are developing an Event Calculus reasoner that can perform deduction

tasks both for epistemic and for non-epistemic theories. Concerning the former many in-

novative features have been embedded. Predicates are asserted as facts in the reasoner’s

agenda, specified by the following template definition:

(deftemplate EC (slot predicate)

(slot event (default nil))

(slot epistemic (default no))

(multislot posLtrs)

(multislot negLtrs)

(slot time (default 0))

(slot reactivation (default 1)))

The "predicate" slot is instantiated based on the names defined in the Event Calculus’ basic

ontology, such as HoldsAt, Happens, etc., whereas the "epistemic" slot is instantiated as

Knows or KP when needed. Multislots represent lists denoting disjunction of fluents (con-

junctions are decomposable into their components according to the definition for knowl-

edge), so that for instance knowledge about formula (f1∨ f2∨¬ f3) at time 1 to be captured

by the fact:

(EC (predicate HoldsAt)

(epistemic Knows)

5http://www.jessrules.com/ (last accessed: August 2010)

144 Chapter 7. Use Cases and Implementation Issues

(posLtrs f_1 f_2)

(negLtrs f_3)

(time 1))

Given that this is a HoldsAt predicate, the remaining slots are left undefined (the reac-

tivation slot is used for internal to the reasoner purposes). The exploitation of lists for

maintaining positive and negative literals of formulae enables the representation of HCDs

in a syntax-independent manner, so that all meta-axioms of DECKT can be translated into

appropriately defined rules. This way, the reasoning process can be fully automated, de-

spite the fact that the (KT6) set of meta-axioms are time-dependent: the meta-axioms are

adapted at every reasoning cycle (per timepoint) based on the facts that exist in the rea-

soner’s agenda, as explained in the following example6.

Example 7.6.1. As an example of the way meta-axioms are constructed given a partic-

ular domain axiomatization, consider the (Sh7.12) trigger axiom of the Shanahan’s circuit

example:

¬HoldsAt(Closed(S 2)) ∧ ¬HoldsAt(Activated(R), t)⇒
Happens(Close(S 2), t) (Sh7.12)

The precondition set is C = {¬S 2,¬R}, while the effect of event Close(S 2) is Closed(S 2).

The following rule, under the Jess syntax of our implemented reasoner, captures the instan-

tiation of both (KT5.1) and (KT6.1) axioms:

; Epistemic Axioms for Switch S2 and Potential Actions

;Precondition set C={~S2,~R}

(defrule MAIN::Close_PotKT5+6.1Combined

(Time (tpoint ?t))

; Assignment of facts to variables ?prec1, ?prec2

?prec1 <- (fluent (name Closed) (arg S2))

?prec2 <- (fluent (name Activated) (arg R))

; No precondition is known not be false (triggering is possible)

(not (EC (predicate HoldsAt)

(epistemic Knows)

(negLtrs $?nf1&:(= 0 (length$ $?nf1)))

6Full code of the Jess-based Event Calculus reasoner along with examples and output, including the com-

plete Shanahan’s circuit epistemic axiomatization, are available at http://www.csd.uoc.gr/˜patkos/deckt.htm

7.3. Implementation Issues 145

(posLtrs ?prec1)

(time ?t)))

(not (EC (predicate HoldsAt)

(epistemic Knows)

(posLtrs ?prec2)

(negLtrs $?pf1&:(= 0 (length$ $?pf1)))

(time ?t)))

?event <- (event (name Close_pot) (arg S2))

=>

;KT6.1

(assert (EC (predicate Initiates)

(epistemic KP)

(event ?event)

(posLtrs ?prec1 ?prec2)

(time ?t)))

;KT5.1

(assert (EC (predicate Terminates)

(epistemic KP)

(event ?event)

(negLtrs ?prec1)

(time ?t))))

These facts are asserted at every timepoint, provided the rule’s preconditions hold; still,

before reasoning proceeds to the processing of occurring events another rule retracts from

all HCDs those fluents that are known, so that only the C(t)− set of fluents will eventually

remain, according to DECKT’s principles. This way the meta-axioms are adaptable at

runtime to the agent’s running knowledge. �

Furthermore, Jess provides the functionality for facts to be asserted or retracted to its

agenda on-the-fly based on information acquired at runtime, implementing online execu-

tion. Appendix B.3 includes samples of how the Event Calculus axiomatization has been

modeled using rules within the Jess environment both for epistemic and for non-epistemic

domains. It also shows one more example of an axiom that require HCD treatment, namely

(KT6.2.4).

An important design characteristic of our approach is related to the way memory man-

146 Chapter 7. Use Cases and Implementation Issues

agement is accomplished. First, we only need to instantiate at start-up all ground objects

(all possible fluents and events) so that the predicates can create references to them. On

the other hand, predicates are asserted only when needed. More specifically, we preserve

in memory only the facts that hold at each timepoint. Second, by exploiting a feature of

Jess by which rules are triggered only based on the knowledge stored in its memory, we

managed not only to dismiss (DEC2,6,8) axioms from the axiomatization, but also to im-

plement negation-as-failure, reducing significantly the design and reasoning effort. Third,

during the process of generating a model the reasoner identifies timepoints where alter-

native models should be considered (e.g., when a fluent is release and not constrained by

any state constraint). Thus, after completely constructing a model the process backtracks to

these timepoints retracting unnecessary future facts from memory and maintaining only the

set of clauses needed for each model. We have successfully modeled different benchmark

problems included in DECReasoner involving ramifications, non-determinism, as well as

trigger axioms. Furthermore, the epistemic treatment of Shanahan’s circuit has also been

modeled. Initial results achieve fast reasoning generating smaller set of clauses.

A useful characteristic of Jess is the fact that it enables its rule agenda to be triggered

at run-time as newly produced events are detected. Our objective is to integrate the rea-

soner with the already implemented Ambient Intelligence infrastructure described in this

chapter, in order to support temporal reasoning tasks at run-time. Another research group

has recently announced an online reasoner for the Event Calculus [Federico Chesani 2009],

where the agent must determine its course of actions based on information acquired at run-

time. It is based on the Cached Event Calculus [Chittaro 1996] that computes and stores

the maximal validity intervals of fluents, and extends or revises them as events occur. This

intense research in the field creates high prospects for the future of creating practical appli-

cations with Event Calculus-enhanced intelligent agents.

Chapter 8

Conclusions

Contents
8.1 Synopsis of Contributions . 147

8.2 Directions for Future Research . 149

After presenting our work and the relevant results we now revisit the main outcome

and technical contributions from a more high-level standpoint and also remark prominent

future research directions.

8.1 Synopsis of Contributions

Research in the broader field of Artificial Intelligence is oriented now more than ever to-

wards the challenges of pragmatic and real-world domains and focuses on application areas

that can support humans in dealing with everyday activities and problems. Frequently en-

countered difficulties and simplifying assumptions are not overlooked any more when de-

ploying systems that incorporate new, innovative AI technology. The impact of the present

study lies in this line of research, acknowledging the dynamic, highly complex and un-

certain nature of the real world, as well as the restrictions of rational agents in obtaining

information and reacting in a commonsense manner.

Reasoning about action and knowledge in dynamic environments has recently adopted

alternative and more efficient representations of the epistemic notions of an agent. Towards

this direction, this study significantly progresses the field with respect to the range of phe-

nomena that such alternative representations can model. DECKT is a highly expressive

formal framework for describing agents’ knowledge under partial observability by taking

advantage of both the way knowledge change is axiomatized and the particular character-

istics of the underlying Event Calculus formalism. The result is a theory that combines the

148 Chapter 8. Conclusions

expressiveness of possible-worlds specifications with the efficiency of reasoning without

the accessibility relation to model an agent’s mental state and dynamics. To balance the-

ory and application both characteristics are imperative: even a simple formulation such as

Shanahan’s circuit requires a rich repertoire of reasoning skills on behalf of the agent to

reason about the commonsense phenomena that emerge.

One further contribution of the present study is the introduction of the notion of HCDs.

The axiomatization of the dependencies among unknown preconditions and effects is com-

pletely independent of the underlying formalism, as it builds on the understanding of the

properties of possible worlds and the way they affect knowledge change. The intuition

can be translated to other knowledge theories, in order to augment them with the intended

epistemic notions of causality. A multi-agent system can reap benefits not only in terms

of computational efficiency, but also by enabling agents to perform well-targeted sense ac-

tions in order to acquire knowledge about other, potentially inaccessible to their sensors,

world aspects. In a real-world system the act of sensing may also mean communicating

with other agents; having an explicit representation of the dependencies before deciding

which information to ask for, contributes to policies for managing communication load.

The impact of the proposed epistemic theory has been illustrated both within the field of

cognitive robotics and for different application areas of Ambient Intelligence. The former

has formulated interesting and challenging problems that arise in different domains where

autonomous agents need to exhibit commonsense behavior. A broad range of benchmark

use cases can be treated with DECKT, especially when partial observability is a deter-

minant factor. Ambient Intelligence, on the other hand, embraces several scientific areas

and dictates in large the objectives and directions of current research activities and im-

plementations. We have highlighted opportunities for epistemic reasoning from different

perspectives; from inference tasks of resource-constraint mobile devices to the manage-

ment of a large-scale Ambient Intelligence infrastructure where context-dependent service

coordination needs to be attained at design- and at run-time.

Finally, we have developed a methodology and a tool for automating commonsense

reasoning in practice. Existing reasoning tools for the Event Calculus introduce syntacti-

cal restrictions or execution limitations when encountering epistemic reasoning tasks. Our

Jess-based Event Calculus reasoner supports progression of epistemic KBs where reason-

ing can be executed in an online fashion.

8.2. Directions for Future Research 149

8.2 Directions for Future Research

This dissertation opens interesting future research directions. The theory we developed

focuses exclusively on the formalization of the mental state of an agent in terms of knowl-

edge. However, an adequate theory of agents should include both knowledge and belief

[Halpern 1985]. In contrast to knowledge, an agent may have erroneous beliefs and can

adopt different strategies to handle contradictory information concerning aspects of the

environment. DECKT’s core ontology requires only the property of consistency to be sat-

isfied by its knowledge base, thus constituting the transition to belief a plausible future step.

Building on the basic tenets of DECKT the axiomatization of belief revision and the study

of related issues is a reasonable next step with expected results both in terms of efficiency

and in expressiveness, considering the broadness of the Event Calculus.

Moreover, a fundamental question in the area of cognitive robotics (that Reiter had be-

gun to examine) is the relationship between pure logical representations of incomplete

knowledge and the more numerical measures of uncertainty. Initial attempts that as-

sume noisy sensors and effectors incorporate probabilities in actions theories or implement

Markov Logic Networks. As the emphasis of this study is on real-world domains, a re-

laxation of certain assumptions and the treatment of ambiguity in the agent’s knowledge

will enable a much tighter coupling of the high-level control program and other parts of a

robot’s software, like mapping and localization, or even vision. The objective will be to

narrow the gap between cognitive and traditional robotics.

A third significant future direction would be to depart from the single agent case and

consider multi-agent systems. Highly interesting issues emerge, such as reasoning about

the knowledge of other agents, common knowledge and group knowledge, or about in-

trospection matters. Finally, we already consider extensions of the basic axiomatization

to support even more expressive domains, e.g., we investigate temporal indeterminacy of

event occurrences (events occurring sometime over an interval rather than at specific time-

points), where we expect that HCDs can provide significant leverage.

Appendix A

Proofs of Theorems and Propositions

A.1 DECKT Correctness Property

For proving the equivalence result of Chapter 5 we will use some lemmas. The intention is

to show that starting from DECKT we can construct BDECKT axioms, essentially proving

completeness (and the reverse, to show soundness). Nevertheless, during the course of the

proof we come up with the conclusion that in order to construct BDECKT axioms, DECKT

axiomatization must not only be complete with respect to the possible-worlds semantics but

also sound (for the actions that we consider here, i.e., ordinary and sensing actions). This

becomes more clear by understanding the intuition of the proof procedure that follows.

A.1.1 Preliminaries

The ultimate objective is to determine which worlds should be K-related to the world

that results after the occurrence of any event -either ordinary or sensing- according to the

DECKT treatment of knowledge. Considering DECKT as given, we start with the knowl-

edge that DECKT produces at the resulting state (after the occurrence). This knowledge

needs to be supported by the possible worlds theory as well, since knowledge is understood

as universal according to (M1). Therefore, we then investigate which of the initial worlds

(before the occurrence) can justify the conclusions derived from DECKT. The successors

of these worlds and only them can be K-related to the successor of the initial world. In cer-

tain cases all the initial worlds can be considered as candidates (e.g., when ordinary actions

occur as in Lemma 1), while in others only a subset of the initial worlds can explain the

given knowledge (e.g., for knowledge producing actions as in Lemma 2). Finally, we show

that from those candidates, all must be considered as necessary initial worlds, in order not

to violate any of the underlying Event Calculus principles. The worlds that are K-related

152 Appendix A. Proofs of Theorems and Propositions

to the successor of the initial world characterize exactly how knowledge should evolve in

BDECKT, i.e., axioms (BKT5) and (BKT6). The reader should also keep in mind that ac-

cording to our assumption about lack of non-determinism, the set of K-related worlds can

only diminish or stay the same as events occur, due to (M2).

As we also accentuate throughout the proving procedure, had some DECKT axiom

been omitted we would have had less knowledge in the resulting state (more possible

worlds) that could not be justified by any of the initials. Correspondingly, if some DECKT

axiom gave more knowledge than appropriate (less possible worlds and unsound conclu-

sions) then fewer initial worlds would be required again violating some Event Calculus

principles. Lemma 1 and the remark that follows it exemplify such situations with exam-

ples. Because of this fact the reverse procedure, constructing DECKT axioms for ordinary

and sense actions from BDECKT, becomes less intriguing as it serves mainly verification

purposes. Still, there is an interesting remark about this statement after Theorem 1 below.

To follow the proving process, the reader should understand that we proceed by distin-

guishing a number of situations depending on the type of event and the initial knowledge.

The set of situations investigate whether initially the preconditions are known or not and,

respectively, whether the effect is known or not (18 situations in total, most of which sim-

ilarly treated). For each situation we study what happens to the effect fluent, as well as to

those fluents that the effect fluent is related to (through HCDs), or more specifically, what

knowledge is gained and what is lost. All other fluents that remain unaffected maintain

their truth value due to the law of inertia.

A.1.2 Proofs

Lemma 1. DECKT ∧ (BKT1 − 4) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (BKT5)

Proof: Let ei denote arbitrary non-sensing events, fi arbitrary fluents and si arbitrary situa-

tions. We need to show

HappensB(e, s1, s2)⇒
(K(s′2, s2)⇔ ∃s′1(S (s′1, s

′
2) ∧ K(s′1, s1))) (BKT5)

Suppose HappensB(e, s1, s2) (1)

From (1), (L2) we have Happens(e, s1) ∧ S L(s1) = s2 (2)

Applying (M2) to correlate S L with K, we get

∀s′2(K(s′2, s2)⇒ ∃s′1(S (s′1, s
′
2) ∧ K(s′1, s1)))

A.1. DECKT Correctness Property 153

That is, the worlds accessible from s2 cannot appear out of nowhere; they must have an

ancestor which, in addition, must be K-related to the ancestor of s2, namely s1. The first

part of the proof aims at determining which of s1’s K-related worlds may have successors

that are among s′2.

Part A

We need to distinguish the different situations, depending on the effects of e and context

knowledge. We start with positive effect axioms HoldsAt(fpr, s1)⇒ InitiatesB(e, f , s1, s2):

Case (i): HoldsAt(KnowsB(fpr), s1) and ¬HoldsAt(KwB(f), s1)

Since the precondition fluent is known true, the knowledge axiom (T) declares that fpr

must hold, therefore the positive effect axiom is triggered and we can conclude that

InitiatesB(e, f , s1, s2) or, due to (L3), Initiates(e, f , s1). But then, (KT3.1) and (KT3.2)

are triggered because of the above, (2) and the fact that HoldsAt(KnowsB(fpr), s1) ⇔
HoldsAt(Knows(fpr), s1) from (M1). As a result, we get Initiates(e,KP(f), s1)

and by application of (DEC1) HoldsAt(KP(f), s2), which (KT2) transforms into

HoldsAt(Knows(f), s2) or equally HoldsAt(KnowsB(f), s2).

This means that, due to (BKT1), the definition of knowledge in possible worlds,

∀s′2(K(s′2, s2) ⇒ HoldsAt(f , s′2). That is, f must hold in all worlds K-related to s2. As

already mentioned, due to (M2) these worlds cannot appear out of nowhere; they must

have an ancestor which, in addition, must be K-related to the ancestor of s2, namely

s1. No restriction is placed on the truth value of f in the ancestor worlds of s′2, other

than f being unknown from the hypothesis. That is, assuming that s′4 is the ancestor of

s′2, S (s′4, s′2), we are unaware whether HoldsAt(f , s′4) or ¬HoldsAt(f , s′4) (we only know

that f is not released at all states and that it cannot have the same truth value, otherwise

it would be known). As a result, from (BDEC5) due to contraposition, we have that

HoldsAt(f , s′4) ∨ ∃e′(Happens(e′, s′4, s
′
2) ∧ Initiates(e′, f , s′4, s

′
2)). As mentioned before,

the first component of the disjunction is not necessarily true, and moreover we already

know that an event has occurred initiating fluent f (BKT2,3). Hence

∀s′2K(s′2, s2)⇒ ∃e′, s′4(Happens(e′, s′4, s
′
2) ∧ Initiates(e′, f , s′4, s

′
2)) (3)

Due to (BKT2), when an event occurs in s1, it also happens in all other K-related worlds,

therefore e′ = e since it is the only event occurrence we assume to be aware of.

The important conclusion from (3) is that s2 is only K-related to worlds that have

resulted from s1’s K-related worlds where some event (e in particular) initiated fluent f

154 Appendix A. Proofs of Theorems and Propositions

Figure A.1: Accessible worlds before and after the occurrence of event e; intermediate

stage for proving Lemma 1.

(one should see how this becomes a critical factor in the proof of (BKT6)). But in this

case, due to (BKT2) and (BKT3), all of s1’s K-related worlds qualify for this condition,

therefore all of them are candidates. Schematically, this situation can be depicted as the

graph of Figure A.1, where nodes denote worlds (or states), solid arcs denote accessibility

relations and dashed arcs denote successor worlds due to event occurrences.

Indirect effects: DECKT creates no new HCD involving f , since the preconditions are

known. In fact, no HCD containing f can be present after the action, even if it existed

before the action, because (KT6.2.1) would instruct its expiration. The only new HCDs

could be due to the transitivity axiom (KT6.2.4), if applicable, between fluents involved in

HCD with f and ¬ f . Still, the knowledge reflected by these HCDs must also exist in all

initial worlds, because the distribution axiom (K) creates perfect reasoners. As a result, the

conclusion that all initial worlds are candidates remains valid for indirectly affected fluents

as well.

Case (ii): HoldsAt(KnowsB(fpr), s1) and HoldsAt(KnowsB(f), s1)

It progresses exactly as before, since the precondition fluent is known and the effect axiom

is triggered in all initial worlds. Again, no initial world is excluded and all are considered

as candidates whose successor can be K-related to s2.

Case (iii): HoldsAt(KnowsB(fpr), s1) and HoldsAt(KnowsB(¬ f), s1)

As in case (i). All initial worlds are considered candidates.

Cases (iv-vi): HoldsAt(KnowsB(¬ fpr), s1)

Since the precondition is known not to hold, the effect axiom will not get triggered and the

event e will have no effect in any of the initial worlds. Due to inertia inflicted by (DEC5,6),

all fluents will preserve their truth value in the successor states. Thus, regardless of whether

A.1. DECKT Correctness Property 155

f is known or unknown, all initial worlds are candidates, following the process developed

in case (i).

Case (vii): ¬HoldsAt(KwB(fpr), s1) and ¬HoldsAt(KwB(f), s1)

In the same style as before, we can see that (KT5.1) is triggered leading now, after appli-

cation of (KT2) and (M1), to ¬HoldsAt(KwB(f), s2). This means that, using (BKT1), the

last statement is decomposed into

∃s′′2 K(s′′2 , s2) ∧ ¬HoldsAt(f , s′′2) (4)

∃s′′′2 K(s′′′2 , s2) ∧ HoldsAt(f , s′′′2) (5)

(4), (5) are the consequence of lack of knowledge about f ; since we are in a state where f

is unknown, there must be both worlds where f is true and worlds where it is not.

Formulae (4) and (5) tell us what should be known after the occurrence of the action

(HCD are studied later), now we see what this knowledge requires for the initial states. As

before, (M2) dictates that these worlds cannot appear out of nowhere, they must have an

ancestor which, in addition, must be K-related to the ancestor of s2, namely s1. From (5)

and contraposition of (BDEC5) we get that

∃s′′′2 K(s′′′2 , s2) ∧
(HoldsAt(f , s′′′4) ∨ ∃e′(Happens(e′, s′′′4 , s

′′′
2) ∧ Initiates(e′, f , s′′′4 , s

′′′
2))) (6)

where s′′′4 is the ancestor of s′′′2 , S (s′′′4 , s
′′′
2).

From (4) and contraposition of (BDEC4) we get that

∃s′′2 K(s′′2 , s2) ∧
(¬HoldsAt(f , s′′4) ∨ ∃e′(Happens(e′, s′′4 , s

′′
2) ∧ Terminates(e′, f , s′′4 , s

′′
2)))

where s′′4 is the ancestor of s′′2 , S (s′′4 , s
′′
2). According to the hypothesis, no such e′ that

terminates f exists, therefore we must assume that

∃s′′2 K(s′′2 , s2) ∧ ¬HoldsAt(f , s′′4). (7)

Of course, we also assume e = e′ as in case (i) without loss of generality, since this is the

only occurring event.

Formulae (6) and (7) state that s2 is only K-related to worlds that have resulted from

s1’s K-related worlds where f did not hold or f did hold or f became initiated. Apparently,

no initial world can be excluded from this statement and all are candidates. The hypothesis

also requires for both the initial and successor states to be K-related to worlds where f is

true and f is false, but we will see at the second part which of the candidate worlds must

be considered.

Indirect effects: According to DECKT, also (KT6.1.1) is triggered leading, after appli-

156 Appendix A. Proofs of Theorems and Propositions

cation of (KT2) and (M1), to HoldsAt(KnowsB(¬ fpr ∨ f), s2). Or equally, using (BKT1):

∀s′2(K(s′2, s2)⇒ ¬HoldsAt(fpr, s′2) ∨ HoldsAt(f , s′2) (8)

(8) is transformed into the following formula if we apply contraposition of (BDEC4) to the

first component of the disjunction and (BDEC5) to the second:

∀s′2(K(s′2, s2)⇒
¬HoldsAt(fpr, s′4) ∨ ∃e′(Happens(e′, s′4, s′2) ∧ Initiates(e′, f , s′4, s

′
2)) (9)

where s′4 is the ancestor of s′2, S (s′4, s
′
2). Again we assume e = e′ as before. Formula (9)

introduces one more restriction to the initial worlds, either the precondition is false initially

or the effect becomes initiated. Again, this holds true in all worlds, otherwise the hypoth-

esis would be violated (specifically, axiom (DEC1)) . Furthermore, DECKT also makes

certain arrangements for the relations where f participated (KT6.2.2,3): they remain valid

only if the precondition does not hold in the successor (and consequently, in the initial)

state. This again holds true in all initial situations, as all the worlds where the precondition

is false remain unaltered at the resulting state, thus transferring their relations.

Case (viii): ¬HoldsAt(KwB(fpr), s1) and HoldsAt(KnowsB(¬ f), s1)

Exactly as before, with the only difference that (KT6.1.2) is also triggered. Therefore, in

addition to (9), we also have

∀s′2(K(s′2, s2)⇒
HoldsAt(fpr, s′4) ∨ ¬HoldsAt(f , s′4) (10)

where s′4 is the ancestor of s′2, S (s′4, s′2). To obtain (10) after the appropriate contrapositions,

we have also considered the fact that there is no event terminating fluent f . Intuitively, from

(9) and (10) we have that initially either fpr holds and f becomes initiated or fpr does not

hold and neither does f . According to the hypothesis, in all worlds f does not hold and f

becomes initiated whenever fpr is true, therefore again all worlds are candidates.

Case (ix): ¬HoldsAt(KwB(fpr), s1) and HoldsAt(KnowsB(f), s1)

This case is easier than the previous, because neither (KT5.1) nor any (KT6) axioms is

triggered according to DECKT. In fact, according to DECKT no change in knowledge

would be caused from execution of action e. As a result, no initial world can be eliminated.

Cases (x-xviii) The procedure is identical for negative effect axioms

HoldsAt(fpr, s1)⇒ InitiatesB(e, f , s1, s2).

What cases (i) to (xviii) have shown is that regardless of the effect that an ordinary

action produces on f or the knowledge about its context, all worlds K-related to s1 should

be considered as candidates for producing worlds that are K-related to s2, as shown in

A.1. DECKT Correctness Property 157

Figure A.1 (notice that this is not the case if the action is a sensing action). In particular,

what we have concluded up until this point is that some subset of worlds accessible from

s1 produces successor worlds accessible from s2, regardless of which these are. Formally:

HappensB(e, s1, s2)⇒
(K(s′2, s2)⇒ ∃s′1(S (s′1, s

′
2) ∧ K(s′1, s1))) (11)

Part B

It remains to be shown that this set of s′1 worlds is not an open subset of the worlds

that are K-related to s1, but rather they are all those worlds, i.e., there cannot be s′4 that is

K-related to s1, whose successor is not K-related to s1’s successor.

But there could not be any other way. To see why, recall that in DECKT knowledge is

treated as an ordinary fluent. Therefore, according to (DEC5) and (DEC6) that force inertia

to the HoldsAt predicate, if a fluent is known (resp. unknown) and not affected by some

event, it must remain known (resp. unknown) at the next time instant. It is trivially proved

that by omitting some of the worlds in the resulting situation there is a possibility to obtain

knowledge about fluents other than f , thus violating inertia. Imagine, for instance, there

is a fluent f ′ that holds in all K-related to s1 worlds except s′4 (thus f ′ is unknown in s1).

If an event happens that does not affect f ′ and the successor of s′4 is not K-related to the

successor of s1 then f ′, by definition, must be considered known after the occurrence of

the event, which violates axiom (DEC6): neither HoldsAt(Knows(f ′), s1) nor is there any

event that initiates the Knows(f ′) fluent.

As a result, every fluent not directly or indirectly affected by e that holds in s′4 for

instance must also hold in some world accessibly related to s2, say s′2 (more specifically,

not only the truth value of the fluents, but also the accessibility relation of all K-related

to s1 worlds must also be "transferred" to the K-related to s2 worlds; imagine for instance

what would be the case if K was not considered an equivalence relation! Worlds whose

fluents have the same truth value may affect differently the world they are K-related to).

Consequently, all the successors of the K-related to s1 worlds must be K-related to s2.

Therefore it has been proved that

HappensB(e, s1, s2)⇒
(K(s′2, s2)⇔ ∃s′1(S (s′1, s

′
2) ∧ K(s′1, s1))) (BKT5)

�

The proofs for Lemma 2 proceed in a similar and less complex fashion.

158 Appendix A. Proofs of Theorems and Propositions

Lemma 2. DECKT ∧ (BKT1 − 4) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (BKT6)

Proof sketch: The process is very similar to that of Lemma 1. We need to show that

HappensB(sense(f), s1, s2)⇒
(K(s′2, s2)⇔ ∃s′1(S (s′1, s

′
2) ∧ K(s′1, s1) ∧ (HoldsAt(f , s1)⇔ HoldsAt(f , s′1))))

Transforming HappensB(sense(f), s1, s2) into the corresponding linear DEC

Happens(sense(f), s1) we apply axiom (KT4) of DECKT that produces

HoldsAt(KPw(f), s2) or equally HoldsAt(Knows(f), s2) ∨ HoldsAt(Knows(¬ f), s2).

Therefore, we distinguish two different cases, one where the effect fluent is known to be

true and another where it is known to be false.

In each of these cases, f has the same truth value in the resulting situation after the

sense action, therefore according to (DEC5) either it must have had that value before the

action or some event happened that initiated (resp. terminated) f in all initial worlds, i.e.,

HoldsAt(f , s′4) ∨ ∃e′(HappensB(e′, s′4, s
′
2) ∧ InitiatesB(e′, f , s′4, s

′
2)) (1)

where, as in Lemma 1, s′4 are ancestors of s2’s K-accessible worlds s′2. The main difference

with Lemma 1 is that now not all initial worlds justify f having the same truth value,

and this originates from the definition of the sense action. Specifically, according to the

hypothesis the only action that occurs is sense(f). But by definition, knowledge producing

actions cannot change the state of the world, they only change the mental state of the agent.

Therefore, since no ordinary fluent can be influenced by sense(f) there cannot be any such

e′ in (1), thus the first component of the disjunction must hold. That is, only the initial

worlds where f has the same truth value as in the resulting worlds, can be considered as

candidates for justifying the situation given by the hypothesis. Similarly for the case where

the sensed fluent is false. The rest of the proof is as in Lemma 1. An interesting remark is

that by having fewer worlds in the resulting state, apart from the sensed fluent we may also

obtain knowledge about other fluents indirectly. This knowledge is captured in HCDs that

are transferred without change from the initial state to the next. �

Important remark about the proving process: We now elaborate a bit more on why

the previous process requires for DECKT to also provide sound conclusions and what

the effects would be had the axiomatization been constructed differently. Let us concen-

trate on case (vii) of Lemma 1. If DECKT did not include axiom (KT6.1.1) formula

(8) would not be valid and therefore we would have had less knowledge (more worlds)

after the action. Specifically, there would be no reason to exclude as possible a world

s′2 where HoldsAt(fpr, s′2) ∧ ¬HoldsAt(f , s′2), since the only knowledge from DECKT is

A.1. DECKT Correctness Property 159

due to (KT5.1) and the hypothesis which declares that both f and fpr are unknown. Yet,

following the same methodology as in Lemma 1, the ancestor of s′2, say s′4 must have

HoldsAt(fpr, s′4), since no event happens that affects fpr, as well as ¬HoldsAt(f , s′4), since

no event happens that terminates f . Even worse, the transition from s′4 to s′2 must not ini-

tiate f . But then this would violate a fundamental axiom of the Event Calculus, namely

(DEC1). The same conclusion is reached if we omit any of DECKT axioms that get trig-

gered in the cases that have been presented: a successor world is permitted that is not jus-

tified to have occurred from any of the initials. Recall that axiom (M2) prohibits ancestors

not to be K-related to the initial.

Let us now consider the situation where some DECKT axiom provides different knowl-

edge than the one given in our axiomatization. Imagine for instance that (KT5.1), instead

of lack of knowledge, derived knowledge about the effect being true. Then, for case (vii)

of Lemma 1, instead of ¬HoldsAt(Kwb(f), s2) we should have HoldsAt(KnowsB(f), s2).

The problem is that now we end up with more knowledge (less worlds) in the succes-

sor state than we should, knowledge that, although permitted by all initial worlds, can be

justified by only some of them. As a result, we are unable to construct (BKT5), since

not all initial candidate worlds must be considered necessarily. Similarly, if (KT3.1) for

case (i) did not provide knowledge about f , a world s′2 would be permitted such that

HoldsAt(fpr, s′2) ∧ ¬HoldsAt(f , s′2). This would violate axiom (DEC1) for the reason ex-

plained before1.

Theorem 1. (Completeness) The DECKT axiomatization produces all BDECKT epis-

temic derivations.

Proof: Follows from Lemmas 1,2. �

Proving the remaining lemmas that consider BDECKT as given using the process al-

ready described for Lemmas 1 and 2 is a straightforward and often less complex procedure

as the knowledge that emerges after action occurrences is trivially obtained by the def-

inition and properties of knowledge. Moreover, as already mentioned, the soundness of

these axioms has indirectly been proved by Lemmas 1,2. This of course does not mean

that proving Theorem 2 is an unnecessary step. To the contrary, although soundness has

already been proved for ordinary and sense actions, one can define any type of other ac-

1Indeed, the way that all DECKT axioms were constructed in the first place involved an in depth consider-

ation of the potential violations that would result or the knowledge that should exist in order for the derivations

to comply with the possible worlds specifications.

160 Appendix A. Proofs of Theorems and Propositions

tions with custom properties that do not comply with the possible worlds specifications. A

f orget actions is a typical example or a particular sense action that instead of returning

that a fluent is true if it is true, it returns false (for some eerie reason). Such actions can

be formally axiomatized in a knowledge theory if necessary, still they will violate logical

equivalence with a possible worlds-based theory. Theorem 2 proves that no such actions

exist in the fundamental DECKT axiomatization.

Lemma 3. BDECKT ∧ (KT1, 2, 7) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (KT3)

Lemma 4. BDECKT ∧ (KT1, 2, 7) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (KT4)

Lemma 5. BDECKT ∧ (KT1, 2, 7) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (KT5)

Lemma 6. BDECKT ∧ (KT1, 2, 7) ∧ BDEC ∧ LDEC ∧ L ∧ M ⊢ (KT6)

Theorem 2. (Soundness) All epistemic derivations produced by the DECKT axiomati-

zation are also produced by BDECKT.

Proof: Follows from Lemmas 3 to 6. �

A.2 Propositions

Proposition 1. (Model checking with possible worlds) For a domain with n fluents, check-

ing whether a conjunction of m of them is known requires, at worse, 2n−m worlds to consider

if the conjunction turns out to be known and 2n−m + 1 worlds if it turns out to be unknown.

Checking whether a disjunction of m fluents is known requires, at worse, 2n − 2n−m worlds

to consider if the disjunction turns out to be known and 2n − 2n−m + 1 worlds if it turns out

to be unknown.

For a domain of n fluents, determining all known formulae requires, at worse, 2n worlds to

consider.

Proof: As we are interested in the worst case scenario, we assume that the reasoner will

have to search through the maximum number of worlds before reaching to any conclusion

regarding the queried formula. These worlds are created from those aspects of a domain

that are unknown, which in the worse case (complete lack of knowledge) require for the

potential worlds to consider all possible combinations, i.e., 2n.

As such, if a conjunction of m fluents is known this will mean that these fluents should

have the same truth value in all possible worlds, therefore only for the remaining n − m

A.2. Propositions 161

fluents need we form the possible combinations, which are 2n−m. All of them must be

checked, as only one possible world where the queried formula is not satisfied is enough

to violate the definition for knowledge. On the other hand, if the formula is unknown then

all possible worlds are 2n, still for some of them the formula will not hold. In suffice to

find the one where the formula does not hold. In the worst case, the reasoner may have to

search through all worlds where the formula holds, i.e., 2n−m, before finding one where it

does not, therefore in this case we need 2n−m + 1 worlds to consider.

For a disjunctive formula the situation is similar. Notice that a disjunctive formula

of m fluents does not hold in 2n−m worlds. In particular, these are the worlds where the

conjunction of the negated fluents holds, based on the previous analysis. Therefore, the

disjunction may be satisfied in the worst case in the remaining 2n − 2n−m worlds. All of

them need to be checked if the formula turns out to be known and one additional will be

checked if it turns out to be unknown.

For determining the truth value of all formulae, the worst case is to have complete lack

of knowledge, therefore 2n worlds are needed to check truth in. �

Proposition 2 If a fluent f is InDE of an action e under C f , it is also InDE of the action

sequence [e; sense(f ′)], where f ′ arbitrary fluent, i.e., Φe ̸|= Γ−C f \ f iff Φe;sense ̸|= Γ−C f \ f .

Proof sketch: Follows directly from the definition of sense actions, according to which a

sense action does not cause any effect to the state of the world, but only to the mental state

of the agent. �

Proposition 3. (KT7 Minimization) A conjunctive formula ϕ is known to hold iff all indi-

vidual components of ϕ are known to hold. A disjunctive formula ϕ is known to hold iff

i. for all state constraints that contain ϕ or a part of it, the disjunction of the comple-

ments of the subformulae that result after retracting ϕ is known, or

ii. the KP fluent for ϕ or any of its disjunctive subformulae is known to hold.

Proof sketch: The decomposition property of conjunctive formulae is directly obtained by

application of axiom (P1). The minimization of (potentially atomic) disjunctive formulae

is directly obtained from the (KT7) axiom. According to this axiom, a formula is known iff

there is some state constraint with head the original formula whose body is known or else

if the KP fluent referring to the original formula holds.

Since we adopt a convention of representing state constraints as disjunctions, "knowing

162 Appendix A. Proofs of Theorems and Propositions

the body" for a formula f1 ∨ .. ∨ fn is translated into knowing the conjunction of those

fluents that are not included in the original formula, in a negated form. Notice that due

to the distribution axiom (K) knowledge about the original formula can also be obtained

even from knowledge about its constituent parts, therefore state constraints that refer to

them should also be considered. The same holds true for the (KT2) axioms where the KP

fluent refers to sub-disjunctions of the original formula; knowledge about the latter can be

inferred. All the aforementioned constraints need to be considered in order to ground the

minimized (KT7) axiom to the domain constraint and to completely dismiss the distribution

axiom from the axiomatization. �

A.3 An Algorithm for Efficient Inference with HCDs

The following algorithm has been depicted to show that the inference task S C ∪ HCD ∪
Din |= F, i.e., INFHCD, can be performed with complexity O(2n−1 ∗∑d

i=1(|di| −1)), where n

is the size of the domain, d is the number of HCDs and state constraint rules that constitute

program P, and |di| the length of rule di, i.e., the number of fluents comprising it. The

objective is not to build an optimal algorithm in terms of efficiency, rather to verify that

for a given domain the complexity of executing inference tasks is affected linearly as the

number of HCDs increase (or, more precisely, the transition from INFS C to INFHCD has

polynomial cost).

The intuition of the algorithm is motivated by the way possible worlds are structured to

infer conclusions. According to this approach, as worlds are removed if a fluent (or fluent

formula) ends up having the same truth value in all remaining worlds then it can be con-

cluded that this is the fluent’s actual truth value. But as we have pointed out, by removing

worlds, relations between certain fluents are created. As a result, it is straightforward to

conclude (in fact, it has been proved in Theorem 1) that the fluents that have the same truth

value in all worlds may also be inferred from the relations that characterize uniquely this

set of worlds.

In the case of inference with implication rules, we assume that we have as input a set of

rules and facts and we are interested in what conclusions can be made about other fluents or

fluent formulae. Therefore, the algorithm starts with the set of all possible worlds and for

each rule removes those worlds that do not satisfy it (the reverse direction than followed

A.3. An Algorithm for Efficient Inference with HCDs 163

with possible worlds). After considering all rules, if a fluent is found to belong to all

remaining worlds then it is can be considered a valid logical inference.

The structure that we use to implement efficiently the algorithm preserves for each

fluent the set of worlds to which it belongs (rather that storing for each world the fluents

that hold in it). For each rule we intersect the sets of the involved fluents to determine

which of them should be disregarded. It is interesting to note that this set of worlds that

have to be removed need only be applied at query time for the fluent that we are querying,

instead of passing it through all fluents. If we find that the fluent we are querying does not

belong to any world, then its negation can be assumed to be a valid logical inference.

Our basic structure is as follows. Each world is characterized by a serial number (for

n fluents we have 2n worlds, but each fluent may belong only to half of them, i.e., 2n−1).

We keep separately a fluent literal f and its complement f̄ . For instance, for a domain of

three fluents f1, f2, f3, we initialize their structures as follows (see Fig. 4.5 at timepoint 0

for verification):

f1 : {1, 2, 3, 4}, f̄1 : {5, 6, 7, 8}
f2 : {1, 2, 5, 6}, f̄2 : {3, 4, 7, 8}
f3 : {1, 3, 5, 7}, f̄3 : {2, 4, 6, 8}

The size of the KB is O(u ∗ 2u), where u denotes the unknown fluents. For the rule

f1∧ f2 ⇒ f3 for instance, we seek for the set returned by the intersection f1∩ f2∩ f̄3 = {2},
which means that world 2 should be removed when query answering, since in this world

the rule is violated.

Algorithm A.1:

1. Initialization.

For each fluent initialize its corresponding list. Apply sets of (2u−1) successor num-

bers for the first fluent and its negation, sets of (2u−2) for the next 2 etc. Notice that

the resulting lists are sorted, simplifying the intersection.

2. For each state constraint determine which worlds should be disregarded.

These can be obtained by intersecting the sets of the fluents appearing in each con-

straint (the head negated). For example, for f1∧ f2∧¬ f3 ⇒ f4 we take f1∩ f2∩ f̄3∩ f̄4.

As the complexity of the intersection of two sorted lists is proportional to the length

of the longest list, with d rules of length |di|, this step takes O(
∑d

i=1(|di| − 1) ∗ 2u−1),

164 Appendix A. Proofs of Theorems and Propositions

where the sum captures the number of intersections that need to be evaluated and the

exponential assumes the maximum number of fluents for each intersection. Conse-

quently, the complexity is linear to the number of HCDs d, as well as to their length

|di|.

3. Answer query.

In order to answer if a fluent is inferred from the rules, we just need to check if that

fluent or its negation has an empty set of worlds, after we retract the set found in step

2. Thus, the complexity of query answering for a single fluent is the complexity of

retraction of two sets, which can be as bad as O(2u−1).

As mentioned before, the important conclusion obtained from this algorithm is that be-

tween O(INFS C) and O(INFHCD) the addition of HCD rules has a linear cost (given that

the number of domain fluents u remain constant). In a nutshell, if we extend a given domain

axiomatization with epistemic notions, the transition from possible worlds to DECKT in-

troduces a linear increase in computational effort to the number of HCD for each reasoning

task, but at the same time an exponential decrease of reasoning tasks.

A.4 Computing the Number of State Constraints

Let n be the number of fluents of a domain. In case of complete lack of knowledge all

possible worlds will be 2n. Let us now investigate how the number of state constraints is

related to the number of fluents. Attempting a naive approach that will help us understand

the procedure, we can start by enumerating the number of disjunctions that can be created

with n fluents with only constraint that a fluent and its negation cannot appear in the same

negation. Hence, having, for instance, fluents f1, f2 we can create an exponential number

of disjunctions: (f1 ∨ f2), (f1 ∨ ¬ f2), (¬ f1 ∨ f2), (¬ f1 ∨ ¬ f2) and no other, from which we

can construct all possible state constraints. In other words, with two fluents we can create

four disjunctions. Nevertheless, with more fluents we should consider not only the set of

disjunctions made by all fluents, but also by any combination of their subsets: four dis-

junctions for each 2-fluent combination, eight disjunctions for each 3-fluent combination,

etc. following the exponential creation of disjunctions with the number of fluents available.

This leads us to the formula
n∑

r=2

(
n!

r!(n − r)!
∗ 2r), where variable r denotes the number of

fluents that are used to create disjunctions in each step (which explains why r is initiated

A.4. Computing the Number of State Constraints 165

as 2). Intuitively, the above formula declares that for each combination of fluents involved

in the initial formula, we get an exponential number of state constraints to the number of

fluents considered in the combination. Each 2-fluent combination gives 22 potential state

constraints and there are (n!
2!(n−2)!) such combinations, each 3-fluent combination gives 23

potential state constraints and there are (n!
3!(n−3)!) such combinations, etc.

Apparently, all these combinations create a vast set of state constraints. Yet, not all

of them can be considered as distinct in a domain axiomatization; the majority of them

are redundant and reduce to smaller constraints, based on two observations. First, any two

disjunctions containing the one a fluent and the other the negation of that fluent are merged

into a new disjunction having all but that fluent as its components. Second, a disjunction

having both a term and its negation is trivial truth and can be eliminated. Considering this

analysis, it can be seen that the exponential number of disjunctions for each combination of

fluents mentioned before can no longer hold. In fact, in each set only one disjunction can be

accounted for at a time. For the disjunctions created in the previous example using fluents

f1, f2, for instance, we can only include one in a particular domain, otherwise they will be

reduced into a single fluent or trivial truths; apart from one, all interactions between larger

disjunctions degrade into smaller that successively interact with those already existent and

get eliminated. Therefore, we conclude that having n fluents we can construct, in the worst

case, a number of state constraints given by the formula:

(A4.1)
n−1∑
r=2

(
n!

r!(n − r)!
) + 1 = 2n − n − 1

given that it can be shown
n∑

r=1

n!
r!(n − r)!

= 2n −1. The aforementioned result states that, as

in possible worlds, the number of state constraints possible in the worst case is exponential

to the number of fluents.

Appendix B

Source Code

Appendix B presents sample code of examples designed for execution with DECReasoner,

as well as for the custom Event Calculus reasoner we have implemented for JESS. It pro-

vides evidence as to how the two different approaches discussed in Section 7.3 have been

implemented and how similar epistemic notions have been modeled within JESS.

B.1 Syntactically Extended Epistemic Fluents within DECRea-

soner

Below is the code for a non-deterministic domain that provides two different models as

output. The axiomatization follows the principles already discussed in previous sections;

for each fluent we introduce (syntactically) new fluents that capture the intuition of the

Knowledge Theory. Certain trivial modifications have been applied to reduce unnecessary

models or to comply with the reasoner’s requirements. For instance, we do not allow for

the Opened(door) fluent to be released for more that 1 timepoints.

Detailed information about the coding can be found in ([Mueller 2006] ch.13); as a

brief guide, note that variables inside square brackets ([,]) within a formula denote uni-

versal quantification, whereas plain brackets ({,}) denote existential quantification, the "!"

character denotes negation and lines starting with ";" indicate commends.

; Pass Through Door Example with Nondeterministic actions

load foundations/Root.e

load foundations/EC.e

sort door sort room

168 Appendix B. Source Code

;--------------------------------

fluent Opened(door)

fluent Knows_Opened(door)

fluent Knows_NotOpened(door)

;Kw Definition

fluent Kw_Opened(door)

noninertial Kw_Opened

[door,time] HoldsAt(Kw_Opened(door),time) <->

HoldsAt(Knows_Opened(door),time) |

HoldsAt(Knows_NotOpened(door),time).

fluent KP_Opened(door)

fluent KP_NotOpened(door)

;Knowledge Axiom K

[door,time] HoldsAt(Knows_Opened(door),time) ->

HoldsAt(Opened(door),time).

[door,time]HoldsAt(Knows_NotOpened(door),time) ->

!HoldsAt(Opened(door),time).

;KT1

noninertial Knows_Opened

noninertial Knows_NotOpened

;KT2.1

[door,time] HoldsAt(KP_Opened(door),time) ->

HoldsAt(Knows_Opened(door),time).

;KT2.2

[door,time] HoldsAt(KP_NotOpened(door),time) ->

HoldsAt(Knows_NotOpened(door),time).

;KT7

[door,time] !HoldsAt(KP_Opened(door),time) &

B.1. Syntactically Extended Epistemic Fluents within DECReasoner 169

!HoldsAt(KP_NotOpened(door),time) -> !HoldsAt(Kw_Opened(door),time).

;KT4

event Sense_Opened(door)

event Sense_OpenedT(door)

event Sense_OpenedF(door)

[door,time] Happens(Sense_Opened(door),time) ->

Happens(Sense_OpenedT(door),time) |

Happens(Sense_OpenedF(door),time).

[door,time] Initiates(Sense_OpenedT(door),KP_Opened(door),time).

[door,time] Initiates(Sense_OpenedF(door),KP_NotOpened(door),time).

;--

fluent InRoom(room)

fluent Knows_InRoom(room)

fluent Knows_NotInRoom(room)

;Kw Definition

fluent Kw_InRoom(room)

noninertial Kw_InRoom

[room,time] HoldsAt(Kw_InRoom(room),time) <->

HoldsAt(Knows_InRoom(room),time) |

HoldsAt(Knows_NotInRoom(room),time).

fluent KP_InRoom(room)

fluent KP_NotInRoom(room)

;Knowledge Axiom K

[room,time] HoldsAt(Knows_InRoom(room),time) ->

HoldsAt(InRoom(room),time).

[room,time] HoldsAt(Knows_NotInRoom(room),time) ->

!HoldsAt(InRoom(room),time).

170 Appendix B. Source Code

;KT1

noninertial Knows_InRoom

noninertial Knows_NotInRoom

;KT2.1

[room,time] HoldsAt(KP_InRoom(room),time) ->

HoldsAt(Knows_InRoom(room),time).

;KT2.2

[room,time]

HoldsAt(KP_NotInRoom(room),time) ->

HoldsAt(Knows_NotInRoom(room),time).

;KT7

[room,time] !HoldsAt(KP_InRoom(room),time) &

!HoldsAt(KP_NotInRoom(room),time) -> !HoldsAt(Kw_InRoom(room),time).

;--

event Speak()

[door,time] Releases(Speak(),Opened(door),time).

;KT5.3

[door,time] Happens(Speak(),time) ->

Terminates(Speak(),KP_Opened(door),time).

[door,time] Happens(Speak(),time) ->

Terminates(Speak(),KP_NotOpened(door),time).

;---

event PassThrough(door,room)

[door,room,time] HoldsAt(Opened(door),time) ->

Initiates(PassThrough(door,room),InRoom(room),time).

;KT3.1

[door,room,time] HoldsAt(Knows_Opened(door),time) &

Happens(PassThrough(door,room),time)->

B.1. Syntactically Extended Epistemic Fluents within DECReasoner 171

Initiates(PassThrough(door,room),KP_InRoom(room),time).

;KT3.2

[door,room,time] HoldsAt(Knows_Opened(door),time) &

Happens(PassThrough(door,room),time)->

Terminates(PassThrough(door,room),KP_NotInRoom(room),time).

;KT5.1

[door,room,time] !HoldsAt(Kw_Opened(door),time) &

!HoldsAt(Knows_NotOpened(door),time) &

!HoldsAt(Knows_InRoom(room),time) &

Happens(PassThrough(door,room),time)->

Terminates(PassThrough(door,room),KP_InRoom(room),time).

[door,room,time] !HoldsAt(Kw_Opened(door),time) &

!HoldsAt(Knows_NotOpened(door),time) &

!HoldsAt(Knows_InRoom(room),time) &

Happens(PassThrough(door,room),time)->

Terminates(PassThrough(door,room),KP_NotInRoom(room),time).

;---

;Observations and Narrative

door D1

room R1

HoldsAt(KP_NotOpened(D1),0).

HoldsAt(KP_NotInRoom(R1),0).

;To reduce unnecessary models, we initiate/terminate fluent Opened

;from being released.

event X(door)

[door,time] HoldsAt(Opened(door),time) ->

Initiates(X(door),Opened(door),time).

[door,time] !HoldsAt(Opened(door),time) ->

172 Appendix B. Source Code

Terminates(X(door),Opened(door),time).

;If we cannot use completion, an alternative approach is the

following

Happens(Speak(),0).

Happens(Sense_Opened(D1),1).

Happens(PassThrough(D1,R1),2).

[event] event!= Speak() -> !Happens(event,0).

[event] event!= X(D1) & event!= Sense_Opened(D1) & event!=

Sense_OpenedT(D1) & event!= Sense_OpenedF(D1) -> !Happens(event,1).

[event] event!= PassThrough(D1,R1) -> !Happens(event,2).

range time 0 3

range offset 1 1

The output of the program’s execution is shown below, where 2 models are produced,

due to the non-deterministic effect of the S peak() action at timepoint 0. Initially, only

the fluents that are true are presented. Moreover, in all future timepoints only the fluents

that change from one timepoint to the next are shown; fluents that are added start with the

"+" character and fluents that are retracted start with the "-" character. Some irrelevant

information has been omitted.

Copyright (c) 2005 IBM Corporation and others. All rights reserved.

This program and the accompanying materials are made available under

the terms of the Common Public License v1.0 which accompanies this

distribution, and is available at

http://www.eclipse.org/legal/cpl-v10.html

Contributors: IBM - Initial implementation

Discrete Event Calculus Reasoner 1.0

loading deckt/PassThroughDoor.e

loading foundations/Root.e

loading foundations/EC.e

B.1. Syntactically Extended Epistemic Fluents within DECReasoner 173

114 variables and 352 clauses

relsat solver

2 models

model 1:

0

KP_NotInRoom(R1).

KP_NotOpened(D1).

Knows_NotInRoom(R1).

Knows_NotOpened(D1).

Kw_InRoom(R1).

Kw_Opened(D1).

Happens(Speak(), 0).

1

-KP_NotOpened(D1).

-Knows_NotOpened(D1).

-Kw_Opened(D1).

Happens(Sense_Opened(D1), 1).

Happens(Sense_OpenedF(D1), 1).

Happens(X(D1), 1).

2

+KP_NotOpened(D1).

+Knows_NotOpened(D1).

+Kw_Opened(D1).

Happens(PassThrough(D1, R1), 2).

3

model 2:

0

KP_NotInRoom(R1).

KP_NotOpened(D1).

Knows_NotInRoom(R1).

Knows_NotOpened(D1).

Kw_InRoom(R1).

174 Appendix B. Source Code

Kw_Opened(D1).

Happens(Speak(), 0).

1

-KP_NotOpened(D1).

-Knows_NotOpened(D1).

-Kw_Opened(D1).

+Opened(D1).

Happens(Sense_Opened(D1), 1).

Happens(Sense_OpenedT(D1), 1).

Happens(X(D1), 1).

2

+KP_Opened(D1).

+Knows_Opened(D1).

+Kw_Opened(D1).

Happens(PassThrough(D1, R1), 2).

3

-KP_NotInRoom(R1).

-Knows_NotInRoom(R1).

+InRoom(R1).

+KP_InRoom(R1).

+Knows_InRoom(R1).

EC: 7 predicates, 0 functions, 0 fluents, 0 events, 0 axioms

PassThroughDoor: 0 predicates, 0 functions, 12 fluents, 6 events, 34

axioms

Root: 0 predicates, 0 functions, 0 fluents, 0 events, 0 axioms

encoding 0.1s solution 0.0s total 0.4s

B.2 Extending DECReasoner’s Ontology

Below is the code augmented to DECReasoner that extends the foundational ax-

ioms with a treatment of epistemic fluents. Examples can be found online at

http://www.csd.uoc.gr/˜patkos/deckt.htm.

reified sort kfluent

B.2. Extending DECReasoner’s Ontology 175

kfluent Knows(fluent,time)

kfluent KnowsNot(fluent,time)

kfluent Kw(fluent,time)

[fluent,time] Kw(fluent,time) <->

Knows(fluent,time) | KnowsNot(fluent,time).

reified sort epfluent

epfluent KP(fluent)

epfluent KPNot(fluent)

predicate KHoldsAt(epfluent,time)

predicate KInitiates(event,epfluent,time)

predicate KTerminates(event,epfluent,time)

; -------------------- Inertia of KHoldsAt --------------------

[epfluent,time] (KHoldsAt(epfluent,time) &

!({event} Happens(event,time) & KTerminates(event,epfluent,time))) ->

KHoldsAt(epfluent,time+1).

[epfluent,time] (!KHoldsAt(epfluent,time) &

!({event} Happens(event,time) & KInitiates(event,epfluent,time))) ->

!KHoldsAt(epfluent,time+1).

; -------------- Influence of Events on Fluents ----------------

[event,epfluent,time] (Happens(event,time) &

KInitiates(event,epfluent,time)) -> KHoldsAt(epfluent,time+1).

[event,epfluent,time] (Happens(event,time) &

KTerminates(event,epfluent,time)) -> !KHoldsAt(epfluent,time+1).

; -------------------- (KT2) Axiom --------------------

[fluent,time] KHoldsAt(KP(fluent),time) -> Knows(fluent,time).

[fluent,time] KHoldsAt(KPNot(fluent),time) -> KnowsNot(fluent,time).

176 Appendix B. Source Code

; -------------------- (KT7) Axiom --------------------

[fluent,time] Kw(fluent,time) <-> KHoldsAt(KP(fluent),time) |

KHoldsAt(KPNot(fluent),time).

; -------------------- (T) Knowledge Axiom --------------------

[fluent,time] Knows(fluent,time) -> HoldsAt(fluent,time).

[fluent,time] KnowsNot(fluent,time) -> !HoldsAt(fluent,time).

B.3 Jess-based Event Calculus Reasoner

Below we show how (DEC5) is modeled as a rule within the Jess environment

of the newly developed reasoner. The complete source code can be found in

http://www.csd.uoc.gr/˜patkos/deckt.htm. Variables start with a question mark (?). Inside

the body of the rule, all variables are assigned values based on the facts stored in the mem-

ory of Jess. For instance, variable t is assigned the current timepoint of the reasoning cycle,

as declared by the fact Time stored in the KB, which is increased after each cycle.

; DEC Inertia of HoldsAt Axiom

(defrule EVENTCALC::InertiaOfHoldsAtAxiom

(Time (tpoint ?t))

?holdsAtAxiom <- (EC (predicate HoldsAt)

(fluent ?fluent)

(time ?t&:(< ?t ?*Endtime*)))

(not (and (EC (predicate Happens)

(event ?event)

(time ?t))

(or (EC (predicate Terminates)

(event ?event)

(fluent ?fluent)

(time ?t)

)

B.3. Jess-based Event Calculus Reasoner 177

(EC (predicate Releases)

(event ?event)

(fluent ?fluent)

(time ?t)

)

)

)

) (not (EC (predicate ReleasedAt)

(fluent ?fluent)

(time ?t)))

=> (duplicate ?holdsAtAxiom (time (+ 1 ?t))))

Next, is a rule encoding the trigger axiom for the Activated fluent of Shanahan’s circuit.

In brief, the rule states that if the fluent Activated(R), captured by variable prec1, does not

hold, whereas fluents Closed(S 1), Closed(S 2), Closed(S 3), captured by variables prec2,

prec3, prec4 respectively, do hold, then predicate Happens(Activate(R), t) should be in-

cluded in the knowledge base, where t denotes the current timepoint.

(defrule MAIN::HappActivated

(declare (salience 570))

(Time (tpoint ?t))

?prec1 <- (fluent (name Activated) (arg R))

(not (EC (predicate HoldsAt) (fluent ?prec1) (time ?t)))

?prec2 <- (fluent (name Closed) (arg S1))

(EC (predicate HoldsAt) (fluent ?prec2) (time ?t))

?prec3 <- (fluent (name Closed) (arg S2))

(EC (predicate HoldsAt) (fluent ?prec3) (time ?t))

?prec4 <- (fluent (name Closed) (arg S3))

(EC (predicate HoldsAt) (fluent ?prec4) (time ?t))

?event <- (event (name Activate) (arg R))

(not (EC (predicate Happens) (event ?event) (time ?t))) =>

(assert (EC (predicate Happens) (event ?event) (time ?t))))

The epistemic treatment extents the basic ontology with epistemic predicates. The

reasoner does not make any distinction in the treatment of fluents, still the new axioms of

178 Appendix B. Source Code

DECKT need to be modeled. Below, for instance, is the (KT6.2.4) axiom. If there are two

HCDs that are related with the transitive relation and they may be destroyed, a new HCD

is asserted that unifies their fluents, apart from the one that may have changed.

(defrule KT6.2.4 (declare (salience 550)) (Time (tpoint?t))

(EC (predicate Happens)

(event ?e)

(time ?t))

(EC (predicate KmAffect)

(event ?e)

(posLtrs ?effect)

(time ?t))

(EC (predicate HoldsAt)

(epistemic KP)

(posLtrs $?pf1&:(neq FALSE (member$?effect $?pf1)))

(negLtrs $?nf1)

(time ?t))

(test (< 1 (+ (length$ $?pf1) (length$ $?nf1))))

(EC (predicate HoldsAt)

(epistemic KP)

(posLtrs $?pf2)

(negLtrs $?nf2&:(neq FALSE (member$?effect $?nf2)))

(time ?t))

(test (< 1 (+ (length$ $?pf2) (length$ $?nf2))))

(test (neq $?nf1 $?pf2)) ;otherwise we have a trivially true disjunction

=>

(bind ?del_f_place1 (member$?effect $?pf1))

(bind ?del_f_place2 (member$?effect $?nf2))

(assert (EC (predicate Initiates)

(epistemic KP)

(event ?e)

(posLtrs (union$ (delete$ $?pf1 ?del_f_place1 ?del_f_place1) $?pf2))

(negLtrs (union$ $?nf1 (delete$ $?nf2 ?del_f_place2 ?del_f_place2)))

(time ?t))))

Bibliography

[Abowd 1999] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark

Smith and Pete Steggles. Towards a Better Understanding of Context and Context-

Awareness. In HUC’99: Proceedings of the 1st international symposium on Hand-

held and Ubiquitous Computing, pages 304–307, London, UK, 1999. Springer-

Verlag.

[Adaikkalavan 2006] Raman Adaikkalavan and Sharma Chakravarthy. SnoopIB: Interval-

based Event Specification and Detection for Active Databases. Data and Knowl-

edge Engineering (DKE), vol. 59, no. 1, pages 139–165, 2006.

[Amir 2003] Eyal Amir and Stuart J. Russell. Logical Filtering. In IJCAI’03: International

Joint Conferences on Artificial Intelligence, pages 75–82, 2003.

[Baader 2005] Franz Baader, Carsten Lutz, Maja Miličic, Ulrike Sattler and Frank Wolter.

Integrating Description Logics and Action Formalisms: First Results. In AAAI’05:

Proceedings of the 20th national conference on Artificial intelligence, pages 572–

577. AAAI Press, 2005.

[Baier 2006] Jorge A. Baier and Sheila A. McIlraith. On Planning with Programs that

Sense. In KR’06: Tenth International Conference on Principles of Knowledge

Representation and Reasoning, pages 492–502, 2006.

[Baldoni 2001] Matteo Baldoni, Laura Giordano, Alberto Martelli and Viviana Patti. Rea-

soning about Complex Actions with Incomplete Knowledge: A Modal Approach.

In ICTCS ’01: Proceedings of the 7th Italian Conference on Theoretical Computer

Science, pages 405–425, London, UK, 2001. Springer-Verlag.

[Baldoni 2004] Matteo Baldoni, Alberto Martelli, Viviana Patti and Laura Giordano. Pro-

gramming Rational Agents in a Modal Action Logic. Annals of Mathematics and

Artificial Intelligence, vol. 41, no. 2-4, pages 207–257, 2004.

[Blythe 1999] Jim Blythe. Decision-Theoretic Planning. The AI Magazine, vol. 20, no. 2,

pages 37–54, 1999.

180 Bibliography

[Boutilier 1999] Craig Boutilier, Thomas Dean and Steve Hanks. Decision-Theoretic

Planning: Structural Assumptions and Computational Leverage. Journal of Ar-

tificial Intelligence Research, vol. 11, pages 1–94, 1999.

[Bresina 2002] John Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramkrishnan,

David Smith and Rich Washington. Planning under Continuous Time and Resource

Uncertainty: A Challenge for AI. In UAI-02: Proceedings of the 18th Annual

Conference on Uncertainty in Artificial Intelligence, pages 77–84, San Francisco,

CA, 2002. Morgan Kaufmann.

[Cervesato 2000] Iliano Cervesato, Massimo Franceschet and Angelo Montanari. A

Guided Tour through Some Extensions of the Event Calculus. Computational In-

telligence, vol. 16, no. 2, pages 307–347, 2000.

[Chittaro 1996] Luca Chittaro and Angelo Montanari. Efficient Temporal Reasoning in

the Cached Event Calculus. Computational Intelligence, vol. 12, pages 359–382,

1996.

[Chittaro 2000] Luca Chittaro and Angelo Montanari. Temporal Representation and Rea-

soning in Artificial Intelligence: Issues and Approaches. Annals of Mathematics

and AI, vol. 28, no. 1-4, pages 47–106, 2000.

[Classen 2006] Jens Classen and Gerhard Lakemeyer. A Semantics for ADL as Progres-

sion in the Situation Calculus. In Proceedings of the 11th Workshop on Non-

monotonic Reasoning, 2006.

[Claßen 2009] Jens Claßen and Gerhard Lakemeyer. Tractable First-Order Golog with

Disjunctive Knowledge Bases. In Ninth International Symposium on Logical For-

malizations of Commonsense Reasoning (Commonsense 2009), Toronto, Canada,

2009.

[De Giacomo 2000] Giuseppe De Giacomo, Yves Lespérance and Hector J. Levesque.

ConGolog, a Concurrent Programming Language based on the Situation Calcu-

lus. Artificial Intelligence, vol. 121, no. 1-2, pages 109–169, 2000.

[de Weerdt 2005] Mathijs de Weerdt, Adriaan ter Mors and Cees Witteveen. Multi-agent

Planning: An Introduction to Planning and Coordination. In Handouts of the

European Agent Summer School, pages 1–32, 2005.

Bibliography 181

[Demolombe 2000] R. Demolombe and MP Pozos-Parra. A Simple and Tractable Exten-

sion of Situation Calculus to Epistemic Logic. ISMIS-00: Twelfth International

Symposium on Methodologies for Intelligent Systems, pages 515–524, 2000.

[Denecker 1998] Marc Denecker, Daniele Theseider Dupré and Kristof Van Belleghem.

An Inductive Definition Approach to Ramifications. Electronic Transaction on Ar-

tificial Intelligence, vol. 2, pages 25–67, 1998.

[Dimitris Grammenos 2009] Antonis A. Argyros Constantine Stephanidis Dimitris Gram-

menos Xenophon Zabulis. FORTH-ICS Internal RTD Programme Ambient Intel-

ligence and Smart Environments. In AMI’09: Proceedings of the 3rd European

Conference on Ambient Intelligence , 2009.

[Dimopoulos 2004] Yannis Dimopoulos, Antonis C. Kakas and Loizos Michael. Reason-

ing About Actions and Change in Answer Set Programming. In LPNMR’04: 7th

International Conference on Logic Programming and Nonmonotonic Reasoning,

pages 61–73, 2004.

[Eiter 2003a] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer and Axel

Polleres. A Logic Programming Approach to Knowledge-State Planning, II: the

DLVk System. Artificial Intelligence, vol. 144, no. 1-2, pages 157–211, 2003.

[Eiter 2003b] Thomas Eiter and Thomas Lukasiewicz. Probabilistic Reasoning about Ac-

tions in Nonmonotonic Causal Theories. In Proceedings of the 19th Conference in

Uncertainty in Artificial Intelligence, pages 192–199, 2003.

[Eiter 2004] Thomas Eiter, Wolfgang Faber, Gerald Pfeifer and Axel Polleres. Declarative

Planning and Knowledge Representation in an Action Language. 2004.

[Fagin 2003] Ronald Fagin, Joseph Y. Halpern, Yoram Moses and Moshe Y. Vardi. Rea-

soning About Knowledge. MIT Press, Cambridge, MA, USA, 2003.

[Federico Chesani 2009] Marco Montali Paolo Torroni Federico Chesani Paola Mello.

Commitment Tracking via the Reactive Event Calculus. In IJCAI-09: Twenty-first

International Joint Conference on Artificial Intelligence, pages 91–96, 2009.

[Ferraris 2000] Paolo Ferraris and Enrico Giunchiglia. Planning as Satisfiability in Non-

deterministic Domains. In AAAI’00: Proceedings of the Seventeenth National

182 Bibliography

Conference on Artificial Intelligence and Twelfth Conference on Innovative Ap-

plications of Artificial Intelligence, pages 748–753. AAAI Press / The MIT Press,

2000.

[Fikes 1971] Richard Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Appli-

cation of Theorem Proving to Problem Solving. In IJCAI’71: International Joint

Conferences on Artificial Intelligence, pages 608–620, 1971.

[Finzi 2005] Alberto Finzi and Thomas Lukasiewicz. Game-Theoretic Reasoning About

Actions in Nonmonotonic Causal Theories. In LPNMR’05: 8th International Con-

ference on Logic Programming and Nonmonotonic Reasoning, pages 185–197,

2005.

[Fisher 2005] Michael Fisher. MetateM: The Story so Far. In PROMAS’05: Third Inter-

national Workshop on Programming Multi-Agent Systems, pages 3–22, 2005.

[Forth 2004] Jeremy Forth and Murray Shanahan. Indirect and Conditional Sensing in

the Event Calculus. In Ramon Lo’pez de Ma’ntaras and Lorenza Saitta, editeurs,

ECAI, pages 900–904. IOS Press, 2004.

[Forth 2007] Jeremy Forth and Rob Miller. Ramifications: An Extension and Correspon-

dence Result for the Event Calculus. Journal of Logic and Computation, vol. 17,

no. 4, pages 639–685, 2007.

[Funge 1999] John Funge. Representing Knowledge within the Situation Calculus using

Interval-valued Epitemic Fluents. Journal of Reliable Computing, vol. 5, no. 1,

pages 35–61, 1999.

[Gandon 2004] Fabien L. Gandon and Norman M. Sadeh. Semantic Web Technologies to

Reconcile Privacy and Context Awareness. Journal of Web Semantics, vol. 1, no. 3,

pages 241–260, 2004.

[Gelfond 1998] Michael Gelfond and Vladimir Lifschitz. Action Languages. Electronic

Transactions on AI, vol. 3, 1998.

[Ghallab 2004] M. Ghallab, D. Nau and P. Traverso. Automated Planning: Theory and

Practice. Morgan Kaufmann, 2004.

[Giacomo 1999] Giuseppe De Giacomo and Hector J. Levesque. An Incremental Inter-

preter for High-Level Programs with Sensing. pages 86–102, 1999.

Bibliography 183

[Giunchiglia 1998] Enrico Giunchiglia and Vladimir Lifschitz. An Action Language based

on Causal Explanation: Preliminary Report. In AAAI ’98/IAAI ’98: Proceedings

of the fifteenth national/tenth conference on Artificial intelligence/Innovative ap-

plications of artificial intelligence, pages 623–630. American Association for Arti-

ficial Intelligence, 1998.

[Giunchiglia 2004] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman Mc-

Cain and Hudson Turner. Nonmonotonic Causal Theories. Artificial Intelligence,

vol. 153, no. 1-2, pages 49–104, 2004.

[Greenfield 2006] Adam Greenfield. Everyware: The Dawning Age of Ubiquitous Com-

puting. Peachpit Press, Berkeley, CA, USA, 2006.

[Grosskreutz 2000] Henrik Grosskreutz and Gerhard Lakemeyer. Turning High-Level

Plans into Robot Programs in Uncertain Domains. In ECAI’00: European Con-

ference on Artificial Intelligence, pages 548–552, 2000.

[Gu 2007] Yilan Gu and Mikhail Soutchanski. Decidable Reasoning in a Modified Situa-

tion Calculus. In IJCAI’07: Proceedings of the 20th international joint conference

on Artifical intelligence, pages 1891–1897, San Francisco, CA, USA, 2007. Mor-

gan Kaufmann Publishers Inc.

[Halpern 1985] J. Halpern and Y. Moses. Towards a Theory of Knowledge and Ignorance:

Preliminary Report. pages 459–476, 1985.

[Halpern 2007] J.Y. Halpern and R. Pucella. Dealing with Logical Omniscience. Proceed-

ings of the 11th conference on Theoretical aspects of rationality and knowledge,

pages 169–176, 2007.

[Halpern 2008] J.Y. Halpern and L.C. Rêgo. Interactive Unawareness Revisited. Games

and Economic Behavior, vol. 62, no. 1, pages 232–262, 2008.

[Helal 2009] Sumi Helal and Chao Chen. The Gator Tech Smart House: Enabling Tech-

nologies and Lessons Learned. In i-CREATe ’09: Proceedings of the 3rd Inter-

national Convention on Rehabilitation Engineering & Assistive Technology, pages

1–4, New York, NY, USA, 2009. ACM.

[Hintikka 1962] Jaakko Hintikka. Knowledge and Belief: An Introduction to the Logic of

the Two Notions. Cornell University Press, Ithaca, N. Y., 1962.

184 Bibliography

[Hofer 2003] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonharts-

berger, Josef Altmann and Werner Retschitzegger. Context-Awareness on Mobile

Devices - the Hydrogen Approach. In HICSS ’03: Proceedings of the 36th Annual

Hawaii International Conference on System Sciences (HICSS’03) - Track 9, pages

292–301, Washington, DC, USA, 2003. IEEE Computer Society.

[Hölldobler 1990] Steffen Hölldobler and Josef Schneeberger. A New Deductive Approach

to Planning. New Generation Computing, vol. 8, no. 3, pages 225–244, 1990.

[Hölldobler 2000] Steffen Hölldobler and Dietrich Kuske. The Boundary between De-

cidable and Undecidable Fragments of the Fluent Calculus. In LPAR’00: Logic

for Programming and Automated Reasoning, 7th International Conference, pages

436–450, 2000.

[Immerman 1986] Neil Immerman. Relational Queries Computable in Polynomial Time.

Information and Control, vol. 68, no. 1-3, pages 86–104, 1986.

[Jin 2004] Yi Jin and Michael Thielscher. Representing Beliefs in the Fluent Calculus. In

ECAI’04: European Conference on Artificial Intelligence, pages 823–827, 2004.

[Kakas 1997] Antonis C. Kakas and Rob Miller. A Simple Declarative Language for De-

scribing Narratives With Actions. The Journal of Logic Programming, vol. 31,

no. 1-3, pages 157–200, 1997.

[Kakas 2000] Antonis Kakas, Rob Miller and Francesca Toni. E-RES - A System for Rea-

soning about Actions, Events and Observations. In NMR’00: 8th International

Symposium on Nonmonotonic Reasoning, 2000.

[Kakas 2002] Antonis C. Kakas and Loizos Michael. Modeling Complex Domains of Ac-

tions and Change. In NMR’02: 9th International Workshop on Non-Monotonic

Reasoning, pages 380–390, 2002.

[Kelly 2008] Ryan F. Kelly and Adrian R. Pearce. Complex Epistemic Modalities in the

Situation Calculus. In KR’08: International Conference on Principles of Knowl-

edge Representation and Reasoning, pages 611–620, 2008.

[Kim 2009] Tae-Won Kim, Joohyung Lee and Ravi Palla. Circumscriptive Event Calculus

as Answer Set Programming. In IJCAI-09: Twenty-first International Joint Con-

ference on Artificial Intelligence, pages 823–829, 2009.

Bibliography 185

[Konolige 1986] K. Konolige. A Deduction Model of Belief. Morgan Kaufmann Publish-

ers Inc. San Francisco, CA, USA, 1986.

[Kowalski 1986] R Kowalski and M Sergot. A Logic-based Calculus of Events. New

Generation Computing, vol. 4, no. 1, pages 67–95, 1986.

[Kowalski 1997] Robert A. Kowalski and Fariba Sadri. Reconciling the Event Calculus

With the Situation Calculus. Journal of Logic Programming, vol. 31, no. 1-3, pages

39–58, 1997.

[Kristof Van Belleghem and Marc Denecker and Danny De Schreye 1995] Kristof Van

Belleghem and Marc Denecker and Danny De Schreye. Combining Situation

Calculus and Event Calculus. In International Conference on Logic Programming,

pages 83–97, 1995.

[Lakemeyer 1998] Gerhard Lakemeyer and Hector J. Levesque. AOL: A Logic of Acting,

Sensing, Knowing, and Only Knowing. In Principles of Knowledge Representation

and Reasoning, pages 316–329, 1998.

[Lehmann 2000] Helko Lehmann and Michael Leuschel. Decidability Results for the

Propositional Fluent Calculus. In CL ’00: Proceedings of the First Interna-

tional Conference on Computational Logic, pages 762–776, London, UK, 2000.

Springer-Verlag.

[Lespérance 2000] Yves Lespérance, Hector J. Levesque, Fangzhen Lin and Richard B.

Scherl. Ability and Knowing How in the Situation Calculus. Studia Logica, vol. 66,

no. 1, pages 165–186, 2000.

[Levesque 1996] Hector J. Levesque. What Is Planning in the Presence of Sensing? In

AAAI’96: Proceedings of 13th National Conference on Artificial Intelligence, vol-

ume 2, pages 1139–1146, 1996.

[Levesque 1997] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin

and Richard B. Scherl. Golog: A Logic Programming Language for Dynamic

Domains. Journal of Logic Programming, vol. 31, no. 1-3, pages 59–83, 1997.

[Levesque 1998] H. Levesque, F. Pirri and R. Reiter. Foundations for the Situation Cal-

culus. In Linkoping Electronic Articles in Computer and Information Science,

volume 3, 1998.

186 Bibliography

[Levy 1998] F. Levy and J.J. Quantz. Representing Beliefs in a Situated Event Calcu-

lus. Proceedings of the Thirteenth European Conference on Artificial Intelligence,

pages 547–551, 1998.

[Lifschitz 1986] Vladimir Lifschitz. On the Semantics of STRIPS. In Michael P. Georgeff

and Amy L. Lansky, editeurs, Reasoning about Actions and Plans: Proceedings

of the 1986 Workshop, pages 1–9, Timberline, Oregon, June-July 1986. Morgan

Kaufmann.

[Lifschitz 1994] V. Lifschitz. Circumscription. Handbook of Logic in Artificial Intelli-

gence and Logic Programming, vol. 3, pages 297–352, 1994.

[Lifschitz 1999] Vladimir Lifschitz. Action Languages, Answer Sets and Planning. The

Logic Programming Paradigm: a 25 year perspective, vol. 4, no. 1, pages 357–373,

1999.

[Lin 1994] Fangzhen Lin and Ray Reiter. State Constraints Revisited. Journal of Logic

and Computation, vol. 4, no. 5, pages 655–677, 1994.

[Liu 2004] Yongmei Liu, Gerhard Lakemeyer and Hector J. Levesque. A Logic of Lim-

ited Belief for Reasoning with Disjunctive Information. In 9th International Con-

ference on the Principles of Knowledge Representation and Reasoning (KR’04),

pages 587–597, 2004.

[Liu 2005] Yongmei Liu and Hector J. Levesque. Tractable Reasoning with Incomplete

First-Order Knowledge in Dynamic Systems with Context-Dependent Actions. In

IJCAI’05: International Joint Conferences on Artificial Intelligence, pages 522–

527, 2005.

[Liu 2006] Hongkai Liu, Carsten Lutz, Maja Milicic and Frank Wolter. Reasoning about

Actions using Description Logics with general TBoxes. In Michael Fisher, Wiebe

van der Hoek, Boris Konev and Alexei Lisitsa, editeurs, JELIA’06: 10th European

Conference on Logics in Artificial Intelligence, Lecture Notes in Artificial Intelli-

gence, pages 266–279. Springer-Verlag, 2006.

[Lobo 2001] Jorge Lobo, Gisela Mendez and Stuart R. Taylor. Knowledge and the Action

Description Language A. Theory Pract. Log. Program., vol. 1, no. 2, pages 129–

184, 2001.

Bibliography 187

[Martin 2003] Yves Martin. The Concurrent, Continuous FLUX. In IJCAI’03: Interna-

tional Joint Conferences on Artificial Intelligence, pages 1085–1090, 2003.

[Marzano 2003] S. Marzano and E. Aarts. The New Everyday View on Ambient Intelli-

gence. Uitgeverij 010 Publishers, Rotterdam, The Netherlands, 2003.

[Mateus 2001] Paulo Mateus, António Pacheco, Javier Pinto, Amílcar Sernadas and

Cristina Sernadas. Probabilistic Situation Calculus. Annals of Mathematics and

Artificial Intelligence, vol. 32, no. 1-4, pages 393–431, 2001.

[McArthur 1988] G.L. McArthur. Reasoning about Knowledge and Belief: A Survey.

Computational Intelligence, vol. 4, no. 3, pages 223–243, 1988.

[McCain 1995] Norman McCain and Hudson Turner. A Causal Theory of Ramifications

and Qualifications. In IJCAI’95: International Joint Conferences on Artificial In-

telligence, pages 1978–1984, 1995.

[McCain 1997] Norman McCain and Hudson Turner. Causal Theories of Action and

Change. In AAAI’97: National Conference on Artificial intelligence, pages 460–

465, 1997.

[McCarthy 1968] J. McCarthy. Situations, Actions and Causal Laws. In Stanford Univer-

sity. Reprinted in Semantic Information Processing (M. Minsky ed.), MIT Press,

Cambridge, Mass., 1968.

[McCarthy 1977] John L. McCarthy. Epistemological Problems of Artificial Intelligence.

In IJCAI’77: International Joint Conferences on Artificial Intelligence, pages

1038–1044, 1977.

[McCarthy 1987] J. McCarthy and P. J. Hayes. Some Philosophical Problems from the

Standpoint of Artificial Intelligence. pages 26–45, 1987.

[McIlraith 2000] S. McIlraith. Integrating Actions and State Constraints: A Closed-Form

Solution to the Ramification Problem (Sometimes). Artificial Intelligence, vol. 116,

no. 1-2, pages 87–121, January 2000.

[Milicic 2007] Maja Milicic. Planning in Action Formalisms based on DLs: First Results.

In DL’07: International Workshop on Description Logics, 2007.

188 Bibliography

[Miller 2002] Rob Miller and Murray Shanahan. Some Alternative Formulations of the

Event Calculus. In Computational Logic: Logic Programming and Beyond, Essays

in Honour of Robert A. Kowalski, Part II, pages 452–490, London, UK, 2002.

Springer-Verlag.

[Moore 1985] R. C. Moore. A Formal Theory of Knowledge and Action. In Formal Theo-

ries of the Commonsense World, pages 319–358. J. Hobbs, R. Moore (Eds.), 1985.

[Moreno 1998] Antonio Moreno. Avoiding Logical Omniscience and Perfect Reasoning:

A Survey. AI Communications, vol. 11, no. 2, pages 101–122, 1998.

[Mueller 2004] Erik T. Mueller. Event Calculus Reasoning Through Satisfiability. Journal

of Logic and Computation, vol. 14, no. 5, pages 703–730, 2004.

[Mueller 2006] Erik Mueller. Commonsense Reasoning. Morgan Kaufmann, 1st édition,

2006.

[Mueller 2007a] Erik Mueller. Automating Commonsense Reasoning Using the Event Cal-

culus. Communications of the ACM, no. (In Press), 2007.

[Mueller 2007b] Erik Mueller. Discrete Event Calculus with Branching Time. In 8th In-

ternational Symposium on Logical Formalizations of Commonsense Reasoning,

pages 126–131, 2007.

[National Research Council Staff 2001] National Research Council Staff. Embedded

Everywhere: A Research Agenda for Networked Systems of Embedded Comput-

ers. National Academy Press, Washington, DC, USA, 2001.

[Papadakis 2002] Nikos Papadakis and Dimitris Plexousakis. Actions with Duration and

Constraints: the Ramification Problem in Temporal Databases. In ICTAI ’02:

Proceedings of the 14th IEEE International Conference on Tools with Artificial

Intelligence, page 83, Washington, DC, USA, 2002. IEEE Computer Society.

[Paschke 2006] Adrian Paschke. ECA-RuleML: An Approach Combining ECA Rules with

Temporal Interval-based KR Event/Action Logics and Transactional Update Log-

ics. Computer Research Repository, vol. abs/cs/0610167, 2006.

[Patkos 2007a] Theodore Patkos, Antonis Bikakis, Grigoris Antoniou, Maria Papadopouli

and Dimitris Plexousakis. A Semantics-Based Framework for Context-Aware Ser-

Bibliography 189

vices: Lessons Learned and Challenges. In UIC’07: 4th International Conference

on Ubiquitous Intelligence and Computing, pages 839–848, 2007.

[Patkos 2007b] Theodore Patkos, Antonis Bikakis, Grigoris Antoniou, Maria Papadopouli

and Dimitris Plexousakis. Distributed AI for Ambient Intelligence: Issues and

Approaches. In AmI’07: Ambient Intelligence, European Conference, pages 159–

176, 2007.

[Patkos 2008] Theodore Patkos and Dimitris Plexousakis. A Theory of Action, Knowl-

edge and Time in the Event Calculus. In SETN ’08: 5th Hellenic Conference on

Artificial Intelligence, pages 226–238, Greece, 2008.

[Patkos 2009a] Theodore Patkos and Dimitris Plexousakis. Reasoning with Knowledge,

Action and Time in Dynamic and Uncertain Domains. In IJCAI’09: Twenty-first

International Joint Conference on Artificial Intelligence, pages 885–890, 2009.

[Patkos 2009b] Theodore Patkos and Dimitris Plexousakis. Sensing Inertial and

Continuously-Changing World Features. In AIAI’09: Proceedings of the 5TH IFIP

Conference on Artificial Intelligence Applications and Innovations, pages 379–

388, 2009.

[Patkos 2010a] Theodore Patkos, Ioannis Chrysakis, Antonis Bikakis, Dimitris Plex-

ousakis and Grigoris Antoniou. A Reasoning Framework for Ambient Intelligence.

In SETN’10: 6th Hellenic Conference on AI, pages 213–222, 2010.

[Patkos 2010b] Theodore Patkos and Dimitris Plexousakis. Reasoning about Potential

Actions and Indirect Effects in Partially Observable and Uncertain Domains. In

under review for the Journal of Automated Reasoning, 2010.

[Patkos 2011] Theodore Patkos and Dimitris Plexousakis. Epistemic Reasoning for Ambi-

ent Intelligence. In under review for the 3rd International Conference on Agents

and Artificial Intelligence, 2011.

[Pednault 1989] Edwin P. D. Pednault. ADL: Exploring the Middle Ground Between

STRIPS and the Situation Calculus. In Proceedings of the first international con-

ference on Principles of knowledge representation and reasoning, pages 324–332,

San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

190 Bibliography

[Petrick 2002a] Ronald P. A. Petrick and Fahiem Bacchus. A Knowledge-Based Approach

to Planning with Incomplete Information and Sensing. In Malik Ghallab, Joachim

Hertzberg and Paolo Traverso, editeurs, AIPS-2002: Proceedings of the 6th In-

ternational Conference on Artificial Intelligence Planning and Scheduling, pages

212–221, Menlo Park, CA, April 2002. AAAI Press.

[Petrick 2002b] Ronald P. A. Petrick and Hector J. Levesque. Knowledge Equivalence in

Combined Action Theories. In KR’02: International Conference on Principles of

Knowledge Representation and Reasoning, pages 303–314, 2002.

[Petrick 2004] Ronald P. A. Petrick and Fahiem Bacchus. Extending the Knowledge-Based

Approach to Planning with Incomplete Information and Sensing. In Didier Dubois,

Christopher Welty and Mary-Anne Williams, editeurs, KR’04: Proceedings of the

International Conference on Principles of Knowledge Representation and Reason-

ing, pages 613–622, Menlo Park, CA, June 2004. AAAI Press.

[Petrick 2008] Ronald P. A. Petrick. Cartesian Situations and Knowledge Decomposition

in the Situation Calculus. In KR’08: International Conference on Principles of

Knowledge Representation and Reasoning, pages 629–639, 2008.

[Pinto 1994] Javier Andre’s Pinto. Temporal Reasoning in the Situation Calculus, 1994.

[Pinto 1995] Javier Pinto and Raymond Reiter. Reasoning About Time in the Situation

Calculus. Annals of Mathematics and Artificial Intelligence, vol. 14, no. 2-4, pages

251–268, 1995.

[Pinto 1998] Javier Pinto. Occurrences and Narratives as Constraints in the Branching

Structure of the Situation Calculus. Journal of Logic and Computation, vol. 8,

no. 6, pages 777–808, 1998.

[Pinto 2000] Javier Pinto, Amílcar Sernadas, Cristina Sernadas and Paulo Mateus. Non-

Determinism and Uncertainty in the Situation Calculus. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 8, no. 2, pages 127–

149, 2000.

[Pollack 1999] Martha Pollack and John F. Horty. There’s More to Life than Making Plans.

The AI Magazine, vol. 20, no. 4, pages 71–84, 1999.

Bibliography 191

[Prekop 2003] Paul Prekop and Mark Burnett. Activities, Context and Ubiquitous Com-

puting. Computer Communications, vol. 26, no. 11, pages 1168 – 1176, 2003.

[Ramos 2008] Carlos Ramos, Juan Carlos Augusto and Daniel Shapiro. Ambient

Intelligence–the Next Step for Artificial Intelligence. IEEE Intelligent Systems,

vol. 23, no. 2, pages 15–18, 2008.

[Reiter 1991] Raymond Reiter. The Frame Problem in the Situation Calculus: a Simple

Solution (Sometimes) and a Completeness Result for Goal Regression. pages 359–

380, 1991.

[Reiter 1993] Raymond Reiter. Proving Properties of States in the Situation Calculus.

Artificial Intelligence, vol. 64, no. 2, pages 337–351, 1993.

[Reiter 1996] R. Reiter. Natural Actions, Concurrency and Continuous Time in the Sit-

uation Calculus. In KR’96: Proceedings of the Fifth International Conference

Principles of Knowledge Representation and Reasoning, pages 2–13, Cambridge,

Massachusetts, U.S.A., November 1996.

[Reiter 2001a] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and

Implementing Dynamical Systems. MIT Press, 2001.

[Reiter 2001b] Ray Reiter. On Knowledge-Based Programming with Sensing in the Situ-

ation Calculus. ACM Transactions on Computational Logic, vol. 2, no. 4, pages

433–457, 2001.

[Rogers 2006] Yvonne Rogers. Moving on from Weiser’s Vision of Calm Computing: En-

gaging UbiComp Experiences. In Ubicomp’06: International Conference on Ubiq-

uitous Computing, pages 404–421, 2006.

[Russo 2002] Alessandra Russo, Rob Miller, Bashar Nuseibeh and Jeff Kramer. An Ab-

ductive Approach for Analysing Event-Based Requirements Specifications. In ICLP

’02: Proceedings of the 18th International Conference on Logic Programming,

pages 22–37, London, UK, 2002. Springer-Verlag.

[Sadeh 2006] N.M. Sadeh, F. Gandon and Oh Byung Kwon. Ambient Intelligence: The

MyCampus Experience. In Book Chapter in Ambient Intelligence and Pervasive

Computing. T. Vasilakos and W. Pedrycz, ArTech House, 2006.

192 Bibliography

[Sardina 2004] Sebastian Sardina, Giuseppe De Giacomo, Yves Lespérance and Hector J.

Levesque. On the Semantics of Deliberation in Indigolog—from Theory to Im-

plementation. Annals of Mathematics and Artificial Intelligence, vol. 41, no. 2-4,

pages 259–299, 2004.

[Scherl 1993] Richard B. Scherl and Hector J. Levesque. The Frame Problem and

Knowledge-Producing Actions. In AAAI’93: Proceedings of the Eleventh Na-

tional Conference on Artificial Intelligence, pages 689–697, Washington, D.C.,

USA, 1993. AAAI Press/MIT Press.

[Scherl 2003] Richard B. Scherl and Hector J. Levesque. Knowledge, Action, and the

Frame Problem. Artificial Intelligence, vol. 144, no. 1-2, pages 1–39, 2003.

[Scherl 2005] Richard B. Scherl. Action, Belief Change and the Frame Problem: A Flu-

ent Calculus Approach. In Proceedings of the Sixth workshop on Nonmonotonic

Reasoning, Action, and Change, August 2005.

[Schiffel 2006] Stephan Schiffel and Michael Thielscher. Reconciling Situation Calculus

and Fluent Calculus. In AAAI’06: Proceedings of the Fourteenth National Con-

ference on Artificial Intelligence, pages 287–292, Boston, MA, July 2006. AAAI

Press.

[Schwind 1999] Camilla Schwind. Causality in Action Theories. Electronic Transactions

on Artificial Intelligence, vol. 3, no. A, pages 27–50, 1999.

[Shanahan 1997] M. Shanahan. Solving the Frame Problem: A Mathematical Investiga-

tion of the Common Sense Law of Inertia. MIT Press, 1997.

[Shanahan 1999a] M. Shanahan. The Ramification Problem in the Event Calculus. IJ-

CAI’99: International Joint Conference on Artificial Intelligence, vol. 16, pages

140–146, 1999.

[Shanahan 1999b] Murray Shanahan. The Event Calculus Explained. Artificial Intelli-

gence Today, vol. 1600, pages 409–431, 1999.

[Shanahan 2001] Murray Shanahan and Mark Witkowski. High-Level Robot Control

through Logic. In ATAL ’00: Proceedings of the 7th International Workshop on

Intelligent Agents VII. Agent Theories Architectures and Languages, pages 104–

121, London, UK, 2001. Springer-Verlag.

Bibliography 193

[Shapiro 2000] S. Shapiro, M. Pagnucco, Y. Lespénce and H. J. Levesque. Iterated Belief

Change in the Situation Calculus. In A. G. Cohn, F. Giunchiglia and B. Selman,

editeurs, KR’00: Principles of Knowledge Representation and Reasoning: Pro-

ceedings of the Seventh International Conference, pages 527–538, San Francisco,

CA, 2000. Morgan Kaufmann.

[Shapiro 2002] Steven Shapiro, Yves Lespérance and Hector J. Levesque. The Cognitive

Agents Specification Language and Verification Environment for Multiagent Sys-

tems. In AAMAS ’02: Proceedings of the first international joint conference on

Autonomous agents and multiagent systems, pages 19–26, New York, NY, USA,

2002. ACM.

[Shirazi 2005] Afsaneh Shirazi and Eyal Amir. First-Order Logical Filtering. In IJ-

CAI’05: Proceedings of the 19th International Joint Conference on Artificial In-

telligence, pages 589–595, San Francisco, CA, USA, 2005. Morgan Kaufmann

Publishers Inc.

[Sim 1997] K.M. Sim. Epistemic Logic and Logical Omniscience: A Survey. International

Journal of Intelligent Systems, vol. 12, no. 1, pages 57–81, 1997.

[Son 2001] Tran Cao Son and Chitta Baral. Formalizing Sensing Actions—A Transition

Function based Approach. Artificial Intelligence, vol. 125, no. 1-2, pages 19–91,

2001.

[Son 2005] Tran Cao Son, Phan Huy Tu, Michael Gelfond and A. Ricardo Morales. Con-

formant Planning for Domains with Constraints: a New Approach. In AAAI’05:

Proceedings of the 20th National Conference on Artificial Intelligence, pages

1211–1216. AAAI Press, 2005.

[Ternovskaia 1999] Eugenia Ternovskaia. Automata Theory for Reasoning about Actions.

In IJCAI’99: Proceedings of the 16th international joint conference on Artifical

intelligence, pages 153–158, San Francisco, CA, USA, 1999. Morgan Kaufmann

Publishers Inc.

[Thielscher 1997] Michael Thielscher. Ramification and Causality. Artificial Intelligence

Journal, vol. 89, no. 1–2, pages 317–364, 1997.

[Thielscher 1998] Michael Thielscher. Introduction to the Fluent Calculus. Electronic

Transactions on Artificial Intelligence, vol. 2, no. 3–4, pages 179–192, 1998.

194 Bibliography

[Thielscher 1999a] M. Thielscher. Fluent Calculus Planning with Continuous Change.

Linköping University Electronic Articles in Computer and Information Science,

vol. 4, no. 11, 1999.

[Thielscher 1999b] Michael Thielscher. From Situation Calculus to Fluent Calculus: State

Update Axioms as a Solution to the Inferential Frame Problem. Artificial Intelli-

gence, vol. 111, no. 1-2, pages 277–299, 1999.

[Thielscher 2000a] M. Thielscher. The Fluent Calculus - A Specification Language for Ro-

bots with Sensors in Nondeterministic, Concurrent, and Ramifying Environments.

In Technical Report CL-2000-01, Artificial Intelligence Institute, Department of

Computer Science, Dresden University of Technology, 2000.

[Thielscher 2000b] Michael Thielscher. Challenges for Action Theories: Solving the

Ramification and Qualification Problem, volume 1775 of LNAI. Springer, 2000.

[Thielscher 2000c] Michael Thielscher. Modeling Actions with Ramifications in Nondeter-

ministic, Concurrent, and Continuous Domains - and a Case Study. In AAAI’00:

Proceedings of the Seventeenth National Conference on Artificial Intelligence and

Twelfth Conference on Innovative Applications of Artificial Intelligence, pages

497–502. AAAI Press / The MIT Press, 2000.

[Thielscher 2000d] Michael Thielscher. Representing the Knowledge of a Robot. In A.

Cohn, F. Giunchiglia and B. Selman, editeurs, KR’00: 7th International Confer-

ence on Principles of Knowledge Representation and Reasoning, pages 109–120,

Breckenridge, CO, 2000.

[Thielscher 2001a] M. Thielscher. Inferring Implicit State Knowledge and Plans with

Sensing Actions. Ki 2001: Advances in Artificial Intelligence: Joint Ger-

man/Austrian Conference on AI, Vienna, Austria, September 19-21, 2001: Pro-

ceedings, 2001.

[Thielscher 2001b] M. Thielscher. The Concurrent, Continuous Fluent Calculus. Studia

Logica, vol. 67, no. 3, pages 315–331, 2001.

[Thielscher 2005a] Michael Thielscher. FLUX: A Logic Programming Method for Rea-

soning Agents. Theory and Practice of Logic Programming, vol. 5, no. 4–5, pages

533–565, 2005.

Bibliography 195

[Thielscher 2005b] Michael Thielscher. Handling Implication and Universal Quantifica-

tion Constraints in FLUX. In CP’05: 11th International Conference on Principles

and Practice of Constraint Programming, pages 667–681, 2005.

[Thielscher 2010] Michael Thielscher. A Unifying Action Calculus. Artificial Intelligence

Journal, To appear, 2010.

[Van Belleghem 1995] K. Van Belleghem, M. Denecker and D. De Schreye. Combining

Situation Calculus and Event Calculus. Logic Programming: Proceedings of the

Twelfth International Conference on Logic Programming, 1995.

[Van Belleghem 1997] K. Van Belleghem, M. Denecker and D. De Schreye. On the Re-

lation Between Situation Calculus and Event Calculus. The Journal of Logic Pro-

gramming, vol. 31, no. 1-3, pages 3–37, 1997.

[van Harmelen 2007] Frank van Harmelen, Vladimir Lifschitz and Bruce Porter. Hand-

book of Knowledge Representation. Elsevier Science, San Diego, USA, 2007.

[Vassos 2007] Stavros Vassos and Hector Levesque. Progression of Situation Calculus

Action Theories with Incomplete Information. In IJCAI’07: International Joint

Conferences on Artificial Intelligence, pages 2024–2029, 2007.

[Vassos 2008] Stavros Vassos and Hector J. Levesque. On the Progression of Situa-

tion Calculus Basic Action Theories: Resolving a 10-year-old Conjecture. In

AAAI’08: Proceedings of the 23rd National Conference on Artificial Intelligence,

pages 1004–1009. AAAI Press, 2008.

[Vassos 2009] Stavros Vassos, Stavros Sardina and Hector Levesque. Progressing Ba-

sic Action Theories with non-Local Effect Actions. In Gerhard Lakemeyer, Leora

Morgenstern and Mary-Anne Williams, editeurs, CS’09: Proceedings of the Ninth

International Symposium on Logical Formalizations of Commonsense Reasoning,

pages 135Ű–140, Toronto, Canada, 2009.

[Vo 2005] Quoc Bao Vo and Norman Y. Foo. Reasoning About Action: an Argumentation-

Theoretic Approach. Journal of Artificial Intelligence Research, vol. 24, no. 1,

pages 465–518, 2005.

[Weiser 1991] M. Weiser. The Computer for the 21st Century. Scientific American,

vol. 265, pages 94–104, 1991.

196 Bibliography

[Witkowski 2006] Thomas Witkowski and Michael Thielscher. The Features-and-Fluents

Semantics for the Fluent Calculus. In P. Doherty, J. Mylopoulos and C. Welty,

editeurs, Proceedings of the International Conference on Principles of Knowl-

edge Representation and Reasoning (KR), pages 362–370, Lake District, UK, June

2006.

[Zimmerbaum 2001] Stephen Zimmerbaum and Richard B. Scherl. Sensing Actions, Time,

and Concurrency in the Situation Calculus. In ATAL ’00: Proceedings of the 7th

International Workshop on Intelligent Agents VII. Agent Theories Architectures

and Languages, pages 31–45, London, UK, 2001.

	Patkos PhD Dissertation
	Thesis
	Introduction
	Motivation
	Thesis Contribution and Technical Results
	Application Domain

	Thesis Outline

	Background Material and Literature Review
	Action Theories for Complex Environments
	Introducing the Field: Fundamental Problems
	Review of Formalisms for Reasoning about Action and Change
	Time and Concurrency
	Non-determinism and Uncertainty
	Sensing, Knowledge and Belief Revision
	Linear vs Branching Time Representation
	Discussion and Comparative Study

	Reasoning about Knowledge with Epistemic Modal Logic
	Possible Worlds Semantics
	Basic Knowledge Axioms
	The Problem of Logical Omniscience

	Ambient Intelligence
	Characteristics of Ambient Intelligence Environments
	Challenges for AI

	Review of State-of-the-Art
	Possible worlds-based Epistemic Action Theories
	Alternative Approaches

	Discrete Event Calculus Knowledge Theory
	Preliminaries
	General Notational Conventions
	Discrete Time Event Calculus

	Core DECKT
	Axiomatization

	Hidden Causal Dependencies
	Creation of HCDs
	Expiration of HCDs

	Formal Definition of Epistemic Domain Descriptions
	Summary

	Property Analysis
	A Possible Worlds-based Theory for the Event Calculus
	Branching Discrete Event Calculus
	Branching Time Event Calculus Knowledge Theory

	Correctness Properties
	Complexity Analysis
	On Event Calculus Query Processing
	Classic Event Calculus Without Knowledge
	Possible Worlds Approach
	DECKT Approach
	Discussion of Results
	General Complexity Results for the Event Calculus

	A Note on Decidability Issues

	Theory Extensions
	Sensing Inertial and Continuously-Changing World Features
	Inertial Fluents - Remembering and Forgetting
	Non-Inertial and Functional Fluents
	Context-dependent Inertia

	Context-Dependent and Potential Actions
	Trigger Axioms, epot and Knowledge

	Defining Ability
	Problem Characterization
	Action Narrative
	Termination Condition
	Non-Deterministic Actions
	Establishing Ability

	Summary

	Use Cases and Implementation Issues
	Shanahan's Circuit and Complex Knowledge Ramifications
	The Ramification Problem in Action Theories
	Partially Observable Shanahan's Circuit

	Reasoning in Ambient Intelligence Environments
	A Reasoning Framework for Ambient Intelligence
	Run-time Action Validation and Constraint Handling
	Uncertainty and Temporary Knowledge Example
	Other Examples

	Implementation Issues
	Requirements and Desirable Features
	SAT-based DECReasoner
	Custom Jess-based Event Calculus Reasoner

	Conclusions
	Synopsis of Contributions
	Directions for Future Research

	Proofs of Theorems and Propositions
	DECKT Correctness Property
	Preliminaries
	Proofs

	Propositions
	An Algorithm for Efficient Inference with HCDs
	Computing the Number of State Constraints

	Source Code
	Syntactically Extended Epistemic Fluents within DECReasoner
	Extending DECReasoner's Ontology
	Jess-based Event Calculus Reasoner

	Bibliography

	περιληψεις πάτκος
	Thesis
	Introduction
	Motivation
	Thesis Contribution and Technical Results
	Application Domain

	Thesis Outline

	Background Material and Literature Review
	Action Theories for Complex Environments
	Introducing the Field: Fundamental Problems
	Review of Formalisms for Reasoning about Action and Change
	Time and Concurrency
	Non-determinism and Uncertainty
	Sensing, Knowledge and Belief Revision
	Linear vs Branching Time Representation
	Discussion and Comparative Study

	Reasoning about Knowledge with Epistemic Modal Logic
	Possible Worlds Semantics
	Basic Knowledge Axioms
	The Problem of Logical Omniscience

	Ambient Intelligence
	Characteristics of Ambient Intelligence Environments
	Challenges for AI

	Review of State-of-the-Art
	Possible worlds-based Epistemic Action Theories
	Alternative Approaches

	Discrete Event Calculus Knowledge Theory
	Preliminaries
	General Notational Conventions
	Discrete Time Event Calculus

	Core DECKT
	Axiomatization

	Hidden Causal Dependencies
	Creation of HCDs
	Expiration of HCDs

	Formal Definition of Epistemic Domain Descriptions
	Summary

	Property Analysis
	A Possible Worlds-based Theory for the Event Calculus
	Branching Discrete Event Calculus
	Branching Time Event Calculus Knowledge Theory

	Correctness Properties
	Complexity Analysis
	On Event Calculus Query Processing
	Classic Event Calculus Without Knowledge
	Possible Worlds Approach
	DECKT Approach
	Discussion of Results
	General Complexity Results for the Event Calculus

	A Note on Decidability Issues

	Theory Extensions
	Sensing Inertial and Continuously-Changing World Features
	Inertial Fluents - Remembering and Forgetting
	Non-Inertial and Functional Fluents
	Context-dependent Inertia

	Context-Dependent and Potential Actions
	Trigger Axioms, epot and Knowledge

	Defining Ability
	Problem Characterization
	Action Narrative
	Termination Condition
	Non-Deterministic Actions
	Establishing Ability

	Summary

	Use Cases and Implementation Issues
	Shanahan's Circuit and Complex Knowledge Ramifications
	The Ramification Problem in Action Theories
	Partially Observable Shanahan's Circuit

	Reasoning in Ambient Intelligence Environments
	A Reasoning Framework for Ambient Intelligence
	Run-time Action Validation and Constraint Handling
	Uncertainty and Temporary Knowledge Example
	Other Examples

	Implementation Issues
	Requirements and Desirable Features
	SAT-based DECReasoner
	Custom Jess-based Event Calculus Reasoner

	Conclusions
	Synopsis of Contributions
	Directions for Future Research

	Proofs of Theorems and Propositions
	DECKT Correctness Property
	Preliminaries
	Proofs

	Propositions
	An Algorithm for Efficient Inference with HCDs
	Computing the Number of State Constraints

	Source Code
	Syntactically Extended Epistemic Fluents within DECReasoner
	Extending DECReasoner's Ontology
	Jess-based Event Calculus Reasoner

	Bibliography

	Thesis short
	Introduction
	Motivation
	Thesis Contribution and Technical Results
	Application Domain

	Thesis Outline

	Background Material and Literature Review
	Action Theories for Complex Environments
	Introducing the Field: Fundamental Problems
	Review of Formalisms for Reasoning about Action and Change
	Time and Concurrency
	Non-determinism and Uncertainty
	Sensing, Knowledge and Belief Revision
	Linear vs Branching Time Representation
	Discussion and Comparative Study

	Reasoning about Knowledge with Epistemic Modal Logic
	Possible Worlds Semantics
	Basic Knowledge Axioms
	The Problem of Logical Omniscience

	Ambient Intelligence
	Characteristics of Ambient Intelligence Environments
	Challenges for AI

	Review of State-of-the-Art
	Possible worlds-based Epistemic Action Theories
	Alternative Approaches

	Discrete Event Calculus Knowledge Theory
	Preliminaries
	General Notational Conventions
	Discrete Time Event Calculus

	Core DECKT
	Axiomatization

	Hidden Causal Dependencies
	Creation of HCDs
	Expiration of HCDs

	Formal Definition of Epistemic Domain Descriptions
	Summary

	Property Analysis
	A Possible Worlds-based Theory for the Event Calculus
	Branching Discrete Event Calculus
	Branching Time Event Calculus Knowledge Theory

	Correctness Properties
	Complexity Analysis
	On Event Calculus Query Processing
	Classic Event Calculus Without Knowledge
	Possible Worlds Approach
	DECKT Approach
	Discussion of Results
	General Complexity Results for the Event Calculus

	A Note on Decidability Issues

	Theory Extensions
	Sensing Inertial and Continuously-Changing World Features
	Inertial Fluents - Remembering and Forgetting
	Non-Inertial and Functional Fluents
	Context-dependent Inertia

	Context-Dependent and Potential Actions
	Trigger Axioms, epot and Knowledge

	Defining Ability
	Problem Characterization
	Action Narrative
	Termination Condition
	Non-Deterministic Actions
	Establishing Ability

	Summary

	Use Cases and Implementation Issues
	Shanahan's Circuit and Complex Knowledge Ramifications
	The Ramification Problem in Action Theories
	Partially Observable Shanahan's Circuit

	Reasoning in Ambient Intelligence Environments
	A Reasoning Framework for Ambient Intelligence
	Run-time Action Validation and Constraint Handling
	Uncertainty and Temporary Knowledge Example
	Other Examples

	Implementation Issues
	Requirements and Desirable Features
	SAT-based DECReasoner
	Custom Jess-based Event Calculus Reasoner

	Conclusions
	Synopsis of Contributions
	Directions for Future Research

	Proofs of Theorems and Propositions
	DECKT Correctness Property
	Preliminaries
	Proofs

	Propositions
	An Algorithm for Efficient Inference with HCDs
	Computing the Number of State Constraints

	Source Code
	Syntactically Extended Epistemic Fluents within DECReasoner
	Extending DECReasoner's Ontology
	Jess-based Event Calculus Reasoner

	Bibliography

	Thesis
	Introduction
	Motivation
	Thesis Contribution and Technical Results
	Application Domain

	Thesis Outline

	Background Material and Literature Review
	Action Theories for Complex Environments
	Introducing the Field: Fundamental Problems
	Review of Formalisms for Reasoning about Action and Change
	Time and Concurrency
	Non-determinism and Uncertainty
	Sensing, Knowledge and Belief Revision
	Linear vs Branching Time Representation
	Discussion and Comparative Study

	Reasoning about Knowledge with Epistemic Modal Logic
	Possible Worlds Semantics
	Basic Knowledge Axioms
	The Problem of Logical Omniscience

	Ambient Intelligence
	Characteristics of Ambient Intelligence Environments
	Challenges for AI

	Review of State-of-the-Art
	Possible worlds-based Epistemic Action Theories
	Alternative Approaches

	Discrete Event Calculus Knowledge Theory
	Preliminaries
	General Notational Conventions
	Discrete Time Event Calculus

	Core DECKT
	Axiomatization

	Hidden Causal Dependencies
	Creation of HCDs
	Expiration of HCDs

	Formal Definition of Epistemic Domain Descriptions
	Summary

	Property Analysis
	A Possible Worlds-based Theory for the Event Calculus
	Branching Discrete Event Calculus
	Branching Time Event Calculus Knowledge Theory

	Correctness Properties
	Complexity Analysis
	On Event Calculus Query Processing
	Classic Event Calculus Without Knowledge
	Possible Worlds Approach
	DECKT Approach
	Discussion of Results
	General Complexity Results for the Event Calculus

	A Note on Decidability Issues

	Theory Extensions
	Sensing Inertial and Continuously-Changing World Features
	Inertial Fluents - Remembering and Forgetting
	Non-Inertial and Functional Fluents
	Context-dependent Inertia

	Context-Dependent and Potential Actions
	Trigger Axioms, epot and Knowledge

	Defining Ability
	Problem Characterization
	Action Narrative
	Termination Condition
	Non-Deterministic Actions
	Establishing Ability

	Summary

	Use Cases and Implementation Issues
	Shanahan's Circuit and Complex Knowledge Ramifications
	The Ramification Problem in Action Theories
	Partially Observable Shanahan's Circuit

	Reasoning in Ambient Intelligence Environments
	A Reasoning Framework for Ambient Intelligence
	Run-time Action Validation and Constraint Handling
	Uncertainty and Temporary Knowledge Example
	Other Examples

	Implementation Issues
	Requirements and Desirable Features
	SAT-based DECReasoner
	Custom Jess-based Event Calculus Reasoner

	Conclusions
	Synopsis of Contributions
	Directions for Future Research

	Proofs of Theorems and Propositions
	DECKT Correctness Property
	Preliminaries
	Proofs

	Propositions
	An Algorithm for Efficient Inference with HCDs
	Computing the Number of State Constraints

	Source Code
	Syntactically Extended Epistemic Fluents within DECReasoner
	Extending DECReasoner's Ontology
	Jess-based Event Calculus Reasoner

	Bibliography

