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ABSTRACT
In this paper, we suggest the use of mutual information to ex-
plore the information provided by the modulation spectrum
for speaker verification and identification purposes. The ini-
tial representation is first transformed to a lower-dimensional
domain using Higher Order SVD and then, the mutual infor-
mation between speaker identity and features in the trans-
formed domain is computed. Projection of the relevant fea-
tures back to the original dimensions reveals the modulation
spectral components which discriminate speakers. Simula-
tions carried out on YOHO database show that the relevance
of modulation spectral features is speaker-dependent.

1. INTRODUCTION

Speaker verification and recognition systems are commonly
based on short term spectrum representations such as Mel
frequency cepstral coefficients (MFCC) and linear predic-
tive coding-derived cepstral coefficients (LPCC) since these
are computationally efficient and simple to implement fea-
tures. These features may only be computed at a segmen-
tal level (short frames) since they are heavily based on sta-
tionary representations of the speech signal like the Fourier
transform and the linear prediction theory. In the presence
of noise, the performance of speaker verification and recog-
nition systems using frame based features quickly deterio-
rates. Humans on the other hand are quite robust in recog-
nizing a person in noise because they use high-level infor-
mation such as speaking style. This is usually referred to
as supra-segmental information. This also means that peo-
ple use much longer time windows than just the usual 10ms
window used in frame based approaches, for processing the
speech signal. The main obstacle for an automatic speaker
verification/recognition system is then how to model and ef-
ficiently represent long windows. Speaking style is usually
defined by prosodic features such as pitch, duration of words
and pauses, articulation rate. Unfortunately, estimationof
these features is also vulnerable to noise. As an alternative
way, it would be possible to extract longer term information
directly from the signal using modulation frequency analy-
sis [1, 2]. Modulation spectral features have been employed
for content identification [3], speech detection [4] as well
as for speaker recognition and verification in [5, 6]. In [3]
subband normalization of modulation spectral features was
used to compensate for the change of signal characteristics
between training and testing data when time and frequency
distortions were imposed. However, using modulation spec-
tra directly for classification poses the disadvantage of ex-
tremely high dimensionality. In [6] the discrete cosine trans-
form (DCT) was used in modulation frequency subspace due
to its energy compaction property. The authors reported that

the fusion gain, when these features were combined with
MFCCs, was rather minor for speaker verification and recog-
nition. However, the way that dimensions are reduced in
modulation spectral features is essential for the performance
of the features. This fact was also recognized by the authors
in [6]. Given that dimensionality reduction is required for
an efficient training of statistical models the question is then
how to select task relevant components of the modulation
spectrum.

A theoretical study followed by experimental verification
for feature selection in speaker recognition has shown that
there is a close connection between classification error prob-
ability and mutual information (MI) between speaker iden-
tity and features [7]. In this paper, we address the relevance
of modulation spectrum to speaker verification and identi-
fication using MI. We first define a lower-dimensional fea-
ture space using higher order singular value decomposition
in the acoustic and modulation frequency subspaces. Re-
ducing the original dimensions facilitates subsequent com-
putation of MI. Moreover, the variance of low-dimensional
estimators is often smaller than high-dimensional estimators
leading to more accurate results [8]. The relevance of the re-
duced features for speaker verification or identification and
their inter-dependency (redundancy) are quantified through
mutual information estimation by conducting simulations on
YOHO database [9].

2. MODULATION FREQUENCY ANALYSIS

The modulation frequency analysis framework [10] for a dis-
crete signalx(n), initially employs a short-time Fourier trans-
form (STFT)Xk(m)

Xk(m) =
∞

∑
n=−∞

h(mM−n)x(n)Wkn
K , (1)

k = 0, . . . ,K −1,

whereWK = e− j(2π/K) and h(n) is the acoustic frequency
analysis window with a hop size ofM samples. Subband
envelope detection - defined as the magnitude|Xk(m)| of the
subband - and their frequency analysis with Fourier trans-
form are performed next:

Xl (k, i) =
∞

∑
m=−∞

g(lL −m)|Xk(m)|Wim
I , (2)

i = 0, . . . , I −1,

whereg(m) is the modulation frequency analysis window
andL the corresponding hop size (in samples);k and i are
referred to as the “acoustic” and “modulation” frequency, re-
spectively.
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Figure 1: Modulation spectrogram of a 262 ms long segment
from a male speaker taken from YOHO [9]. Log magnitude
values have been used.

A modulation spectrogram representation then, displays
modulation spectral energy|Xl (k, i)| (magnitude of the sub-
band envelope spectra) in the joint acoustic/modulation fre-
quency plane. Length of the acoustic frequency analysis win-
dow h(n) controls the trade-off between resolutions in the
frequency and time axes. Whenh(n) is shorter than a normal
pitch period (wideband analysis), the frequency subbands
will be wide and the maximum observable modulation fre-
quency will be high enough to provide the pitch information
of the speaker. On the other hand, the length of the modula-
tion frequency analysis windowg(m) specifies the resolution
in the modulation frequency axis.

Figure 1 shows the modulation spectrogram of a 262 ms
long segment from a male speaker taken from YOHO [9].
One prominent feature is the pitch energy of the speaker in
the modulation frequency dimension (∼ 135 Hz) which is
localized in acoustic frequency, peaking at formants [10].
The high energy terms occurring at low modulation frequen-
cies (∼ 4−30 Hz) reflect the syllabic and phonetic temporal
structure of speech [1].

3. DIMENSIONALITY REDUCTION

Every signal segment in the training database is repre-
sented in the acoustic-modulation frequency space as a two-
dimensional matrix. “Acoustic” frequency dimensions can
be reduced using a bank of triangular shaped mel-frequency
filters as usual. Further reduction of both acoustic and mod-
ulation frequencies dimensions can be achieved using multi-
linear algebra [8].

3.1 Multilinear Analysis of Modulation Frequency Fea-
tures

Joint acoustic and modulation frequenciesBmod[ f ,t] ex-
tracted from sound samples in the training database are first
mean subtracted (mean values estimated from the whole
training set) and stacked producing a data tensorD . Using
higher Order SVD (HOSVD) [8],D can be decomposed to
its mode−n singular vectors:

D = S ×1U f req×2Umod×3Usamples (3)

whereU f req, andUmod the orthonormal ordered matrices of
the corresponding subspaces of acoustic and modulation fre-
quencies; these contain subspace singular vectors, obtained
by unfoldingD along its corresponding modes. TensorS is
the core tensor with the same dimensions asD . S ×n U
wheren = 1,2,3 denotes then− mode product of tensor
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Figure 2: Total number of retained PCs in acoustic and mod-
ulation frequency subspace with contributionαn,i greater
than a given threshold.

S ∈ RI1×I2×I3 by the matrixU ∈ RJn×In. Forn= 2 for exam-
ple, it is an(I1×J2× I3) tensor given by

(S ×2U)i1 j2i3 = ∑
i2

si1i2i3u j2i2. (4)

Ordering ofn−mode singular valuesσ (n)
in

implies that the
“energy” of tensorD is concentrated in the singular vectors

U (n)
i with the lowest values ofi. We can truncate each singu-

lar matrix by setting a threshold and keeping only the princi-
pal axes in each mode which contribute above this threshold.
The contribution of thejth principal component (PC) of sub-
spaceSi with eigenvalueλi, j , is defined as:

αi, j =
λi, j

∑Ni
j=1 λi, j

(5)

whereNi is the dimension ofSi . Figure 2 presents the num-
ber of PCs in both subspaces as a function ofαi, j which con-
tribute more than a given threshold for the training set de-
scribed in Section 5. For higher thresholds, there are more
PCs in the modulation frequency subspace whose contribu-
tion exceeds threshold.

Joint acoustic and modulation frequenciesBmod[ f ,t] ex-
tracted from new sound samples are first mean subtracted
(mean values estimated from the whole training set) before
they are projected on the truncated orthonormal axes of in-
terest,U ′

f req andU ′
mod f req

Z = B×1U ′
f req

T
×2U ′

mod f req
T (6)

The resulting matrixZ whose dimension is equal to the prod-
uct of retained singular vectors in each mode contains thus
the multilinear PCs of a sound sample.

4. MUTUAL INFORMATION BASED FEATURE
SELECTION

Themaximal relevance(MaxRel) feature selection criterion
simply selects the features most relevant to the target class
c. Relevance is usually defined as the mutual information
I(x j ;c) between featurex j and classc. Through a sequential
search which does not require estimation of multivariate den-
sities, the topm features in the descent ordering ofI(x j ;c) are
selected [11].

The mutual information between two random variables
xi andx j is defined as the KL-divergence between their joint
probability density function (pdf)Pi j (xi ,x j) and the marginal
pdf’s Pi(xi), Pj(x j ).
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Figure 3: (a) MI of reduced modulation spectral features for
the discrimination of 69 speakers. (b) Features redundancy
estimated as the median of MI values between pairs of re-
duced features.

EstimatingI [Pi j ] from a finite sample requires regulariza-
tion of Pi j (xi ,x j). We have simply quantized the continuous
alphabet of acoustic features by definingbdiscrete bins along
each axis. We make an adaptive quantization (variable bin
length) so that the bins are equally populated and the coordi-
nate invariance of the MI is preserved [12]. There is an inter-
action between the precision of features quantization and the
sample size dependence of the MI estimates. We study first
how the MI between two variables varies as a function of this
resolution in order to select the quantizer step size,b∗. We
defineb∗ according to a procedure described in [12]: when
data are shuffled, mutual informationIshu f f le

∞ (b) should be
near zero forb < b∗ while it increases forb > b∗. On the
other hand,I∞(b) increases withb and converges to the true
mutual information nearb∗.

5. SIMULATIONS

We have evaluated features of the modulation spectrogram
of speech signals for text independent speaker verification
and identification tasks. The YOHO database [9] was used
in these experiments. All 96 training utterances of the first
53 male speakers and the first 16 female speakers in the en-
rollment sessions have been used. Each phrase is a sequence
of three two-digit numbers read. The data has a telephone
bandwidth of 3.8 kHz but no telephone transmission degra-
dations [9]. Silence frames within each utterance were seg-
mented out using an adaptive, energy-based thresholding al-
gorithm [13].

For this application, we considered wideband modulation
frequency analysis according to [10]; in that work, derived
features such as a speaker’s pitch in modulation frequency

could be used to localize the speaker in acoustic frequency
for single channel speaker separation (see Figure 1). Hence,
we analyzed the modulation spectral content of 262 ms long
frames ofx(n) at 64 ms intervals. The algorithm parameters
were set toM = 8, K = 512,L = 38, I = 512 andh(n) and
g(m) were a 24-point and 78-point sinewindow. Acoustic
frequencies were reduced from 257 down to 40, by combin-
ing 40 mel-scale bands. The mean was subtracted from each
subband envelope before modulation frequency estimation,
in order to reduce the interference of large DC components.
One uniform modulation frequency vector was produced in
each one of the 40 subbands consisting of 257 elements up
to 500 Hz.

We assess the relevance to the speaker verification task of
projections (principal components) of features with contribu-
tion αi, j > 0.01% based on (5). These are the first 39 PCs in
the acoustic frequency subspace and the first 61 PCs in the
modulation frequency subspace. We have set the quantizer
step size,b∗, to 8.

For HOSVD and MI estimation of the “reduced” fea-
tures, we divided our database into 69 equal size partitions,
one for each speaker. For every speaker, we used 192 speech
frames for HOSVD (due to computer memory limitations)
and 1536 frames for MI estimation. We computed MI in two
different ways:

• by considering 69 classes, that is, as many as the speakers
in our training database (Figure 3); we refer to features
selected according to this definition as ”global” features

• by considering a binary class variable, corresponding to
the speaker to be verified/recognized vs all the others
(Figures (4,5).

We also estimated the MI between pairs of features in
order to assess their “redundancy” [11]. For every feature,
the median value of its MI to every other feature is displayed
in Fig. 3(b). The most relevant features depicted in Fig. 3(a)
are also among the least redundant.

As expected, the most relevant features differ in each
case. Comparing Fig. 3 to Fig. 4 and Fig. 5, we observe
that the speaker-relevant features obviously differ between
speakers as well as with the “global” features.

There is a large variability regarding relevance of modu-
lation features for speaker verification. Some speakers will
be “easier” to classify using modulation features than others.
When we compare Fig. 4 with Fig. 5, which correspond to
2 male speakers from YOHO, we can observe that there are
clearly more features with higher MI on average in the case
of the 2nd speaker.

Moreover, in Fig. 4 and Fig.5 we have projected the
speaker-relevant information back to the original space tovi-
sualize the characteristic modulation spectral features of both
speakers. By inspecting both Fig. 4 and Fig. 5, we observe
different patterns of energy allocation in different frequency
bands. These rather reflect acoustic phenomena such as the
nature of glottalization - irregural or not - of the particular
speakers [14]. In Fig. 4 the most prominent patterns of en-
ergy allocation for the 1st speaker correspond to rather intu-
itive speaker-specific characteristics such as the pitch energy
at ∼ 150− 200 Hz modulation frequency, localized at two
wide acoustic frequency bands. Pitch-related energy patterns
are not prominent in the case of the 2nd speaker (Fig. 5).
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Figure 4: (a) MI of reduced features for verification of 1st
speaker. (b) Projection back to the original space.

6. DISCUSSION

Our results show that a speaker verification system based
on modulation spectral features could be built onspeaker-
specific features. These might reflect intuitively distinc-
tive features of a speaker such as his/her pitch, a particu-
lar manner of speaking, or the nature of glottalization [14].
Amplitude-modulation features can capture glottal source
differences in normal speech; variation in realization of glot-
talization of a normal speaker, appears to an extreme degree
in dysphonic speech [14]. As the speaker-dependent vari-
ability of the mutual information of these features implies,
the degree of their significance to speaker recognition and
verification and the fusion gain with MFCCs will vary ac-
cordingly: it might be minor for some speakers and greater
for others with more “atypical” speech. Future work will
focus on the experimental verification of these results us-
ing databases with channel mismatch and noise and atypical
voices. In the latter case, combination of modulation spec-
trum with MFCC features might be proven beneficial.
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