
Distrib Parallel Databases
DOI 10.1007/s10619-013-7133-7

Scalable entity-based summarization of web search
results using MapReduce

Ioannis Kitsos · Kostas Magoutis · Yannis Tzitzikas

© Springer Science+Business Media New York 2013

Abstract Although Web Search Engines index and provide access to huge amounts
of documents, user queries typically return only a linear list of hits. While this is
often satisfactory for focalized search, it does not provide an exploration or deeper
analysis of the results. One way to achieve advanced exploration facilities exploiting
the availability of structured (and semantic) data in Web search, is to enrich it with
entity mining over the full contents of the search results. Such services provide the
users with an initial overview of the information space, allowing them to gradually
restrict it until locating the desired hits, even if they are low ranked. This is especially
important in areas of professional search such as medical search, patent search, etc. In
this paper we consider a general scenario of providing such services as meta-services
(that is, layered over systems that support keywords search) without a-priori indexing
of the underlying document collection(s). To make such services feasible for large
amounts of data we use the MapReduce distributed computation model on a Cloud
infrastructure (Amazon EC2). Specifically, we show how the required computational
tasks can be factorized and expressed as MapReduce functions. A key contribution
of our work is a thorough evaluation of platform configuration and tuning, an aspect
that is often disregarded and inadequately addressed in prior work, but crucial for

Communicated by Feifei Li and Suman Nath.

I. Kitsos · K. Magoutis · Y. Tzitzikas (B)
Institute of Computer Science, FORTH-ICS, Crete, Greece
e-mail: tzitzik@ics.forth.gr

I. Kitsos
e-mail: kitsos@ics.forth.gr

K. Magoutis
e-mail: magoutis@ics.forth.gr

I. Kitsos · K. Magoutis · Y. Tzitzikas
Computer Science Department, University of Crete, Heraklion, Greece

mailto:tzitzik@ics.forth.gr
mailto:kitsos@ics.forth.gr
mailto:magoutis@ics.forth.gr

Distrib Parallel Databases

the efficient utilization of resources. Finally we report experimental results about the
achieved speedup in various settings.

Keywords Text data analytics through summaries and synopses · Interactive data
analysis through queryable summaries and indices · Information retrieval and named
entity mining · MapReduce · Cloud computing

1 Introduction

Web searching is probably the most frequent user task in the web, during which
users typically get back a linear list of hits. Several user studies [34, 48, 59] have
shown that end-users see significant added value in services that analyze and group
the results (e.g. in categories, clusters, etc.) of keyword-based search engines. Such
services help them to easier locate the desired hits by initially providing them with
an overview of the information space, which can be further explored gradually in
a faceted search-like interaction scheme [50]. Our goal in this paper is to construct
at query time, a browsable summary of the full contents of the search results using
entity mining and external sources. To make such services feasible for large amounts
of data we parallelize the entity-mining process by exploiting the Map-Reduce [17]
distributed computation model. Our overall methodology falls in the general category
of big data analytics.

The provision of such summaries is very important in recall-oriented search,
which aims at satisfying information needs that require inspecting a set of resources
(e.g. decide which car or vacation package to buy). In contrast, precision-oriented
information needs can be satisfied by a single resource (e.g. find information about
a particular smart phone). According to [58], the majority of information needs have
exploratory nature, they are recall-oriented (e.g. bibliographic survey writing, med-
ical information seeking, car buying), and aim at decision making (based on one or
more criteria). According to Web search query analysis results reported in [7], 80 %
of the submitted queries correspond to recall-oriented needs.

A recent approach that falls in this category attempting to bridge the gap between
documents and structured information, is described in [19]. That work proposes a
method for enriching the classical interaction scheme of search systems (keyword
search over Web pages), with (Named) Entity Mining (for short NEM), over the tex-
tual snippets of the search results at query time, i.e., without any pre-processing. In
both [19] and in this paper we consider the scenario where these services are provided
as meta-services, i.e. on top of systems that support keywords search. In particular,
Fig. 1 illustrates the process that we consider. The initial query is forwarded to the
underlying search system(s)1 and the results are retrieved; then the URIs of the hits
are used for downloading the full contents of the hits, over which entity mining is per-
formed. The named entities of interest can be specified by external sources (e.g. by
querying SPARQL endpoints). Finally the identified entities are enriched with seman-
tic descriptions derived by querying external SPARQL endpoints. The user can then

1In our implementation any system that supports OpenSearch [14] can straightforwardly be used.

Distrib Parallel Databases

Fig. 1 The exploratory search process

gradually restrict the derived answer by clicking on the entities. The above process
is fully configurable and dynamic: the user can set up the desired underlying search
system, the desired kind of entities and the desired entity list. For example, in one
instance the user may request the analysis of results coming from Google, where the
entities of interest are person names, companies, and locations. In another instance
however, the user may request the analysis of hits coming from bibliographic sources
about the marine domain, where the entities of interest are water areas, species, indus-
tries, and names of politicians. Figure 2 shows an indicative screendump of the results
from such a meta-service. The right bar contains various frames for different entity
categories (e.g. Person, Organization, etc.) and in each of them the identified
entities are shown along with their number of occurrences. By clicking on an entity
the user may restrict the answer to those hits that contain that entity. The restricted
answer can be further restricted by clicking on another entity, and so on. By clicking
the icon to the right of each entity the system shows a popup window containing se-
mantic information fetched and assembled from the Linked-Open Data (LOD) cloud.
Figure 19 (in the Appendix) shows two screendumps from search engines focusing
on a specific segments of online content (also known as vertical search applications)
specializing on marine entity and patent search.

Applying NEM over the textual snippets of the top hits, where the snippet of a hit
consists of 10–20 words, has been shown to produce results in real time [19]. How-
ever, mining over snippets does not provide any guarantee about completeness of the
returned entities; moreover, not all search systems return textual snippets. Extending
NEM (without pre-processing) to the full contents of the top-hits is demanding in a
number of ways: First, it requires transferring (downloading) large amounts of data.
Second, it is resource-intensive both computationally (scanning and processing the
downloaded contents) and in terms of memory consumed. Performing entity mining
on several thousand hits (the scale of queries considered in this paper) using the se-
quential NEM procedure exceeds the capabilities of any single compute node (e.g.,

Distrib Parallel Databases

Fig. 2 An application for general-purpose searching

a Cloud VM) eventually leading to a crash. Even for just a few hundreds of hits, an
NEM job on a single node may crash or take several hours to complete.

To tackle these challenges, in this paper we propose two ways for distributing the
entity-mining process onto MapReduce tasks and examine ways to efficiently exe-
cute those tasks on the Apache Hadoop MapReduce platform on Amazon EC2. We
provide the required algorithms, we discuss their requirements (e.g. in terms of ex-
changed data), and establish analogies with other tasks (e.g. inverted index construc-
tion). While significant attention must be paid to the specification of the MapReduce
algorithms that address the problem at hand, the complexity of appropriately config-
uring and tuning the platform for efficient utilization of resources is often disregarded
and inadequately addressed in prior work. To this end we analyze the factors that af-
fect performance and how to tune them for optimal resource utilization. In fact, one
of our key contributions is to thoroughly evaluate the parameter space of the under-
lying platform and to explain how to best tune it for optimal execution. Finally we
report extensive and comparative experimental results. We believe that the methods
and results of our work are applicable to the parallelization and efficient execution of
other related applications.

The rest of this paper is organized as follows. In Sect. 2 we discuss the motivation,
context, and related work. In Sect. 3 we describe the centralized task, and in Sect. 4
we show how it can be logically decomposed and expressed as MapReduce functions.
In Sect. 5 we detail the implementation of the MapReduce tasks and in Sect. 6 we
report experimental results. Finally, in Sect. 7 we provide our conclusions and discuss
future work.

Distrib Parallel Databases

2 Background and related work

2.1 Analysis of search results

2.1.1 Why is it useful? Evidence from user studies

The analysis of search results is a useful feature as it has been shown by several
user studies. For instance, the results in [31] show that categorizing the search results
improves the search speed and increases the accuracy of the selected results. A user
study [30] shows that categories are successfully used as part of users’ search habits.
Specifically, users are able to access results that are located far in the rank order list
and formulate simpler queries in order to find the needed results. In addition, the
categories are beneficial when more than one result is needed like in an exploratory
or undirected search task. According to [34] and [59], recall-oriented information
can play an important role not only in understanding an information space, but also
in helping users select promising sub-topics for further exploration.

Recognizing entities and grouping hits with respect to entities is not only useful
to public web search, but is also particularly useful in professional search that is,
search in the workplace, e.g. in industrial research and development [33]. The user
study [48] indicated that categorizing dynamically the results of a search process in
a medical search system provides an organization of the results that is clearer, easier
to use, more precise, and in general more helpful than simple relevance ranking. As
another example, in professional patent search, in many cases one has to look beyond
keywords to find and analyze patents based on a more sophisticated understanding of
the patent’s content and meaning [29]. We should also stress that professional search
sometimes requires a long time. For instance, in the domain of patent search, the
persons working in patent offices spend days for a particular patent search request.
The same happens in bibliographic and medical search.

Technologies such as entity identification and analysis could become a significant
aid to such searches and can be seen, together with other text analysis technologies,
as becoming the cutting edge of information retrieval science [6]. Analogous results
have been reported for search over collections of structured artifacts, e.g. ontologies.
For instance, [1] showed that making explicit the relationships between ontologies
and using them to structure (or categorize) the results of a Semantic Web Search
Engine led to a more efficient ontology search process.

Finally, the usefulness of the various analysis services (over search results) is sub-
ject of current research, e.g. [11] comparatively evaluates clustering versus diversifi-
cation services.

2.1.2 Past work on entity mining over search results

Recent work [19] proposed the enrichment of the classical web searching with entity
mining performed at query time as a flexible way to integrate the results of keyword
search with structured knowledge (e.g. expressed using RDF/S). The results of entity
mining (entities grouped by their categories) complement the query answers with
useful information for the user which can be further exploited in a faceted search-
like interaction scheme [50]. In addition, [20] describes an application of the same

Distrib Parallel Databases

approach in the domain of patent search, where the underlying search systems are
patent search systems and entity mining is applied over some the text-valued metadata
of the patents.

As regards efficiency, [19] showed that the application of entity mining over the
(small in size) textual snippets of the top-hits of the answers, can be performed in
real-time. However, mining over the snippets returns less entities than mining over
the full contents of the hits, and comparative results for these two scenarios were re-
ported in [19]. Specifically, mining over the contents returns around 20 times more
entities than mining over just the snippets. This happens because a snippet is actually
an excerpt of the document containing the maximum possible number of words of the
submitted query (usually 10–20). Furthermore, the Jaccard Similarity index (a statis-
tic used for comparing the similarity and diversity of sample sets [26]) between the
top-10 entities from mining over the snippets vs. mining over full contents, is 0 %
(i.e., there are no common entities between the two entity sets) for about 60 % of
the queries. The main difference of [19] to our current work is that we apply entity
mining over the full contents and the required computation is distributed to various
nodes.

Another work that uses similar functionality is Google’s Knowledge Graph (as
announced in May 2012), which tries to understand the user’s query and to present
(on the fly) a semantic description of what the user is probably searching, actually
information about one entity. In comparison to our approach, Google’s Knowledge
Graph is not appropriate for recall-oriented search since it shows only one entity
instead of identifying and showing entities in the search results. Furthermore if the
user’s query is not a known entity, the user does not get any entity or semantic de-
scription.

We should clarify that the various Entity Search Engines (e.g. [13, 23, 56]) are not
directly related to our work, since they aim at providing the user only with entities
and relationships between these entities (not links to web pages); instead we focus
on enriching classical web searching with entity mining. In addition, works on query
expansion using lexical resources (thesauri, ontologies, etc.), or other methods that
exploit named entities for improving search (e.g. [10, 18]), are out of the scope of this
work, since we focus on (meta-)services that can be applied on top of search results.

From an information integration perspective, we can say that entity names are
used as the glue for automatically connecting documents with data (and knowledge).
This approach does not require designing or deciding on an integrated schema/view
(e.g. [54]), nor mappings between concepts as in knowledge bases (e.g. [28, 53]), or
mappings in the form of queries as in the case of databases (e.g. [22]). Entities can
be identified in documents, data, database cells, metadata attributes and knowledge
bases. Another important point is that the exploitation of LOD is more affordable
and feasible, than an approach that requires each search system to keep stored and
maintain its own knowledge base of entities and facts.

To the best of our knowledge, our paper is the first work that enriches Web search-
ing with entity mining over the full content of the search hits at query time, by ex-
ploiting the scalability of the MapReduce framework over Cloud resources.

Distrib Parallel Databases

2.2 MapReduce and summarization of big data

MapReduce [12, 17, 21, 45] is a popular distributed computation framework widely
applied to large scale data-intensive processing, primarily in the so-called big-data
domain. Big-data applications analyzing data of the order of terabytes are fairly com-
mon today. In MapReduce, processing is carried out in two phases, a map followed
by a reduce phase. For each phase, a set of tasks executing user-defined map and
reduce functions are executed in parallel. The former perform a user-defined opera-
tion over an arbitrary part of the input and partition the data, while the latter perform
a user-defined operation on each partition. MapReduce is designed to operate over
key/value pairs. Specifically, each Map function receives a key/value pair and emits
a set of key/value pairs. Subsequently, all key/value pairs produced during the map
phase are grouped by their key and passed (shuffled to the appropriate tasks and
sorted) to the reduce phase. During the reduce phase, a reduce function is called for
each unique key, processing the corresponding set of values.

Recently, several works have been proposed for exploiting the advantages of this
programming model [5, 24, 35, 41, 55], impacting a wide spectrum of areas like in-
formation retrieval [9, 40, 41], scientific simulation [41], image processing [12], dis-
tributed co-clustering [44], latent Direchlet allocation [61], nearest neighbors queries
[62], and the Semantic Web [42] (e.g. from storing/retrieving the increasing amount
of RDF data2 [24] to distributed querying [35] and reasoning [5, 55]).

Previous work by Li et al. [36] on optimally tuning MapReduce platforms con-
tributed an analytical model of I/O overheads for MapReduce jobs performing in-
cremental one-pass analytics. Although their model does not predict total execution
time, it is useful in identifying three key parameters for tuning performance: chunk
size (amount of work assigned to each map task); external sort-merge behavior; num-
ber of reducers. An important difference with our work is that their model does not
capture resource requirements of the mapper function, a key concern for us due to
the high memory requirements of our NEM engine. Additionally, Li et al. assume
that the input chunk size is known a-priori and thus they can predict mapper mem-
ory requirements, whereas in our case it is not. Another difference is that Li et al.
do not address JVM configuration parameters (such as heap size, reusability across
task executions) that are of critical importance: our evaluation shows that incorrectly
sizing JVM heap size (such as using default values) leads to a crash; reusing JVMs
across task executions can improve execution time by a factor up to 3.3. Our work
thus contributes to the state of the art in MapReduce platform tuning by focusing on
resource-intensive map tasks whose input requirements are not a-priori known.

2.2.1 Summarization of big data

MapReduce has also been used for producing summaries of big data (such as his-
tograms [47]) over which other data analytics tasks can be executed in a more scalable
and efficient manner (e.g. see [27]).

2By September 2011, datasets from Linked Open Data (http://linkeddata.org/) had grown to 31 billion
RDF triples, interlinked by around 504 million RDF links.

http://linkeddata.org/

Distrib Parallel Databases

Our work relates to data summarization in two key aspects:
First, the output of our analysis over the full search results can be considered a sum-
marization task over text data appropriate for exploration by human users. Text sum-
marization has been investigated by the Natural Language Processing (NLP) com-
munity for nearly the last half century (see [16, 43] for a survey). Various techniques
and methods have been derived for identifying the important words or phrases, either
for single documents or for multiple documents. In the landscape of such techniques,
the summarizations that we focus on are entity-based , concern multiple documents
(not single document summarization), and are topic-driven with respect to ranking,
and generic with respect to the set of identified entities. They are topic-driven since
they are based on the search results of a submitted query (that expresses the desired
topic) and the entities occurring in the first hits are promoted. However, since we
process the entire contents (not only the short query-dependent snippets of the hits),
the produced summary for each document is generic (not query-oriented). The extra
information that is mined in this way gives a better overview and can be used from the
users for further exploration. Moreover, as we will see later on Sect. 3.3, we identify
various levels of functionality each characterizing the analyzed content at different
levels of detail, and consequently enable different post-processing tasks by the users
(just overviews versus the ability to also explore and restrict the answer based on
the produced summary/index). To the best of our knowledge, such summaries have
not been studied in the past. Moreover, the fact that they are configurable (one can
specify the desired set of categories, entity lists, etc.), allows adapting them to the
needs of the task at hand; this is important since there is not any universal strategy
for evaluating automatically produced summaries of documents [16].

Second, our implementations perform a first summarization pass over the full
search results to (i) analyze a small sample of the documents and provide the end-user
a quick preview of the complete analysis; and (ii) collect the sizes of all files and use
them in the second (full) pass to better partition that data set achieving better load
balancing.

2.3 Cloud computing

MapReduce is often associated with another important trend in distributed comput-
ing, the model of Cloud computing [4, 32]. Cloud computing refers to a service-
oriented utility-based model of resource allocation and use. It leverages virtualization
technologies to improve the utilization of a private or publicly-accessible datacenter
infrastructure. Large Cloud providers (such as Amazon Web Services, used in the
evaluation of our systems) operate out of several large-scale datacenters and thus can
offer applications the illusion of infinite resource availability. Cloud-based applica-
tions typically feature elasticity mechanisms, namely the ability to scale-up or down
their resource use depending on user demand. MapReduce fits well this model since
it is highly parametrized and can be configured to use as many resources as an ad-
ministrator deems cost-effective for a particular job. Given the importance of Cloud
computing for large-scale MapReduce implementations, we deploy and evaluate our
system on a commercial Cloud provider so that our results are representative of those
in a real-world deployment of our service.

Distrib Parallel Databases

3 The centralized process

Recalling the exploratory search process described at a high level and depicted in
Figs. 1 and 2, we will now describe a centralized (non-parallel) version of the process
in more detail. The process consists of the following general steps:

1. Get the top HK (e.g. HK = 200) results of a (keyword) search query
2. Download the contents of the hits and mine their entities
3. Group the entities according to their categories and rank them
4. Exploit Semantic Data (the LOD cloud) for semantically enriching the top-EK

(e.g. EK = 50) entities of each category (also for configuring step 2), and
5. Exploit the entities in faceted search-like (session-based) interaction scheme with

the user.

This process can also support classical metadata-based faceted search and explo-
ration [50] by considering categories that correspond to metadata attributes (e.g. date,
type, language, etc.). Loading such metadata is not expensive (in contrast to applying
NEM over the full contents) as they are either ready (and external) to the document
or the embedded metadata can be extracted fast (e.g. as in [37]). Therefore we do not
further consider them in this paper.

In what follows, we introduce notation (Sect. 3.1), we detail the steps of the above
process (Sect. 3.2), and we distinguish various levels of functionality (Sect. 3.3).
Next, in Sect. 4 we describe the parallelization of this process using the MapReduce
framework.

3.1 Notations and entity ranking

Let D be the set of all documents and C the set of all supported categories, e.g.
C = {Locations,Persons,Organizations,Events}. Considering a query q , let A be the
set of returned hits (or the top-HK hits of the answer), and let Ec be the set of entities
that have been identified and fall in a category c ∈ C. For ranking the elements of
Ec, we follow the ranking method proposed in [19]: we count the elements of A in
which the entity appears (its frequency) but we also take into account the rank of the
documents that contain that entity in order to promote those entities that are identified
in more highly ranked documents (otherwise an entity occurring in the first two hits
will receive the same score as one occurring in the last two). For an a ∈ A, let rank(a)

be its position in the answer (the first hit has rank equal to 1, the second 2, and so
on). We use the formula: Score(e) = ∑

a∈docs(e) ((|A| + 1) − rank(a)). We can see
that an occurrence of e in the first hit counts |A|, while an occurrence of the answer
in the last document counts for 1.

3.2 The centralized algorithm

Using the notation introduced above, a centralized (non-parallel) algorithm for the
general exploratory search process (steps 1–5) described in Sect. 3 is provided below
(Algorithm 1). For brevity, the initialization of variables (0 for integer-valued and ∅
for set-valued attributes respectively) has been omitted. The algorithm takes as input

Distrib Parallel Databases

Algorithm 1 Centralized algorithm
1: function DoTask(Query q, Int HK,EK)
2: A = Ans(q,HK) � Get the top HK hits of the answer
3: for all i = 1 to HK do
4: d = download(A[i]) � Download the contents of hit i

5: outcome = nem(d) � Apply NEM on d
6: for all (e, c) ∈ outcome do
7: AC = AC ∪ {c} � Update active categories
8: e.score(c)+ = i � Update the score of e wrt c

9: e.count(c)+ = 1 � Update the count of e wrt c

10: e.doclist(c)∪ = {A[i]} � Update the (e, c) doclist

11: for all c ∈ AC do � For each (active) category
12: c.elist = top-EK entities after sorting wrt ∗.score(c)

13: for all e ∈ c.elist do � LOD-based sem. enrichment
14: if e.semd=empty then
15: e.semd=queryLOD(e)

16: return {(c, e, e.count(c), e.score(c), e.doclist(c), e.semd) | c ∈ AC,e ∈ c.elist}

the query string q , the number HK of top hits to analyze, and the number EK of top
entities to show for each category. Its results is a set of tuples, each tuple describing
one entity and consisting of 6 values: category, entity name, entity count, entity score,
entity occurrences (doc list), entity’s semantic description.

For clarity, we have used a simplified scoring formula in Algorithm 1. To use the
exact entity ranking method described in Sect. 3.1, line 8 should be replaced with
e.score(c)+ = (HK + 1) − i.

3.3 Levels of functionality

Algorithm 1 can be seen as providing different levels of functionality, from minimal
to full, each with different computational requirements and progressively richer post-
processing tasks. The minimal level functionality (or L0) identifies only categories
and their entities. The next level (L1) contains the results of L0 plus count informa-
tion of the identified entities (what is usually called histogram). The next level (L2)
extends the results of L1 with the ranking of entities using the method described ear-
lier. Level L3 additionally includes the computation of the document list for each
entity. The results of L3 allow the gradual restriction process by the user. Level L4 or
full functionality further enriches the identified entities with their semantic descrip-
tion. Algorithm 1 corresponds to L4.

Each level produces a different kind of summary, capturing different features of the
underlying contents and enabling different tasks to be applied over it. The parameters
HK and EK can be used to control the size of the corpus covered by the summary,
and the desired number of entities to identify.

Note that instead of applying this process over the set A (the top-HK hits returned
by the underlying search system(s)) one could apply it over the set of all documents
D, if that set is available. This scenario corresponds to the case where one wants to
construct (usually offline) an entity-based index of a collection. Consequently, the

Distrib Parallel Databases

parallelization that we will propose in the next sections, could also be used for speed-
ing up the construction of such an index. The extra time required in this case is only
the time needed for storing the results of the process in files. Moreover, in that sce-
nario the collection is usually available, thus there is no cost for downloading it.
However, our original motivation and focus is to provide these services at meta-level
and at query time, which is more challenging.

4 Parallelization

In this section we describe a parallel version of Algorithm 1 and then adapt it to the
MapReduce framework (Sect. 4.1). Note that our exposition here focuses on algorith-
mic issues. We will describe our MapReduce implementations in Sect. 5.

The main idea is to partition the computation performed by Algorithm 1 by doc-
uments. Let AP = {A1, . . . ,Az} be a partition of A, i.e. A1 ∪ · · · ∪ Az = A, and if
i �= j then Ai ∩ Aj = ∅. The downloading of A can be parallelized by assigning to
each node ni the responsibility to download a slice Ai of the partition. The same
partitioning can be applied to the NEM analysis, namely ni will apply NEM over the
contents of the docs in Ai . Other tasks in Algorithm 1 however are not independent
as they operate on global (aggregated) information. This is true for the collection of
the active categories (AC), the collection of entities falling in each category of AC,
the count information for each entity of a category, the doc list of each entity of cat-
egory. While the task of getting the semantic description of an entity is independent,
the same entity may be identified by the docs assigned to several nodes (so redundant
computation can take place).

In more detail, instead of having one node responsible for all 1, . . . ,HK doc-
uments, we can have z nodes responsible for parts of the documents: the first
node for 1, . . . ,HK1, the second for HK1, . . . ,HK2, and so on, and the last for
HKz−1, . . . ,HK. Algorithm 2 (DoSubTask) is the part of the computation that each
such node should execute, a straightforward part that is essentially similar to the
previous algorithm. In line (3) the algorithm assumes access to a table A[] hold-
ing the locators (e.g. URLs) of the documents. Alternatively, the values in the cells
A[LowK] − A[HighK] can be passed as a parameter to the algorithm.

Algorithm 2 Algorithm for a set of document
1: function DoSubTask(Int LowK,HighK)
2: for all i = LowK to HighK do
3: d = download(A[i]) � Download the contents of hit i

4: outcome = nem(d) � Applies NEM on d
5: for all (e, c) ∈ outcome do
6: AC = AC ∪ {c} � Update active categories
7: e.score(c)+ = i � Update the score of e wrt c

8: e.count(c)+ = 1 � Update the count of e wrt c

9: e.doclist(c)∪ = {A[i]} � Update the (e, c) doclist

10: return {(c, e, e.count(c), e.score(c), e.doclist(c)) | c ∈ AC,e ∈ c.elist}

Distrib Parallel Databases

Having seen how to create z parallel subtasks, we will now discuss how the results
of those subtasks can be aggregated. Note that entity ranking requires aggregated
information while the semantic enrichment of the identified entities can be done after
ranking. This will allow us to pay this cost for the top-ranked entities only (recall
the parameter EK of Algorithm 1), that is those entities that have to be shown at the
UI. Semantic enrichment for the rest can be performed on demand, only if the user
decides to expand the entity list of a category.

The aggregation required for entity ranking can be performed by Algorithm 3
(AggregateSubTask). This algorithm assumes that a single node receives the
results from all nodes and performs the final aggregation.

The aggregation task can be parallelized straightforwardly by dividing the work
by categories, i.e. use |AC| nodes to each aggregate the results of one category (es-
sentially each will contribute one “rectangle” of information at the final GUI like the
one shown in Fig. 2). This is sketched in Algorithm 4 (AggregateByCategory).
Notice that the count information produced by the reduction phase is correct (i.e.
equal to the count produced by the centralized algorithm), because a document is the

Algorithm 3 Aggregation function for all categories
1: function AggregateSubTask(. . .)
2: Concatenate the results of all SubTasks in a table TABLE
3: AC = { c | (c,∗,∗,∗,∗) ∈ TABLE}
4: for all c ∈ AC do � For each (active) category
5: c.entities = { e | (c, e,∗,∗,∗) ∈ TABLE}
6: for all e ∈ c.entities do
7: e.count(c) = ∑{ cnt | (c, e, cnt,∗,∗) ∈ TABLE}
8: e.score(c) = ∑{ s | (c, e,∗, s,∗) ∈ TABLE}
9: e.doclist(c) = ∪{ dl | (c, e,∗,∗, dl) ∈ TABLE}

10: c.elist = top-EK entities after sorting wrt ∗.score(c)

11: for all e ∈ c.elist do � LOD-based sem. enrichment
12: if e.semd =empty then
13: e.semd=queryLOD(e)

14: return {(c, e, e.count(c), e.score(c), e.doclist(c), e.semd) | c ∈ AC,e ∈ c.elist}

Algorithm 4 Aggregation function for one category
1: function AggregateByCategory(Category c)
2: Merge the results of all SubTasks that concern c in a table TABLE
3: c.entities = { e | (c, e,∗,∗,∗) ∈ TABLE}
4: for all e ∈ c.entities do
5: e.count(c) = ∑{ cnt | (c, e, cnt,∗,∗) ∈ TABLE}
6: e.score(c) = ∑{ s | (c, e,∗, s,∗) ∈ TABLE}
7: e.doclist(c) = ∪{ dl | (c, e,∗,∗, dl) ∈ TABLE}
8: c.elist = top-EK entities after sorting wrt ∗.score(c)
9: for all e ∈ c.elist do � LOD-based semantic enrichment

10: if e.semd =empty then
11: e.semd=queryLOD(e)

12: return {(c, e, e.count(c), e.score(c), e.doclist(c), e.semd) | c ∈ AC,e ∈ c.elist}

Distrib Parallel Databases

responsibility of only one mapper. The ranking of the entities of each category is cor-
rect because Algorithm 2 takes as parameters the LowK and HighK and uses them in
the for loop and line (7).

4.1 Adaptation for MapReduce

In this section we cast the above algorithms in the MapReduce programming style,
whose key concepts were introduced in Sect. 2.2. From a logical point of view, if we
ignore entity ranking, count information and doclists, the core task of Algorithm 1
becomes the computation of the function nem : A → E × C. Using MapReduce,
the mapping phase partitions the set A to z blocks and assigns to each node i the
responsibility of computing a function nemi : Ai → E × C. The original function
nem can be derived by taking the union of the partial functions, i.e. nem = nem1 ∪
· · · ∪ nemz. Mapper tasks therefore carry out the downloading and mining tasks for
their assigned set Ai . Note that the partitioning A → {A1, . . . ,Az} should be done in a
way that balances the work load. Methods to achieve this will be described in Sect. 5.
One or more reducer tasks will aggregate the results by category, as described earlier,
and a final reducer will combine the results of the |C| reducers. The correspondence
with MapReduce terminology is depicted in the following table:

Algorithms MapReduce functions

Algorithm 2 DoSubTask Map
Algorithm 2 return emit (with key c, value the rest parts of the tuples)
Algorithm 4 AggregateByCategory Reduce (params: key c, and value the rest parts of

tuples)
Algorithm 4 return emit (with key c, value the rest parts of the tuples)

Mapper tasks executing Algorithm 2 are emitting (key, value) pairs grouped by
category. MapReduce ensures that all pairs with the same key are handled by the same
reducer. This means that line (2) of Algorithm 4 is implemented automatically by the
MapReduce platform. The platform actually provides an iterator over the results of
all subTasks that concern c in a Table TABLE.

Figure 3 sketches the performed computations and the basic flow of control for a
query.

4.1.1 Amount of exchanged information

In this section we estimate the amount of information that must be exchanged in
our MapReduce procedure over network communication. NEM could be used for
mining all possible entities, or just the named entities in a predefined list. In the
extreme case, the entities that occur in a document are in the order of the number
of its words. Another option is to mine only the statistically important entities of a
document. If dasz denotes the average size in words of a document in D, then the
average size of the mined entities per document is in O(dasz). A node assigned a
subcollection Di (Di ⊆ D) will communicate to the corresponding reducers data with
size in O(|Di |dasz). Therefore, the total amount of information communicated over
the network for performing mining over the contents of an answer A is in O(|A|dasz).

Distrib Parallel Databases

Fig. 3 Example of distributed NEM processing using MapReduce

If the set of entities of interest E is predefined and a-priori known, then the above
quantity can be expressed as |A||E|, so in general, the amount of communicated
data is in O(|A|min(dasz, |E|)). Note that if the entities have only count information
and no document lists (functionality L2 described in Sect. 3.3), then the exchanged
information is significantly lower, specifically it is in O(zmin(dasz, |E|)) where z is
the number of partitions. This is because each of the z nodes has to send at most dasz

(or |E|) entities.

4.1.2 An analogy to inverted files

Suppose that the answer A is not ranked, and thus the entities are ranked by their
count. In this case the results of our task resemble the construction of an Inverted File
(IF), otherwise called Inverted Index, for the documents in A where the vocabulary
of that index is the list of entities of interest (i.e. the set E). The fact that we have
|C| categories is analogous to having |C| vocabularies, i.e. as if we have to create
|C| inverted files. The count information of an entity for a category c (e.count (c))

Distrib Parallel Databases

corresponds to the document frequency (df) of that IF, while the doclist of each en-
tity (e.doclist(c)) corresponds to the posting list (consisting of document identifiers
only, not tf ∗ idf weights) of an IF. This analogy reveals the fact that the size of the
output can be very large. An important difference with MapReduce-based IF con-
struction [41] is that our task is more CPU and memory intensive. Besides the cost
of initializing the NEM component (described in more detail in Sect. 5.2.1), entity
mining requires performing lookups, checking rules, running finite state algorithms
etc.

5 Implementation

This section describes the MapReduce platform in more detail and outlines two
MapReduce procedures to perform scalable entity mining at query time over the full
search contents. It also highlights the key factors that affect performance. An impor-
tant objective guiding our implementation is to achieve effective load balancing of
work across the available resources in order to ensure scalable behavior.

5.1 MapReduce platform: Apache Hadoop

Our implementation uses Apache Hadoop [3] version 1.0.3, an open-source Java
implementation of the MapReduce [17] framework. MapReduce supports a specific
model of concurrent programming expressed as map and reduce functions, executed
by mapper and reducer tasks respectively. A mapper receives a set of tuples in the
form (key, value), and produces another set of tuples. A reducer receives all tuples
(outputs of a mapper) within a given subset of the key space.

Hadoop provides runtime support for the execution of MapReduce jobs handling
issues such as task scheduling and placement, data transfer, and error management on
clusters of commodity (possibly virtual) machines. Hadoop deploys a JobTracker to
manage the execution of all tasks within a job, and a TaskTracker in each cluster node
to manage the execution of tasks on that node. It uses the HDFS distributed file system
to store input and output files. HDFS stores replicas of file blocks in DataNodes and
uses a NameNode to store metadata. HDFS DataNodes are typically collocated with
TaskTracker nodes, providing a direct (local) path between mapper and reducer tasks
and input and output file replicas.

5.2 MapReduce procedures

We have identified two important challenges that must be addressed in our MapRe-
duce implementation: (i) distributing documents to be processed by NEM tasks is
complicated by the fact that important information, such as content size of the hits,
is not known a-priori; and (ii) even with excellent scalability, the end-user may not
want to wait for the entire job to complete, preferring a quick preview followed by a
complete analysis. We have thus experimented with two different MapReduce proce-
dures: a straightforward implementation (oblivious to (i), (ii)) focusing on scalability,
and a more sophisticated implementation taking (i) and (ii) into account. The former

Distrib Parallel Databases

is the single-job procedure, in which partitioning of work to tasks is done without tak-
ing document sizes into account (since the documents are downloaded after the work
has been assigned to tasks). The latter is the chain-job procedure, in which a first
job downloads the documents (and thus determines their sizes) and performs some
preliminary entity-mining (producing the preview), while a second job (chained with
the first) continues the mining over size-aware partitions of the contents to produce
the complete NEM analysis.

5.2.1 Single-job procedure

The single-job procedure comprises a first stage that queries a search engine to re-
ceive the hits to be processed and prepares the distribution to tasks, followed by
a second stage of the MapReduce job itself, both shown in Fig. 4. A Master node
(where the JobTracker executes) performs preliminary processing. First it queries a
Web Search Engine (WSE), which returns a set of titles, URLs, and snippets. Next,
the Master tries to determine the URL content length in order to better balance the
downloading and processing of URL contents in the MapReduce job. One way to
achieve this is to perform an HTTP HEAD request for each URL prior to down-
loading it. Unfortunately, our experiments showed that HEAD requests often do not
report correct information about content length (they are correct in only 9 %–30 %
of the time). In cases of missing/incorrect information, we resort to assigning URL
content length to the median size of web pages reported by Google developers [49].
Therefore we consider that the single-job procedure practically does not have a-priori
knowledge of URL content sizes.

Our methodology to split work to tasks proceeds as follows: First, we sort doc-
uments in desceding order (based on approximate content length) in a stack data
structure and compute the aggregated content length of all search results. Then we
compute the number of work units (or splits) to be created as (aggregated content
length)/(target split size), where target split size is an upper bound for the amount of
document data (MB) to be assigned to each task. We investigate the impact of split
size on performance in Sect. 6.5. When not stated otherwise we use a target split size
of 1.5 MB. Our process repeatedly pops the top of the stack and inserts it to the split

Fig. 4 Single-job design

Distrib Parallel Databases

Fig. 5 Single-job mapper

with the minimum total size, until the stack is empty. When the assignment of URLs
is complete, the produced splits are stored in HDFS.

At the second stage of the single-job procedure (Fig. 4) a number of mapper tasks
are created on a number of JVMs hosted by Cloud VMs. JVM configuration and
number of JVMs per VM are key parameters that are further discussed in Sects. 5.3
and 6. The operation of each mapper is depicted in Fig. 5. Besides the creation of
appropriate-size splits, we are taking care to determine the order of task execution for
optimal resource utilization. Taking into account the fact that our datasets typically
include a few large documents (Sect. 6.2) we schedule the corresponding long tasks
early in the job to increase the degree of overlap with other tasks.

We use the GATE [8, 15] component for performing NEM processing. GATE re-
lies on finite state algorithms and the JAPE (regular expressions over annotations)
language [51]. Our installation of GATE consists of various components, such as the
Unicode Tokeniser (for splitting text into simple tokens such as numbers, punctuation
and words), the Gazetteer (predefined lists of entity names), and the Sentence Splitter
(for segmenting text into sentences). GATE typically spends about 12 seconds ini-
tializing before it is ready for processing documents. This time is spent among other
things in loading various artifacts such as lists of entities, expression rules, configura-
tion files, etc. Ideally, the cost of initializing GATE should be paid once and amortized
over multiple mapper task executions. To reduce the impact of GATE initialization
we decided to exploit the use of reusable JVMs (Sect. 5.3) as well as to overlap that
time with the fetching of URL content from the Internet. As soon as HTML content
is retrieved it is fed to GATE which processes it and outputs categories and entities.

GATE outputs are continuously merged so that entities under the same category
are grouped together, avoiding redundancies. The merged output of a mapper task
is kept in a memory buffer until the task finishes, at which point it is collected and
emitted into a buffer (of size io.sort.mb MB) where it is sorted by category. If
the produced output exceeds a threshold (set by io.sort.spill.percent) it
starts to spill outputs to the local file system (to be merged at a later time). We have
sized the sort buffer appropriately to ensure a single spill to disk per mapper. We use
a combiner [52] to merge the results from multiple mappers operating on the same
node.

Distrib Parallel Databases

Fig. 6 Chain-job design

The reduce phase performs the merging of mapper outputs per category and com-
putes the scores of the different entities (Sect. 3.1). The latter is possible since the
document identifiers reflect the positions of the documents in the list (e.g. d18 means
that this document was the 18th in the answer). Since this is fairly lightweight func-
tionality we anticipate that there is little benefit from parallelizing this phase and thus
use a single reducer task. This choice has the additional benefit of avoiding the need
to merge outputs from multiple reducers.

5.2.2 Chain-job procedure

We have developed an alternative MapReduce procedure that consists of two
chained [60] jobs (Jobs #1 and #2, where the output of Job #1 is input to Job #2)
as shown in Fig. 6. The rationale behind this design is the following: Job #1 down-
loads the entire document set and thus gains exact information about content sizes.
Therefore Job #2 (full analysis) is now able to perform a size-aware assignment of
the remaining documents to tasks. At the same time, we believe that most users ap-
preciate a quick NEM preview on a sample of the hits before getting the full-scale
analysis. Job #1 is designed to perform such a preview.

In Fig. 6, the Master node queries the search engine getting the initial set of titles,
URLs, and snippets. Then, it creates the initial split of the URLs without using any
information about their sizes. Since Job #1 tasks are primarily downloading docu-
ments while performing only limited-scale NEM analysis, there is no need to create
more tasks than the number of JVM slots available. Job #1 mappers (Fig. 7) will
read their split and begin downloading URL contents while starting the initialization
of GATE. Downloaded content is stored as local files. As soon as GATE is ready, it
starts consuming some of these files. As soon as downloading of all URLs in its split
is complete, each map task continues with a certain amount of entity mining and then
terminates. Once all mappers are done, a reducer uses the sizes of all yet-unprocessed
files to create the splits for Job #2. Having accurate knowledge of file sizes, we can
ensure that the splits are as balanced (in terms of size) as possible using the method-
ology described in Sect. 5.2.1. Additionally, having already performed some amount
of entity mining, the system provides a preview of the NEM analysis to the user. The
entire Job #1 is currently scheduled to take about a minute (though this is config-
urable), including the overhead of starting up and terminating it. A key point is that

Distrib Parallel Databases

Fig. 7 Chain-job mapper #1 (preview analysis)

Fig. 8 Chain-job mapper #2 (full analysis)

within the fixed amount of time for Job #1, one can choose to perform a deeper pre-
view (process more documents) by allocating more resources (VMs) to that job. This
point is further investigated in Sect. 6.4.1.

Job #2 features mappers (Fig. 8) that initially read files downloaded by the previ-
ous job and process them through GATE. The files are originally stored in the local
file systems of the nodes that downloaded them, so reading them typically involves
high-speed network communication [32]. Having created a balanced split via Job #1,
we have ensured a more efficient utilization of resources compared to what is possi-
ble with the single-job procedure. Just as in the single-job procedure, the scores of
the entities are computed at the single reducer of Job #2.

5.3 Platform parameters impacting performance

While MapReduce is a straightforward model of concurrent programming, tuning
the underlying platform appropriately is a major undertaking that is often not well
understood by application programmers. A variety of configuration parameters set at
their default values usually result in bad performance, and arbitrary experimentation
with them often leads to crashing applications. A major objective of this paper is to
highlight the key characteristics of the underlying platform (Hadoop and the Ama-

Distrib Parallel Databases

zon EC2 Cloud), tune them appropriately for our workloads, and to investigate their
impact on performance.

5.3.1 Mapper parameters

A key parameter is the split, the input data given to each task, which can be either a
static or a dynamic parameter (e.g., either fixed part of an input file or dynamically
composed from arbitrary input sources). Dividing the overall workload size by the
average size of the split determines how many map tasks will be scheduled and ex-
ecuted within the MapReduce job. For example, if the total size of hits that we want
to analyse is 12 MB and the split set to 2 MB we will need a total of six tasks. One
needs to carefully size the split assigned to each mapper. Generally, Hadoop imple-
menters are advised to avoid fine-grain tasks due to the large overhead of starting up
and terminating them. On the other hand, larger splits increase their memory require-
ments eventually increasing garbage collection (GC) activities and their overhead.
In our evaluation we examine the precise impact of task granularity in performance
(Sect. 6.5).

Another key parameter is the number of Java Virtual Machines (JVMs) per Task-
Tracker node (VM) available to concurrently execute tasks, which is controlled via
mapred.tasktracker.map.tasks.maximum; we will refer to this parame-
ter as JpV (or JVMs per VM). Generally, this parameter should be set taking the
parallelism (number of cores) and memory capacity of the underlying TaskTracker
into account. Fewer JVMs per TaskTracker means that there is more heap space
available to allocate to them. On the other hand, a higher number of JVMs will bet-
ter match parallelism in the underlying VM. Another potential optimization is the
reusability of JVMs across task executions. MapReduce can be configured to reuse
(rather than start fresh) a JVM [52, p. 170] across task invocations, thus amortizing
its startup/termination costs. The degree of reusability of JVMs is configured via the
mapred.job.reuse.jvm.num.tasks parameter, which defines the maximum
number of tasks to assign per JVM instance (the default is one).

At the output of a mapper, one needs to allocate sufficient memory to the Sort
buffer (Fig. 5) to avoid repeated spills and subsequent merge-sort operations. The
size of the buffer (controlled by the io.sort.mb parameter) defaults to 100 MB.
Overdrawing on available memory for this buffer means that there will be less mem-
ory left for GATE processing. In our case, the summarization performed by NEM
reduces the size of the input by an order of magnitude. Even at the default setting of
io.sort.mb, the rate of output expected from our mappers is not expected to pro-
duce spills to disk. Thus io.sort.mb is a non-critical parameter for our MapRe-
duce jobs.

Since the map phase takes up the bulk of our MapReduce jobs we have paid par-
ticular attention on how to optimally tune MapReduce parameters for it. Our tuning
methodology explores the tradeoffs and interdependencies between these parame-
ters and outputs the heap size per JVM, JVMs per VM (JpV parameter), degree of
reusability, and split size (MB). The methodology relies on a systematic exploration
of the parameter space using targeted experiments in two phases: The first (or intra-
JVM) phase explores single-JVM performance whereas the second (or inter-JVM)

Distrib Parallel Databases

Table 1 Execution time varying split size and heap size with fixed reusability R (✗ means the job failed)

Split size (MB) Reusability: R

Heap size (MB)

heap1 heap2 heap3 heap4 heap5

split1 ✗ time1 time2 time3 time4

split2 ✗ ✗ time5 time6 time7

split3 ✗ ✗ ✗ time8 time9

phase explores performance of concurrently executing JVMs. The intra-JVM phase
explores values of split size, heap size, and reusability for a JVM and produces tables
such as Table 1.

These tables are produced by first creating splits of different sizes typical of the
input workload. For each size, a group of splits are given as input to a JVM config-
ured for a specific heap size and reusability level. The size of the group is chosen
to ensure that the job reaches steady state but remains reasonably short to keep the
overall process manageable. The final outcome (success/failure, execution time) is
recorded in the corresponding cell of the table. The tradeoffs in the parameter space
are: Higher split sizes improve efficiency but require larger amounts of heap to en-
sure successful and efficient execution. Higher reusability improves amortization of
the JVM startup/termination and GATE initialization costs but requires increasing
amounts of heap size to avoid failures and to improve performance. The heap size
parameter takes specific values computed as follows:

JVM heap memory = total VM memory available

JpV
. (1)

JpV ranges from a minimum level of parallelism (equal to the number of cores in
the VM) to a maximum level that corresponds to the minimum JVM heap deemed
essential for operation of the JVM.

Our methodology selects configurations from the parameter space of Table 1 with
the following two requirements: (i) they terminate successfully; (ii) their execution
time is close to a minimum. In our experience, a set of feasible and efficient solutions
can be rapidly determined by direct observation of the tables by a human expert as
exhibited in Sect. 6.7.

For those configurations Ci = (spliti ,heapi , reusabilityi) that are feasible and have
minimal execution time, we continue to the inter-JVM phase that examines them
on concurrently executing JVMs. For each configuration Ci , we deploy a number
of splits (a multiple of that used in the previous phase, to account for concurrently
executing JVMs) on as many JVMs as Ci ’s heap allows (JpV , Eq. (1)). Our goal in
this phase is to examine the impact of different degrees of concurrency on efficiency.
Configurations with higher concurrency than can be efficiently supported by the VM
platform will be excluded in this phase. Between configurations that perform best,
we select that with the largest heap size for its improved ability to handle larger-than-
average splits.

Distrib Parallel Databases

5.3.2 Reducer parameters

Our MapReduce jobs require that a reducer collects a fixed set of categories. De-
ciding on the number of reducers to use in a particular MapReduce job has to take
into account the overall amount of work that needs to be performed. More reducer
tasks will help better parallelize the work (assuming units of work are not too small)
while fewer reducer tasks reduce the need for aggregating their outputs (performed
through an explicit HDFS command). The summarization performed by NEM pro-
cessing as well as the tuple merging in our mappers significantly reduce the amount
of information flowing between the map and reduce stages, making a single reducer
task the best option in our targeted input datasets. The execution time of the reducer
is proportional to the size of the mappers’ output as quantified in Sect. 4.1.1.

The reduce process starts by fetching map outputs via HTTP. The time spent on
communication during this phase depends on the amount of exchanged information
and the network bandwidth. Terminated mappers communicate their results to the
reducer in parallel to the execution of subsequent instances of mappers, thus there is
a significant degree of overlap. Therefore, communication time is in the critical path
only after all mappers have completed (and this time is expected to be minimal for
most practical purposes).

While receiving tuples from mappers, the reduce task performs a merge-sort of
the incoming tuples [52] spilling buffers to disk if needed. The default behavior of
Hadoop MapReduce is to always spill in-memory segments to disk even if all fetched
files fit in the reducer’s memory, aiming to free up memory for use in executing the
reducer function. When memory is not an issue, the default behavior can be overrid-
den, to avoid the I/O overhead of unnecessarily spilling tuples to disk. This can be
done by specifying a threshold (percentage over total heap size, default 0 %) over
which data collected at the reducer should be spilled to disk. Setting the spill thresh-
old higher (for example, to 60 % of 256 MB of heap allocated to the reducer) is
sufficient to fully avoid spills in our experiments without creating memory pressure
for the mapper. For example, a 300 MB input dataset produces about 24 MB of total
mapper output, which is well below the set threshold.

As reduce tasks store their output on HDFS, having a local DataNode collocated
with each TaskTracker helps, since writes from reduce tasks always go to a local
replica at local-disk speeds. HDFS supports data replication with a default value of
3. Since we are not interested in long-term persistent storage for the files written to
HDFS, we set the replication factor to one. This has the added benefit of avoiding
the overhead of maintaining consistency across replicas. Finally, we decided to in-
stall/locate all the needed resources for tasks on all machines instead of using the
DistributedCache facility [57] to fetch them on demand over the network. While this
requires extra effort on the part of the administrator, it results in faster job startup
times.

5.4 A Measure of imbalance in task execution times

To capture the degree of imbalance in task execution times in MapReduce jobs (which
may be a cause for inefficiency as shown in our evaluation, Sect. 6.5), we have defined

Distrib Parallel Databases

a measure that we term the imbalance percentage (IP). IP refers to the variation in
last-task completion times (we focus on mappers since this is the dominant phase
in our jobs) across the available JVMs of a given node i and is defined as follows.
Assume that there are Ni JVMs available to execute tasks on node i and that all
JVMs start executing tasks at the same time (Ti,0). The first JVM to run out of tasks
does so at time Ti,min and the last JVM to run out of tasks does so at time Ti,max .
The ideal execution time on node i would therefore be Ti,min + Di where Di =
(Ti,max − Ti,min)/Ni . The imbalance percentage on node i is thus defined as

IPi = Di

Ti,max

× 100 %

The imbalance percentage for the entire job, denoted as IP, is calculated as the
average of the above quantities across all nodes.

6 Evaluation

In this section we evaluate performance of our MapReduce procedures during entity
mining of different datasets and measure the achieved speedup with different numbers
of nodes as well as the impact on performance of a number of platform parameters.
In Sect. 6.1 we outline sources of non-determinism in our system and ways to address
them. In Sect. 6.2 we describe the procedure with which we create realistic synthetic
datasets and in Sect. 6.3 we describe our experimental platform. From Sect. 6.4 we
focus on scalability and on the impact of different platform parameters to efficiency
and high performance.

6.1 Sources of non-determinism

A number of external factors that exhibit varying and time-dependent behavior are
sources of non-determinism that had to be carefully considered when setting up our
experiments. In more detail, these external factors fall into two categories:

Search engine Results returned by the Bing3 search RSS service over multiple in-
vocations of the same query (top-K hits) vary in both number and contents over time.
The Bing search RSS service associates about 650 results per query and each request
can bring back at most 50 results. These results can differ at each request invocation.
Finally, Bing results are accessible via XML pages, which in several occasions are
not well formed (missing XML tags) returning different results for the same query.

Internet access Web page download times can vary significantly depending on the
Internet connectivity of the Cloud provider as well as dynamic Internet conditions
(e.g. network congestion) at the time of the experiment. Another highly-variable fac-
tor concerns the availability of web pages. Even when the Bing search engine returns

3We chose Bing because it does not limit the number of queries submitted, in contrast to Google, which
blocks the account for one hour if more than 600 queries are submitted.

Distrib Parallel Databases

identical results for the same query, trying to download the full content of the search
results from the Internet may fail as some pages may be inaccessible at times (con-
nection refused, connection/read time-out) leading to variations in our input collec-
tions. Furthermore, the fact that in 70 %–91 % of HTTP HEAD requests Web servers
either do not provide content-length information or have refused our requests (con-
nection/read time-out) adds further variability. Finally, the efficiency of the external
SPARQL endpoints is highly variable.

To reduce the effect of the above factors on the evaluation of our systems and to
facilitate reproducibility of our results we decided to perform our experiments with
controlled datasets (Sect. 6.2), which we plan to make available to the research com-
munity. Additionally, since semantic enrichment depends strongly on the efficiency
of the external SPARQL endpoints and is orthogonal to the scalability of the core
MapReduce procedures we decided to omit it from this evaluation. While these as-
sumptions lead to better insight into the operation of our core system on the MapRe-
duce platform, it is important to note that our system is fully functional and available
for experimentation upon request.

6.2 Creating datasets

To evaluate our system under workloads of progressively larger size we create several
different datasets. Our dataset creation process starts by performing multiple queries
to the Bing RSS engine. The queries are chosen from the top 2011 searches reported
by Bing. These queries are based on the aggregation of billions of search queries and
are grouped by People, News Stories, Sports Stars, Musicians, Consumer Electronics,
TV Shows, Movies, Celebrity Events, Destinations, and Other Interesting Search. For
each one of these groups the top-10 queries are reported. After retrieving the results
of queries from Bing we merge them into a single set. We then download the contents
of all Web pages onto a single VM. We also create the cluster of URLs and store the
IDs of documents that belong to each cluster.

An example on how to create a dataset from these queries is the following: Choose
the first query from each group (if the query is already added to the collection then we
omit it) and submit it to the search engine. For each submitted query, download the
contents of the top-K hits. It is hard to estimate an appropriate K such as to achieve
a given dataset size (e.g. 100 MB). Our way to achieve this is to keep downloading
results until the aggregated content length exceeds the target. From this collection we
randomly remove documents until we achieve the desired size. We randomly remove
documents, instead of removing only low ranked documents, in order to simulate a
realistic situation. In a real situation the system has to analyze every document (in
the set of top-k results), even those which are low ranked. Consequently, a random
removal yields a more realistic dataset, in the sense that the latter will also contain
low-ranked documents. However, we should note that even if we were removing only
low-ranked documents, the only difference would be on the quality of the identified
entities. The process and the measurements would not be affected.

Note that since documents are of arbitrary size it is still hard to achieve the identi-
cal size targeted, so we settle for removing the documents that best approximate the
aggregated dataset size. We repeat this procedure with queries in the second position
of each group, and so on, to create more datasets.

Distrib Parallel Databases

Fig. 9 Distributions of sizes for xMB-SET1, x ∈ {100,200,300}

We use the naming scheme xMB-SETy for our created datasets, where x is the
dataset size (∈ {100,200,300}) and y is the dataset sample identifier (∈ {1,2,3}).
Figure 9 presents the distribution of sizes for xMB-SET1. The created datasets rep-
resent a range from 1226 (100 MB) to 4365 (300 MB) documents (hits) on average.
Most documents are small: 89.5 %, 93.1 %, and 94.7 % of the documents in the
100 MB, 200 MB, and 300 MB datasets respectively are less than 200 KB in size.
The largest dataset (300 MB) corresponds (approximately) to the first 87 pages of
a search result (where by default each page has 50 hits). We thus believe that the
created datasets fully cover our targeted application domain.

6.3 Experimental platform: Amazon EC2

Our experiments were performed on the Amazon Elastic Compute Cloud (EC2) using
up to 9 virtual machine (VM) nodes. A VM of type m1.medium (1 virtual core,
3.4 GB of memory) was assigned the role of JobTracker (collocated with an HDFS
NameNode and a secondary NameNode). We used up to 8 VMs of type m1.large
(2 virtual cores, 7.5 GB of main memory each) as TaskTrackers (collocated with
an HDFS DataNode), a sufficient cluster size for the targeted problem domain. We
provision 4 JVMs to execute concurrently on each VM, 3 used for mappers and one
for a reduce task. This setup was experimentally determined to be optimal, allowing
sufficient memory to be used as JVM heap (2.2 GB for a mapper, 256 MB for a
reducer) while also taking advantage of the parallelism available in the VM. We use a
single reducer task for all jobs in our experiments, for reasons explained in Sect. 5.3.
We have verified that there is no benefit from increasing the number of reducers in
our experiments. We configure JVMs to be reused by 20 tasks before terminated. The
VM images used were based on Linux Ubuntu 12.04 64-bit.

To monitor the execution of our MapReduce jobs we employed CloudWatch, an
Amazon monitoring service, and our own deployment of Ganglia [38, 39], a scalable
cluster monitoring tool that provides visual information on the state of individual
machines in a cluster, along with the sFlow [46] plug-in to get the metrics for each
JVM (e.g. mapTask, reduceTask). To monitor the performance of the Java garbage
collector we used the IBM Pattern Monitoring and Diagnostic Tool [25] to analyse
JVM GC logs and tune the system appropriately.

Distrib Parallel Databases

Fig. 10 Query execution time
for growing dataset size and
increasing number of nodes
(VMs)

6.4 Scalability

In this section we evaluate the performance improvement as the number of nodes
(VMs) used to perform NEM processing increases. We used datasets of sizes 100 MB,
200 MB, and 300 MB (Sect. 6.2) and evaluate the following three system configu-
rations: (1) Single-job procedure using HTTP HEAD info, referred to as SJ-HEAD;
(2) Single-job with a-priori exact knowledge of document sizes, referred to as SJ-KS
(this is an artificial configuration that we created solely for comparison purposes);
and (3) Chain job, referred to as CJ.

We define the speedup achieved using N nodes (VMs) as SN = T1/TN where T1
and TN are the execution times of our MapReduce procedures on a single node and
on N nodes respectively. Note that we do not use as T1 the time the sequential NEM
algorithm takes on a single node since such an execution is infeasible for our problem
sizes (the JVM where GATE executes crashes). Note that the optimal speedup possi-
ble for a computation is limited by its sequential components, as stated by Amdahl’s
law [2]. Namely, if f is the fraction of the computational task that cannot be paral-
lelized then the theoretically maximum possible speedup is SN = 1/(f +(1−f)/N).

Figure 10 depicts the execution time for the three different system configurations
with increasing number of nodes (VMs). Tables 2, 3, 4 depict the speedups achieved
in all cases. Our observations are:

– All systems exhibit good scalability, which improves with increasing dataset size.
For the 300 MB dataset using 8VMs, we observe a SJ-KS speedup of S8 = 6.45
and a SJ-HEAD speedup of S8 = 6.42 compared to the single-node case. This is the
best speedup we achieved in our experiments. We believe that the overall runtime
of about 6.3′ is within tolerable limits and justifies real-world deployment of our
service. We have not attempted larger system sizes because—as will be described
next—scalability at this point is practically limited by the tasks that analyze the
largest documents in our sets.

Distrib Parallel Databases

Table 2 Speedup for SJ-HEAD

VMs 100 MB 200 MB 300 MB

1 1 1 1

2 1.79 1.97 1.95

4 3.01 3.51 3.61

8 4.04 5.79 6.42

Table 3 Speedup for SJ-KS

VMs 100 MB 200 MB 300 MB

1 1 1 1

2 1.87 1.96 1.96

4 2.87 3.66 3.69

8 3.91 5.36 6.45

Table 4 Speedup for CJ

VMs 100 MB 200 MB 300 MB

1 1 1 1

2 1.78 1.86 1.93

4 2.63 3.32 3.47

8 3.05 4.45 5.66

– To compare the observed scalability to the theoretically optimal (taking Amdahl’s
law into account) we need to consider the sequential components of the MapRe-
duce job as well as scheduling issues (imbalances in last-task completion times,
examined in Sect. 6.5) that reduce the degree of parallelism in the map phase of
the job. We have analyzed these components for a specific case, the 200 MB-SET1
dataset in the SJ-HEAD configuration (Table 5). In this case, we measured the total
run time of a job, the sequential components in each case, the execution time of
the longest task (analyzing a 3.68 MB document, a size that far exceeds the vast
majority of other documents in the set (Sect. 6.2)) and the total runtime of the map
phase. The ideal speedup is computed based on Amdahl’s law, assuming perfect
parallelization of the map phase. The observed speedup is close to (within 9 %
of) the ideal for 2VMs and 4VMs but diverges from it for 8VMs. The reason for
the lower efficiency in this case is the fact that the map phase becomes bounded
by the longest task (3.68 MB, executing for 4′09′′ out of the 4′36′′ the entire job
takes), which cannot be subdivided. It is important to note that despite our size-
aware task scheduling algorithm (where long tasks are scheduled early in the job,
Sect. 5.2.1), tasks of that size in some cases create scheduling imbalances resulting
in suboptimal scalability.

Distrib Parallel Databases

Table 5 Detailed analysis: SJ-HEAD, 200 MB-SET1

#VMs Job
time (s)

Sequential
component (s)

Longest
task (s)

Map
phase (s)

Observed
speedup

Ideal
speedup

1 1585 29 249 1556 1 1

2 818 26 249 792 1.93 1.97

4 458 27 249 431 3.46 3.81

8 276 27 249 249 5.74 7.15

Fig. 11 Analysis of chain-job #1 on 200 MB dataset, 1-min job execution time

– The CJ speedup observed for the 300 MB dataset using 8VMs is S8 = 5.66. The
disadvantage of CJ compared to the single-job configurations can be attributed to
the additional non-parallelizable overhead of its two jobs.

– SJ-KS outperforms SJ-HEAD and CJ by a small margin (0.5–3 %, decreasing with
higher dataset sizes). This is expected since it leverages a-priori knowledge about
document sizes with reduced overhead from using one rather than two jobs.

6.4.1 Scalability of job #1 in chain-job procedure

In this section we focus on the quality of the summarization work (documents pro-
cessed and entities identified) performed by Job #1 in the chain-job procedure with
increasing system size. Our measure of scalability in this evaluation is the amount
of work performed within a fixed amount of time as the number of processing nodes
increases. We define the amount of work done as the size of documents analyzed (as
a percentage over the entire document list and in absolute numbers (MB)) and the
number of entities identified.

Figure 11 depicts the amount of work performed by Job #1 with an increasing
system size for a fixed execution time (one minute). We observe that as the num-
ber of processing nodes increases, the percentage of documents analyzed grows from
0.6 % to 3.8 % (the number of entities identified grows from 1186 to 6343) yielding
a progressively better preview (summary) of the entire document list. Based on these
results we conclude that Job #1 exhibits good scalability, and offers a powerful trade-
off to an administrator when aiming to improve the quality of preview: either allocate

Distrib Parallel Databases

Fig. 12 CPU utilization, execution time and imbalance percentage for a number of jobs whose only
difference is the number of splits

more VMs to Job #1 (costly but faster option) or allow more execution time on fewer
VMs (cheaper but slower option).

6.5 Impact of number of splits

In this section we study the effectiveness of a job as we vary the number of input
splits. Using 4 nodes (VMs) and the dataset 100 MB-SET1 (created from about 1226
query hits), we execute a sequence of jobs over it with progressively larger number
of splits (and consequently, decreasing split size). For each job we measure CPU
utilization reported by each VM (in m1.large VMs the reported CPU utilization is
the average of the VM’s two virtual cores), job execution times, and the imbalance
percentage within each job.

Figure 12 (top portion) depicts per-node CPU utilization for each job. Figure 12
(bottom) presents the job execution times (bars) and the imbalance percentage within
each job. We observe that CPU utilization is better for fewer splits (20–100), where
the workload assigned to each mapper task takes on average from 96.5 s to 18.5 s
as shown in Fig. 13. As we increase the number of splits (120–500), CPU utilization
decreases due to the higher scheduling overhead associated with many small (granu-
larity of a few (tens) of seconds) tasks. For example, for 500 splits the job execution
time is nearly 2.2 times the execution time of a the job with 20 splits.

A key observation is that job-execution times in the range of 20 to 120 splits are
nearly constant. Within this range, the workload balance (evidenced by the imbalance
percentage) improves as the number of splits grows. Combining with our previous
observation (that split sizes in the range 150–500 suffer from excessive scheduling
overhead) we arrive at the conclusion that a number of splits between 100 and 120
is a reasonable choice taking all things into account. Choosing a smaller number of
splits would increase the probability that a split may include several big documents,
increasing the garbage collection (GC) overhead (more details in Sect. 6.6) and im-
balance percentage. However, big documents make their presence felt even in the
case of small split sizes (they are responsible for the large ratio between maximum
and average execution times in Fig. 13).

Distrib Parallel Databases

Fig. 13 Map task min/average/max execution time for different number of splits

Fig. 14 Garbage collection activity for two jobs that differ in the amount of memory allocated to JVMs
(1 GB (left) vs. 2 GB (right))

6.6 Impact of heap size

In this section we evaluate the impact of JVM heap allocations to job performance.
First we compare query execution time of two jobs, Job 1 and Job 2, each execut-
ing on a single node (VM), with the node hosting three JVMs (assigned to mapper
tasks), using the 100 MB-SET1 dataset instance. One of the jobs assigns 1 GB of
heap space to its JVMs whereas the other job assigns twice that amount (2 GB). We
used the mapred.map.child.java.opts parameter (set to Xmx1024m and
Xmx2048m respectively) to control JVM heap memory allocations. The JVMs used
in this experiment where configured to be reusable (20 times).

Figure 14 presents overall execution time and GC activity (in MB) for the two
jobs. We observe that Job 1 (1 GB JVM heap) takes an additional 4.8 minutes (about
30 %) to completion compared to Job 2 (2 GB JVM heap). The reason for this delay
is the additional GC overhead that impacts overall query execution time. The figure
shows that GC activity is less frequent for Job 2 (2 GB).

The impact of heap size can in fact be far more severe than presented above. In
fact, standard heap allocations (default of 200 MB in several JVMs) always lead to
job failure. Table 6 depicts measurements of overall execution time of jobs consisting
of a single split, where the split size varies from 1 MB to 35 MB and JVM heap size
varies from its default value of 200 MB to 2.2 GB. These ranges of split sizes and heap
sizes represent practically relevant values (we have not seen additional performance
benefits from higher heap sizes for this range of split sizes). Each job runs on a single

Distrib Parallel Databases

Table 6 Execution time (in seconds) of single-split jobs with varying split and heap sizes

Split size (in MB) Heap size (in MB)

200 512 756 1024 1256 1512 1756 2048 2256

1 ✗ 58 56 54 56 56 56 57 55

5 ✗ 129 106 105 105 105 105 107 105

10 ✗ ✗ 161 163 161 163 162 165 166

15 ✗ ✗ 500 208 210 204 208 210 213

20 ✗ ✗ ✗ 420 259 258 259 262 260

25 ✗ ✗ ✗ ✗ 787 404 346 350 347

35 ✗ ✗ ✗ ✗ ✗ 1100 550 441 448

Fig. 15 CPU utilization and job execution time for two jobs whose only difference is reusability of JVMs

non-reusable JVM. The reported numbers are average execution times from three
different splits created randomly for each size. A ✗-value in a cell indicates that the
job either crashed or terminated for being unresponsive (executing within GATE) for
more than 10 minutes (default value of mapred.task.timeout parameter).

Table 6 shows that with increasing split size one needs to use increasingly higher
JVM heap sizes to avoid job failures. Furthermore, within those heap sizes that lead
to successfully completed jobs, increasing heap size allocations lead to better perfor-
mance (as also evidenced by Fig. 14), up to a point where additional heap does not
help: excessively high heap can hurt due to the JVM startup and teardown overheads
(part of which are proportional to heap size).

In the following section we consider the impact of an additional parameter, JVM
reusability, and then exhibit the tuning methodology outlined in Sect. 5.3 for selecting
key parameters of our MapReduce jobs.

6.7 Impact of JVM reusability

In this section we first exhibit the performance advantage of JVM reusability
by setting up two NEM jobs on the 100 MB-SET1 dataset (100 splits) using 4
nodes (VMs) and 3 JVMs per VM. Job 1 uses reusable JVMs (the value of the
mapred.job.reuse.jvm.num.tasks parameter set to 20), whereas Job 2
does not reuse JVMs (the value of the parameter is set to 1, which is the default).
Figure 15 presents the CPU utilization for two jobs whose only difference is JVM
reusability. Each of the curves corresponds to one of the four VMs used in this exper-
iment.

Distrib Parallel Databases

Table 7 Execution time (in seconds) varying split size and heap size with reusability 1

Split size (MB) Reusability: 1

Heap size (GB)

0.2 0.5 1.1 1.3 1.6 2.2 3.3

1 ✗ 2833 2821 2811 2798 2911 2939

2.5 ✗ 1998 1958 1962 1971 2004 2019

5 ✗ ✗ 1619 1612 1634 1653 1664

Table 8 Execution time (in seconds) varying split size and heap size with reusability 10

Split size (MB) Reusability: 10

Heap size (GB)

0.2 0.5 1.1 1.3 1.6 2.2 3.3

1 ✗ ✗ 1700 1693 1697 1703 1712

2.5 ✗ ✗ ✗ 3488 1679 1523 1468

5 ✗ ✗ ✗ ✗ ✗ 3445 1468

Table 9 Execution time (in seconds) varying split size and heap size with reusability 20

Split size (MB) Reusability: 20

Heap size (GB)

0.2 0.5 1.1 1.3 1.6 2.2 3.3

1 ✗ ✗ 4258 1773 1634 1647 1658

2.5 ✗ ✗ ✗ ✗ ✗ 3645 1561

5 ✗ ✗ ✗ ✗ ✗ ✗ ✗

We observe that JVM reusability improves job execution time by about 2.8 times
in this case. The advantage of reusability can be higher with increasing number of
splits (e.g. for a 300 MB dataset or 300 splits, job performance improves by about
3.3 times). We note that with reusability the cost of initializing GATE (about 12 s)
is paid once during startup of each JVM and amortized over for the rest of tasks that
are executed in the same JVM. Finally, we observe that JVM reusability affects CPU
utilization: the job featuring non-reusable JVMs consumes more CPU that is spent in
startup/teardown of JVMs during task initialization and termination.

Having seen the individual impact of the number/size of splits, heap size, and
reusability parameters, we now demonstrate our tuning methodology described in
Sect. 5.3 to select appropriate settings for these parameters. Tables 7, 8, 9 depict
execution time (in seconds) of jobs analyzing a 100 MB dataset4 varying split sizes
(1 MB, 2.5 MB, 5 MB) corresponding to (100, 40, 20) splits; heap sizes (200 MB–

4This size is chosen to ensure full utilization in all cases, as max(Reusability) × max(Split size) = 20 ×
5 MB = 100 MB.

Distrib Parallel Databases

Fig. 16 Feasible configurations from Tables 7, 8, 9. The dashed box highlights the best choices

3.3 GB) computed from Eq. (1); and reusability in the range (1, 10, 20). The reported
times are averages over three executions using different split sets created randomly.
During this intra-JVM phase we use one VM with a single JVM executing on it at
any time. The ✗-value has the same meaning as in Table 6.

Our first observation is that Table 7 features the largest fraction of successful runs
(17 out of 21 possible cases), albeit at the cost of excessive execution times for 1 MB
and 2.5 MB splits sizes. Execution times of 5 MB-split jobs outperform the others
because it has the smallest number of splits (20) minimizing the costs of JVM star-
tups/terminations and GATE initializations. A related observation (counter-intuitive
at first) is that job execution times worsens with higher heap allocations, especially
for smaller splits. This is explained by the fact that higher heap sizes increase the cost
of JVM startup and teardown overhead, which is paid all too frequently at the default
reusability level of one.

For increasing reusability we observe that execution times improve at the cost of
fewer successful job configurations. For example, in Table 9 (reusability 20) we ob-
serve that performance improves for particular configurations, e.g., by up to 44 %
for (1 MB split size, 2256 MB heap size) compared to the same configuration with
reusability one. Figure 16 depicts execution times of those configurations from Ta-
bles 7, 8, 9 that are feasible (do not fail). Within the dashed box we distinguish exe-
cution times that are within a small range of the minimum, thus reducing the list of
possible configurations to 30 % of the initial set (19 out of 63).

Having completed the intra-JVM phase, we move to the inter-JVM phase to ex-
plore the performance of the selected configurations with concurrently executing
JVMs, as described in Sect. 5.3. In this phase we must use larger datasets to en-
sure full utilization in all cases. To keep the size of the experiments manageable we
study each split size separately with a dataset sized max(Reusability) × max(JpV) ×
Split size MB. We have excluded split size 5 MB mainly due to the high imbalance
percentage it leads to as demonstrated in Fig. 12. Figure 17 depicts execution times
for jobs executing on JpV JVMs within a single VM.

Choosing the best configurations from Figure 17 for each split size leads to the
following cases:

– For split size 1 MB: Best choices are
– C1 = (1.6 GB heap, 4 JVMs, reusability 20)
– C2 = (2.2 GB heap, 3 JVMs, reusability 20)

Distrib Parallel Databases

Fig. 17 Execution time (s) under concurrently executing JVMs. Dashed boxes highlight the best choices
for split sizes 1 MB (left) and 2.5 MB (right)

Between the two we prefer C2 for its larger heap size (and thus its ability to handle
larger than average objects in a collection).

– For split size 2.5 MB: Best choices are
– C3 = (2.2 GB heap, 3 JVMs, reusability 10)
– C4 = (3.2 GB heap, 2 JVMs, reusability 20)
Between them we prefer C4 for its larger heap size.

Finally, to compare C2 to C4 we run a last set of experiments on both con-
figurations with a dataset sized max(Split size) × max(JpV) × max(Reusability) =
2.5 × 3 × 20 = 150 MB (150 splits for C2 or 60 splits for C4) for full utilization. C2
is found to result in (marginally) lower execution time by about 4 %, pointing to it as
the best among the 63 choices considered.

6.8 Comparative results for different functionalities and number of categories

In Sect. 3.3 we described the different levels of functionality that can be supported by
our parallel NEM algorithms, ranging from minimal to full functionality. In this sec-
tion we evaluate the impact of the levels of functionality on performance. Moreover
we discuss the impact of increasing the number of supported categories on perfor-
mance and output size.

At first, we note that the time required by the mining component is independent of
the level of functionality, since the mining tool always has to scan the documents and
apply the mining rules. Of course, an increased number of categories will increase the
number of lookups, but the extra cost is relatively low. The main difference between
the various levels of functionality is the size of the mappers’ output and the size of
the reducers’ output.

For instance, in our experiments over 200 MB-SET1, for L0 (minimal function-
ality) the map output was 6 MB, which is 2.8 times less than the output for L3 (full
functionality). The difference is not big. This is because the average size of the doc
lists of the entities is small. This is evident by Fig. 18 which analyzes the contents
of the reducers’ output, specifically the figure shows the number of entities for each
category and the maximum and average sizes of the entities’ doc lists. We observe
that the average number of documents per identified entity is around 3. This means
that the sizes of the exchanged information by the different levels of functionalities

Distrib Parallel Databases

Fig. 18 Content analysis of Reducer’s output

are quite close, and this is aligned with the ×2.8 difference of the mappers’ out-
put.

Of course this depends on the dataset and the entities of interest. We could say
that as |E| increases (recall that the set E can be predefined) the average size of the
doc lists of these entities tends to get smaller. Consequently, we expect significant
differences in the amounts of exchanged information of these levels of functionality
when |E| is small, because in that case the average size of the doc lists can become
high.

In our datasets, and with the selected set of categories and mining rules, the dif-
ferences of the end-to-end running times were negligible. This is because most time
is spent by the mining component, not for communication.5

Actually, one could “predict” the differences as regards the latency due to the
extra amount of information to be exchanged, based on the analysis of Sect. 4.1.1,
where we estimated the amount of information that has to be exchanged in various
levels of functionality, and the network throughput of the cloud at hand. Recall that
in Sect. 4.1.1 the amount of information that has to be exchanged in various levels
of functionality is measured as a function of |A| (the number of hits to be analyzed),
dasz (the average size in words of a document), and z (the number of partitions, i.e.
number of nodes used). Specifically:

• Cases L0, L1 (i.e. L0 + counts) and L2 (i.e. L1 plus ranking; the latter does not
increase data): O(zmin(dasz, |E|))

• Case L3 (L2 + doclists): O(|A|min(dasz, |E|)).
It follows that the difference in the amounts of the exchanged information be-

tween L3 and L0/L1/L2 can be quantified as: for the case where E is fixed (prede-
fined), the difference is in O(|A||E| − z|E|) = O(|E|(|A| − z)), while for the case
where |E| is not fixed (not predefined), the difference is in O(|A|dasz − zdasz) =
O(dasz(|A| − z)).

5Even with the full functionality, the reduce phase constitutes only about 2 % of the total job time when
analyzing 300 MB-SET1 using 4 nodes.

Distrib Parallel Databases

To grasp the consequences, let’s put some values in the above formulae. For |A| =
100, dasz = 400 KB, and z = 8, the quantity dasz(|A| − z) has the value 400(100–
8) KB = 39.2 MB. By considering the capacity of the cloud one could predict the
maximum time required for transferring this amount of information. For instance, the
throughput of Amazon Cloud is 68 MB/s ([32]). It follows that 39.2 MB require less
than one second.

Moreover, the above time assumes that the information will be communicated in
one shot. Since it will be done in parallel, the required time will be less. Specifically,
in case we have an ideal load balancing, and thus all mappers start sending their
results at the same point in time, for predicting the part of the end-to-end running
time that corresponds to data transfer, it is enough to consider what one mapper will
send.

For the case of L0/L1/L2 this amount is in O(min(dasz, |E|)), while for the
case of L3 it is in O(|Di |min(dasz, |E|)) where |Di | is the number of docs as-
signed to a node, and we can assume that |Di | = |A|/z. Therefore the difference
between L3 and L0/L1/L2, can be quantified as follows: for the case where E

is fixed (predefined), the difference is in O(|A||E|/z − |E|) = O(|E|(|A|/z − 1)),
while for the case where |E| is not fixed (not predefined), the difference is in
O(|A|/z dasz − dasz) = O(dasz(|A|/z − 1)).

Obviously, for big values, the above difference can become significant. For in-
stance, for building the index of a collection of 1 billion (109) of documents,
with dasz = 400 KB and z = 11, the extra amount of exchanged data will be
400 × 109/10 KB. With a network throughput of 100 MB/s, the extra required time
will be 4 × 105 seconds, i.e. around 4.6 days.

Increasing the number of categories Next we evaluated system performance as the
number of categories increases. In general, we expect that the amount of exchanged
data, number of lookups, rule executions, and the output size, increase as the number
of categories increases. Growing the number of categories from 2 to 10 in increments
of 2 did not show a measurable impact on performance. However, the reducer output
size and the number of identified entities increased: in particular, the average number
of identified entities for the 100 MB-SETs was from 16,300 (with two categories,
Person and Location, enabled) to 45,227 with all ten categories enabled.6

Compression As a final note, we originally considered the possibility to compress
the doclists of the exchanged entities using gapped identifiers encoded with variable-
length codes (e.g. Elias-Gamma), as it is done in inverted files, to reduce the amount
of information exchange in L3. However, since our experiments showed that all dif-
ferent functionalities have roughly the same end-to-end running time, we decided not
to use any compression as it would not affect the performance. However, compres-
sion could be beneficial in cases one wants to build an index of a big collection, as in
the billion-sized scenario that we described earlier.

6In particular: Person, Location, Organization, Address, Date, Time, Money, Percent, Age, Drug.

Distrib Parallel Databases

6.8.1 Improving scalability through fragmentation of documents

In Sect. 6.4 we observed that total execution time and overall scalability are bounded
by the longest tasks, which correspond to the largest files in a collection. This limit is
hard to overcome in NLP tasks such as text summarization or entity mining where en-
tities are accompanied by local scores, as these tasks require knowledge of the entire
document. Thus we have considered documents as undivided elements (or “atoms”)
which cannot be subdivided. However, in cases where documents can be subdivided
into fragments, one could adopt a finer granularity approach for better load balancing
and thus improved speedup.

To validate the benefit of this approach we produced a variation of the Chain-
Job (CJ) procedure in which we partition files in smaller fragments. Specifically, we
divide documents larger than 800 KB in fragments whose size does not exceed the
split size. Our results show that this variation of CJ achieves a speedup of ×6.2 for a
300 MB dataset when using 8 Amazon EC2 VMs, an improvement over the speedup
of ×5.66 with standard CJ (without document fragments). This is attributed to the fact
that the longest task execution time is now 80 s in contrast to standard CJ where this
was 249 s. We should note that this approach is only applicable to the CJ procedure
since its preview phase can be used to fragment the large documents.

6.9 Synopsis of experimental results: executive summary

The key results of our evaluation of the proposed MapReduce procedures for per-
forming scalable entity-based summarization of Web search results are:

– Our scalable MapReduce procedures can successfully analyze input datasets of the
order of 4.5K documents (search hits) at query time in less than 7′. Such queries
far exceed the capabilities of sequential NEM tools. The use of special computa-
tional resources (such as highly parallel multiprocessors with very large memory
capacity) are a potential alternative to our use of Cloud computing resources, but
we consider our solution to be more cost-effective and ubiquitous.

– We have observed speedups of ×6.4 when scaling our system to 8 Amazon
m1.large EC2 VMs (that is, 24 JVMs concurrently executing map tasks) us-
ing our single-job procedure. While we consider this to be a very good level of
scalability, it deviates from perfect (theoretically possible [2]) scalability due to
two primary reasons: The existence of a few very large documents in the input
dataset (Sect. 6.2) means that tasks analyzing them may—even in the best possi-
ble execution schedule– become a limiting factor during the mapping phase (since
documents cannot be subdivided in NEM analysis); additionally, variability in last-
task completion times (expressed via the imbalance percentage, Sect. 6.5) means
that even in the absence of such very large documents, tasks rarely finish simulta-
neously, introducing idle time in the mapping phase. The impact of these factors
increases with system size (number of VMs).

– Use of our chain-job (CJ) MapReduce procedure performs a size-aware assignment
of the remaining documents to tasks of Job #2 and offers the qualitative benefit of a
quick preview of the NEM analysis, compared to the single-job (SJ) procedure. An

Distrib Parallel Databases

administrator can decide to perform a more accurate preview by either allocating
more resources (VMs) or allotting more time to the first-job of CJ, exploiting a cost
vs. wait-time tradeoff. In our experiments, going from one to 8 EC2 VMs increases
the percentage of documents analyzed during the preview phase from 0.6 % to
3.8 % of a 200 MB dataset. CJ exhibits somewhat lower scalability compared to
SJ (×5.66 vs. ×6.45 for a 300 MB dataset) due to the overhead of using two
rather than one MapReduce job. The issue of big documents can be tackled by an
evaluation procedure that is based on document fragments. This method can be
adopted if the desired text mining task can be performed on document fragments.

– For optimal tuning of the Hadoop platform on Amazon EC2, we evaluated the
impact of the number and size of splits, JVM heap size, and JVM reusability pa-
rameters on performance. We also presented a tuning methodology for selecting
optimal values of these parameters. Our methodology is a valuable aid to help an
expert in tuning the Hadoop MapReduce platforms in order to optimize resource
efficiency during execution of our MapReduce procedures.

– Our evaluation of the impact of different levels of functionality and number of
categories (up to ten categories) showed no impact on end-to-end running time
in the used collections, thus allowing the use of enriched analysis (L3) without
additional cost over lower levels of functionality. However, for bigger collections
the impact can be significant, and for this reason we have analyzed the expected
impact analytically.

7 Concluding remarks

We have described a scalable method for entity-based summarization of Web search
results at query time using the MapReduce programming framework. Performing
entity mining over the full contents of results provided by keyword-search systems
requires downloading and analyzing those contents at query time. Using a single ma-
chine to perform such a task for queries returning several thousands of hits becomes
infeasible due to its high computational and memory cost. In this paper we have
shown how to decompose a sequential Named Entity Mining algorithm into an equiv-
alent distributed MapReduce algorithm and deploy it on the Amazon EC2 Cloud. To
achieve the best possible load balancing (maximizing utilization of resources) we
designed two MapReduce procedures and analyzed their scalability and overall per-
formance under different configuration/tuning parameters in the underlying platform
(Apache Hadoop). Our experimental evaluation showed that our MapReduce proce-
dures achieve a scalability of up to ×6.4 on 8 Amazon EC2 VMs when analyzing
300 MB datasets, for a total runtime of less than 7′. Our evaluation fully addresses
our targeted application domain (our larger queries include on average 4365 hits or
about 87 pages of a typical search result).

There are several directions for future work extending the research presented in
this paper. One interesting direction is to generalize the chain-job procedure to pro-
vide progressively more results over a number of stages (rather than just two). While
we anticipate an impact on the efficiency of the overall MapReduce job, a constant
stream of results is expected to be a welcome feature by end users. Finally, on the is-
sue of the type of Cloud resources allocated to a specific instance of our MapReduce

Distrib Parallel Databases

procedures, we plan to explore cost/performance tradeoffs within the large diversity
of resource types available across Cloud providers.

Acknowledgements Many thanks to Carlo Allocca and to Pavlos Fafalios for their contributions.
We thankfully acknowledge the support of the iMarine (FP7 Research Infrastructures, 2011–2014) and
PaaSage (FP7 Integrated Project 317715, 2012–2016) EU projects and of Amazon Web Services through
an Education Grant. We also acknowledge the interesting discussions we had in the context of the MUMIA
COST action (IC1002, 2010–2014).

Appendix A: Vertical search applications

Fig. 19 Two screens from vertical search applications, one for the marine domain (top) and another for
patent search (bottom)

Distrib Parallel Databases

References

1. Allocca, C., dAquin, M., Motta, E.: Impact of using relationships between ontologies to enhance
the ontology search results. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
The Semantic Web: Research and Applications. Lecture Notes in Computer Science, vol. 7295, pp.
453–468. Springer, Berlin (2012)

2. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabil-
ities. pages 483–485, 1967

3. Apache Software Foundation: The Apache Hadoop project develops open-source software for reliable,
scalable, distributed computing. http://hadoop.apache.org/. Accessed: 03/05/2013

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

5. Assel, M., Cheptsov, A., Gallizo, G., Celino, I., Dell’Aglio, D., Bradeško, L., Witbrock, M., Della
Valle, E.: Large knowledge collider—a service-oriented platform for large-scale semantic reason-
ing. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics
(WIMS’11), pp. 41:1–41:9. ACM, New York (2011)

6. Bonino, D., Ciaramella, A., Corno, F.: Review of the state-of-the-art in patent information and forth-
coming evolutions in intelligent patent informatics. World Pat. Inf. 32(1), 30–38 (2010)

7. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
8. Callaghan, G., Moffatt, L., Szasz, S.: General architecture for text engineering. http://gate.ac.uk/.

Accessed: 03/04/2013
9. Callan, J.: Distributed information retrieval. Advances in Information Retrieval, 7, 127–150, 2002

10. Caputo, A., Basile, P., Semeraro, G.: Boosting a semantic search engine by named entities. In: Pro-
ceedings of the 18th International Symposium on Foundations of Intelligent Systems (ISMIS’09), pp.
241–250. Springer, Berlin (2009)

11. Carpineto, C., DAmico, M., Romano, G.: Evaluating subtopic retrieval methods: clustering versus
diversification of search results. Inf. Process. Manag. 48(2), 358–373 (2012)

12. Chen, S., Schlosser, S.W.: Map-reduce meets wider varieties of applications. Technical report IRP-
TR-08-05, Intel Research Pittsburgh (2008)

13. Cheng, T., Yan, X., Chang, K.: Supporting entity search: a large-scale prototype search engine. In:
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data (SIG-
MOD’07), pp. 1144–1146. ACM, New York (2007)

14. Clinton, D., Tesler, J., Fagan, M., Snell, J., Suave, A., et al.: OpenSearch is a collection of simple
formats for the sharing of search results. http://www.opensearch.org/. Accessed: 03/05/2013

15. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: A framework and graphical development
environment for robust NLP tools and applications. In: Proceedings of the 40th Anniversary Meeting
of the Association for Computational Linguistics (ACL’02) (2002)

16. Das, D., Martins, A.: A survey on automatic text summarization. Literature Survey for the Language
and Statistics II course at CMU 4, 192–195 (2007)

17. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM
51(1), 107–113 (2008)

18. Ernde, B., Lebel, M., Thiele, C., Hold, A., Naumann, F., Barczyn’ski, W., Brauer, F.: ECIR—
a lightweight approach for entity-centric information retrieval. In: Proceedings of the 18th Text RE-
trieval Conference (TREC 2010) (2010)

19. Fafalios, P., Kitsos, I., Marketakis, Y., Baldassarre, C., Salampasis, M., Tzitzikas, Y.: Web searching
with entity mining at query time. In: Proceedings of the 5th Information Retrieval Facility Conference
(IRFC 2012), Vienna (2012)

20. Fafalios, P., Salampasis, M., Tzitzikas, Y.: Exploratory patent search with faceted search and config-
urable entity mining. In: Proceedings of the 1st International Workshop on Integrating IR Technolo-
gies for Professional Search (ECIR 2013) (2013)

21. Grossman, R.L., Gu, Y.: Data mining using high performance data clouds: experimental studies using
sector and sphere. CoRR, abs/0808.3019:920–927, 2008

22. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294 (2001)
23. Herzig, D.M., Tran, T.: Heterogeneous web data search using relevance-based on the fly data in-

tegration. In: Proceedings of the 21st International Conference on World Wide Web (WWW ’12),
pp. 141–150. ACM, New York (2012)

24. Husain, M., Khan, L., Kantarcioglu, M., Thuraisingham, B.: Data intensive query processing for large
rdf graphs using cloud computing tools. In: 2010 IEEE 3rd International Conference on Clod Com-
puting (CLOUD), pp. 1–10. IEEE Press, New York (2010)

http://hadoop.apache.org/
http://gate.ac.uk/
http://www.opensearch.org/

Distrib Parallel Databases

25. Hwang, J.: IBM pattern modeling and analysis tool for Java garbage collector. https://www.ibm.com/
developerworks/community/groups/service/html/communityview?communityUuid=22d56091-3a7b-
4497-b36e-634b51838e11 Accessed: 28/01/2013

26. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (1912)
27. Jestes, J., Yi, K., Li, F.: Building wavelet histograms on large data in mapreduce. Proc. VLDB Endow.

5(2), 109–120 (2011)
28. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I., Berlanga, R.: Ontology integration using mappings: to-

wards getting the right logical consequences. In: The Semantic Web: Research and Applications, pp.
173–187. Springer, Berlin (2009)

29. Joho, H., Azzopardi, L., Vanderbauwhede, W.: A survey of patent users: an analysis of tasks, behav-
ior, search functionality and system requirements. In: Proc. of the 3rd Symposium on Information
Interaction in Context, pp. 13–24. ACM, New York (2010)

30. Käki, M.: Findex: search result categories help users when document ranking fails. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp. 131–140. ACM, New York
(2005)

31. Käki, M., Aula, A.: Findex: improving search result use through automatic filtering categories. Inter-
act. Comput. 17(2), 187–206 (2005)

32. Kitsos, I., Papaioannou, A., Tsikoudis, N., Magoutis, K.: Adapting data-intensive workloads to
generic allocation policies in cloud infrastructures. In: Proceedings of IEEE/IFIP Network Operations
and Management Symposium (NOMS 2012), pp. 25–33. IEEE Press, New York (2012)

33. Kohn, A., Bry, F., Manta, A., Ifenthaler, D.: Professional Search: Requirements, Prototype and Pre-
liminary Experience Report, pp. 195–202. 2008

34. Kules, B., Capra, R., Banta, M., Sierra, T.: What do exploratory searchers look at in a faceted search
interface? In: Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 313–
322. ACM, New York (2009)

35. Kulkarni, P.: Distributed SPARQL query engine using MapReduce. Master’s thesis
36. Li, B., Mazur, E., Diao, Y., McGregor, A., Shenoy, P.: A platform for scalable one-pass analytics using

mapreduce. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of
Data (SIGMOD’11), pp. 985–996. ACM, New York (2011)

37. Marketakis, Y., Tzanakis, M., Tzitzikas, Y.: Prescan: towards automating the preservation of digital
objects. In: Proceedings of the International Conference on Management of Emergent Digital EcoSys-
tems (MEDES’09), pp. 60:404–60:411. ACM, New York (2009)

38. Massie, M., Chun, B., Culler, D.: The ganglia distributed monitoring system: design, implementation,
and experience. Parallel Comput. 30(7), 817–840 (2004)

39. Massie, M., Li, B., Nicholes, B., Vuksan, V., Alexander, R., Buchbinder, J., Costa, F., Dean, A.,
Josephsen, D., Phaal, P., et al.: Monitoring with Ganglia. O’Reilly Media, Inc., Sebastopol (2012)

40. McCreadie, R., Macdonald, C., Ounis, I.: Comparing distributed indexing: to mapreduce or not? In:
Proc. of LSDS-IR, pp. 41–48 (2009)

41. Mccreadie, R., Macdonald, C., Ounis, I.: Mapreduce indexing strategies: studying scalability and
efficiency. Inf. Process. Manag. 48(5), 873–888 (2012)

42. Mika, P., Tummarello, G.: Web semantics in the clouds. IEEE Intell. Syst. 23(5), 82–87 (2008)
43. Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Mining Text Data, pp.

43–76 (2012)
44. Papadimitriou, S., Sun, J.: Disco: distributed co-clustering with map-reduce: a case study to-

wards petabyte-scale end-to-end mining. In: Eighth IEEE International Conference on Data Mining
(ICDM’08), pp. 512–521. IEEE Press, New York (2008)

45. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., Dewitt, D.J., Madden, S., Stonebraker, M.: A compar-
ison of approaches to large-scale data analysis. In: Proceedings of the 35th SIGMOD International
Conference on Management of Data (SIGMOD’09), pp. 165–178. ACM, New York (2009)

46. Phaal, P.: SFlow is an industry standard technology for monitoring high speed switched networks.
http://blog.sflow.com/. Accessed: 03/05/2013

47. Poosala, V., Haas, P., Ioannidis, Y., Shekita, E.: Improved Histograms for Selectivity Estimation of
Range Predicates vol. 25, pp. 294–305. ACM, New York (1996)

48. Pratt, W., Fagan, L.: The usefulness of dynamically categorizing search results. J. Am. Med. Inform.
Assoc. 7(6), 605–617 (2000)

49. Ramachandran, S.: Google developers: Web metrics. https://developers.google.com/speed/articles/
web-metrics. Accessed: 03/05/2013

50. Sacco, G., Tzitzikas, Y.: Dynamic Taxonomies and Faceted Search. Springer, Berlin (2009)

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11
http://blog.sflow.com/
https://developers.google.com/speed/articles/web-metrics
https://developers.google.com/speed/articles/web-metrics

Distrib Parallel Databases

51. Thakker, D., Osman, T., Lakin, P.: Java annotation patterns engine. http://en.wikipedia.org/wiki/
JAPE_(linguistics). Accessed: 03/04/2013

52. Tom, W.: Hadoop: The Definitive Guide. O’Reilly, Sebastopol (2009)
53. Tzitzikas, Y., Meghini, C.: Ostensive automatic schema mapping for taxonomy-based peer-to-peer

systems. In: Cooperative Information Agents VII, pp. 78–92. Springer, Berlin (2003)
54. Tzitzikas, Y., Spyratos, N., Constantopoulos, P.: Mediators over taxonomy-based information sources.

VLDB J. 14(1), 112–136 (2005)
55. Urbani, J., Kotoulas, S., Oren, E., Van Harmelen, F.: Scalable distributed reasoning using Mapreduce.

pp. 634–649 (2009)
56. van Zwol, R., Garcia Pueyo, L., Muralidharan, M., Sigurbjörnsson, B.: Machine learned ranking of

entity facets. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’10), pp. 879–880. ACM, New York (2010)

57. Venner, J.: Pro Hadoop. Apress, Berkeley (2009)
58. White, R.W., Kules, B., Drucker, S.M., Schraefel, M.: Supporting exploratory search, introduction

(special issue). Communications of the ACM. Commun. ACM 49(4), 36–39 (2006)
59. Wilson, M., et al.: A longitudinal study of exploratory and keyword search. In: Proceedings of the

8th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’08), pp. 52–56. ACM, New York
(2008)

60. Yahoo! Inc. Chaining jobs. http://developer.yahoo.com/hadoop/tutorial/module4.html#chaining. Ac-
cessed: 09/05/2013

61. Zhai, K., Boyd-Graber, J., Asadi, N., Alkhouja, M.: Mr. LDA: a flexible large scale topic modeling
package using variational inference in Mapreduce. In: Proceedings of the 21st International Confer-
ence on World Wide Web (WWW’12), pp. 879–888. ACM, New York (2012)

62. Zhang, C., Li, F., Jestes, J.: Efficient parallel knn joins for large data in Mapreduce. In: Proceedings of
the 15th International Conference on Extending Database Technology, pp. 38–49. ACM, New York
(2012)

http://en.wikipedia.org/wiki/JAPE_(linguistics)
http://en.wikipedia.org/wiki/JAPE_(linguistics)
http://developer.yahoo.com/hadoop/tutorial/module4.html#chaining

	Scalable entity-based summarization of web search results using MapReduce
	Abstract
	Introduction
	Background and related work
	Analysis of search results
	Why is it useful? Evidence from user studies
	Past work on entity mining over search results

	MapReduce and summarization of big data
	Summarization of big data

	Cloud computing

	The centralized process
	Notations and entity ranking
	The centralized algorithm
	Levels of functionality

	Parallelization
	Adaptation for MapReduce
	Amount of exchanged information
	An analogy to inverted ﬁles

	Implementation
	MapReduce platform: Apache Hadoop
	MapReduce procedures
	Single-job procedure
	Chain-job procedure

	Platform parameters impacting performance
	Mapper parameters
	Reducer parameters

	A Measure of imbalance in task execution times

	Evaluation
	Sources of non-determinism
	Search engine
	Internet access

	Creating datasets
	Experimental platform: Amazon EC2
	Scalability
	Scalability of job #1 in chain-job procedure

	Impact of number of splits
	Impact of heap size
	Impact of JVM reusability
	Comparative results for different functionalities and number of categories
	Increasing the number of categories
	Compression
	Improving scalability through fragmentation of documents

	Synopsis of experimental results: executive summary

	Concluding remarks
	Acknowledgements
	Appendix A: Vertical search applications
	References

