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Abstract

In this paper we present and compare four time-domain ap-
proaches for estimating the parameters of a harmonic speech
model. The classic approach of Least Squares is directly com-
pared with a Total Least Squares approach trying to overcome
errors in the estimation of the fundamental frequency of the
model. Both of these approaches are suboptimal since they split
the estimation problem into two subproblems; to the estimation
of amplitudes and phases and to the estimation of fundamental
frequency. To improve the accuracy of the parameters estima-
tion of the harmonic model two iterative non linear approaches
are then presented, based on the Steepest Descent and Newton-
Gauss optimization algorithms, where all parameters of thehar-
monic model are estimated simultaneously. The approach based
on the Newton-Gauss optimization algorithm provided the best
accuracy as this is measured by the Signal-to-Noise Ratio crite-
rion.
Index Terms: harmonic models, parameter estimation, speech
analysis

1. Introduction
Harmonic models are able to represent efficiently various sig-
nals like speech and music. Sinusoidal models [1] may be con-
sidered as more general models than the harmonic models for
speech. However harmonic models offer simplicity and effi-
ciency in areas like speech coding [2] [3], speech synthesisand
speech modification/transformation [4]. The performance of
harmonic models heavily depends on the accuracy of the esti-
mated parameters which are the fundamental frequency and the
harmonic amplitudes and phases. Despite the simplicity of the
harmonic model, the simultaneous estimation of all parameters
of the model is not trivial since it is a nonlinear optimization
problem. Since nonlinear optimization approaches are mainly
iterative and therefore time consuming, they were not attrac-
tive in the past in applications like speech coding where the
time delay is an important parameter in the design of the coder.
However, with the increasing power of the computing systems,
and since there are many other areas (i.e., speech synthesisand
speech transformation) where quality of speech representation
is more crucial than speed of computation, it would be interest-
ing to investigate the accuracy of the harmonic model of speech
when nonlinear optimization approaches are used for the esti-
mation of the model parameters.

Typically, the estimation of parameters of harmonic speech
models is performed into two steps; at first, the estimation of
the fundamental frequency is obtained [5] [6] and then provid-
ing that the fundamental frequency is known the estimation of
the harmonic amplitudes and phases is performed by minimiz-
ing a mean squared error criterion [7] [8]. Such an approach
makes the parameters estimation procedure a simple linear op-

timization problem. Although of its simplicity, the accuracy
of the estimation of the model parameters based on this ap-
proach heavily depends on the initial estimation of the funda-
mental frequency. This is why the estimation of the fundamen-
tal frequency has attracted the interest of many researchers in
the speech analysis area.

According to the optimization theory, these linear methods
produce suboptimal solutions since the estimation is decoupled
into estimating the fundamental frequency first and then esti-
mating the amplitudes and phases. In this paper, time-domain
approaches for simultaneously estimation of all harmonic pa-
rameters are presented and they are compared to more tradi-
tional linear approaches. A widely used approach for comput-
ing the amplitudes and phases is through Least Squares (LS)
[7], [9]. LS is equivalent to solve an overdetermined linear
system and it assumes that the fundamental frequency has al-
ready been computed with sufficient accuracy. However, this
is not always the case. Thus, parameter estimation through
LS is vulnerable to fundamental frequency estimation. Indeed,
wrong fundamental frequency estimation results in wrong am-
plitude and phase estimation. In this paper, different solutions
for more robust amplitude and/or fundamental frequency esti-
mation are presented. Total Least Squares (TLS) is a method
that takes into account errors that may occur in the estimation of
the fundamental frequency. TLS is a generalization of LS thus
it is expected to provide more accurate estimates. Nonlinear
Least Squares (NLS) is another solution for minimizing the sum
of squared error. In NLS, fundamental frequency, amplitudes,
and phases are estimated simultaneously. Given an initial esti-
mate for the unknown parameters, iterative NLS provide funda-
mental frequency, amplitudes, and phases. Two different itera-
tion schemes from optimization theory are presented. The first
method is the Steepest Descent which makes use of the deriva-
tive of the error while the second method is the Newton-Gauss
method where the iteration step is similar to the LS method.

Experiments were conducted on speech signals using the
Harmonic+Noise (HNM) model [7]. HNM is quite efficient
in representing speech signals, in performing speech modifi-
cations, and it has found to be useful in speech synthesis. In
Section 2, a brief overview of HNM is provided, while Section
3 presents the Least Squares method for amplitude and phase
estimation. In Section 4, the Total Least Squares method is
shown. Next, Nonlinear Least Squares methods are presented
in Section 5. Finally, Section 6 presents the evaluation of each
estimation method on speech signals. Finally, Section 7 con-
cludes the paper.

2. Harmonic+Noise Model
HNM decomposes speech into two components: a harmonic or
deterministic component and a noise or stochastic component.



A time dependent parameter referred to as maximum voiced
frequency splits the frequency axis into a lower and an upper
frequency band. Harmonic component describes the lower fre-
quency band of voiced speech segments by a sum of harmoni-
cally related sinusoids. Noise component models the upper fre-
quency band as a time modulated colored noise [7].

Therefore, in HNM context a speech signals[n] is modeled
as the sum of two components:

s[n] = h[n] + u[n] . (1)

whereh[n] andu[n] denote the harmonic and noise part, respec-
tively. In this paper our focus is on the harmonic part. Harmonic
part,h[n], is given as:

h[n] =

L
X

l=−L

ale
2πlf0n/fs n = −N, ..., N (2)

wheref0 is the local fundamental frequency,N is the local pitch
period in samples,L is the local number of harmonics andal

are the local complex amplitudes. The number of harmonics,L,
determines the order of the harmonic model. Please note thatall
methods presented here assume that the order of the model (i.e.
the number of harmonics) is known.

The estimation of the unknown parameters of the harmonic
part is done by minimizing an error criterion or cost function.
The cost function is defined as the sum of squared error,

ǫ(a−L, ..., aL, f0, L) =

N
X

n=−N

(e[n])2 . (3)

The error is given by:

e[n] = w[n](s[n] − h[n]) , (4)

with w[n] being a window imposed into the error.

3. Least Squares
As it was mentioned above, LS assumes that the fundamental
frequency as well as the number of harmonics are known.
Then, LS minimizes the square of the error:

ǫ(a) =
1

2

N
X

n=−N

(e[n])2 =
1

2
e

h
e

=
1

2
(s − Ea)h

W
2(s − Ea) , (5)

where

s =
ˆ

s[−N ] s[−N + 1] ... s[N ]
˜T

is the vector with the speech samples,

e =
ˆ

e[−N ] e[−N + 1] ... e[N ]
˜T

is the vector with the error samples. The exponential matrixE

has as elements

(E)N+n,L+l = ej2πlf̂0n/fs

with n = −N, ..., N andl = −L, ..., L, a is the vector with
the unknown amplitudes given by:

a =
ˆ

a−L ... a0 ... aL

˜T

andW is a diagonal matrix with elements the samples of win-
doww[n]. Note that matrixE has dimension2N +1×2L+1,
and the indices in this paper starts from0. Also the fundamental
frequency is denoted aŝf0 since it is assumed that it is arleady
estimated by a pitch estimation algorithm.

LS finds the minimum of eq.(5) by setting the derivative of
the error function equals to0. Then, matrix calculus gives

∂ǫ(a)

∂a
= −E

h
W

2(s− Ea)

= E
h
W

2
Ea − E

h
W

2
s . (6)

Finally, setting∂ǫ(a)
∂a

= 0, we obtain the LS solution (assuming
the existance of the inverse which holds in this case):

aLS = (Eh
W

2
E)−1

E
h
W

2
s . (7)

4. Total Least Squares
LS assumes that errors occur only in vectors, but, as already
discussed, matrixE is a function off0 which is not accurately
estimated for every frame. Therefore, errors may occur in ex-
ponential matrixE, too. TLS tries to minimize the sum of the
squared error ofE ands. Solution of this problem is obtained
through Singular Value Decomposition (SVD) [10].

Using SVD on matrixEs = W[E|s] we have:

Es = USV
h , (8)

where columns ofU andV are the eigenvectors ofEsEs

h and
Es

h
Es, respectively andS is a diagonal matrix with elements

the squared eigenvalues ofEs sorted in decreasing order. Then,
if v2L+1,2L+1 6= 0, the solution is given as:

aTLS = −
1

v2L+1,2L+1

ˆ

v0,2L+1 v1,2L+1 ... v2L+1,2L+1

˜T
.

(9)
Note that whenv2L+1,2L+1 = 0 then the solution is in the
subspace of zero eigenvalues.

5. Nonlinear Least Squares
Using the same error criterion as in eq. (3-4) the simultaneous
estimation of fundamental frequency and complex amplitudes is
a nonlinear problem. Thus, there is no solution in closed form
and iterative methods should be applied to solve the nonlinear
least squares problem [11]. In the following we will discusstwo
such methods; the Steepest Descent method and the Newton-
Gauss method.

5.1. Steepest Descent Method

Steepest Descent (SD) tries to find a minimum of a function
given an initial guess of the location of the minimum of the
function. It is a gradient type method which corrects the initial
guess by moving to the opposite of the derivative (gradient)of
the error function. Thus, letf(x) be a function andx(old) be an
initial guess, thenx is updated according to

x
(new) = x

(old) − ηf
′

(x(old)) , (10)

whereη is the rate of correction.
Under this formulation, the cost function is a function of

botha andf0, hence, it is written asǫ(a, f0). Then, the partial
derivative is given forf0 by:

∂ǫ(a, f0)

∂f0
= j2π/fs(W · E(a ◦ iL) ◦ iN)T

e = −Be , (11)



where iK =
ˆ

−K, −K + 1, ..., K
˜T

and ′◦′ denotes
the Hadamard operator which means an element by element
multiplication. Note thatB is a real row vector with2N + 1
elements. To proceed, partial derivative for amplitudes isgiven
by:

∂ǫ(a, f0)

∂a
= −E

h
We . (12)

Putting all this together, we obtain the iteration step:

»

a
(new)

f
(new)
0

–

=

»

a
(old)

f
(old)
0

–

+ η

»

E
h
W

B

–

e . (13)

5.2. Newton-Gauss Method

A major difficulty of SD is that the correction rate,η, is not
known. Newton-Gauss (NG) method solves this difficulty be
making the correction rate an adaptive parameter which de-
pends on the position of the estimated parameters relative to the
actual minimum. Thus, NG uses the same recursion formula as
SD but the correction rate is different.

More specifically, let us define matrixJ as

J =

»

E
h
W

B

–

(14)

i.e. the JacobianJ of the cost function. Then, an NG recursion
leads to:

»

a
(new)

f
(new)
0

–

=

»

a
(old)

f
(old)
0

–

+ (Jh
J)−1

J
h
e . (15)

Note that the second term in ( 15) has a similar form as in the
LS solution. However, in NG methodf0 adjustment is also
performed. The convergence of the algorithm is typically 3 to
6 iterations if an initial estimate close to the true minimumis
given. While each iteration for NG method is more computa-
tionally expensive than an SD iteration, the number of iterations
for NG is substantially less than in SD case.

5.3. Initialization

Since SD and NG are iterative methods, initialization is neces-
sary. Under the HNM context, we performed the following ini-
tialization. For the first frame of a voiced region, LS provides
an initial estimate. For the subsequent frames then, the parame-
ters of the previous frames are used as an initial estimate. Note
that linear phase mismatch in this procedure is avoided since the
analysis in HNM is performed pitch synchronously.

6. Results and Discussion
Figure 1 shows the Signal-to-Noise Ratio (SNR) indB for a
sequence of vowels (‘aoie’) (SIG1) uttered by a male voice
while Figure 3 shows the SNR of the sentence ‘vazivaza’ (SIG2)
which contains both vowels and voiced fricatives. The analyzed
signals were sampled at16 kHz. Furthermore, the signals have
been filtered at4 kHz and maximum voiced frequency in HNM
analysis was set at4 kHz (so no noise part is considered). In
this context, “Noise” in SNR refers to modeling error. A Ham-
ming window was used to weight the error signal since it pro-
vided the best result in [7]. The SNR difference between TLS
and LS, the SNR difference between SD and LS as well as the
SNR difference between NG and LS are shown in each plot of
Figure 2. The corresponding SNR differences for ‘vasivasa’are
depicted in Figure 4.
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Figure 1: SNR for a sequence of vowels using the LS method.
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Figure 2: Signal ‘aoie’. Upper plot; the SNR difference be-
tween TLS and LS. Middle plot; the SNR difference between
SD and LS. Lower plot; the SNR difference between NG and
LS.
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Figure 3: SNR for ‘vazivaza’ using the LS method.

In Table 1, the average SNR (in dB) for all the presented
methods is provided. It is worth to note that NG method out-
performs the other methods (in some frames there is even a
near to10 dB improvement in SNR). This is expected since
the joint optimization of fundamental frequency and complex
amplitudes provides solutions closer to the true minimum. SD
method produced either higher and either lower SNR than LS.
The reason for this behaviour is the step factor,η, which is dif-
ficult to manipulate. In this paper, correction or convergence
rate,η, was set to a constant (η = .001) for each iteration and
each unknown parameter. On the other hand, in NG method,
the convergence rate is controlled automatically by the matrix
(Jh

J)−1 which is different in each iteration. Consequently, SD
is prone to incorrect estimation because of the correction rate
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Figure 4: Signal ‘vasivasa’. Upper plot; the SNR difference
between TLS and LS. Middle plot; the SNR difference between
SD and LS. Lower plot; the SNR difference between NG and
LS..

LS TLS SD NG

SIG1 26.70 26.70 26.95 28.40
SIG2 22.05 22.05 21.80 23.70

Table 1: Average SNR in dB for the two speech examples, SIG1
and SIG2.

parameter.
NG method is not very popular due to the fact that in each

iteration the inversion of(Jh
J)−1 matrix is necessary. How-

ever, the number of iterations is quite small. In Table 2, the
mean number of iterations for the nonlinear estimation methods
is shown.

Regarding LS and TLS, we observe that both methods pro-
vide the same SNR. This suggests that the estimated parameters
are the same. This is rather surprising since TLS is a more gen-
eral method than LS. Let’s try to explain this behaviour of TLS.
In TLS it is assumed that the estimation off0 contains errors.
Therefore thetrue f0 is f0 + ∆f0 = f̂0, wheref̂0 is the esti-
mated fundamental frequency. Then the element of matrixE in
eq. (8) is

(E)N+n,L+l = ej2πlf̂0n

= ej2πl(f0+∆f0)n

= ej2πlf0nej2πl∆f0n .

It turns out that the error term is inserted to the estimationprob-

SD NG

SIG1 17.3 3.8
SIG2 10.5 5.1

Table 2: Average number of iterations for the two speech exam-
ples.

lem in a multiplicative way

(E ◦∆E)x = s + ∆s , (16)

where′◦′ as before means element by element multiplication,
and not in an additive way

(E + ∆E)x = s + ∆s (17)

as TLS expects. It is for this reason (multiplication instead of
addition rule) that TLS is not appropriate to incorporatef0 mis-
matches into harmonic models.

7. Conclusions
In this paper, we discussed time-domain approaches for estimat-
ing the parameters of harmonic model of speech. Both linear
and nonlinear approaches were tested. Nonlinaer Least Squares
using Newton-Gauss iterative method gave the highest SNR
score. This can be explained from the fact that not only am-
plitudes and phases are recursively estimated but also the fun-
damental frequency. We plan to perform formal perceptual tests
to further validate the performance of the discussed estimation
algorithms.
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