Introduction to R

R basics #2
Outline

• Univariate analysis
 – Testing for normality

• Bivariate analysis
 – Correlation
 – Regression

• Multivariate analysis
 – Correlation
 – Partial correlation
 – Regression

Dramatic increase in the amount of untrue statistics...
Univariate analysis

• Looking 1 variable ...
 – Histogram: single numerical variable
 • hist(V1) # histogram of V1 for all classes (Male and Female)
 • hist(V1[Vn==‘Male’]) # for Females only!
 – Density plot
 • plot(density(V1[Vn==‘Male’])) # empirical distribution
 – Boxplot: relationship between a numerical and categorical variable
 • boxplot(V1~Vn, myDataset, main = ‘...’)

<table>
<thead>
<tr>
<th>myDataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
</tr>
<tr>
<td>0,1</td>
</tr>
<tr>
<td>0,2</td>
</tr>
<tr>
<td>0,8</td>
</tr>
<tr>
<td>0,1</td>
</tr>
</tbody>
</table>

Univariate.R
Testing for normality

- Open R
- Plot the histogram of the length of the Petals for the versicolor
 - `hist()`
- Plot the density plot
 - `lines(density())`
- Does Petals.Length follow a normal distribution?
 - Using Density plots: compare visually the empirical density curve with the theoretical
 - increase the adj. parameter to smooth your density curve
 - Plot simultaneously the theoretical density curve that corresponds to the mean and sd of your data
 - Generate normally distributed data using `rnorm(N data, mean, sd)`
 - `lines(density(), col=“green”)`
 - Using `qqplot`: plot the theoretical vs the estimated quantiles
 - `qqnorm(V1)`
 - `qqline(V1)`
 - Normality tests
 - `Shapiro.test(V1)`
 - Null hypothesis: the distribution follows a normal distribution
 - Alternative: the distribution is different from a normal distribution
 - If p<0.1 we can accept the Alternative hypothesis therefore the distribution is significantly different from normal distribution
 - Kolmogorov-Smirnov test
 - `ks.test(x, "pnorm", mean, sd)`
 - Similar to `Shapiro.test(V1)` but mean and sd are different from the sample mean and sd
 - Test if the Sepal.Length follows a normal distribution of mean=8 and sd=1
Bivariate analysis

- Looking 2 variables ...
 - Testing for normality: Kolmogorov-Smirnov
 - x= Sepal.Length for setosa, y= Sepal.Length for versicolor
 - Test if x and y follow the same distribution
 - Check if the distribution of x is stochastically smaller than that of y
 - Hint: Choose alternative = "greater" or alternative = "less"
 - Support visually your answer
 » plot the ecdf(x) and ecdf(y) in the same plot
 - Pairs? Did you forget already?
 - pairs()
 - Are my variables correlated?
 - cor.test(V1, V2)
 - Null hypothesis: my data are not correlated, correlation = 0
 - Alternative: Correlation is non-zero
 - Is there a significant correlation between Petal.Length and Petal.Width?
Can we predict Petal.Width given the Petal.Length?
- Make a scatterplot of the two variables
 - `plot(V2~V1, pch=20, col=as.numeric(Vn))`
- Fit a line
 - `abline(V2~V1)`
- Use `summary(lm(V2 ~ V1))` to
 - Write the equation of your model!
 - See the significance of your model

Did my model fit correct the data?
- Regression residuals should be approximately normally-distributed
 - `residuals(lm(V2 ~ V1))`
- But I know how to check for normality now!
 - Choose and apply one method
Multivariate analysis

• cor.test() for pairs of variables
• Partial correlation
 – Is x and y really correlated or is there a hidden z that affects both?
 • Example:
 – $z \sim N[0,1]$
 – $k \sim N[0,2]$
 – $x=2z+5+0.2k$
 – $y=-3z+1$
      ```
      » Find the correlation between $x$ and $y$
      • Use a qqplot and the cor.test
      – Is there any correlation between $x$ and $y$ after we perform correction??
  – Perform correction...
    • the residuals of linear regressions between the two variables should be uncorrelated
    • If they are still correlated then there is a true correlation between them
    • cor.test(residuals(lm(y ~ z)), residuals(lm(x ~ z)))
Multivariate- Regression

- Can we predict Sepal.Width given the Petal.Length?
  - `summary(lm(z ~ x))`
- Can we predict Sepal.Width given the Petal.Length and the Petal.Width?
  - `summary(lm(z ~ x+y))`
- Can we predict Sepal.Width given the Petal.Length, Petal.Width and the Sepal.Length?
  - `summary(lm(z ~ y+x+p))`
- Is the predictive equation significantly affected when adding predictors?
  - Adding Petal width increases $R^2$ by $0.2024 - 0.1282 = 0.0742 \approx 7.4\%$
  - Adding Sepal length increases $R^2$ by $0.5142 - 0.2024 = 0.3118 \approx 31\%$
- Which of the three models is the best predictor of Sepal.Width?
  - $m1 = \text{lm}(z \sim x)$
  - $m2 = \text{lm}(z \sim y+x+p)$
  - `a <- anova(m1, m2)`
- Plot the residuals of the two models in the same graph and check for normality