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ABSTRACT

In this paper, we combine modulation spectral features with
mel-frequency cepstral coefficients for automatic detection
of dysphonia. For classification purposes, dimensions of
the original modulation spectra are reduced using higher or-
der singular value decomposition (HOSVD). Most relevant
features are selected based on their mutual information to
discrimination between normophonic and dysphonic speak-
ers made by experts. Features that highly correlate with
voice alterations are associated then with a support vector
machine (SVM) classifier to provide an automatic decision.
Recognition experiments using two different databases sug-
gest that the system provides complementary information to
the standard mel-cepstral features.

Index Terms— pathologic voice detection, modulation
spectrum, feature normalization, mutual information, SVD

1. INTRODUCTION

Objective voice quality assessment has been introduced to as-
sist the perceptual evaluation of dysphonic voice quality used
by the clinicians. Many studies in voice function assessment
try to identify descriptive parameters for acoustic phenomena
that highly correlate with pathological voice qualities. Acous-
tic measures that highly correlate with voice alterations can
be associated then with a classification system to provide an
automatic decision.

Organic pathologies modify the morphology of vocal
folds resulting in abnormal vibration patterns and increased
turbulent airflow at the level of the glottis [1]. The perceived
voice abnormality is assumed to originate at the vocal source
rather than resulting from abnormalities in the vocal tractcon-
figuration. Hence, many studies have focused on parameters
such as pitch perturbation quotient (PPQ), jitter, shimmer,
harmonics to noise ratio, etc. [2, 3, 4]. Perturbations at the
glottal level will also affect the spectral properties of the
recorded speech signal. There are both parametric and non
parametric approaches for identifying the abnormal glottal
activity based on analysis of speech signals. The parametric
approaches are based on the source filter theory for the speech
production and on the assumptions made for the glottal sig-
nal [5]. The non parametric approaches are based on magni-

tude spectrum of speech. Mel frequency cepstral coefficients
(MFFC) - representing the vocal tract resonances - have been
sucessfully used in voice pathology detection [6, 7]. Other
non parametric approaches include time-frequency repre-
sentations [8], and amplitude-modulation [9] or modulation
spectral features [10].

Dysphonic voices are characterized by frequency-band
dependent, time-varying amplitude fluctuations [9]. Similar
to amplitude-modulation features, modulation spectra [11]
can capture a class of source mechanism characteristics re-
lated to voice qualities. In this paper we pursue previous
work in which we built an automatic dysphonia recogni-
tion and classification system based on modulation spectral
representations [10]. Specifically, we investigate the com-
plementary information thatnormalizedmodulation spectral
features provide to MFCC for pathological voice detection in
two different databases.

The paper is organized as follows: In Section 2 we briefly
review modulation spectral features and their normalization,
as well as the method of dimensionality reduction and fea-
ture selection we use. Section 3 describes the experiments we
conducted using the same features and classifiers on the two
databases. Finally in Section 4 we summarize our approach
and discuss next steps.

2. MODULATION SPECTRA

The most common modulation frequency analysis framework
[11] for a discrete signalx(n), initially employs a short-time
Fourier transform (STFT)Xk(m)

Xk(m) =

∞∑

n=−∞

h(mM − n)x(n)W kn
K , (1)

k = 0, . . . , K − 1,

whereWK = e−j(2π/K) andh(n) is the acoustic frequency
analysis window with a hop size ofM samples (m denotes
time). Mel scale filtering can be employed at this stage in
order to reduce the number of frequency bands.

Subband envelope detection proceeds by taking the mag-
nitude|Xk(m)| of the subband. The distribution of envelope
amplitudes of voiced speech has a strong exponential com-
ponent. Hence we use a log transformation of the amplitude



values|Xk(m)| and subtract their mean log amplitude :

X̂k(m) = log |Xk(m)| − log |Xk(m)| (2)

where{.} denotes the average operator overm.
Frequency analysis of subband envelopes with Fourier

transform is performed next:

Xl(k, i) =

∞∑

m=−∞

g(lL − m)|Xk(m)|W im
I , (3)

i = 0, . . . , I − 1,

whereg(m) is the modulation frequency analysis window and
L the corresponding hop size (in samples);k andi are referred
to as the “Fourier” (or acoustic) and “modulation” frequency,
respectively. Tapered windowsh(n) andg(m) are used to
reduce the side lobes of both frequency estimates.

A modulation spectrogram representation then, displays
modulation spectral energy|Xl(k, i)| (magnitude of the sub-
band envelope spectra) in the joint acoustic/modulation fre-
quency plane. In order to enable cross-database portability
of the classification system, feature subband normalization
has been employed according to [12] (further details can be
found in [12]). We normalize every acoustic frequency sub-
band with the marginal of the modulation frequency represen-
tation:

Xl,sub(k, i) =
Xl(k, i)∑
i Xl(k, i)

(4)

In previous work [12] it was shown that this subband nor-
malization is important when there is a mismatch between
training and testing conditions, or in other words, when the
detection system is employed in real (testing) conditions.

2.1. Dimensionality Reduction and Feature Selection

Assuming a frame-by-frame analysis of speech, modulation
spectra produce 3-D features (or tensors). We used a gener-
alization of SVD to tensors referred to as Higher Order SVD
(HOSVD) [13] to reduce dimensions in acoustic and modula-
tion frequency subspaces separately. HOSVD enables the de-
composition of tensorD to its n−mode singular vectors (or,
principal components). Ordering of thesen−mode singular
values implies that the “energy” of tensorD is concentrated
in the singular vectors with the lowest indices. Each singular
matrix containing then−mode singular vectors, can be trun-
cated then by setting a predetermined threshold so as to retain
only the desired number of principal axes in each mode. Pro-
jection of modulation spectral features on the principal axes
with the higher energy in each subspace results in a compact
set of features with minimum redundancy.

We further select features which are more relevant to the
given classification task using mutual information (MI). That
is, relevance is defined as the mutual informationI(xj ; c) be-
tween featurexj and classc. Maximal relevance(MaxRel)

feature selection criterion simply selects the features most rel-
evant to the target classc [14]. Through a sequential search,
which does not require estimation of multivariate densities,
the topm features in the descent ordering ofI(xj ; c) are then
selected.

3. AUTOMATIC DYSPHONIA RECOGNITION

We devised an automatic system to categorize speech as ei-
ther pathological or normal. We will show that normalized
modulation spectra-based features have good discrimination
power in classifying dysphonic from normophonic voices in
a cross-database experiment, while they provide complemen-
tary information to mel-cepstral coefficients. Therefore,com-
bination of these two feature sets improves the classification
performance.

3.1. Data and Methods

The first dysphonic voice corpus we used was the Kay Voice
Disorders Database [15], which contains recordings of sus-
tained vowels (/a/) and is commercially available. We will
refer to this database as MEEI. A subset of 173 pathological
and 53 normal speakers were selected according to [8], with
similar age and sex distributions. The second database was
recorded by Universidad Politécnica de Madrid, and it is re-
ferred to as Prı́ncipe de Asturias (PdA) Hospital in Alcaláde
Henares of Madrid database [16]. Similar to MEEI, PdA con-
tains recordings of sustained vowels (/a/) and was developed
for voice function assessment purposes. For the following
experiments, the voices of 200 dysphonic subjects (74 men
and 126 women, aged 11 to 76) affected by nodules, polyps,
oedema, etc, as well as 199 normal subjects (87 men and 112
women, aged 16 to 70) were used. All the tests were con-
ducted on signals sampled at 25 kHz. A 4-fold stratified cross-
validation scheme - repeated 4 times - produced 16 different
groupings of the voices, each using∼ 75% of the utterances
for training and∼ 25% for testing. For the cross-database
evaluation, we used PdA for training and MEEI for testing
or vice-versa (in order to simulate the situation of completed
unseen, to the classification system, data).

In each case, modulation spectra were computed in a
frame-by-frame basis using long windows in time (250 ms)
which were shifted by 50ms. We used Mel scale filtering
with 53 bands while the size of the Fourier transform for the
time-domain transformation was set to 257 (up toπ). There-
fore, each modulation spectrum consisted ofI1 = 53 acoustic
frequencies andI2 = 257 modulation frequencies, resulting
therefore in an53 × 257 image per frame. The normalized
modulation spectra computed in each frame were stacked to
produce a third order tensorD ∈ RI1×I2×I3 , whereI3 is the
number of frames in the training dataset. Applying the High
Order SVD algorithm described previously, the near-optimal
projections or principal axes (PCs) of features were detected



among those contributing more than0.1% to the “energy”
of D. For MEEI, we detected44 PCs in the acoustic fre-
quency and29 PCs in the modulation frequency subspace.
This resulted in a reduced space of44 × 29 = 1276 features.
For PdA, the corresponding reduced space had dimensions
of 53 × 36 = 1908. Next, the features which were more
correlated to the voice pathology detection task were selected
for each database, using the Maximal Relevance criterion
(MaxRel) . For details about the application of the MaxRel
criterion on this task please refer to [12].

To extract MFCC features, each utterance was first run
through the standard mel-cepstrum filterbank (using 12 fil-
ters) at a 25-ms frame interval. The cepstrum was computed
and channel compensation techniques were applied according
to [7]. In order to combine MFCC with mRMS features, the
mean and variance of the 12 MFCC features over 10 frames
were extracted, every 2 frames (a 50 ms shift). Delta features
were not included since the improvement over MFCC features
alone was not found to be statistically significant in [7].

The features were then fed as input to a support vector
machine (SVM) classifier with a radial basis function ker-
nel [17]. Detection-error tradeoff (DET) curves and the equal
error rate (EER) were used to compare the performance of
different systems on MEEI and PdA.

3.2. Results

DET curve results for standard mel-cepstrum, mRMS and
the concatenated feature vector (including both MFCC and
mRMS features) are plotted in Figure 1 for MEEI and in Fig-
ure 2 for PdA. The topm mRMS features were selected for
each database using 4-fold cross validation. The optimum de-
tector based on mRMS features alone was obtained by consid-
ering them = 125 most relevant features for both MEEI and
PdA. As shown, the equal error rate (EER) - the point where
the false alarm probability equals the miss probability - of
mel-cepstrum alone is8.47% on MEEI and22.86% on PdA,
with mRMS features yielding6.29% on MEEI and17.67%
on PdA, and the concatenated vector resulting in3.63% on
MEEI and12.15% on PdA (Table 1).

In the cross-database experiments, when training is per-
formed on them = 125 most relevant features of PdA and
testing on the same mRMS features for MEEI, the EER for
MFCC is28.24%, for mRMS is24.40% and for the concate-
nated features16.87% (see Figure 3 and Table 1). When train-
ing is performed on them = 125 most relevant features of
MEEI and testing on the same number of mRMS features for
PdA, the performance of the system significantly deteriorates.
We had to consider the topm = 450 most relevant features -
relevance estimated on MEEI - in order to capture dysphonia
in PdA. In that case, the EER of mRMS is26.07%, of MFCCs
is30.97% and of concatenated features21.86%. Table 1 sum-
marizes the classification scores for the different conducted
experiments. The last two rows of the Table provide infor-
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Fig. 1. Performance of MFCC and mRMS features in MEEI.
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Fig. 2. Performance of MFCC and mRMS features in PdA.

mation for the cross-database experiment where PdA-MEEI
means training on PdA and testing on MEEI and vice versa
for MEEI-PdA. In brackets we note the number of the mRMS
features used in each experiment.

Table 1. Equal Error Rate (EER) in % for mRMS features,
MFCC and both of them in MEEI and PdA.

MFCC mRMS Fusion
MEEI 8.47 6.29 (125) 3.63
PdA 22.86 17.67 (125) 12.15
PdA-MEEI 28.24 24.40 (125) 16.87
MEEI-PdA 30.97 26.07 (450) 21.86

4. DISCUSSION

Pathological voice is characterized by an increase of the vo-
cal folds mass, a subsequent lack of closure or an elasticity
change of the vocal folds and surrounding tissue [7]. Dys-
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Fig. 3. Performance of mRMS features, MFCC and their fu-
sion when training is performed in PdA and testing in MEEI.

phonia recognition experiments on MEEI and PdA confirmed
that modulation spectral features provide complementary in-
formation to MFCC. The low bands of the MFCC reflect alter-
ations related with the mucosal waveform due to an increase
of mass whereas the noisy components induced by lack of clo-
sure are modeled by the higher bands [7]. Modulation spectra
on the other hand capture the amplitude envelope fluctuations
evident on sustained vowel phonations [9].

Regarding cross-database experiments, features selected
from PdA alone were more successful in capturing class spe-
cific information in MEEI than vice versa. A potential reason
for this is that some of the normal speakers in MEEI database
were recorded at different sites and over possibly different
channels than the pathological subjects [9]. This makes the
MEEI an easy database for classification tests. This is not
the case with PdA, where the same recording conditions were
used for normal and dysphonic speakers. It follows then, that
it is better to train the classifier on PdA than on MEEI.

We have simply concatenated the mean and variance of
MFCC over the same segments that mRMS were estimated
from; the concatenated feature vector was given as input to
the SVM classifier. A better strategy, would be to combine
different classifier schemes for every feature set. We ran ad-
ditional experiments with MFCC and GMM classifier, as well
as mRMS and GMM classifier on the same datasets for nor-
mal/pathological distinction. Configuration of MFCC with
GMM classifier (the system described in [7]) was better than
using MFCC with SVM - still, in all experiments MFCC plus
GMM produced inferior results to the fusion of features com-
bined with SVM. On the other hand, mRMS plus SVM con-
figuration clearly superseded mRMS plus GMM. The reason
is the large number of mRMS features and the correspond-
ing quadratic increase of the number of parameters of GMM
classifier. In the future, therefore, we will explore the fusion
of classifiers at the decision level and not the fusion at the
feature level.
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