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Abstract
In this paper, we employ normalized modulation spectral anal-
ysis for voice pathology detection. Such normalization is im-
portant when there is a mismatch between training and testing
conditions, or in other words, employing the detection system in
real (testing) conditions. Modulation spectra usually produce a
high-dimensionality space. For classification purposes, the size
of the original space is reduced using Higher Order Singular
Value Decomposition (SVD). Further, we select most relevant
features based on the mutual information between subjective
voice quality and computed features, which leads to an adap-
tive to the classification task modulation spectra representation.
For voice pathology detection, the adaptive modulation spectra
is combined with an SVM classifier. To simulate the real test-
ing conditions; one for training and the other for testing. We
address the difference of signal characteristics between training
and testing data through subband normalization of modulation
spectral features. Simulations show that feature normalization
enables the cross-database detection of pathological voices even
when training and test data are different.
Index Terms: pathologic voice detection, modulation spec-
trum, feature normalization, mutual information, SVD.

1. Introduction
Many studies in voice function assessment try to identify acous-
tic measures or cues that highly correlate with pathological
voice qualities. Organic pathologies modify the morphology
of vocal folds resulting in abnormal vibration patterns andin-
creased turbulent airflow at the level of the glottis [1]. Exam-
ples of acoustic parameters trying to quantify the glottal noise
include pitch, jitter, shimmer, amplitude perturbation quotient
(APQ), pitch perturbation quotient (PPQ) and glottal to noise
excitation (GNE)[2] [3] [4]. Since these features refer to the
glottal activity an estimation of the glottal airflow signalis
required. This can be obtained either by electroglottography
(EGG) [5] or by inverse filtering of speech [6].

Perturbations at the glottal level will also affect the spec-
tral properties of the recorded speech signal. There are both
parametric and non parametric approaches for identifying the
abnormal glottal activity based on analysis of speech signals.
The parametric approaches are based on the source filter theory
for the speech production and on the assumptions made for the
glottal signal [7]. The non parametric approaches are basedon
magnitude spectrum of speech where short-term mel frequency
cepstral coefficients (MFFC) are widely used in representing the
magnitude spectrum in a compact way [8, 9]. Non parametric
approaches also include time-frequency representations [10].

Modulation spectra may be seen as a non-parametric way

to represent the frequency-band-dependent amplitude modula-
tions in speech [11, 12]. In our recent works we suggested the
use of modulation spectra for speech detection [13] and for
detection and classification of voice pathologies [14]. Mod-
ulation spectral analysis produces a high-dimensional feature
space, which is inconvenient for detection or classification pur-
poses. In [13] the initial high dimensional representationwas
first transformed to a lower-dimensional space using Higher
Order SVD [15]. To further enhance the lower dimensional
space taking into account the classification task, the mutual in-
formation between the features and the class variable was mea-
sured [13]. This is usually referred to as feature selection[16]
and it leads to an adaptive to the classification task modulation
spectrum representation. In [14], this representation wastested
on voice pathology detection and classification using sustained
vowels recordings from the Massachusetts Eye and Ear Infir-
mary (MEEI) Disordered Voice Database [17]. Using a support
vector machine (SVM) classifier, it was shown that a high clas-
sification performance can be obtained; specifically, a detection
rate of 94.1% and an Area Under the Curve (AUC) of 97.8%
was achieved for voice pathology detection [14].

The above detection results were obtained using a 4-fold
stratified cross-validation scheme repeated 40 times. It isthen
interesting to check the performance of the trained detector on
unknown (completely unseen) data, in the sense that these data
are not just part (of the testing set) of the initial database. Un-
seen data may have been recorded under different conditions
and independently from those of the initial database which was
used for training. For this purpose, we used a second database
provided to us by Universidad Politécnica de Madrid, whichis
referred to as Prı́ncipe de Asturias (PdA) Hospital in Alcalá de
Henares of Madrid database [18]. Similar to MEEI, PdA con-
tains recordings of sustained vowels (/a/) and was developed
for voice function assessment purposes. Testing the optimal de-
tector which was developed on MEEI on recordings from PdA,
we found that the performance of the detector was significantly
decreased.

Apparently, this degradation was caused by the difference
of the environmental characteristics - channel transmission ef-
fects, noises, etc. - of the training and testing data. Past re-
search has addressed the sensitivity of features to data mismatch
with feature normalization [19]. Feature normalization scales
or warps the components of the fixed feature vector in order to
make both training and testing features independent of environ-
mental characteristics. In this work, and as a first step towards
a robust voice pathology detector, we implement subband nor-
malization of modulation spectral features that makes themin-
sensitive to time and frequency distortions according to [20].
After a brief overview of modulation spectral analysis in Sec-



tion 2, we describe the normalization we employ and its effects
in Section 3. We validate our approach with cross-database de-
tection experiments in Section 4 and we provide conclusions
and future directions in Section 5.

2. Modulation Spectra
The most common modulation frequency analysis framework
[11] for a discrete signalx(n), initially employs a short-time
Fourier transform (STFT)Xk(m)

Xk(m) =

∞
X

n=−∞

h(mM − n)x(n)W kn
K , (1)

with k = 0, . . . , K − 1, whereWK = e−j(2π/K) andh(n)
is the acoustic frequency analysis window with a hopsize of
M samples (m denotes time). Mel scale filtering can be em-
ployed at this stage in order to reduce the number of frequency
bands. Subband envelope detection - defined as the magnitude
|Xk(m)| of the subband - is performed next by computing a
second STFT:

Xl(k, i) =
∞

X

m=−∞

g(lL − m)|Xk(m)|W im
I (2)

with i = 0, . . . , I − 1, and whereg(m) is the modulation fre-
quency analysis window;k andi are referred to as the “Fourier”
(or acoustic) and “modulation” frequency, respectively. Tapered
windowsh(n) andg(m) are used to reduce the side lobes of
both frequency estimates. A modulation spectrogram repre-
sentation then, displays modulation spectral energy|Xl(k, i)|
(magnitude of the subband envelope spectra) in the joint acous-
tic/modulation frequency plane.

Modulation spectra are computed in a frame-by-frame ba-
sis using relatively long windows in time (262 ms). This pro-
vides one matrix per frame ofI1 × I2, whereI1 and I2 de-
note the acoustic and modulation frequencies, respectively. The
modulation spectra computed in each frame are stacked to pro-
duce a tensorD. Matrix representation of a third order ten-
sorD ∈ RI1×I2×I3 , whereI3 is the time dimension, is par-
ticularly useful for computations, however it contains a large
amount of features, posing serious problems for the classifica-
tion algorithms. We use Higher Order SVD (HOSVD) in order
to decompose tensorD to itsn−mode singular vectors [13]. Or-
dering of then−mode singular values implies that the “energy”
of tensorD is concentrated in the singular vectors with the low-
est indices. Each singular matrix containing then−mode sin-
gular vectors, can be truncated then by setting a predetermined
threshold so as to retain only the desired number of principal
axes in each mode. Cross-validation permits to determine an
optimal energy threshold for classification.

After reducing dimensions, we select features which are
more relevant to a given classification task using mutual in-
formation (MI). Specifically we used themaximal relevance
(MaxRel) feature selection criterion which simply selectsthe
features most relevant to the target classc [13]. Relevance is
usually defined as the mutual informationI(xj; c) between fea-
turexj and classc. Through a sequential search, which does not
require estimation of multivariate densities, the topm features
in the descent ordering ofI(xj ; c) were selected.

3. Normalized Modulation Spectra
The distribution of envelope amplitudes of voiced speech has
a strong exponential component. Hence we calculate modula-

tion spectra using a log transformation of the amplitude values
|Xk(m)| and subtracting their mean log amplitude before win-
dowing in (2):

X̂k(m) = log |Xk(m)| − log |Xk(m)| (3)

where{.} denotes the average operator overm. This is analo-
gous to the cepstral mean subtraction approach, which is com-
monly employed to compensate for convolutional noise in the
case of MFCC features. Next, we normalize every acoustic fre-
quency subband with the marginal of the modulation frequency
representation:

Xl,sub(k, i) =
Xl(k, i)

P

i Xl(k, i)
(4)

Previous work [20] has shown that this subband normalization
makes modulation spectral features insensitive to convolutional
noise and time distortions such as time scaling and shifting.

As a first test of the normalization effects on features sen-
sitivity, we assess the relevance of features to voice pathology
detection in MEEI and PdA databases, before and after normal-
ization. As previously, relevance is defined as the mutual infor-
mation (MI)I(xj ; c) between featurexj and classc. In general,
MI between two random variablesxi andxj is defined as the
KL-divergence between their joint probability density functions
(pdf) Pij(xi, xj) and the marginal pdfPi(xi) andPj(xj) [21].
EstimatingI(xi; xj) from a finite sample requires regulariza-
tion of Pij(xi, xj). We quantized the continuous alphabet of
acoustic features by definingb discrete bins along each axis.
We make an adaptive quantization (variable bin length) so that
the bins are equally populated and the coordinate invariance of
the MI is preserved [13]. In the case of modulation spectrum
representation, the distribution of the MI for a set of features
and a given class can be visualized as a picture. In Fig. 1a and
Fig. 1b, the distribution of MI between the selected features and
pathologic voices class is depicted, for the MEEI and the PdA
databases, respectively,before normalization of features. It is
then obvious from these two sub-figures that the two distribu-
tions of MI are quite different. This means that training a detec-
tor on one database and test it on the other database, will result
in a very poor detection performance. Fig. 1c and Fig. 1d the
corresponding distribution of MI for both databasesafter fea-
ture normalization is depicted (Fig. 1c for MEEI and Fig. 1d
for PdA). We observed that after applying the suggested feature
normalization the maximum value of MI per database lowers
almost by half. This will lead to lower performance detectorfor
each database. However, and compared to the upper panels of
the same figure, we observe that the distribution of MI in MEEI
is quite comparable to the one obtained in PdA. This means that
a robust to unseen data detector is now possible to develop.

4. Experiments
We can proceed then to train voice pathology detection system
in MEEI and test it on PdA or vice versa. For training a detec-
tor on MEEI, we use a subset of the MEEI in order to cover as
many as possible disorders while at the same time the normo-
phonic and dysphonic classes to have similar age and sex distri-
butions. Specifically we used the subset defined in [10] where
53 normophonic and 173 dysphonic speakers from the MEEI
database were used. Following the same procedure, we identi-
fied a training subset for the PdA database having the same dis-
tribution characteristics as those in the training subset in MEEI,
which contains 100 normophonic and 100 dysphonic speakers.
All the tests were conducted on signals sampled at 25 kHz.
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(a) MEEI
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(c) MEEI
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(d) PdA

Figure 1: Relevance (MI) between modulation spectral features and pathologic voice classwithout normalization (a) in MEEI, and (b)
in PdA andafter normalization in (c) in MEEI, and (d) in PdA.

For each of the training subsets (for MEEI and for PdA),
an optimum detector was obtained. In each case, modulation
spectra were computed in a frame-by-frame basis using long
windows in time (262 ms) which were overlapped by 50%. We
used Mel scale filtering with 53 bands while the size of the
Fourier transform for the time-domain transformation was set
to 257 (up toπ). Therefore, each modulation spectrum con-
sisted ofI1 = 53 acoustic frequencies andI2 = 257 modula-
tion frequencies, resulting therefore in an53 × 257 image per
frame. The modulation spectra computed in each frame were
mean subtracted and then they were stacked to produce a third
order tensorD ∈ RI1×I2×I3 , whereI3 is the number of frames
in the training dataset. Applying the High Order SVD algorithm
described previously, the near-optimal projections or principal
axes (PCs) of features were detected among those contributing
more than0.1% to the “energy” ofD. For MEEI, we detected
44 PCs in the acoustic frequency and29 PCs in the modula-
tion frequency subspace. This resulted in a reduced space of
44 × 29 = 1276 features. For PdA, the corresponding reduced
space had dimensions of53 × 36 = 1908. Next, the features
which were more correlated to the voice pathology detection
task were selected for each database, using the Maximal Rel-

Table 1: Non-normalized modulation spectrum features and
4-fold stratified cross-validation repeated 40 times. Detection
Rate (DR) in % and Area Under the Curve (AUC) in %, using
m = 25 for MEEI, andm = 68 for PdA.

DR (%) AUC (%)
MEEI 94.1 97.8
PdA 81.2 90.2

evance criterion (MaxRel). For details about the application
of the MaxRel criterion on this task please refer to [13]. The
top m features were selected for each database. The optimum
detector for MEEI was obtained by considering them = 25
most relevant features. For PdA, the optimum detector was ob-
tained form = 68. The detection results in terms of Detection
Rate (DR) and Area Under the Curve (AUC) (when we consider
ROC curves for evaluating the performance of the detector) per
database are provided in Table 1. We observe that detection
results are better for MEEI than for PdA.

Let us now consider the optimum detector defined in one
database and perform detections in the other database, simu-
lating then the unseen data case. Results are shown in Table



2 where only the Detection Rate (DR) is provided. We see
that indeed the performance of both detectors decreased sig-
nificantly. The detector trained on MEEI, in particular, exhib-
ited random classification performance on PdA. As mentioned
in [12], a problem with MEEI database is that some of the nor-
mal speakers were recorded at different sites and over poten-
tially different channels than the pathological voices This could
explain the better performance of voice pathology detection sys-
tem on MEEI - as well as the larger degradation when the same
system is tested on a different database.

Table 2: Detection Rate (DR) in % using non-normalized mod-
ulation spectrum features using optimum detectors:DMEEI as
defined only in MEEI (m = 25) andDPdA (m = 68).

DMEEI DPdA

MEEI 94.1 62.3
PdA 51.1 81.2

To increase the robustness of the optimum detectors per
database, we performed feature normalization as this is de-
scribed in the previous section. We observed that after feature
normalization, the optimum numberm (used in the MaxRel cri-
terion) was significantly increased for both databases. Specifi-
cally, for MEEI we foundm = 450, andm = 125 for PdA. The
corresponding results after features normalization are listed in
Table 3. Comparing the results in Tables (2) and (2), we see that
the performance of the optimal detectors was significantly im-
proved in the cross-database evaluation case. We observe that
the performance of the optimum detector given one database
(i.e., DMEEI for MEEI) is slightly worse in the case of using
normalized features as compared to non-normalized features.
This is expected, since, as we have seen in Fig.1, the maximum
value of MI per database was lowered almost by half when nor-
malized features was used (as compared to the MI when non-
normalized features are used). Nevertheless, the overall perfor-
mance of the optimal detectors was improved and therefore, a
more robust detector can now be defined (i.e., a system that is
optimum based on PdA performance is preferable over the one
that is optimum for classification in MEEI.)

Table 3: Detection Rate (DR) in % using normalized modu-
lation spectrum features and optimum detectors:DMEEI as
defined only in MEEI (m = 450) andDPdA (m = 125).

DMEEI DPdA

MEEI 92.7 80.8
PdA 76.1 82.7

5. Conclusion
In this paper we showed that subband normalization of modula-
tion spectral features can compensate for the mismatch of envi-
ronmental conditions during training and testing. We evaluated
the normalized modulation spectral features for voice pathol-
ogy detection using two different databases (MEEI and PdA)
and performing cross-database performance evaluation. Results
show that the current normalization procedure lowers the MIbe-
tween features and detection task, but overall there is a signifi-
cant increase in the robustness of the optimal detectors. Future
work includes the investigation of other normalization proce-
dures for increasing further the robustness of the detectors.
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