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ABSTRACT tude spectrum of speech. Mel frequency cepstral coeffigient

In this paper, we combine modulation spectral features witIgMFFC) - representing the vocal tract resonances - have been

mel-frequency cepstral coefficients for automatic debecti sucessfully uts_ed N v0|cehpathol?g(3j/ d?_tecn;)n [6, 7]. Other
of dysphonia. For classification purposes, dimensions ofOn parametric approaches nciude tme-frequency repre-

the original modulation spectra are reduced using higher Orsentatlons [8], and amplitude-modulation [9] or modulatio
spectral features [10].

der singular value decomposition (HOSVD). Most relevant Dysphonic voices are characterized by frequency-band

features are selected based on their mutual information t ) . ) 4 )
@ependent, time-varying amplitude fluctuations [9]. Samil

discrimination between normophonic and dysphonic speal . ) :
P ysp b F]o amplitude-modulation features, modulation spectrg [11

ers made by experts. Features that highly correlate wit ; | ¢ hani h teristi
voice alterations are associated then with a support vect N caplure a class ot source mechanism characteristics re-
ated to voice qualities. In this paper we pursue previous

machine (SVM) classifier to provide an automatic decision.

Recognition experiments using two different databases su%/Ork in which we built an automatic dysphonia recogni-

gest that the system provides complementary information t on and classification system based on modulation spectral
the standard mel-cepstral features representations [10]. Specifically, we investigate the com

plementary information thatormalizedmodulation spectral
Index Terms— pathologic voice detection, modulation features provide to MFCC for pathological voice detection i
spectrum, feature normalization, mutual information, SVD two different databases.
The paper is organized as follows: In Section 2 we briefly
1. INTRODUCTION review modulation spectral features and their normalirgti
as well as the method of dimensionality reduction and fea-
Objective voice quality assessment has been introducesd to dure selection we use. Section 3 describes the experiments w
sist the perceptual evaluation of dysphonic voice quakigcs conducted using the same features and classifiers on the two
by the clinicians. Many studies in voice function assessmerdatabases. Finally in Section 4 we summarize our approach
try to identify descriptive parameters for acoustic pheaoen  and discuss next steps.
that highly correlate with pathological voice qualitiexcd\uis-

tic measures that highly correlate with voice alteratioas c 2. MODULATION SPECTRA
be associated then with a classification system to provide an
automatic decision. The most common modulation frequency analysis framework

Organic pathologies modify the morphology of vocal[11] for a discrete signak(n), initially employs a short-time
folds resulting in abnormal vibration patterns and incegs Fourier transform (STFTX(m)
turbulent airflow at the level of the glottis [1]. The percsiv

o0
voice abnormallt)_/ is assumed to originate at the vocal sourc Xy(m) = Z h(mM — n)az(n)Wkn, 1)
rather than resulting from abnormalities in the vocal tcaat- W
figuration. Hence, many studies have focused on parameters E = 0 K—1

ey 5

such as pitch perturbation quotient (PPQ), jitter, shimmer
harmonics to noise ratio, etc. [2, 3, 4]. Perturbations at thwhereWy = ¢~7(7/K) andh(n) is the acoustic frequency
glottal level will also affect the spectral properties oeth analysis window with a hop size dff samples: denotes
recorded speech signal. There are both parametric and ntime). Mel scale filtering can be employed at this stage in
parametric approaches for identifying the abnormal dlottaorder to reduce the number of frequency bands.

activity based on analysis of speech signals. The parametri Subband envelope detection proceeds by taking the mag-
approaches are based on the source filter theory for thelspeeattude| X (m)| of the subband. The distribution of envelope
production and on the assumptions made for the glottal sigamplitudes of voiced speech has a strong exponential com-
nal [5]. The non parametric approaches are based on magmenent. Hence we use a log transformation of the amplitude



values| X, (m)| and subtract their mean log amplitude : feature selection criterion simply selects the featurestmes-
. — evant to the target clagg[14]. Through a sequential search,
Xi(m) = log|Xg(m)| —log|Xy(m)| (2)  which does not require estimation of multivariate densitie
the topm features in the descent orderingl@f:;; c) are then

where{-} denotes the average operator oxver
& ge op e§elected.

Frequency analysis of subband envelopes with Fouri
transform is performed next:
3. AUTOMATIC DYSPHONIA RECOGNITION

o0

X (ki) = IL —m)|X wim, (3 _ _ _ .
1k, 9) mzz_oog( )| Xk (m) Wi ®) We devised an automatic system to categorize speech as ei-

i = 0. I-1 ther pathological or normal. We will show that normalized
B ’ modulation spectra-based features have good discriminati
whereg(m) is the modulation frequency analysis window andpower in classifying dysphonic from normophonic voices in
L the corresponding hop size (in samplésind: are referred ~ a cross-database experiment, while they provide complemen
to as the “Fourier” (or acoustic) and “modulation” frequgnc tary information to mel-cepstral coefficients. Therefa@n-
respectively. Tapered windowsn) and g(m) are used to bination of these two feature sets improves the classifioati
reduce the side lobes of both frequency estimates. performance.
A modulation spectrogram representation then, displays

modulation spectral energy; (&, )| (magnitude of the sub- 3 1 pata and Methods
band envelope spectra) in the joint acoustic/modulatien fr
quency plane. In order to enable cross-database pornabiliThe first dysphonic voice corpus we used was the Kay Voice
of the classification system, feature subband normalizatioDisorders Database [15], which contains recordings of sus-
has been employed according to [12] (further details can btined vowels (/a/) and is commercially available. We will
found in [12]). We normalize every acoustic frequency subJefer to this database as MEEI. A subset of 173 pathological
band with the marginal of the modulation frequency represenand 53 normal speakers were selected according to [8], with

tation: similar age and sex distributions. The second database was
X, (k, ) recorded by Univ_ersidad Polit.'ecnica de Mad_rid, _and itisre
Xisun(kyi) = ——>— (4) ferredto as Principe de Asturias (PdA) Hospital in Alod¢a
22 Xk, 1) Henares of Madrid database [16]. Similar to MEEI, PdA con-

In previous work [12] it was shown that this subband nor-tains r_ecording_s of sustained vowels (/a/) and was devdlo_pe
malization is important when there is a mismatch betweeffOr voice function assessment purposes. For the following
training and testing conditions, or in other words, when the€XPeriments, the voices of 200 dysphonic subjects (74 men

detection system is employed in real (testing) conditions. @nd 126 women, aged 11 to 76) affected by nodules, polyps,
oedema, etc, as well as 199 normal subjects (87 men and 112

women, aged 16 to 70) were used. All the tests were con-
ducted on signals sampled at 25 kHz. A 4-fold stratified cross
Assuming a frame-by-frame analysis of speech, modulatiomalidation scheme - repeated 4 times - produced 16 different
spectra produce 3-D features (or tensors). We used a gengroupings of the voices, each using75% of the utterances
alization of SVD to tensors referred to as Higher Order SVDfor training and~ 25% for testing. For the cross-database
(HOSVD) [13] to reduce dimensions in acoustic and modulaevaluation, we used PdA for training and MEEI for testing
tion frequency subspaces separately. HOSVD enables the da-vice-versa (in order to simulate the situation of corget
composition of tensoP to its n—mode singular vectors (or, unseen, to the classification system, data).
principal components). Ordering of these-mode singular In each case, modulation spectra were computed in a
values implies that the “energy” of tensbris concentrated frame-by-frame basis using long windows in time (250 ms)
in the singular vectors with the lowest indices. Each siagul which were shifted by 50ms. We used Mel scale filtering
matrix containing thes—mode singular vectors, can be trun- with 53 bands while the size of the Fourier transform for the
cated then by setting a predetermined threshold so as fo retdime-domain transformation was set to 257 (uprjo There-
only the desired number of principal axes in each mode. Prdere, each modulation spectrum consisted;0f 53 acoustic
jection of modulation spectral features on the principasax frequencies and, = 257 modulation frequencies, resulting
with the higher energy in each subspace results in a compaitterefore in arb3 x 257 image per frame. The normalized
set of features with minimum redundancy. modulation spectra computed in each frame were stacked to
We further select features which are more relevant to theroduce a third order tens@ ¢ R/ */2x%s wherels; is the
given classification task using mutual information (Ml).aflh number of frames in the training dataset. Applying the High
is, relevance is defined as the mutual informatién;; c) be-  Order SVD algorithm described previously, the near-optima
tween featurer; and class:. Maximal relevanc€MaxRel)  projections or principal axes (PCs) of features were detect

2.1. Dimensionality Reduction and Feature Selection



among those contributing more than % to the “energy”

of D. For MEEI, we detected4 PCs in the acoustic fre-
guency and®29 PCs in the modulation frequency subspace.
This resulted in a reduced spaceddfx 29 = 1276 features.

For PdA, the corresponding reduced space had dimensions
of 53 x 36 = 1908. Next, the features which were more
correlated to the voice pathology detection task were tedec

for each database, using the Maximal Relevance criterion
(MaxRel) . For details about the application of the MaxRel
criterion on this task please refer to [12].

To extract MFCC features, each utterance was first run
through the standard mel-cepstrum filterbank (using 12 fil-
ters) at a 25-ms frame interval. The cepstrum was computed
and channel compensation techniques were applied acgordin
to [7]. In order to combine MFCC with mRMS features, the
mean and variance of the 12 MFCC features over 10 framésig. 1. Performance of MFCC and mRMS features in MEEI.
were extracted, every 2 frames (a 50 ms shift). Delta feature
were notincluded since the improvement over MFCC features ‘ ‘
alone was not found to be statistically significant in [7]. e PSS

The features were then fed as input to a support vector 60 L T —— Fusion |
machine (SVM) classifier with a radial basis function ker- '
nel [17]. Detection-error tradeoff (DET) curves and theaqu
error rate (EER) were used to compare the performance of
different systems on MEEI and PdA.

- ==-MFCC
-'='mRMS
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3.2. Results

DET curve results for standard mel-cepstrum, mRMS and
the concatenated feature vector (including both MFCC and N ‘ ‘
MRMS features) are plotted in Figure 1 for MEEI and in Fig- 12 s L pfgbabim;%n %)60
ure 2 for PdA. The toprn mRMS features were selected for
each database using 4-fold cross validation. Th_e optimum d'il:ig' 2 Performance of MECC and mRMS features in PdA.
tector based on MRMS features alone was obtained by consid-
ering them = 125 most relevant features for both MEEI and
PdA. As shown, the equal error rate (EER) - the point wherenation for the cross-database experiment where PdA-MEEI
the false alarm probability equals the miss probability - ofmeans training on PdA and testing on MEEI and vice versa
mel-cepstrum alone 8.47% on MEEI and22.86% on PdA,  for MEEI-PdA. In brackets we note the number of the mRMS
with mRMS features yielding.29% on MEEI and17.67%  features used in each experiment.
on PdA, and the concatenated vector resulting.t8% on
MEEI and12.15% on PdA (Table 1).

In the cross-database experiments, when training is pefable 1. Equal Error Rate (EER) in % for mRMS features,
formed on them = 125 most relevant features of PdA and MFCC and both of them in MEEI and PdA.

testing on the same mRMS features for MEEI, the EER for MFCC mRMS | Fusion
MFCC is28.24%, for mMRMS is24.40% and for the concate- MEEI 8.47 | 6.29(125) | 3.63

nated features6.87% (see Figure 3 and Table 1). When train- PdA 22.86 | 17.67(125)| 12.15
ing is performed on then = 125 most relevant features of PdA-MEEI | 28.24 | 24.40(125)| 16.87
MEEI and testing on the same number of mRMS features for MEEI-PdA || 30.97 | 26.07 (450)| 21.86

PdA, the performance of the system significantly deteresrat
We had to consider the top = 450 most relevant features -
relevance estimated on MEEI - in order to capture dysphonia
in PdA. In that case, the EER of MRMS26.07%, of MFCCs
is 30.97% and of concatenated featuis86%. Table 1 sum-

4. DISCUSSION

Pathological voice is characterized by an increase of the vo
marizes the classification scores for the different corgtlict cal folds mass, a subsequent lack of closure or an elasticity
experiments. The last two rows of the Table provide infor-change of the vocal folds and surrounding tissue [7]. Dys-
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Fig. 3. Performance of mRMS features, MFCC and their fu-
sion when training is performed in PdA and testing in MEEI. [

phonia recognition experiments on MEEI and PdA confirmed

that modulation spectral features provide complementary i

formationto MFCC. The low bands of the MFCC reflect alter-
ations related with the mucosal waveform due to an increasgg;
of mass whereas the noisy components induced by lack of clo-
sure are modeled by the higher bands [7]. Modulation spectra
on the other hand capture the amplitude envelope fluctusation

evident on sustained vowel phonations [9].

Regarding cross-database experiments, features selected
from PdA alone were more successful in capturing class spg§t0]
cific information in MEEI than vice versa. A potential reason
for this is that some of the normal speakers in MEEI database
were recorded at different sites and over possibly differen(11]
channels than the pathological subjects [9]. This makes the
MEEI an easy database for classification tests. This is not
the case with PdA, where the same recording conditions we
used for normal and dysphonic speakers. It follows ther, tha

it is better to train the classifier on PdA than on MEEI.

We have simply concatenated the mean and variance

MFCC over the same segments that mMRMS were estimated
from; the concatenated feature vector was given as input fa4]
the SVM classifier. A better strategy, would be to combine
different classifier schemes for every feature set. We ran ad

ditional experiments with MFCC and GMM classifier, as well

as MRMS and GMM classifier on the same datasets for noy15)

mal/pathological distinction. Configuration of MFCC with

GMM classifier (the system described in [7]) was better than

using MFCC with SVM - still, in all experiments MFCC plus

GMM produced inferior results to the fusion of features com-
bined with SVM. On the other hand, mRMS plus SVM con-
figuration clearly superseded mRMS plus GMM. The reason
is the large number of mMRMS features and the correspond-

M

of classifiers at the decision level and not the fusion at the

ing quadratic increase of the number of parameters of GM
classifier. In the future, therefore, we will explore theifus

feature level.
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