
Building Appliances out of Components using Pebble

KostasMagoutis†*,JoséCarlosBrustoloni,EranGabber, WeeTeckNg andAvi Silberschatz

1. Motivation

Appliancesarespecialpurposesystemsthatoffer highprocessingspeed,easeof configuration,safety, fault isolation,
andminimal needfor administrationby humanexperts.Traditionalapproachesto building an applianceoperating
systemhavebeeneitherbuilding it from scratch[CacheOS]or strippingdown amonolithickernelto its basiccompo-
nents[Jaeger99].The former approachis costly andthe resultingproductis likely to be highly specializedandnot
easilyextensible.The latter approachis not easy, as the OS codeanddatastructuresareoften sharedandclosely
intertwined.TheresultingOSis alsolikely to becoarse-grainedandnoteasilycustomizable.Mostappliancesarenet-
work-centric(e.g.HTTP caches,proxies,file servers,routers)in the sensethat they requirehigh-performancenet-
work connections.Suchperformanceis oftenachievedwith application-specificspecializationof systemI/O [Cao95]
requiring a modification of a portion of the operating system, such as the protocol stack or the file system.

Safetyis a majorconcernfor appliances,sincenew functionsareconstantlyadded,andthereis never enough
time to debugall possibleinteractions,especiallywhenthird partysoftwareis runningon theappliance.Theproblem
is moreseverewith legacy softwarewritten in C or otherunsafelanguages(in contrastwith type-safelanguagessuch
as Java). Extensibleroutersare an example of network applianceswherecustomsoftware processinghas to be
quickly addedandsafetyis paramount.Diagnosticcodeandcustom(e.g.multimedia)schedulersarealsoexamples
of extensions that appliances will need to support.

Resourcemanagementis especiallyimportantfor appliances.New operatingsystemabstractionssuchaspaths
[Mosberger96],resource containers [Banga99], reservation domains [Bruno98] andactivities [Jones95]have been
proposedfor resourcemanagementandcontrol. We believe that an applianceoperatingsystemshouldbe flexible
enoughto supportsuchabstractions.It shouldalsobeableto overlayresourcemanagementin modularoperatingsys-
tems without such support.

Pebble[Gabber99]is acomponent-basedoperatingsystemthatcombinesefficient IPCwith strongmodularity
andsafetyfeatures.Pebbleprovidesthenecessaryinfrastructurefor building fine-grained,modularoperatingsystems
for appliancesoutof reusablecomponents.We foundthata typical network applianceapplication(e.g.aWebserver)
built onPebbleusingcomponentshascomparableperformanceto a traditionalmonolithickernel.In thisway, thereis
noperformancereasonnot to useasafer, moremodularcomponentstructurefor suchappliances.Moreover, weclaim
thatPebbleis a generalpurposeoperatingsystemframework thatallows us to implementdiverseOSstructuresand
mechanisms, alleviating the need for writing specialized operating systems from scratch.

2. Challenges and Opportunities in Component-Based Systems

We believe thatfine graindecompositionof systemservicesallows easierspecializationandcustomizationof func-
tionality. This is achievedby replacinggenericcomponentswith specializedpoliciesandmechanisms(e.g.protocol
stacks).An addedbenefitis improvedmodularityby composingthesystemof smallerpieceswith well-definedinter-
faces.Suchbuilding blockscanbereused.Strongfault isolationis necessaryin appliances,asdescribedabove in the
motivationsection.UsinghardwareVM mechanismsto enforcefault-isolationby sandboxingeachcomponentwithin
its own virtual addressspaceis likely to increasememorysystempressure[Chen93].But this is unlikely to degrade
performancein today’s high-endembeddedprocessorsdue to improved cachedesigns[Transmeta00].Moreover,
sincemostcurrenthigh-endembeddedprocessors(e.g.MIPS, StrongARM)includea hardwareMMU, thereis an
incentive to use it.
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We believe that interfacesbetweencomponentsneednot bedesignedonceandremainstaticor bepainful to
change.Rather, we think that interfacesshoulddynamicallyadaptandbeoptimizedfor theparticulartrust relation-
shipandparameterpassingbetweencorrespondingcomponents.New applicationsmaydefinenew interfacesor mod-
ify existingonesasnecessaryto improveperformance.For example,thespreadof theWorld WideWebandthefocus
on theperformanceof Webservershashighlightedshortcomingsof theUNIX I/O systeminterfaces,wherechanges
arenotoriouslyhardto incorporateandstandardize[Nahum99].In anotherexample,thecontinuousevolution of the
internal Linux kernel interfacesdoesnot allow interoperationwith proprietarybinary-only device drivers.This is
because changes to the interfaces cannot be propagated into the drivers without rebuilding them from source.

Oneof thekey challengeswe encounteredwhenbuilding a fully component-basednetworking applicationin
Pebbleis how to efficiently sharestatebetweencommunicatingcomponents(suchasnetwork buffers).Severalearlier
studiessuggestedmethodsfor improving the throughputin a systemwheredatamovesbetweenmultiple protection
domains[Druschel93,Brustoloni98].Thesemethodsrely on pageremappingto avoid expensive datacopying. But
whenthecostof datacopying is comparableto theoverheadof TLB operations,it maybepreferableto dynamically
select copying over page remapping.

3. Pebble Architecture Overview

Pebble[Gabber99]is a new operatingsystemdesignedfor flexibility , safetyandhigh performance.Pebblesupports
composinganoperatingsystemof fine-graincomponents,eachrunningwithin its own protectiondomain.Efficient
inter-domaincommunicationis achievedvia aportal, anefficient IPCmechanismwhosedynamicallygeneratedcode
is specifiedby a small interfacedefinition language.Pebbleprovidesa setof featuresthatareespeciallyusefulfor a
network appliance operating system:

• Dynamic portal specification,creation and optimization allows for flexible interfacesandefficient communi-
cationbetweencomponents.Componentsareableto dynamicallydefinetheir interfaces,thereforebeingableto
adapt.Portalsareoptimizedfor theparameterpassingandtrust relationshipbetweenthecorrespondingcompo-
nents.Portalscopy smallargumentsandpasslargerarguments(e.g.,buffers)on a memorypageremappedinto
thecalledprotectiondomain.Thedynamicnatureof portalspecificationandcreationis especiallyimportantin
an extensibleoperatingsystem.This is becausedynamicallyloadedextensionsfrequentlyneedchangesto the
existing API in order to support the new functionality.

• Fine-grain modularity is supportedby efficient portals.It allows for finer systemdecompositionwhich makes
customizationeasy. As aresult,new functionalitymaybeintroducedby replacingasmallnumberof components
(possiblyasinglecomponent)with little impactonothercomponents.In thisway, thesystemhasaminimal foot-
print, sinceit is composedonly of thesetof necessarycomponents.Pebblealsosupportscoarsergrainmodular-
ity, which is handy when the software is monolithic or when the components are trusting each other.

• Protection is providedby hardware-enforcedvirtual addressspaces.It is essentialfor rapiddeploymentof new
functionality written in any language (not just type-safe languages such as Java).

• Thr ead migration is the native mechanismfor passingcontrol betweencomponents.Pebblethreadsmigrate
from oneprotectiondomainto anotherby a portalcall. No schedulingaction(henceno context switch) is taken
at theportaltraversal.Threadsarepreemptedeithervoluntarily, by blockingona resource(semaphore),by wak-
ing upahigherpriority thread,or by theinterruptdispatcherwhichwakesupahigherpriority interrupthandling
thread.Migrating threadssimplify resourceaccountingfor client/server activities, asdescribedin the next sec-
tion.

• Inter position of codein the portal interfacesbetweencomponentscanbe used,for example,to addresource
accounting and limit checking in modular systems.

Pebbleprimitivesarevery efficient. For example,a one-way IPC canbedonein 135cycles[Gabber99]on a MIPS
R5000, using a new callee stack and opening a one page memory window.

Pebblefurtheraimsto improveon theexistingmodelof extensibilityofferedby microkernelsbasedonhardwareVM
mechanisms.In suchsystems,servercomponentscanbespecializedfor theuseof aparticularapplication,but it usu-
ally takesa disproportionateamountof effort to effect even small changes.We believe that alternative extensibility
technologies(suchasthosebasedon type-safelanguagesor instruction-level techniques)canprovide anorthogonal
way to finely structure servers within Pebble components.



4. Implementing OS Services and Structures in Pebble

Someof therequirementsfrom anapplianceoperatingsystemaretheability for easysoftwareupdates,fastdeploy-
ment of safe kernel functionality, higher fault-tolerance,as well as safe and controlled execution of third-party,
untrustedcode.Additionally, appliancesshouldnot rely on promptadministratorassistancefor recovery, software
updates,or executionof sophisticateddiagnosticcode.Finally, failure resiliency anddefenseagainstmisbehaving
extensions(e.g.denialof serviceattacks)bothrely on resourcemanagementmechanismsto ensureconsistentsystem
state after crash or termination of a component.

Pebblecanprovide supportfor theabove requirements.In this sectionwe discuss(a) resourcemanagementabstrac-
tions; (b) componentfailureandtermination;(c) theright fault isolationmodelandgranularity;and(d) safesharing
of information.

4.1 Resource Management

We believe that Pebblecan implementdiverseresourcemanagementmechanisms,suchas paths [Mosberger96],
resource containers [Banga99], reservationdomains[Bruno98] andactivities [Jones95],without significantperfor-
mance penalty due to a combination of architecture features that are described below.

(a) separatingthe notions of threadand resourceprincipal using an entity similar to resourcecontainers
[Banga99]. This entity canbe charged for resourceuse(e.g.by network connections,threads,protectiondomains
such as protocols, applications, etc.);

(b) accurateresourceaccounting(CPU cycles,memory, I/O operations,etc.),which canbe implementedby
modifying thecorrespondingportals,sinceall systemactivities aredonevia portals.For example,physicalmemory
allocationfor a component’s heapis donevia thesbrk()portal call, CPU control is grantedandrelinquishedvia
schedulerportalcalls,otherresourcessuchassemaphoresarerepresentedby portalsto thescheduler, andnetworking
operations are all done via per-connection portals;

(c) providing the schedulerwith additional information for schedulingmultimediaactivities. For example,
queueoperationsneedto be controlledby a trustedparty andqueuestatebe exportedto the scheduler, so that this
information can be safely used for thread deadline calculations.

Pebbleis also suitable for adding resourcemanagementto existing modular applicationsthat were not
designedfor it. Sincemostresourcecreation,transferanduseis implementedby portalcalls,suchcallsmaybeeffi-
ciently intercepted by a management component that implements resource management [Gabber99].

4.2 Fault Tolerance

Pebble facilitates recovery from componentfailure and termination by recording portal calls that manipulate
resourcesin anundolog. Sinceall externalresourcesallocatedby thefailedcomponentmustberequestedby portal
calls,therecoverycanreleasethemrolling backtheundolog. Earliersystemsthatemploy migratingthreads,suchas
Spring [Hamilton93], defined failure semantics that to a large extent apply to Pebble as well.

4.3 Choosing the Right Fault Isolation Model and Granularity

PebblesupportsVM-basedhardwarefault isolationvia protectiondomains.Somedomainsmay run a Java virtual
machineor employ variousinstruction-level techniques,suchassoftwarefault isolation(SFI) [Wahbe93].Webelieve
thatusingSFI for protectingmodulesis not a goodideain general,sinceSFI overheadcanbeprohibitive [Small96]
(e.g.in thecaseof a Scout[Mosberger96]MPEGmodule).Nevertheless,SFI maybemoreefficient thanhardware
fault isolationfor frequentlyexecutedfine-grainmodules.In otherwords,SFIshouldbeselectedwhenits overheadis
less than that of a portal call.

We planto provide a new mechanismfor communicationbetweenseveralSFI domainswithin a singlePebble
component. This mechanism will switch between SFI domains by executing trusted code, similar to a portal call.

Good candidatesfor SFI are packet classifiers, which perform early demultiplexing of incoming packets.
Packet classifiersareinstalleddynamicallyfor filtering packetsandareexecutedfor eachpacket. In addition,packet



classifiersareusuallyshort,which meansthat they maybeprotectedmoreefficiently by SFI thanby hardwarefault
isolation.

On theissueof componentgranularity, oneway to amortizetheportalcall costis by batchingrequests.Weare
planningto experimentwith a very fine-grainedarchitecturesimilar to theClick modularrouter[Morris99] in order
to investigate this idea.

4.4 Sharing Memory

Pebblecaneliminatedatacopying by selectively sharingVM pagesbetweencomponentsrunningin separateprotec-
tion domains.Eachsharedmemorypagein Pebblehasanaccessvector, which specifiestheprotectiondomainsthat
canaccessit. Theaccessvectorenablesdiverseaccessmanipulations,includingsharingmemorypagesbetweenpro-
tectiondomains,exchangingmemorypages,allowing a server to accessa pagecontainingparametersonly for the
durationof theservicecall, etc.Thesemechanismscanbeusedfor implementingbothcopy avoidanceandcleansep-
arationof state.For example,we canimplementthe copy avoidancemechanismsof IO-Lite [Pai99] andemulated
copy [Brustoloni99]. In addition,Pebble’s sharedmemorypagesareallocatedfrom a singleaddressspaceandas
such they may contain pointers and other data structures in addition to data buffers.

5. Target Applications

This section describes potential applications that can benefit from Pebble mechanisms.

5.1 Adding Fault-Isolation to a Modular Router Architecture

A promisingapplicationareafor network-centricappliancesis differentiatedservices(diffserv) edgerouters,which
provide per-applicationtraffic conditioningandotherservicesat the borderbetweena local areanetwork and the
Internet. Currently used traffic conditionersinclude elementssuch as meters,markers, shapersand droppers
[Blake98]. Futureneedsmay necessitatethe adoptionand deployment of services,which will requireextensible
routerarchitectures.Currentproposalsfor modularrouterarchitecturescanbeaugmentedwith safetyat theappropri-
ate granularity using Pebble mechanisms.

Click [Morris99] is a flexible, modularsoftwarearchitecturefor building routers.Click’s building blocksare
packet processingmodules(called elements). Click’s elementsperformsomerouting functions,and they arecon-
nectedinto a graph.An examplegraphcouldbea diffserv edgerouterbuilt by combiningoff-the-shelftraffic condi-
tionerelements.Click’s elementsareusuallyfine grain.Most take between22 to 135machinecyclesperpacket on a
450MHz PentiumII [Morris00]. Click hasbeenoriginally implementedto rununderLinux eitherasauser-level pro-
gram or as a kernel extension.

Kernelextensionsprovideamethodfor trustedcodeto runwithin thekerneladdressspacewith nosafetyguar-
antees.We think thatkernelextensionsareunacceptablefor anarchitecturesuchasClick, sincenew untrustedmod-
ulesareexpectedto bedevelopedandrun in thekernel.ImplementingClick on thePebbleinfrastructurewould add
fault-isolationfor elements,whichwill run in separateprotectiondomains.However, wemustreducethedomaincall
overhead by batching the processing of several packets in each element.

5.2 Support for Binary-only Modules

It is oftenthecasethatoperatingsystemcomponentssuchasdevice driverscanonly beprovidedin binaryform due
to licensingrestrictions.However, abinary-onlydriverwill fail oncetheinterfaceto otherkernelservicesis modified,
which is a frequentevent(e.g.in theLinux kernel[Usenix00]).Pebbleaccommodateschanginginterfacesby generat-
ing portals dynamically.

5.3 Automatic Diagnostics

Automaticdiagnosticsof performanceor otherproblemsin thefield [Banga00]canbeaidedby executionof diagnos-
tic moduleswritten by theappliancemanufacturerandransafelyon theappliance.Themanufactureroftenneedsto
quickly deploy new diagnostic code without waiting for the next release of the appliance operating system.



6. A Web Server Appliance

A component-basedsystemis not necessarilyslower thana functionally equivalentsystemwith a more integrated
structureas measuredby end-to-endperformance.We implementeda simple, single-threaded,event-driven Web
serverapplicationusingaTCPstackcomponentspecializedfor HTTPtraffic. Thespecializationsaimedto reducethe
per-connectionlatency (see[Nahum99]).We ran the Webstonebenchmarkto measureWeb server performanceon
Pebble(with specializedTCP) andOpenBSD(with a standardTCP network stack).Pebbleincludesthe following
relevantcomponentswhich run in separateprotectiondomains:interruptdispatcher, scheduler, ethernetdriver, TCP
protocolstackandapplication.WefoundthatPebblehascomparableperformanceto OpenBSD,evenfor smalltrans-
actions(64 to 2K bytes).AlthoughPebblehashigherlatency thanOpenBSD(measurementsshow about14%higher
1-byteUDP round-triptime comparedto OpenBSD),we caneasilyspecializetheTCPstackfor HTTP on Pebbleto
eliminatefour packetsfrom a singleHTTP GET or PUT operation.Suchspecializationsarenormallyharderto do in
a monolithic kernel.

7. Related Work

Scout[Mosberger96]is acommunication-orientedoperatingsystembasedonthepath abstractionthathelpsoptimize
dataflow betweenendssuchasI/O devices.An instanceof Scouttargetedfor a particularnetwork applianceis stati-
cally generatedfrom a collectionof building-blockmoduleswith theresultingmodularsystemoptimizedon a path-
by-pathbasis.Pebblediffers from Scoutin several ways.First, Pebble’s goal is to supporta saferexecutionmodel
whereeachsystemcomponentrunswithin its own addressspacefor fault-isolation.Second,Pebble’s inter-domain
communicationis donevia optimized,dynamicallygeneratedcode.Scoutis optimizedat compile-timeandrunsin a
singleaddressspace,while Pebbleis gearedtowardsrun-timeoptimizationandprovideshardware-enforcedprotec-
tion within components.Escort[Spatscheck99],which addsmultiple protectiondomainsto Scout,hasbeenfoundto
have a high overhead.

Exokernel[Kaashoek97]is a radicalapproachto operatingsystemdesignaimingto exterminateall high-level
kernelabstractions(implementedby trustedserversin microkernels)andfocusingon safelymultiplexing low-level
kernelresources.Exokernelimplementshigh-level abstractionsin user-spacelibraries(libOS’s).Leaving all policy in
user-spaceallows themto beeasilyspecialized.AlthoughanExokernelandlibOS implementationhave beenshown
to bea goodideafor certainapplications[Kaashoek97],it is not yet clearhow resourcescanbefairly sharedamong
competing libOS’s. Although libOS structure is orthogonal to the Exokernel architecture,published results
[Kaashoek97]referto amonolithiclibOS.Building anetwork appliancefor performancewith suchasystemis bound
to give rise to a number of problems when new appliances are added in the system.

8. Summary and Conclusions

We believe that an applianceoperatingsystemshouldbe built from fine-grainedcomponentsinsteadof building it
from scratchfor a particularuse,or scalingdown anexisting operatingsystem.A component-basedsystemis inher-
entlysafer, while providing new servicesrequiredby appliances,suchasresourcemanagement,fault tolerance,flexi-
ble datasharing,supportfor binary-onlymodulesandautomaticdiagnostics.Theperformanceof a typical network
appliance,asimpleWebserver runningunderPebble,is comparableto anequivalentserver runningunderOpenBSD,
a maturemonolithicsystem.We believe that thereis no performancerelatedreasonnot to usea safer, moremodular
component structure for such appliances.
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