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ABSTRACT

The speech signal is usually considered as stationary gistiort
analysis time intervals. Though this assumption may becseiffi
in some applications, it is not valid for high-resolutionesph
analysis and in applications such as speech transformatidrob-
jective voice function assessment for detection of voic@udiers.
In speech, there are non stationary components, for irstame-
varying amplitudes and frequencies, which may change &uick
over short time intervals. In this paper, a previously ssgegtime-
varying quasi-harmonic model is extended in order or toreste the
chirp rate for each sinusoidal component, thus succegsfaltking
fast variations in frequency and amplitude. The parameitthe

model are estimated through linear Least Squares and thelmod

accuracy is evaluated on synthetic chirp signals. Expetisnen
speech signals indicate that the new model is able to effigiesti-
mate the signal component chirp rates, providing meanswvelale
more accurate speech models for high-quality speech tranaf
tions.

is rather artificial. In these (and many more) speech apits,
there is a clear need for models that better capture thendigter
istic content of speech signals. A step further in speechetivugl
would be to take into account the non-stationary nature eésp
directly in the modeling. This improved modeling would betjza
ularly helpful in analyzing transient parts of a signal inighrapid
movements of the vocal tract, as well as rapid variationdhefvo-
cal fold vibrations, are observed. More generally, soechitypical
voices and/or phonations (e.g. pathological voices; wpreduced
by elderly people or children; emotional speech) may extibin-
stationarities, even within small observation windows iniein one
would expect the speech signal to be stable.

The aforementioned non-stationarities manifest thenasela
AM-FM modulation of the speech signal. The estimation oftsuc
modulation effects has been addressed in various ways. t&lhss
of methods uses non parametric time-frequency repregamgaguch
as the STFT, Spectrogram or Wigner-Ville distribution [@]locate
the relevant modulation events and estimate their parametesec-

Index Terms— Speech |"r‘|0de|ing7 Speech ana|ysisv non Station.ond appl’oaCh is to extract relevant information from thEBstBIg-

ary analysis, chirp ratefp evolution

1. INTRODUCTION

It is well known that speech is, in essence, a non-statiosiyal.
The origins of these non-stationarities are intimatelyted to the
speech production mechanisms, including vocal tract mewesn
vocal fold vibration and lip radiation. The classical apgrb in
speech processing is to consider that, under a reasonaallistar-
val, the coarse spectral structure of speech can be coedidsrsta-
tionary. So, it is common practice to separate the speedalsigto
segments in which the parameters of interest can be estinrage
relatively reliable manner. This assumption enabled trdegpread
use of techniques based on Fourier analysis, linear prediahd si-
nusoidal/harmonic models in speech analysis, codinghegig and
modification. In all of these applications, the underlyieghnolo-
gies must somehow deal with residual information that cateo
captured by the speech model itself. Consequently, we scleétt
ter model the deterministic part of the speech signal, tedsiaing
the residual information. In speech coding, this improvestet-
ing could lead to more efficient coding schemes, achievingteeb
compromise between the speech quality and coding rate.ekecsp
synthesis and modification, the residual information issidered to
be purely stochastic, though this is not the case. For instan the
Harmonic plus Noise Model (HNM), the high-frequency regian
the spectrum is generated as a modulated noise componelettireh
lower band is considered deterministic [1]. However, thgdm-
ination between the deterministic and stochastic partbeftgnal

nal and then apply operators in order to estimate the AM-FM-co
ponents. This can be done either with a Hilbert transformof3y
applying energy operators like the Teager-Kaiser opefdforThe
limitations of these techniques lie in their lack of robests, espe-
cially in the case of multi-component AM-FM signals. Intstiagly,

a method based on a non-parametric Fan-Chirp analysis les be
suggested in [5] [6] to track the frequencies of harmonycadlated
sinusoidal components.

In this paper we propose a method for speech analysis based on

a parametric time-varying model that captures the lineafution
of the frequency of sinusoidal components. In previous W@tk
important properties of a model initially introduced by behe et
al. in [8] were revealed: in essence, the complex slopepdniced
to capture variations of the harmonic components, can bendec
posed into two terms, one for frequency adjustment and ther ot
for the amplitude slope. In this work we extend the model lgoin
ducing a second order complex polynomial for each harmantic-c
ponent. We describe the overall estimation procedure cbasehe
minimization of a Least Square criterion, and we furtheipoie an
iterative scheme to refine the model parameters and, coastygu
the estimation of the different sinusoidal components.idalpsim-
ulation results carried out on synthetic chirp signals, aff as on
real speech signals, illustrate the potential of the pregasethod
to effectively track the linear evolution of the frequendyeach si-
nusoidal component independently. Note that this is arréstang
property since the model is not limited to strictly harmatiig re-
lated components as in [5]. Moreover it is shown that the rhoale
account for errors in the initial estimates of the sinuskidaponent



frequencies.

The paper is organized as follows. Section 2 presents thelmod

and its underlying properties. The estimation procedutbeas de-
scribed in section 3. Section 4 illustrates the behaviothef fro-
posed model on a synthetic chirp signal, as well as on spéguals.
Section 5 concludes the paper.

2. MODEL FORMULATION

2.1. Motivation

In this paper we investigate new methods for the analysiaohbn-
ically related sinusoidal components that can be appraeidhan a
certain time interval—to, ¢o] by the following equation:

K
. 2
s(t) = Z Ak(]-+’Yl,kt+72’kt2)6](27rkf0t+¢2'kt +o1,kt+d0.k)

k=—K
@)

2.3. Time-domain Properties

From eq. (4), the instantaneous amplitude for each compasen
time-varying function given by:

mk(t) = |ak + bit + th2|

(5)
= /(@ +BFt + cf12)2 + (af + Bt + c]12)2,

wherez® anda! are the real and the imaginary partsagfrespec-
tively. The instantaneous phase for each component is diyen

(6)

I, I 1,2
ox(t) = 27k fot + atan (M)

afl + bl + cfit?

Finally, the instantaneous frequency is obtained by dfigating
the continuous instantaneous phase:

whereK is the number of harmonics, also known as the order of thef, () = %qﬁﬁc (t)

model, fy is the local fundamental frequency add, v, and~ys
are real coefficients that define the amplitude polynomidahefth

component. ¢o i, $1,, and ¢» ;. are the coefficients of the phase
polynomial of thekth component. Note that for this class of sig-

nals the amplitude polynomial of each harmonic is able toehad
large variety of amplitude modulations while the phase poiyial
is able to capture two phenomena present in speech signally, fi
the frequency mismatches betwéefy and the actuatth harmonic
frequency which may be different due to an erronefiuestimation
or due to the detuning of some harmonics [7], and secondhliriih
ear evolution of each harmonic frequency through the tgsmt2.
The chirp rate of théth component is given aXps .

The estimation of the above unknown parameters of the speec

signal is a highly nonlinear procedure. In order to obtaiinadr
estimation problem, a simple yet powerful technique is torapi-
mate the signal in eq. (1) by Taylor series expansion. Ttarsrie
component, the second order Taylor series approximat\esgi

s1(t) & Ape? POk (1 4y gt + yo,1t7)

[+ j(drut + d2ut”) — %(ﬁf?l,kt + o xt%)?]e?? RS0t
2

Keeping the order of the polynomial up290sy (t) is further approx-
imated by:

sk(t) = Ape? Ok [1 4 (715 + 1)t

- 3
+ (vak — B k)2 + Jlb2k + y1,801,5])E7 ]R8 3

2.2. Model definition

As the approximated signal in eq. (3) has a second order poliai
with complex coefficients, we propose to model the speeatasig

eq. (1) by:

K
> (ak + bt + cxt®)e?*™ =N, N (4)
k=—K

i(t) =

where, as beforels is the number of harmonics anfd is the local

fundamental frequency, whilguy,, by, cx } o _ x are complex coef-
ficients which contain both amplitude and phase/frequenfyina-

tion.

1 (aby — apby) + 2t(ai’c — apey’) + 12 (bg'ey — bey’

= kot 27 m2(t)

(7)
A feature of the model worth noting is that the second termhef t
instantaneous frequency depends on the instantaneougLatapl

2.4. Towards the target model

Following the same idea as in a previous work [7], we decompps

andc;. into two components one collinear and the other orthogonal

ay, yielding
br = p1,kar + p2,xjak (8)
and

Ck = 01,KkQk + 02 kJCk, 9

wherep: i, p2,k, 01,k, andos i, are the projections a@f, andc;, onto

ar andjayg, respectively. Mathematically, the projections are given

by:
af ol tafiof aRpl _gIpR
plk:%’ pQ’k:W’
(10)
afcllyafich alel —alcl
01,k = TR L UQ’k:W
With this notation, eq. (4) can be rewritten as:
. .
5(t) = Z ar [1+ (p1,k + jp2.e)t + (01, +j02,k)t2] eI 2Tk fot
k=—K
(11)

Finally, from eq. (3) and (11), an estimate of tk#l chirp compo-
nent parameters can be obtained as follows:

Ak = |ak|
gf;o,k = Zay
'?’1.,k = P1,k (12)
D1k = P2,k
Hoke = 01, + Pai/2
bok = ok — PLEP2E




3. ESTIMATION

3.1. Least square estimate

Let us consider a speech signdt) at time instant$_n, ..., tn €
[—to, to] and let us assume that both the model orifeand an es-
timate of the local fundamental frequengy are known. The es-
timation of the complex quantitieax, by, cx }o—_ ¢ is then done
through Least Squares. In matrix form, the solution is givgn

a
b
c

= (E"WH"WE) ' E"WHWs, (13)

wherea, b, ¢ ands are the vectors constructed frarg, by, ¢, and

s(t), respectivelylV is a diagonal matrix whose diagonal elements -sloss 001 0005 _ o

are the weights typically defined by a Hamming window [9]. dfip
E = [Ey|E1|E2] where theE; submatrices fof = 0, 1, 2 are given
by:

ti_NeJQW(—K)fOi—N ti_Ne]'Qﬂ'Kfoth

. tZ_N+16]27\'(*K)fot—N+1 t”L_N+16J27rKfot—N+1
=

téveﬁﬂ'(—K)foiN tlj'vejQWKfotN

(14)

It is important to note that the length of the window should be

at least 3 pitch periods to avoid matrix ill-conditioning.eWghose
a length of 4 pitch periods, providing a balance betweenfitiieg
and underfitting.

3.2. lterative Estimation

Once the phase parametetia,(c, ég,k) of the signal have been es-

timated using eq. (12), they can be used to define a new basis fo

subsequent signal analysis. Hence we suggest an iterativedure
where, at each iteration, the signal is modeled by:

K
Z (ak+bkt+thz)ej<2wkfot+<z31,kt+<z”>2,kt2)
k=—K

5(t) (15)

whereay, br, andc;, are again complex coefficients estimated by theTabIe 1 Multi-component synthetic chirp signal:

Least Squares method. Technically, the new basis is plugded
the complex exponentials of (14). This procedure is repeatil
convergence occurs, i.e. once a criterion (e.g. based @vthetion
of the LS error) is satisfied.

4. RESULTS

4.1. Synthetic chirp signals

The proposed time-varying model is first applied to a symthet
mono-component chirp signal whose amplitude varies agugitt
a second order polynomial. The chirp signal is given by

2(t) = (1 — 100t + 1O4t2)ej27r(4oot+3000t2+10t+0.01)

and thus has a chirp rate @00 H z/s. The analysis was performed
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Fig. 1. Mono-component synthetic chirp signal. Left panels: ierig
nal and reconstructed signals. Right panels: original atichated
instantaneous frequencies.

Another example is given on a synthetic signal consistinigof

harmonically related chirp components. The results ptesdn Ta-

ble 4.1 show the potential of the proposed iterative schentoit-
rectly identify the chirp rates.

[ harmonic]| chirprate| 1iter | 10iter ]

1st 200 55 200
2nd 400 194 400
3rd 600 353 599
4th 800 457 800
5th 1000 515 | 1000
6th 1200 525 | 1199
7th 1400 519 | 1400
8th 1600 490 | 1600
9th 1800 456 | 1799
10th 2000 441 | 2000

estimated chirp
rates in Hz/s after 1 and 10 iterations.

4.2. Real Speech

One female voice is analyzed in Fig. 2. The sampling frequerfic
the signal was 16kHz and the number of harmonics was set to 5.
In this example, after careful manual inspection of the @voh of
the glottal cycle, it was observed that within the analysisdow,
the fundamental frequency approximately decreases P&iHz to
210Hz. From Fig. 2, it can be seen that the estimated fO tracks can
be recovered, while the other harmonics also exhibit ptdedre-
quency variations.

It must be pointed out however that for speech signal thepchir

at fo = 400H z while the instantaneous frequency at the center ofrate is larger for higher harmonics. Consequently, thergleaases

the analysis window igd10H z. The upper panels of Fig. 1 show
the real part of the original chirp signal and the real parthef re-
constructed signal as well as their instantaneous fredgegnin the
lower panels, the iterative scheme has been applied andafera-
tions the instantaneous frequency has been correctly a&tstiin

in which the Taylor approximation in eq. (2) is not valid. Tarh
dle such cases, it is recommendable to use a single fan-etiep.
estimated from only the firdky, components. Then, the analysis is
carried using chirp ratéa for the kth harmonic. A weighted av-
erage of the chirp rate of each componént= %0 Z,fzol bo.k/k,



02 ‘ Original signal (windowed)
’ ' ‘ — — - Estimated signal (windowed, 4 iteration)

02 L L L I I

-0.02 -0.01 0

Time (in sec)

0.01 0.02 0.03

1500

— 5 Harmonic tracks

=
S
=3
S

Frequency (Hz)

o

3

3
I

I I I I I
-0.01 0 0.01 0.02
Time (s)

0
-0.03 0.03

5000 —

4500

4000

3500

3000

N
@
=}
S

Frequency (Hz)

2000

1500

1000

500

Fig. 4. Analysis of harmonic part of a speech signal /vazivaza/.

Fig. 2. 60ms of female speech. Upper panel: Original signal and the

reconstructed signal (SNR¥5.7dB). Lower panel: The estimated
frequency evolution of the 5 first harmonics.

is used as an estimate of the single chirp rate, We apply this
strategy to the analysis of the /vazivaza/ speech signattéepon
Fig. 3 together with its fundamental frequency contour. &stéma-
tion of the fundamental frequency and of the number of hafoson
is done using time-domain (autocorrelation-based) angugecy-
domain methods respectively as in [9]. Then, the harmonitgfa
the speech segment is analyzed pitch synchronously witb piteh
period window. Fig. 4 shows that the proposed analysis phareeis
able to capture harmonic trajectories that are, in mostscasatin-
uous. Note thaK is set to 4 in this example.

speech

150 T T T T T T T T

100 ’\—//\‘y‘w |

Fig. 3. Speech signal /vazivaza/ and the corresponding pitcloaant

Frequency (Hz)

5. CONCLUSION

We have presented a novel model for the analysis of the ditistio
part of speech which, for each sinusoidal component, ceptmod-
ulations in both amplitude and frequency. The ability oftiedel to
gradually estimate and account for the linear evolutiorhefdom-
ponent frequencies was shown. Forthcoming works will ba-ded
cated to the application of the proposed time-varying speecdel

in speech synthesis and speech modification.
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