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ABSTRACT

In this paper we present the properties of a parametric bpredel
based on a deterministic plus noise representation of Bpetially

suggested by Laroche et al. [1]. Aiming at a high resolutioaly

sis of speech signals for voice quality control (transfaiorg and
assessment, we focus on the deterministic representatiorwe
reveal the properties of the model showing that such a reptas
tion is equivalent to a time-varying quasi-harmonic repreation of
speech. Results show that the model is appropriate in e#tigrec-

curately linear amplitude modulations and modeling thainonic-
ity of speech.

a generalized polynomial phase function was used to ineneexl-
eling accuracy of the speech model. Time-varying quagibaic
models have also been suggested for long-term speech mgé]i
and enhancement [8] and in music signal processing for jgisti
mation [9]. All the above time-varying quasi-harmonic aprhes
try to model the speech time-series by representing thevamgng
amplitude and phase function as a linear combination of fbais
functions where many parameters should be estimated i twde
efficiently represent the sequence of speech samples. Borpe,
over 1000 parameters need to be estimated for a 200 ms spech s
ment in [7]. When all the parameters of these models are deresi
unknown (like the number of components, the pitch) then &aro

Index Terms— Speech analysis, speech modeling, quasi-Pilistic approach should be used (e.g., based on MCMC)anisté

harmonic models, inharmonicity

1. INTRODUCTION

Sinusoidal and harmonic or deterministic plus noise modelse
successfully been applied in speech and music signals fiingp
modifications and speech synthesis [2], [3]. Especiallysfpeech
signals, it has been shown that for coding/compressiongseipthe
harmonic representation of voiced areas (and unvoiced avban
a low fundamental frequency is considered) produces goaditgu
of speech [2] at low bit rates. The harmonic structure of spée
also supported by the simple linear source filter model fersiheech
production mechanism.

the usual least-squares approach [9].

Although these models may be successful in representirgethe
guence of speech samples (however, by increasing the cxitypie
the order of the suggested model) they are not suitable icribdésy
the main speech characteristics and properties of speebbsesare
reflected by the speech production mechanism and by theigronl
ear) interaction of the glottal airflow signal with the votaict filter.

In this paper, we would like to revisit the lower-order speetodel
suggested by Laroche et al. [1] and reveal and discuss theprap-
erties of the model. This will allow us to track important cheter-
istics of speech with high accuracy and be able to use thisemod
(or in the future, its extension) in applications like Voi€ensfor-
mation and Voice Quality Assessment (like analysis of platjio
voices). Instead of using the term “deterministic” as indcre et

However, it is well known that speech is not really a periodical. [1], we will refer to this component as “quasi-harmonighich

signal and indeed it is usually referred to aguasi-harmonicsig-
nal. Although for many speech applications this may be abnsi
ered as a detail, in other speech applications like highityusgdeech
modification, speech synthesis and voice quality asseggirenin
pathologic voices) it is a property of the signal worth caesing.
Looking at the magnitude spectrum of short-term Fourien$tarm
it can easily be seen that the local maxima (peaks) are notlgxd
the multiples of a fundamental frequency. Actually this wWasmain
motivation on developing the sinusoidal model by Quatitalg[2].
In [2], the amplitude and frequency of the sinusoids weresitiered
constant over the analysis window although it is also webtvimn
that these are time-varying parameters. The Determinikig&Noise
model suggested by Laroche et al. [1] can take into accoigtiie-
varying character of speech. It has also been shown in [4jraf&]

better reflects the properties of the model as we will showtlho
Also, since we will limit our presentation to this componémtep-
resent the lower frequencies of speech, we will refer tortioslel to
as Quasi-Harmonic Model (QHM) in the following sections.

The paper is organized as follows. Section 2 presents am shor
overview of QHM. Sections 3 and 4 present the time-domain and
frequency-domain properties of the model, respectivalySéction
5, results from synthetic signals and real speech are peskefi-
nally, Section 6 concludes the paper and provides direstionfu-
ture work.

2. ASHORT OVERVIEW OF QHM

that this model is not a harmonic model since the phase is not @ithin an analysis window the deterministic (or otherwigeasi-

linear function of time. Indeed, although this was not mameid ex-
plicitly in these works (i.e., [5]), sinusoids near to theresponding
harmonic frequencies (inharmonic, or 'detuning’ of indival har-
monics) were implicitly used into the model. In this papee will

refer to this inharmonicity aguasi-harmonicity A different time-

varying approach has been suggested by Marques et al. [Gewhe

harmonic) component of a speech signal is modeled as (Ghjte

[4)):

s(t) = < > (an+ tbk)e%jkfot) w(t), 1)

k=—L



where fy is the fundamental frequency of the harmonic sigral,
specifies the order of the model i.e. the number of harmonics,
are the complex amplitudes angs are the complex slopesu(t)

denotes the analysis window. Window is typically a rectdagu

or a Hamming window and it is zero outside a symmetric interva
[—to, to]. This model is an extension to the classic harmonic mode

where thet by, term is omitted [3]. Hence, the signal in eq. (1) is
projected to the complex exponential functions as in thepkarhar-
monic case and in addition to functions of type®™7*Jot,

Assuming that we know signal(t) at time instants, to, ..., tn €
[—to, to], then the estimation of model parametgfs, L,a—1, ..., az,
b_r,...,br} is performed into two steps. At first, the fundamental
frequency, fo and the number of harmonic components,are es-
timated using spectral and autocorrelation informatiodescribed
in [4]. Then, the computation ef; andby, k € {—L, ..., L} is per-
formed by minimizing a mean squared error which naturalgdie
to Least Squares.

3. TIME-DOMAIN PROPERTIES OF QHM

The time-domain characteristics of the model are discusséuis
section. From eq.(1), it is easily seen that the instantamampli-
tude is a time-varying function and it is given for each hanindoy:

mk(t) = |(J,k -+ tbkl

=/ (aff + 1BF)? + (af + tB))?

@)

wherez andz’ mean the real and the imaginary parts:pfespec-
tively.

Since both amplitudes and slopes (b)) are complex variables,
instantaneous phase and instantaneous frequency are nstagb
functions over time. Indeed, instantaneous phase is givepdch
harmonic by:

ok (t) = 2nkfot + Z(ak + tby)

I I
= 27T]€f0t —+ atanw,
while instantaneous frequency is given by:
1
Ji(t) = 3-01(t)
o Lot = albf @
— MO on m2(t)

From eq.(4) we can easily see that the instantaneous freguen -

is a bell-shaped curve similar to Cauchy distribution. Atdiea of
the model worth noting is that the 2nd term of the instantaeeo
frequency in eq.(4) depends on the instantaneous amplitlides
means that the accuracy of frequency estimation (or, thmaton
of phase function) depends on the amplitude informatiof [10

4. FREQUENCY-DOMAIN PROPERTIES

In this section, we provide an in-depth analysis of the prioge of

whereW (f) is the Fourier transform of the analysis windaw(t).

Let @, andb;, denote the vectors corresponding respectively to
the complexa;, andby. In order to get further insight on the proper-
ties of QHM, we decomposfﬁc into two components: one collinear
}o ax and one perpendicular .. Thus,by, is given by

gk = p1,u0k + Pz,kt—ié—, (6)
wheredit = (—al,af)?,
@r, b
P1.k < |&,;|2 >
and
-1 7
P2,k = <O]Iz_i;|b2k>

Note that(.,.) is the inner product between two vectors. Then, the
k'™ component in eq. (5) can be written as:

Sk(f) = arW(f—kfo) = p2cW'(f =k fo) +ip1eW'(f—kfo)]-

7
For small values op- x, using a first order approximation of the
Taylor series oWV (f), we have

W (f —kfo) — p2xW'(f — kfo) " W(f —kfo—pax) (8)
and finally eq. (7) can be approximated as follows:
Sk(f) = ax[W(f = kfo — p2.k) + ip1,sW'(f — kfo)l. (9)

Figure 1, depicts the effect of this approximation using anHa
ming window. For reasonable values of the frequency shifamn be
observed that the approximation is very good.
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Fig. 1. Approximation of W (f) — AfW'(f) by W(f — Af) when

QHM in the frequency domain and show that this model can bé useyy; s the Hamming window.

to get an accurate estimation of harmonic frequencies atwlftack
amplitude variations.

Using standard relations from Fourier analysis eq. (1) itewr
in frequency domain as:

L

3 (W (f — kfo) + joxW'(f — kfo))

k=—L

S(f) ©)

From the above developments, it appears that the angle &etwe
vectorsay, andby, plays an important role in the frequency-domain
characteristics of QHM. We now analyze two particular sesi
whered,, and by, are respectively collinear and orthogonal, before
providing results on a more general case.



4.1. by, collinear to @y

If by, is collinear toay, p2,x = 0.and eq. (7) becomes

Sk(f) = an[W(f —kfo) + jpruW'(f — kfo)l.  (10)
or, equivalently, thé*” component in time is
sk(t) = 2|lar|(1 + p1,xt)cos(kwot + Lak)w(t). (11)

In this casep, . is the slope of thé*" instantaneous amplitude of
the model, while the:!" instantaneous frequency is constant and

equal tok fo sincealb! — albf of eq. (4) equals to zero.
To illustrate the behavior of the model in this case, we preae
example of a single sinusoid 350 Hz whose amplitude varies lin-
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early in time with a slope 050 per second. In Figure 2, the original Fig. 3. Frequency mismatch. The analysis is performed at 356 Hz (6

signal and the instantaneous amplitude as estimated b2 kgre
shown on the upper plot. The lower plot depicts the true feagy
and the instantaneous frequency as estimated by eq. (4n the
estimates ot andby, the angle between vectoi& and Zk was
found to bed. Moreover, we obtaip, ,, = 50.0 andps , = 1073,

which shows that the model provides accurate estimatestbfthe
amplitude slope and the instantaneous frequency.
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Fig. 2. Amplitude modulation. Upper panel: Original signal (degh
line) and estimated inst. amplitude (solid line). Lower @arue
(dashed line) and estimated inst. frequency (solid line).

4.2. by, orthogonal to

Whenby, is orthogonal taiy, thenp; » = 0 and for small values of
p2,k, the approximation in eq. (9) falls down to:

Se(f) = axW(f — kfo — p2.k)- (12)
Going back in time domain, the" component can be written as:
sk (t) = 2|ak|cos (2w (kfo + p2,k)t + Lak) w(t) (13)

In this case, the instantaneous amplitude is constant wifile- p2 5

is its instantaneous frequency. Thus, itis worth noting @idM en-
ables the estimation of a frequency shift for each harmooipo-
nent which is very important when the frequencies of the siius
are not exactly at integer multiples ¢ but slightly vary from this
position. To illustrate this property, we consider a singjlee wave

whose frequency i850 Hz. In this example, the analysis is carried

Hz away from the correct frequency; solid line with circleglpper
panel: Original signal (dashed line) and estimated instpléande
(solid line). Lower panel: True (dashed line) and estimates.
frequency (solid line). Note that the inst. frequency isyvelbse to
the true value.

4.3. Random angle betweehy, and @

We now address the case when both linearly time-varying iampl
tude and frequency mismatch is present. We consider th@etyat
signal presented in Figure 4 which is a sinusoi@#i Hz with an
amplitude slope 060 per period. When the analysis is carried out
with a frequency o856 Hz,the angle betweed, andby, is 24.286
degrees and the following estimates were obtaingd; = 47.75
andps r = —5.926. Thus, QHM enables the estimation of the am-
plitude slope and provides a refinement of the frequency. é¥ew

it is worth noting that the refined frequency is less accutiz® in
the example in Figure 3. Moreover, the curve of the instatas
frequency (Figure 4) exhibits larger variations than thatigure 3.

In order to further refine this frequency estimate, we suggesse
an iterative procedure which simply consists in updatirgahaly-
sis frequency with the estimated frequency. With only tveodtions

of this procedure the frequency can be obtained with a vendgo
accuracy f2,, = —6.0), while the estimated slope js , = 49.97.
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out with a frequency 0856 Hz. Figure 3 shows that the estimated Fig. 4 Amplitude modulation and frequency mismatch. Upper

instantaneous frequency can be recovered with a good agcdrae

estimated angle betweei; and by, is 89.99 degrees which mainly
corresponds to the case wheig andb;, are orthogonal. Finally,

panel: Original signal (dashed line) and estimated instpliande
(solid line). Lower panel: True (dashed line) and estimatst fre-
guency (solid line). Initial analysis is performed at 356 (3plid

p1x = 107", which means that there is not amplitude modulationjine with circles)

while p2 , = —6.005, which is a good estimate of the frequency

mismatch.



5. RESULTS

In this section, we illustrate the abilities of QHM on varsosignals
with more than one components (synthetic and speech sjgnals

5.1. Multi-component synthetic signals

Frequency

Two quasi-harmonic signals with 10 components and fundéahen
frequencies o120 Hz, and200 Hz were considered as our synthetic
signals. The frequencies of the components were set to batnot
exactly integer multiplies of the fundamental frequencyileveach
component has a linear time varying inst. amplitude. Hangmiim- ° o o2 Time insee. o os
dow of four pitch periods was used for the estimation of caxpl
amplitudes and phases. Analysis was performed using teeuru Fig. 6. Harmonic frequencies tracks (dashed lines) and estimated
damental frequency as well as wrong frequeridy ¢ of mismatch).  frequency tracks (solid lines).

In each case, the iterative approach described above whsdpp
Thus, at each iteration step the new analysis was perforisiad as

O — A
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