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ABSTRACT the fusion gain, when these features were combined with
In this paper, we suggest the use of mutual information to exMFCCs, was rather minor for speaker verification and recog-
plore the information provided by the modulation spectrumnition. However, the way that dimensions are reduced in
for speaker verification and identification purposes. The in modulation spectral features is essential for the perfacea
tial representation is first transformed to a lower-dimenal  of the features. This fact was also recognized by the authors
domain using Higher Order SVD and then, the mutual infordin [6]. Given that dimensionality reduction is required for
mation between speaker identity and features in the trangn efficient training of statistical models the questiorhisrt
formed domain is computed. Projection of the relevant feahow to select task relevant components of the modulation
tures back to the original dimensions reveals the modulatiospectrum.
spectral components which discriminate speakers. Simula- A theoretical study followed by experimental verification
tions carried out on YOHO database show that the relevander feature selection in speaker recognition has shown that

of modulation spectral features is speaker-dependent. there is a close connection between classification errdr-pro
ability and mutual information (MI) between speaker iden-
1. INTRODUCTION tity and features [7]. In this paper, we address the relewvanc

T . of modulation spectrum to speaker verification and identi-
Speaker verification and recognition systems are commonlyeation ysing MI. We first define a lower-dimensional fea-
based on short term spectrum representations such as Mgle space using higher order singular value decomposition
frequency cepstral coefficients (MFCC) and linear prediciy the acoustic and modulation frequency subspaces. Re-
tive coding-derived cepstral coefficients (LPCC) sinceséhe qcing the original dimensions facilitates subsequent-com
are computationally efficient and simple to implement fea, ,ation of MI. Moreover, the variance of low-dimensional
tures. These features may only be computed at a segmegstimators is often smaller than high-dimensional estnsat
tal level (short frames) since they are heavily based on stgading to more accurate results [8]. The relevance of the re
tionary representations of the speech signal like the Bouri 4,ceq features for speaker verification or identificatiod an
transform and the linear prediction theory. In the presencg, g inter-dependency (redundancy) are quantified throug
of noise, the performance of speaker verification and recogs, 4| information estimation by conducting simulations o

nition systems using frame based features quickly deteriogoHo gatabase 9.

rates. Humans on the other hand are quite robust in recog-

nizing a person in noise because they use high-level infor- 5 M oODULATION FREQUENCY ANALYSIS

mation such as speaking style. This is usually referred to

as supra-segmental information. This also means that pedhe modulation frequency analysis framework [10] for a dis-
ple use much longer time windows than just the usual 10merete signak(n), initially employs a short-time Fourier trans-
window used in frame based approaches, for processing tiierm (STFT)X,(m)

speech signal. The main obstacle for an automatic speaker o

verification/recognition system is then how to model and ef- Xe(m) = Z h(mM — n)x(n)WE", (1)
ficiently represent long windows. Speaking style is usually o

defined by prosodic features such as pitch, duration of words k = 0,...,K—1,

and pauses, articulation rate. Unfortunately, estimatibn

these features is also vulnerable to noise. As an altematiwhereW = e i(?K) and h(n) is the acoustic frequency
way, it would be possible to extract longer term informationanalysis window with a hop size dfl samples. Subband
directly from the signal using modulation frequency analy-envelope detection - defined as the magnitgém)| of the

sis [1, 2]. Modulation spectral features have been employesubband - and their frequency analysis with Fourier trans-
for content identification [3], speech detection [4] as wellform are performed next:
as for speaker recognition and verification in [5, 6]. In [3] -
subband normalization of modulation spectral features was N _ im

used to compensate for the change of signal characteristics Xi() ,T;, QUL = ) Xe(m) AT, @
between training and testing data when time and frequency
distortions were imposed. However, using modulation spec-
tra directly for classification poses the disadvantage ef exwhereg(m) is the modulation frequency analysis window
tremely high dimensionality. In [6] the discrete cosinenga andL the corresponding hop size (in sampldsgndi are
form (DCT) was used in modulation frequency subspace dueeferred to as the “acoustic” and “modulation” frequeney, r
to its energy compaction property. The authors reported thapectively.
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Figure 2: Total number of retained PCs in acoustic and mod-
0 100 150 20 250 00 %0 40 450 ulation frequency subspace with contributiam,; greater
Modulation frequency (Hz) . ’
than a given threshold.

Figure 1: Modulation spectrogram of a 262 ms long segment
from a male speaker taken from YOHO [9]. Log magnitudey

values have been used € R1xl2xI3 hy the matrix € Rh*In. Forn = 2 for exam-

ple, itis an(ly x J» x I3) tensor given by

A modulation spectrogram representation then, displays (" x2U)igjpis = Y SiigigUiaiz- (4)
modulation spectral enerdi (k,i)| (magnitude of the sub- 2

band envelope spectra) in the joint acoustic/modulatien fr

quency plane. Length of the acoustic frequency analysis win  Ordering ofn—mode singular values " implies that the
dow h(n) controls the trade-off between resolutions in thesenergy” of tensor is concentrated in the singular vectors

frequency and time axes. Whbfm) is shorter than anormal = ) . .

pitch period (wideband analysis), the frequency subban(#i with the lowest values af We can truncate each singu-
will be wide and the maximum observable modulation fre-&" Matrix by setting a thre;hold anq keeping only the princi
quency will be high enough to provide the pitch informationpal axes in each mode which contribute above this threshold.

of the speaker. On the other hand, the length of the moduld-h€ contribution of thg™" principal component (PC) of sub-
tion frequency analysis windog(m) specifies the resolution SPaceS with eigenvalug j, is defined as:
in the modulation frequency axis.

Figure 1 shows the modulation spectrogram of a 262 ms Qi = Aij (5)
long segment from a male speaker taken from YOHO [9]. SN A
One prominent feature is the pitch energy of the speaker in =
the modulation frequency dimensior (L35 Hz) which is  whereN; is the dimension o§. Figure 2 presents the num-
localized in acoustic frequency, peaking at formants [10]per of PCs in both subspaces as a functiomigfwhich con-
The high energy terms occurring at low modulation frequényripyte more than a given threshold for the training set de-
cies (- 4— 30 Hz) reflect the syllabic and phonetic temporalscribed in Section 5. For higher thresholds, there are more

structure of speech [1]. PCs in the modulation frequency subspace whose contribu-
tion exceeds threshold.
3. DIMENSIONALITY REDUCTION Joint acoustic and modulation frequendis,d[f,t] ex-

Every signal segment in the training database is repréracted from new sound samples are first mean subtracted
sented in the acoustic-modulation frequency space as a twghean values estimated from the whole training set) before
dimensional matrix. “Acoustic” frequency dimensions canthey are prOJecteld on the truncated orthonormal axes of in-
be reduced using a bank of triangular shaped mel-frequend§€StUtreq @NAU 4 freq
filters as usual. Further reduction of both acoustic and mod-
glation frequencies dimensions can be achieved using-multi Z=B ><1U§reqT ><2Ur/no¢freqT (6)
linear algebra [8].

. ) ) The resulting matri¥ whose dimension is equal to the prod-
3.1 Multilinear Analysis of Modulation Frequency Fea- ¢t of retained singular vectors in each mode contains thus
tures the multilinear PCs of a sound sample.
Joint acoustic and modulation frequenciBgogf,t] ex-
tracted from sound samples in the training database are first 4. MUTUAL INFORMATION BASED FEATURE
mean subtracted (mean values estimated from the whole SELECTION
training set) and stacked producing a data terigotUsing

higher Order SVD (HOSVD) [8]Z can be decomposed to The maximal relevancéMaxRel) feature selection criterion
its mode-n singular vectors: simply selects the features most relevant to the targes clas

c. Relevance is usually defined as the mutual information

2 = . x1Utreq X 2Umod X 3Usamples (3) 1(xj;c) between featurg; and class. Through a sequential
search which does not require estimation of multivariate de

whereUtreq, andUmqg the orthonormal ordered matrices of sities, the topnfeatures in the descent orderind ¢f;; c) are

the corresponding subspaces of acoustic and modulation freelected [11].

guencies; these contain subspace singular vectors, etitain  The mutual information between two random variables

by unfoldingZ along its corresponding modes. Tens6iis  x; andx; is defined as the KL-divergence between their joint

the core tensor with the same dimensionsZas . x,U  probability density function (pdfp; (x;,X;) and the marginal

wheren = 1,2,3 denotes then— mode product of tensor pdf'sR(x), P;(x;).



could be used to localize the speaker in acoustic frequency

o1s for single channel speaker separation (see Figure 1). Hence
o1a we analyzed the modulation spectral content of 262 ms long
012 frames ofx(n) at 64 ms intervals. The algorithm parameters
o1 were set toM = 8, K =512,L = 38,1 = 512 andh(n) and

o0 g(m) were a 24-point and 78-point sinewindow. Acoustic
o0s frequencies were reduced from 257 down to 40, by combin-
o0t ing 40 mel-scale bands. The mean was subtracted from each
o2 subband envelope before modulation frequency estimation,

* Modulation frequency PCS in order to reduce the interference of large DC components.

@) One uniform modulation frequency vector was produced in
each one of the 40 subbands consisting of 257 elements up
to 500 Hz.

* | We assess the relevance to the speaker verification task of
* 1 projections (principal components) of features with citokr
& 1 tion a; ; > 0.01% based on (5). These are the first 39 PCs in

1 the acoustic frequency subspace and the first 61 PCs in the
15 1 modulation frequency subspace. We have set the quantizer
10 1 0. step sizeb*, to 8.

022 For HOSVD and Ml estimation of the “reduced” fea-

50 &) tures, we divided our database into 69 equal size partitions

b one for each speaker. For every speaker, we used 192 speech
(b) frames for HOSVD (due to computer memory limitations)
and 1536 frames for M| estimation. We computed Ml in two

Figure 3: (a) Ml of reduced modulation spectral features fodifferent ways:

the discrimination of 69 speakers. (b) Features redundancy S :
estimated as the median of Ml values between pairs of re-* by CO”S'd.eF'”g 69 classes, t_hat is, as many as the speakers
duced features in our training database (Figure 3); we refer to features

selected according to this definition as "global” features
e by considering a binary .class variable, corresponding to
Estimatingl [P;] from a finite sample requires regulariza- the speaker to be verified/recognized vs all the others
tion of Rj(x;,xj). We have simply quantized the continuous ~ (Figures (4,5).
alphabet of acoustic features by definbjscrete bins along . . .
each axis. We make an adaptive quantization (variable binr dg\r/et oa[asssgssélrpha;ﬁq‘rg]deury(jl atr)]itv.\,/?f?] p?:'(r)s; g:‘/g(raatflé;eus”lg
length) so that the bins are equally populated and the coord) y : y '

nate invariance of the Ml is preserved [12]. There is an intethe median value of its Mi to every other feature is displayed

action between the precision of features quantizationlaed t in Fig. 3(b). The most relevant features depicted in Fig) 3(a
sample size dependence of the Ml estimates. We study fir§(© also among the least redundant. _ _

how the MI between two variables varies as a function of this  As expected, the most relevant features differ in each
resolution in order to select the quantizer step dive,We case. Comparing Fig. 3 to Fig. 4 and Fig. 5, we observe
defineb* according to a procedure described in [12]: whenthat the speaker-relevant features obviously differ betwe

data are shuffled. mutual informatiwﬂ"””'e(b) should be speakers as well as with the “global” features.

Acoustic frequency PCs

5|

Acoustic frequency PCs
N
3
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near zero fob < b* while it increases fob > b*. On the There is a large variability regarding relevance of modu-
other hand]«(b) increases withb and converges to the true lation features for speaker verification. Some speakets wil
mutual information nedbp*. be “easier” to classify using modulation features thansthe

When we compare Fig. 4 with Fig. 5, which correspond to
2 male speakers from YOHO, we can observe that there are
clearly more features with higher Ml on average in the case

We have evaluated features of the modulation spectrograff the 2nd speaker.
of speech signals for text independent speaker verification Moreover, in Fig. 4 and Fig.5 we have projected the
and identification tasks. The YOHO database [9] was usegpeaker-relevant information back to the original space-to
in these experiments. All 96 training utterances of the firsualize the characteristic modulation spectral featurbeth
53 male speakers and the first 16 female speakers in the egpeakers. By inspecting both Fig. 4 and Fig. 5, we observe
rollment sessions have been used. Each phrase is a sequedifferent patterns of energy allocation in different fregey
of three two-digit numbers read. The data has a telephorigands. These rather reflect acoustic phenomena such as the
bandwidth of 3.8 kHz but no telephone transmission degramature of glottalization - irregural or not - of the partiaul
dations [9]. Silence frames within each utterance were segpeakers [14]. In Fig. 4 the most prominent patterns of en-
mented out using an adaptive, energy-based thresholding &rgy allocation for the 1st speaker correspond to rathar int
gorithm [13]. itive speaker-specific characteristics such as the pitehgsn

For this application, we considered wideband modulatiorat ~ 150— 200 Hz modulation frequency, localized at two
frequency analysis according to [10]; in that work, derivedwide acoustic frequency bands. Pitch-related energynpatte
features such as a speaker’s pitch in modulation frequen@re not prominent in the case of the 2nd speaker (Fig. 5).

5. SIMULATIONS



oW w
o oS &

Acoustic frequency PCs
bR oN

5 3

-

Acoustic frequency (Hz)

at
200 250 300
Modulation frequency (Hz)

(b)

150 350 400

Acoustic frequency PCs

Acoustic frequency (Hz)

x10°

7
- HG
5
4
3
2
1
10 2 50 60

0 30 40
Modulation frequency PCs

a

(@)

0.016
0.014
0.012
0.01

0.008
0.006
0.004
0.002

200 00 350 400 450 500 0

25
Modulation frequency (Hz)

(b)

Eooe o oN @ o
S 5 S &6 8 &

50 100 150

Figure 4: (a) MI of reduced features for verification of 1stFigure 5: (a) Ml of features for 2nd speaker verification. (b)
Projection back in the original space.

speaker. (b) Projection back to the original space.

6. DISCUSSION

Our results show that a speaker verification system based

(5]

tive features of a speaker such as his/her pitch, a particu-

on modulation spectral features could be builtspeaker-
specificfeatures. These might reflect intuitively distinc-

lar manner of speaking, or the nature of glottalization [14] 6]

Amplitude-modulation features can capture glottal source

differences in normal speech; variation in realizationlot-g

talization of a normal speaker, appears to an extreme degree

in dysphonic speech [14]. As the speaker-dependent vari

ability of the mutual information of these features implies

the degree of their significance to speaker recognition and

verification and the fusion gain with MFCCs will vary ac-

cordingly: it might be minor for some speakers and greater

for others with more “atypical” speech. Future work will

focus on the experimental verification of these results us-
ing databases with channel mismatch and noise and atypical

[7]

(8]

tion of modulation frequency features for speech dis-
crimination,” inProc. Interspeect2008, pp. 646—649.

T. Kinunnen, “Joint acoustic-modulation frequency for
speaker recognition,Proc. ICASSPvol. 1, pp. 665—
668, 2006.

T. Kinunnen, K.A. Lee, and H. Li, “Dimension reduc-
tion of the modulation spectrogram for speaker verifi-
cation,” Proc. Odyssey: The Speaker and Language
Recognition Workshq2008.

T. Eriksson, S. Kim, H.-G. Kang, and C. Lee, “An
information-theoretic perspective on feature selection
in speaker recognition,1EEE Signal Processing Let-
ters vol. 12, pp. 500-503, July 2005.

L. De Lathauwer, B. De Moor, and J. Vandewalle, “A

multilinear singular value decomposition,'SIAM J.
Matrix Anal. Appl, vol. 21, pp. 1253-1278, 2000.

voices. In the latter case, combination of modulation spec-[9] J.P. Jr. Campbell, “Testing with the yoho cd-rom voice

trum with MFCC features might be proven beneficial.
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