Research I ssuesin No-Futz Computing

David A. Holland, Wiliam Josephson,
Kostas Magoutis, Mgp |. SeltzerChristopher A. Stein
Harvard Univesity
Ada Lim
University of Nev South \Wles

Abstract
At the 1999 Workshopon Hot Topicsin Opeating Systems
(HotOSVIl), the attendeeseadied consensushat the most
important issue facing the OS reseach community was
“No-Futz” computing; eliminating the ongoing “futzing”
that characterizeamostsystemsoday To date little reseach
hasbeenaccomplishedn this area.Our goal in writing this
paperis to focusthe reseach communityon the challenges
wefaceif weareto designsystemshat are truly futz-freg or
even low-futz.

1 Introduction

The high costof systemadministrationis well known.
In additionto the official costs(suchas salariesfor system
administrators),countlessadditional dollars are wastedas
individual userstinker with the systemson their desktops.
The goal of “no-futz” computingis to slashthesecostsand
reducethe day-to-dayfrustration that futzing causesusers
and administrators.

We define“futz” to mean‘“tinkering or fiddling experi-
mentallywith somethingd. Thatis, futzing refersspecifically
to making changego the stateof the system while observ-
ing the resultingbehaior in orderto determinehow these
relate and what combinationof statevaluesis neededto
achieve the desiredbehaior. When we refer to “no-futz”
computing, we mean that futzing should be allowed, but
shouldnever berequired Weinterpret‘low-futz” in thisway
as well.

It shouldbe notedthat reducingfutz is not the sameas
makinga systemeasyto use.lt is alsonotthe sameashiding
or reducingcompleity: it is aboutmanaging compleity and
manaying difficulty. Computersystemsnvolve intrinsically
complex anddifficult things.Thesearenotgoingto go away.
The goalis to male it aseasyas possibleto copewith that
compleity and dificulty.

Systemsanbe easyto usebut still requireunnecessary
futzing: TCP/IP configurationon older Macintosheswas
easyto adjust,but wasdifficult to setproperly Onecanalso
imaginea (purelyhypothetical)systenthathidesall its com-
plexity: it appeardo needalmostno futzing at all, until it
breaks.Then, extensive futzing is required,to figure out
what happened.

The goal of No-Futzcomputingis to eliminatethe futz-
ing dueto poordesignor poorpresentationnotto try to find
a silver bullet for software compleity; no-futz computing
attacksareasthat are needlesslycomplicated not thosethat

are inherently complicated.

Let's begin with anexampleof a good,hi-tech,low-futz
device, andunderstandts basiccharacteristicswhile read-
ing the restof this section,keepin mind the computersys-
temsyou useregularly (particularlythe onesyou dislike) and
how they differ from the gample.

Our Xerox 256STcopieris a no-futzdevice. It performs
justaboutevery functionimaginablefor a copier:it collates,
staples,copiesbetweendifferent sizesof paper will copy
single-sidedriginalsto double-sidedtopiesandyvice versa,
etc.,andit even sits on the network and acceptsprint jobs
like a printer However, it demandso futzing. It hasinstruc-
tions printed on the casethat describehow to accomplish
commontasks.lts userinterfacemakesit impossibleto askit
to do somethingit cannot.It keepstrack of its operating
state,continuouslymonitoringitself, andcommunicatesn a
simplefashionwith its operatorsWhenthereis a problemit
candiagnoseit displaysa clearmessag®nits console(For
example,“Papertray 2 is empty’) Whenit detectsa problem
it cannotdiagnose;it begins a question-and-answatialog
with the operatorto diagnosethe problemanddeterminean
appropriatecourseof action - and then, in most cases,it
guidesthe operatorthroughthat courseof action. The ques-
tions it asksare simple, and can be answeredy a novice,
suchas“Did papercomeout whenyou tried to copy?” The
key factors that makthis deice no-futz are:

» Ease of use: The user documentationand user

interfaceareorganizedin termsof the users tasks,not
in terms of the systeminternal characteristics.

e |t is unusualto encountera situationwhereit is not
clearwhatto do next, evenin the presencef various
failures.

» Self-diagnostics:When a failure occurs, the copier
diagnoses it and fars instructions for fixing things.

» Simple,clearcommunicationit never asksthe usera
question that the user cannot answer

Whatmalkesthis suchaninterestingexampleis thatonly
adecadeago,photocopiersequiredmuchfutzing, mostly by
expert servicemen,and were extremely frustrating for all
concernedSincethen, not only have copiersbecomevastly
fasterandmore powerful, but both the useand maintenance
of them has becomevastly easier Todays copiers have
one-tentithe component®f their predecessorsjgnificantly
more functionality, and dramatically reducedfutzing [6].
How can we maé& similar strides forard in computing?

That which works for a photocopiermay not be suffi-



cientfor computersthe copieris a relatvely straightforward
device with well-defined function and state, whereasgen-
eral-purposecomputersystemshave a wide variety of func-
tions, have essentially infinitely mutable state, and are
subjectedto complicatedand often ill-understoodintercon-
nections both within themseds and with other computers.

In the rest of this paper we first discusssomecurrent
approacheto futz reduction,arguing thatthesedo not attack
the problemdirectly and have negative side-efects. We then
discusshow futz arisesin computersystemsand describe
what we believe is the key to a real solution: understanding
andmanagingsystemstate. Thenwe outline somedirections
for futureresearchgiscussriefly someexisting relatedwork,
and conclude.

2 Current Approaches to Futz Reduction

Thecostandfrustrationassociateavith futzing hasled to
threecommonapproacheso futz reduction:(1) limiting the
scopeof functionality, (2) homogeneityand (3) centraliza-
tion. Theseapproachearenot mutuallyexclusive andarefre-
quently used together

The copier describedabore is an example of the first
approachiit is a special-purposelevice. Relatve to a gen-
eral-purposecomputey its functionality is quite limited. In
this contet, it has addressedhe futz problem quite well.
Sincefutzing involvesstatechangesspecialpurposesystems,
which have relatively limited state spacescan offer corre-
spondingly reduced futz. Other low-futz, limited scope
devices include dedicatedfile seners (e.g., Network Appli-
ances filers) and specialpurposeweb or mail seners (e.g.,
Sun’s Cobalt semsrs) among others.

Homogeneityis the secondapproachto futz avoidance.
This approachis most often seenin large installations.In
orderto reducetotal installation-widefutzing, a single stan-
dard machineconfigurationis deployed everywhere.If there
is a problem,ary machinecan be replacedwith ary other
machine.Systemscan be reinstalledquickly from a master
copy. Maintenanceequirementsarereducedrastically Cus-
tom managementools needonly interactwith one kind of
system,andarethus much cheapeto build. The administra-
tors seethe sameproblemsover and over again and canpre-
paresolutionsin advance;nobodybesidesghe administrators
needs to futz with ashing.

This approachcan reduceglobal futz drastically; how-
ever, it doesnot addresghe underlyingproblem:the amount
of futzing requiredby a single machineis constantFurther-
more, it has other flaws: first, it is inherentlyincompatible
with letting userscontroltheir computersWhile this s fine or
evendesirabldn someenvironments(e.g.,theterminalsbank
tellersuse),it is unacceptablén others(e.g.,researcHabs).
Second,it is a security risk. The same homogeneitythat
makessystemadministratioreasieralsomakesbreak-insand
virus propagtion easier:if you cangetinto onesystem,you
cangetinto all of themthe sameway [1]. Third, mostorgani-
zationsgrow incrementally Adding new computerdo a col-

lection of identicalexisting onesis difficult: the new onesare
rarely truly identical,which inevitably cutsinto the economy
of scale.

The third approachto futz reductionis centralization.
Centralizationmoves state and its accompawing require-
mentsfor futzing, away from the systemswith which people
interactdirectly andinto placeswhereit is morecorveniently
managedThis givesadministratorgight andefficient control
over eachsystem.This makesit more corvenientfor system
administratorgo futz andlets systemadministratorsio more
of thefutzing anduserdessof it. While this doesreducecost,
thereis no actual reductionin total futz. For that, another
approach is required.

Thesethreeapproachesire capableof reducingthe futz
of, or at leastthe costof maintenancdor, computersystems
and networks. However, all of themarelimiting and/orhave
negative consequencesThis is a result of attempting to
reducethe total futzable state,insteadof the futz problem
directly. We adwcate the direct attack.

3 The Source of Futz

Onedefinitionof “futz” is in termsof statemanipulation.
Thus,the morestatethereis to manipulatethe morefutzing a
systemallows. Mandatoryfutzing ariseswhenit is not clear
by inspection or documentationwhat manipulations are
requiredor whenthe supposedlyorrectmanipulationdail to
producethe correctresult.At this point, onemustexperiment
(or call for help).

If onecanmanipulatethe systemstatewithout resorting
to experimentation,futzing has not occurred.For instance,
seasonedJnix administratorsdo not have to futz to add
accountsto their systems But beginnersgenerallydo. And
evenseasoneddministratorsaisuallyhave to futz to getprint-
ing to work.

Note that the degree of futz dependson the level of
expertiseof the user A premiseof no-futz computing,how-
ever, is thatoneshouldnot have to be anexpert,or the costof
beinganexpertshouldbe quitelow. Unix systemsarealready
quite low-futz for hard-coreexperts, but it takes yearsand
yearsof apprenticeshipo reachthatlevel. Reducingfutz for a
selectfew is nota solution,sowe needto examinesourcef
futz as thg appear to a casual user

The mutablestateof a computersystemcan be broken
down into the following categories (this may not be a com-
plete list):

» Derivedstate: Stateautomaticallyderivedor generated

from other state.

» Policy state Configuratiorstatethatreflectspolicy of a

site or user

» Autoconfigdata: Datato besenedin somemannetby

the system in order to enable autoconfiguration for
other systems.df example, /etc/bootptab

» Cached state Cached results from autoconfiguration

protocols.



* Manual config state Configuration state that reflects
the setup of the operating environment or hardware, and
needs to be set manually.

» OS file state files (programs or data) that are part of
the operating system, as well as their organizational
meta-data

» Application file state files (programs or data) that are
part of installed applications, aswell astheir
organizational meta-data.

« User file state user files and their organizational
meta-data. For example, a secretary’s word processor
files, or web pages.

« Application context persistent saved application state
that is not user data. For instance, many environments
try to automatically recreate on startup where you were
when you left the last time.

» Systemcontext persistent OS state that isnot in any of
the above categories. For example, file system
meta-data.

- Cryptographic keys

Policy state is a source of futz: the system acts on its pol-
icy settings, and if it acts incorrectly, somebody needs to
tinker with the settings until it behaves properly. Unfortu-
nately, policy state cannot be avoided in a general-purpose
computer system: policy decisions need to be made by
humans and the computer needs to know what they were. One
can reduce futz in this area by cutting back the amount of
state, and building special-purpose systems, but that inher-
ently reduces the amount of functionality as well. Reducing
futz in this area without cutting back functionality is feasible
aswe outline in the next section.

Autoconfig data is another source of futz. This category
reflects futz that has been “centralized away” from other sys-
tems. It is not necessarily the case that all autoconfig mecha-
nisms require a server to serve data, but many of the existing
ones do. It is not unreasonabl e to suppose that devel opment of
more sophisticated autoconfiguration can reduce or eliminate
most of the state and thus the futz in this category.

Cached state is not normally a source of futz. Cached
results can be purged or updated as necessary without any
manual intervention. Similarly, derived state is a solved prob-
lem: if it goes out of date, it needs only to be regenerated. The
Unix make utility is already routinely used for this.

Manual config state is a tremendous source of futz in
most systems today. Worse, it isthe most difficult kind of futz
possible: unlike policy state, where various aternatives work
but may not be desired, most of the questions answered by
manual config state have only one or two right answers and
plenty of wrong answers, and wrong answers generally render
the system or components of it completely inoperative. Ulti-
mately, this is the category of futz that is most seriously in
need of reduction. Fortunately, it is possible to accomplish
this: to the extent that there are right answers, in amost all
cases, with sufficient engineering of components, those right
answers can be probed or determined from context. For

instance, the only reason we need video card and monitor
information in /etc/XF86Config isthat on PC-based systemsiit
is not possible in many cases to safely or reliably interrogate
the hardware to find out what it is. In a hypothetical world
where you could query this hardware, which is easy to imag-
ine, this major source of futz could be abolished.

OSfile state and application file state are an areain which
many current systems fall down: it is quite easy, in general, to
install new application software that breaks the system, or to
update the system and thereby break applications. It is also
possible to delete or rename important files inadvertently (or
lose in a power failure) thereby breaking the system. At
present, recovering from these problemsis generally quite dif-
ficult. In this area, for most people, futzing at all tends to
equate to reinstallation.

Reducing this category of futz requires taking more care
in analyzing the dependencies among software components,
and improving the mechanisms with which software compo-
nents are bound to one another at runtime. We need several
things: automated analysis of runtime dependencies (a hard
problem), better systems for preventing accidental version
skew, and mechanisms for cross-checking that can be per-
formed at runtime to allow failures to occur gracefully. Rein-
stallation as a failure recovery mechanism is unacceptable.

User file state is inevitably a source of futz as things
become disorganized and users mislay their data. We see no
immediate prospects of cutting back on the futzing this
reguires, although developing a good model for how applica-
tions should choose default save directories and the like
would be agood start. Content indexing techniques may be of
help as well.

Application context is normally automatically main-
tained, and only becomes a source of futz when it becomes
corrupted or saves an undesired application state. This prob-
lem is easily solved: check it for consistency when loaded, be
able to withstand it being deleted, and store it in a known
location so users can delete it if they so desire. In many cases,
simply not keeping such context is an adequate solution.

System context is essentially the same, except that it is
sometimes not possible (or meaningful) to erase it and start
over. It is much more important to check it for consistency
and repair any problems. With some engineering, failures that
reguire expert attention to repair can be made quite rare, as
they generally are with most Unix implementations of fsck.

Cryptographic keys are listed separately because they
have their own unique requirements for management, and
because they are mandatory for the use of secure autoconfigu-
ration protocols. In our experience, these are not large sources
of futz. Furthermore, a lot of attention has already been paid
to key management in the security literature.

All the above assumes that a user is changing state in
order to make some kind of desired configuration change,
either as ongoing maintenance or at system installation time.
There are two other cases in which one needs to interact in
intimate detail with the state of a system: to diagnose and



repaira systemfailure andto monitor the systemfor signsof
upcoming &ilure.

Properlyspeaking aswe have definedfutzing, diagnosis
is not futzing; ratherthan experimentally adjusting stateto
achieve a result,diagnosisproperlyinvolves analyzingexist-
ing state.Sometimeshowever, one needsto experimentto
interpret the existing state. And additionally a common
methodfor recoveringfrom a systenfailureis to futz until the
obvious signsof the failure have disappeare@éndthe system
appeardo beworking again. (Rebootingis a drasticexample
of this technique andit works becausenuch systemstateis
not persistent across reboot.)

The reasorthis methodworks is thatmary systemprob-
lemsinvolve the failure of supposedlyautomaticstateman-
agementmechanismsjweaking the state tickles the state
managemenimechanism,and with some luck it will start
functioning again. The reasonit is commonis that actual
diagnosisby inspectionusually amountsto dehugging and
requires anxdremely high leel of expertise.

If thesystemcandiagnoseproblemstself, like our copier
can, this futzing becomesunnecessaryEven if it canonly
diagnosea small numberof the most commonproblems,a
gooddealof mandatoryfutzing canbe eliminated.Self-diag-
nosisin software systemsis an importantresearcharea.We
believe a good deal of progress is possible.

Monitoring for signsof upcomingfailure,includingmon-
itoring for securityproblems doesnot, itself, involve futzing.
However, failure to perform monitoring can lead to huge
amountsof futzing later on - recovering from a sener dying
can easily take as much futzing as installing a newv one,
whetherthe deathtook placebecausef hardware failure or
becauseof haclers. Therefore,automaticmonitoring is also
crucial to building true no-futz systems.This is another
important research area.

Ultimately, all of thesethings - monitoring, diagnosis,
and configuration- involve interactionwith the systemstate.
We believe thatresearctandengineeringn theareasoutlined
above cantamea good proportionof the typical systemstate
space However, policy state,cryptographidkeys, and proba-
bly someleftover bits of statein the othercateyories,arenot
going away. More is required;we needto be ableto manage
this state.

4 Futz and State M anagement

Thelessstatea systemhas,theeasieiit is to organizeand
present to users in a coherent manner

As outlinedin the previous section,one can designout
somestateandautomatethe handlingof a lot more.This will
take careof agooddealof futz. However, a greatdealof state
remains,and it requiresediting, and undoubtedly futzing.
One cannoteliminate the editing. But one may be able to
eliminate the futzing.

The leftover stateconsistamostly of policy state,manual
config state,andautoconfigstate.This statecanbe thoughtof
asalist of configurationquestionandtheiranswersTheulti-

mategoal is to allow a userto type in answerdo theseques-
tions, or changethe answersto suit changedcircumstances,
without needing much training or specialized \iexige.

It shouldnow be clearthatquestionformulationis crucial
— notjusttheirwording,althoughthatis significant,but what
guestionsare asled, how interconnectedhey are with each
other how they're grouped, etc.

What this meansis that, once all the easierissuesare
addressedhe organizationof the statespaceof the systemis
the mostsignificantfactordetermininghow muchfutzing the
system will demand.

It is crucialto analyzethis statespacan detailanddeter-
mine how to bestdecomposet into a setof variables(and
thusquestions)In the bestsuchdecompositionthe variables
will beassimpleandasorthogonalto eachotheraspossible.
It will beclearwhatansweringeachquestiorentailsandwho,
in ary of several typical environments,oughtto decidethe
answer Thenthe questionmeedto be written in sucha man-
ner that the peoplewho typically fill theserolescan,in fact,
answerthe questionswvithout needingan excessve amountof
training,andthesoftwareneeddo bewritten sothatquestions
will not be posed to the wrong people.

For example,in almostall casesthe personsitting at the
computershould be the one to choosethe desktopback-
ground.However, it is not necessarilyhe casethatthis person
shouldbeaslked“What is the IP addresof your web proxy?”
— this questionmay needto be posedbut if soit shouldbe
posedn acontet whereit is clearthattheansweris thelocal
network administratos responsibility

We believethisis thekey. It is notaneasyproblem;in the
absenceof ary useful decompositiontheoremsfor state
space®r statemachinesijt mustbe solved by manualinspec-
tion andad-hocheuristicanalysis Worse,one hasto address
the completestatespaceof the entire systemat once;if one
leavessomestateout of the analysisandtacksit on later; it is
almost guaranteed to be a poor fit.

At first glancethis might seemto meanthat all applica-
tion softwaremustbe designednto thesystemThisis notthe
caseHowever, whatis necessaris for thesortsof stateappli-
cationsmayneedto useto beanticipatedthatis, oneneedsan
abstractmodel of what an applicationis and does.Such a
modelshouldbereasonablyeneralWwithout goingoverboard:
applicationsthat fail to fit will still work, but may require
increasecamountsof futzing. Allowing for theseapplications
in the generaldesignmight resultin even morefutzing in the
commoncase Therewill beatrade-of, andthattrade-of will
need to bexplored.

5 Research Directionsin No-Futz Computing

If the systemscommunityis to ever build no-futz sys-
tems,we mustembarkon a researctprogramthat addresses
the key issuesin no-futz computing. This section defines
those areas.

The first stepon the pathto no-futz computingis deter-
mining how to measurea systems futz. We wholeheartedly



endorsethe term “FutzMark” coinedat the last HotOS and
challenge researchers to define it.

We believe the centralissuein no-futzcomputingis state
managemeniWe must reducesystemstateto a manageable
level, isolate eachstate variable so that it is orthogonalto
otherstatevariablesandmake it impossibleto specifyinvalid
statesWherepossible we shouldreplacestatewith dynamic
discovery. Where possible,we should devise ways to turn
staticstateinto dynamicallydiscoverablestate(e.g.,autoconf
data,manualconfigstate) Achieving orthogonalityis perhaps
the mostdifficult aspecibf this task, but alsothe mostessen-
tial. Without orthogonality the problemsof managemenand
testing grow factorially. If we can achiee orthogonality it
becomes a manageable linear problem.

In lieu of total orthogonality we needbettermechanisms
to identify inconsistenstateandremedyit. We needto iden-
tify (or avoid) versionskew amongsoftwarecomponentsand
do more gtensie runtime cross checking and analysis.

Copingwith failure requiresa greatdeal of futzing; thus
we needto achieve cleanerfailure models.In the fault-toler-
ance community “failstop” behaior (ceasingoperationas
soonasa fault occurs)is considerediesirableso that failing
systemgalo not corruptstateor data.In the contet of no-futz,
failstop behaior could permit the preciseidentification of
failure causeslf systemsandiagnoseheir own failures,it’'s
concevablethatthey canthendirect usersto performrecov-
ery, asour copierdoes.In generalwe needto make progress
in the areas of self-diagnosis and automatic monitoring.

Finally, thereareareasoutsideof systemgesearciwhere
progressis necessaryln particular improvementsin user
interfacesand datapresentatiorwill reducefutz. Collabora-
tive interfaceswhich actasintermediariebetweerusersand
their machineghat enablethemto work togethey hold great
potentialif appliedto no-futz computing.Security manage-
mentis sometimesconsideredutsidethe realm of systems,
but insecurity is a major contritutor to current futz and
improvementis needed.Improvementsin contentindexing

will reduce the futz associated with user data management.

6 Reated Work

There have beena numberof efforts to reducefutz in
computersystemsln a distributed setting, Sun’s Sunray[4],
aswell asMicrosoft's Zero Administrationinitiative andthe
associatedntelliMirror [7] product,areprojectsto centralize
futzing.

The Sunraysystems desktopmachinesaresimple,state-
lessl/O deviceswith no administrationneeds.Sunrayrelies
on modern off-the-shelf interconnectiontechnology and a
simpledisplayupdateprotocol (SLIM) to supportgoodinter-
active performanceln additionto eliminatingclient adminis-
tration,the Sunraymodeloffersclient mobility. Clientsession
stateis entirely storedon the sener and can be associated
with a smartcard that can be insertedin any Sunrayclient
connectedo the samesener. Sunraysare anorymous com-

modities.However, this doesnot eliminatethe administration
cost.Sunraysenersarecomplicatedsystemsandnot easyto
administer:once,in our departmentpne of the junior system
administratordroke all the Sunraydor threedaysjust by try-
ing to install a ne utility on the Sunray seev.

Microsoft's Zero Administrationinitiative is an effort to
reducethe administratiomeedsof Windows installationsand
thusthe costof ownership.Centralto Zero Administrationis
the IntelliMirror product, which helps an administrator(a)
manageuserdata,(b) install and maintainsoftware through-
out an organization,and (c) manageuser settings.Manage-
ment of user data requires knowledge of propertiesand
locations of users’files so that the datais available both
online and offline from ary computer Manual installation,
configuration, upgrades,repair and removal of software
acrossan organization requires large managementeffort.
IntelliMirror automateshis: it offersremoteOSinstallation,a
serviceallowing a computerconnectedn a LAN to request
installationof a freshcopy of the Windows OS, appropriately
configured with applications for that user and that computer

Suns Jini [5] for Javais anexampleof a systenthattries
to eliminate administrationin a decentralized“federated”)
manner Jini providesa distributedinfrastructurefor services
to register with the netark and clients to find and use them.

7 Conclusion

Leading systemsresearchergdentified no-futz comput-
ing asanimportantresearctareatwo yearsago|[3], but to the
bestof our knowledge,therehasbeenno significantresearch
actiity in this areaWe believe onereasoris thattheproblem
is enormouslycomplex and may not be solvable within the
constraintsof legagy systems.Regardless,until we identify
theimportantresearclguestionsno progressanbe made.ln
this paperwe have identifiedsome if notall, of theimportant
areasin which researchmustbe conductedf we are ever to
“solve” the problem of high-futz systems.

References

[1] Forrest,S.,SomayajiA., andAckley, D., “Building diverse
computersystems, In Sxth Workshop on Hot Topics in
Operating Systems, 1997.

[2] Dan Plastina,“Microsoft Zero Administration Windows”,
invited talk givenatthe 11thUSENIX SystemsAdministra-
tion Conference(LISA ‘97), October 26-31, 1997, San
Diego, California, USA

[3] SatyanarayananM., “Digest of Proceedings”,Seventh
IEEE Workshop on Hot Topics in Operating Systems,
March 29-30 1999, Rio Rico, AZ, USA.

[4] Schmidt,B. etal., “The interactve performancef SLIM: a
statelessthin-client architecture”,in Proceedingof the
17th SOSPDecember 1999, Kveah Island, SC, USA.

[5] Waldo,J.,“The Jini Architecturefor Network-centricCom-
puting” Communications of the ACM, pp 76-82, July 1999.

[6] Corversationwith Xerox TechnicalRepresentate. January
18, 2001.

[7] http://www.microsoft.com/WINDQ@VS2000/library/hwvit-

works/management/intellimirr@sp as of April 23, 2001.



