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ABSTRACT

In this paper we present the properties of a parametric speech model
based on a deterministic plus noise representation of speech initially
suggested by Laroche et al. [1]. Aiming at a high resolution analy-
sis of speech signals for voice quality control (transformation) and
assessment, we focus on the deterministic representation and we
reveal the properties of the model showing that such a representa-
tion is equivalent to a time-varying quasi-harmonic representation of
speech. Results show that the model is appropriate in estimating ac-
curately linear amplitude modulations and modeling the inharmonic-
ity of speech.

Index Terms— Speech analysis, speech modeling, quasi-
harmonic models, inharmonicity

1. INTRODUCTION

Sinusoidal and harmonic or deterministic plus noise modelshave
successfully been applied in speech and music signals for coding,
modifications and speech synthesis [2], [3]. Especially forspeech
signals, it has been shown that for coding/compression purposes the
harmonic representation of voiced areas (and unvoiced areas when
a low fundamental frequency is considered) produces good quality
of speech [2] at low bit rates. The harmonic structure of speech is
also supported by the simple linear source filter model for the speech
production mechanism.

However, it is well known that speech is not really a periodic
signal and indeed it is usually referred to as aquasi-harmonicsig-
nal. Although for many speech applications this may be consid-
ered as a detail, in other speech applications like high quality speech
modification, speech synthesis and voice quality assessment (i.e., in
pathologic voices) it is a property of the signal worth considering.
Looking at the magnitude spectrum of short-term Fourier Transform
it can easily be seen that the local maxima (peaks) are not exactly at
the multiples of a fundamental frequency. Actually this wasthe main
motivation on developing the sinusoidal model by Quatieri et al. [2].
In [2], the amplitude and frequency of the sinusoids were considered
constant over the analysis window although it is also well known
that these are time-varying parameters. The Deterministicplus Noise
model suggested by Laroche et al. [1] can take into account this time-
varying character of speech. It has also been shown in [4] andin [5]
that this model is not a harmonic model since the phase is not a
linear function of time. Indeed, although this was not mentioned ex-
plicitly in these works (i.e., [5]), sinusoids near to the corresponding
harmonic frequencies (inharmonic, or ’detuning’ of individual har-
monics) were implicitly used into the model. In this paper, we will
refer to this inharmonicity asquasi-harmonicity. A different time-
varying approach has been suggested by Marques et al. [6] where

a generalized polynomial phase function was used to increase mod-
eling accuracy of the speech model. Time-varying quasi-harmonic
models have also been suggested for long-term speech modeling [7]
and enhancement [8] and in music signal processing for pitchesti-
mation [9]. All the above time-varying quasi-harmonic approaches
try to model the speech time-series by representing the time-varying
amplitude and phase function as a linear combination of fixedbasis
functions where many parameters should be estimated in order to
efficiently represent the sequence of speech samples. For example,
over 1000 parameters need to be estimated for a 200 ms speech seg-
ment in [7]. When all the parameters of these models are considered
unknown (like the number of components, the pitch) then a proba-
bilistic approach should be used (e.g., based on MCMC) instead of
the usual least-squares approach [9].

Although these models may be successful in representing these-
quence of speech samples (however, by increasing the complexity or
the order of the suggested model) they are not suitable in describing
the main speech characteristics and properties of speech asthese are
reflected by the speech production mechanism and by the (nonlin-
ear) interaction of the glottal airflow signal with the vocaltract filter.
In this paper, we would like to revisit the lower-order speech model
suggested by Laroche et al. [1] and reveal and discuss the main prop-
erties of the model. This will allow us to track important character-
istics of speech with high accuracy and be able to use this model
(or in the future, its extension) in applications like VoiceTransfor-
mation and Voice Quality Assessment (like analysis of pathologic
voices). Instead of using the term “deterministic” as in Laroche et
al. [1], we will refer to this component as “quasi-harmonic”which
better reflects the properties of the model as we will show shortly.
Also, since we will limit our presentation to this componentto rep-
resent the lower frequencies of speech, we will refer to thismodel to
as Quasi-Harmonic Model (QHM) in the following sections.

The paper is organized as follows. Section 2 presents an short
overview of QHM. Sections 3 and 4 present the time-domain and
frequency-domain properties of the model, respectively. In Section
5, results from synthetic signals and real speech are presented. Fi-
nally, Section 6 concludes the paper and provides directions for fu-
ture work.

2. A SHORT OVERVIEW OF QHM

Within an analysis window the deterministic (or otherwise,quasi-
harmonic) component of a speech signal is modeled as (Chapter 4 in
[4]):

s(t) =

 

L
X

k=−L

(ak + tbk)e2πjkf0t

!

w(t), (1)



wheref0 is the fundamental frequency of the harmonic signal,L
specifies the order of the model i.e. the number of harmonics,aks
are the complex amplitudes andbks are the complex slopes.w(t)
denotes the analysis window. Window is typically a rectangular
or a Hamming window and it is zero outside a symmetric interval
[−t0, t0]. This model is an extension to the classic harmonic model
where thet bk term is omitted [3]. Hence, the signal in eq. (1) is
projected to the complex exponential functions as in the simple har-
monic case and in addition to functions of typet e2πjkf0t.

Assuming that we know signals(t) at time instantst1, t2, ..., tN ∈
[−t0, t0], then the estimation of model parameters{f0, L, a−L, ..., aL,
b−L, ..., bL} is performed into two steps. At first, the fundamental
frequency,f0 and the number of harmonic components,L, are es-
timated using spectral and autocorrelation information asdescribed
in [4]. Then, the computation ofak andbk, k ∈ {−L, ..., L} is per-
formed by minimizing a mean squared error which naturally leads
to Least Squares.

3. TIME-DOMAIN PROPERTIES OF QHM

The time-domain characteristics of the model are discussedin this
section. From eq.(1), it is easily seen that the instantaneous ampli-
tude is a time-varying function and it is given for each harmonic by:

mk(t) = |ak + tbk|

=
q

(aR
k + tbR

k )2 + (aI
k + tbI

k)2 ,
(2)

wherexR andxI mean the real and the imaginary parts ofx, respec-
tively.

Since both amplitudes and slopes (ak, bk) are complex variables,
instantaneous phase and instantaneous frequency are not constant
functions over time. Indeed, instantaneous phase is given for each
harmonic by:

φk(t) = 2πkf0t + ∠(ak + tbk)

= 2πkf0t + atan
aI

k + tbI
k

aR
k + tbR

k

,
(3)

while instantaneous frequency is given by:

fk(t) =
1

2π
φ
′

k(t)

= kf0 +
1

2π

aR
k bI

k − aI
kbR

k

m2

k(t)
.

(4)

From eq.(4) we can easily see that the instantaneous frequency
is a bell-shaped curve similar to Cauchy distribution. A feature of
the model worth noting is that the 2nd term of the instantaneous
frequency in eq.(4) depends on the instantaneous amplitude. This
means that the accuracy of frequency estimation (or, the estimation
of phase function) depends on the amplitude information [10].

4. FREQUENCY-DOMAIN PROPERTIES

In this section, we provide an in-depth analysis of the properties of
QHM in the frequency domain and show that this model can be used
to get an accurate estimation of harmonic frequencies and/or to track
amplitude variations.

Using standard relations from Fourier analysis eq. (1) is written
in frequency domain as:

S(f) =

L
X

k=−L

`

akW (f − kf0) + jbkW
′(f − kf0)

´

(5)

whereW (f) is the Fourier transform of the analysis window,w(t).

Let ~ak and~bk denote the vectors corresponding respectively to
the complexak andbk. In order to get further insight on the proper-
ties of QHM, we decompose~bk into two components: one collinear
to~ak and one perpendicular to~ak. Thus,~bk is given by

~bk = ρ1,k~ak + ρ2,k~a
⊥

k , (6)

where~a⊥

k = (−aI
k, aR

k )T ,

ρ1,k =
〈~ak,~bk〉

|~ak|2

and

ρ2,k =
〈~a⊥

k ,~bk〉

|~ak|2
.

Note that〈. , .〉 is the inner product between two vectors. Then, the
kth component in eq. (5) can be written as:

Sk(f) = ak[W (f−kf0)−ρ2,kW
′(f−kf0)+jρ1,kW

′(f−kf0)].
(7)

For small values ofρ2,k, using a first order approximation of the
Taylor series ofW (f), we have

W (f − kf0) − ρ2,kW
′(f − kf0) ≈ W (f − kf0 − ρ2,k) (8)

and finally eq. (7) can be approximated as follows:

Sk(f) ≈ ak[W (f − kf0 − ρ2,k) + jρ1,kW
′(f − kf0)]. (9)

Figure 1, depicts the effect of this approximation using a Ham-
ming window. For reasonable values of the frequency shift, it can be
observed that the approximation is very good.
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Fig. 1. Approximation ofW (f)−∆fW ′(f) by W (f −∆f) when
W is the Hamming window.

From the above developments, it appears that the angle between
vectors~ak and~bk plays an important role in the frequency-domain
characteristics of QHM. We now analyze two particular settings
where~ak and~bk are respectively collinear and orthogonal, before
providing results on a more general case.



4.1. ~bk collinear to ~ak

If ~bk is collinear to~ak, ρ2,k = 0 and eq. (7) becomes

Sk(f) = ak[W (f − kf0) + jρ1,kW
′(f − kf0)], (10)

or, equivalently, thekth component in time is

sk(t) = 2|ak|(1 + ρ1,kt)cos(kω0t + ∠ak)w(t). (11)

In this case,ρ1,k is the slope of thekth instantaneous amplitude of
the model, while thekth instantaneous frequency is constant and
equal tokf0 sinceaR

k bI
k − aI

kbR
k of eq. (4) equals to zero.

To illustrate the behavior of the model in this case, we present an
example of a single sinusoid at350 Hz whose amplitude varies lin-
early in time with a slope of50 per second. In Figure 2, the original
signal and the instantaneous amplitude as estimated by eq. (2) are
shown on the upper plot. The lower plot depicts the true frequency
and the instantaneous frequency as estimated by eq. (4). From the
estimates ofak and bk, the angle between vectors~ak and~bk was
found to be0. Moreover, we obtainρ1,k = 50.0 andρ2,k = 10−13,
which shows that the model provides accurate estimates of both the
amplitude slope and the instantaneous frequency.
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Fig. 2. Amplitude modulation. Upper panel: Original signal (dashed
line) and estimated inst. amplitude (solid line). Lower panel: True
(dashed line) and estimated inst. frequency (solid line).

4.2. ~bk orthogonal to~ak

When~bk is orthogonal to~ak, thenρ1,k = 0 and for small values of
ρ2,k, the approximation in eq. (9) falls down to:

Sk(f) ≈ akW (f − kf0 − ρ2,k). (12)

Going back in time domain, thekth component can be written as:

sk(t) ≈ 2|ak|cos (2π(kf0 + ρ2,k)t + ∠ak)w(t) (13)

In this case, the instantaneous amplitude is constant whilekf0+ρ2,k

is its instantaneous frequency. Thus, it is worth noting that QHM en-
ables the estimation of a frequency shift for each harmonic compo-
nent which is very important when the frequencies of the sinusoids
are not exactly at integer multiples off0 but slightly vary from this
position. To illustrate this property, we consider a singlesine wave
whose frequency is350 Hz. In this example, the analysis is carried
out with a frequency of356 Hz. Figure 3 shows that the estimated
instantaneous frequency can be recovered with a good accuracy. The
estimated angle between~ak and~bk is 89.99 degrees which mainly
corresponds to the case where~ak and~bk are orthogonal. Finally,
ρ1,k = 10−13, which means that there is not amplitude modulation
while ρ2,k = −6.005, which is a good estimate of the frequency
mismatch.
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Fig. 3. Frequency mismatch. The analysis is performed at 356 Hz (6
Hz away from the correct frequency; solid line with circles). Upper
panel: Original signal (dashed line) and estimated inst. amplitude
(solid line). Lower panel: True (dashed line) and estimatedinst.
frequency (solid line). Note that the inst. frequency is very close to
the true value.

4.3. Random angle between~bk and~ak

We now address the case when both linearly time-varying ampli-
tude and frequency mismatch is present. We consider the synthetic
signal presented in Figure 4 which is a sinusoid at350 Hz with an
amplitude slope of50 per period. When the analysis is carried out
with a frequency of356 Hz,the angle between~ak and~bk is 24.286
degrees and the following estimates were obtained :ρ1,k = 47.75
andρ2,k = −5.926. Thus, QHM enables the estimation of the am-
plitude slope and provides a refinement of the frequency. However,
it is worth noting that the refined frequency is less accuratethan in
the example in Figure 3. Moreover, the curve of the instantaneous
frequency (Figure 4) exhibits larger variations than that in Figure 3.
In order to further refine this frequency estimate, we suggest to use
an iterative procedure which simply consists in updating the analy-
sis frequency with the estimated frequency. With only two iterations
of this procedure the frequency can be obtained with a very good
accuracy (ρ2,k = −6.0), while the estimated slope isρ1,k = 49.97.
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Fig. 4. Amplitude modulation and frequency mismatch. Upper
panel: Original signal (dashed line) and estimated inst. amplitude
(solid line). Lower panel: True (dashed line) and estimatedinst. fre-
quency (solid line). Initial analysis is performed at 356 Hz(solid
line with circles)



5. RESULTS

In this section, we illustrate the abilities of QHM on various signals
with more than one components (synthetic and speech signals).

5.1. Multi-component synthetic signals

Two quasi-harmonic signals with 10 components and fundamental
frequencies of120 Hz, and200 Hz were considered as our synthetic
signals. The frequencies of the components were set to be notat
exactly integer multiplies of the fundamental frequency while each
component has a linear time varying inst. amplitude. Hamming win-
dow of four pitch periods was used for the estimation of complex
amplitudes and phases. Analysis was performed using the true fun-
damental frequency as well as wrong frequency (5Hz of mismatch).

In each case, the iterative approach described above was applied
Thus, at each iteration step the new analysis was performed using as
frequencieskf0 + ρ2,k. Figure 5 shows the SNR at each iteration
for all the synthetic signals. It is worth to note the difference in
convergence in terms of SNR between the two synthetic signals.
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Fig. 5. SNR per iteration for a signal with fundamental frequency
120 Hz (lines with stars and squares) and for a signal with funda-
mental frequency200 Hz (lines with dots and circles).dF0 denotes
the fundamental frequency mismatch in Hertz.

5.2. Real speech example

An example of applying QHM in a speech signal generated by a
male speaker with fundamental frequency to vary between 120Hz
and 160 Hz is also provided. The analysis was performed usinga
Hamming window of four local pitch periods long and step sizeof
one local pitch period. The average segmental SNR between the
original speech signal and the residual signal (as this is obtained
by simply subtracting the reconstructed speech frame generated by
QHM from the corresponding original speech segment) was 25 dB.
Figure 6 shows the initial harmonic frequencies used by the model,
and the estimated inharmonics as a function of time.

6. CONCLUSIONS AND FUTURE WORK

In this paper we focus on a deterministic model suggested forthe
analysis of speech signals 15 years ago. By re-writing the main equa-
tion which describes the model we were able to reveal the properties
of the model showing that it is a time-varying quasi-harmonic model
of speech. Moreover, we were able to connect the parameters of
the model to time and frequency characteristics of the speech signal.
This will allow us to apply the model for high-quality speechtrans-
formations and for voice quality assessment. Further extensions of
the model seem possible in order to include other time varying char-
acteristics of speech (i.e., frequency).
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Fig. 6. Harmonic frequencies tracks (dashed lines) and estimated
frequency tracks (solid lines).
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