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Exponential growth in storage requirements and an increasing
number of heterogeneous devices and application policies are
making enterprise storage management a nightmare for
administrators. Back-of-the-envelope calculations, rules of thumb,
and manual correlation of individual device data are too error
prone for the day-to-day administrative tasks of resource
provisioning, problem determination, performance management,
and impact analysis. Storage management tools have evolved over
the past several years from standardizing the data reported by
storage subsystems to providing intelligent planners. In this paper,
we describe that evolution in the context of the IBM TotalStoraget
Productivity Center (TPC)—a suite of tools to assist
administrators in the day-to-day tasks of monitoring, configuring,
provisioning, managing change, analyzing configuration, managing
performance, and determining problems. We describe our ongoing
research to develop ways to simplify and automate these tasks by
applying advanced analytics on the performance statistics and raw
configuration and event data collected by TPC using the popular
Storage Management Initiative-Specification (SMI-S). In
addition, we provide details of SMART (storage management
analytics and reasoning technology) as a library that provides a
collection of data-aggregation functions and optimization
algorithms.

Introduction
Managing storage systems within an enterprise has

always been a complex task requiring skilled

administrators to ensure zero downtime and high

performance for business-critical applications. Over the

years, the management of storage area networks (SANs)

has become increasingly complex with petabyte-scale

enterprises, complex application requirements, and

heterogeneous hardware and protocols. Increased

sensitivity to the operational costs of information

technology is driving the efforts to optimally use

resources; just-in-time provisioning is replacing just-in-

case over-provisioning. To cope with the complexity,

administrators create diagrams of SAN device

connectivity, which provide only an out-of-date point in

time end-to-end view; they manage individual devices—

hosts, fabric switches, and storage controllers—that use

proprietary interfaces provided by individual vendors.

Each interface is different and reports data in

nonstandard formats. The administrators have developed

simple programs and collections of scripts to manage

these devices. In order to deal with the complexity and

because of the steep learning curve, administrators have

begun to specialize in specific areas based on function or

category. As a result of these conditions, administrators

of enterprise SANs no longer manage their SAN as a

whole; instead, they manage individual devices and use

manual correlation, specialization, and various forms of

bookkeeping to keep track of the parts.

In response, storage management tools have evolved to

assist administrators in managing increasingly complex

SANs. Several storage vendors, including IBM, have

recognized and responded to the need to simplify the

discovery, monitoring, and reporting of storage

subsystems and storage networks. Although devices such

as storage controllers and switches from various vendors

differ slightly in functionality, each device requires a

specific application programming interface (API) to
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retrieve configuration and performance information.

Thus, gathering performance data is done either by

means of vendor-provided APIs or via standard

interfaces, such as CIM (Common Information Model)

[1], SNMP (Simple Network Management Protocol) [2],

or SMI-S (Storage Management Initiative-Specification)

[3]. When communicating with devices using these

standard interfaces, connection is made either directly to

the device or indirectly through a secondary facilitator,

called a device agent, for example, a proxy CIM object

manager [4]. In addition to performance data and device

configuration, component failure and other events are

usually collected from devices using these same interfaces.

Collecting events and recording data from multiple

vendor devices was the starting point for tools such as the

IBM TotalStorage* Productivity Center (TPC) [5], the

EMC ControlCenter** [6], and the HP Systems Insight

Manager** [7]. These tools are generically referred to as

storage resource managers (SRMs). After retrieving data

from the device or device agents and computing deltas for

the device performance counters, SRMs place persistent

data in a database. From a single console, SRM

applications provide administrators with the ability to

monitor multiple devices, analyze device performance

thresholds, and track usage.

This is a significant step forward but falls short of what

administrators really need. For example, they need the

ability to configure devices and provision storage using a

common interface across multiple devices from different

manufacturers. SRM applications, however, use

proprietary API and CIM interfaces to perform

configuration changes and to provision tasks on the SAN

switches and storage subsystems. As a result, although

SRM device management interfaces are now used to

verify settings, rarely can an administrator use them to

perform device-specific changes. Thus, while these

generalized interfaces are powerful, they provide only the

capability to perform the most common tasks.

Aggregating end-to-end system data enables an

administrator to drastically improve the understanding of

how various devices within the data center are allocated

and to assess their current and historical utilization

values, but administrators still need additional help with

the decision-making required to perform administrative

tasks, especially in large environments. Consider a typical

data center scenario of a large SAN that consists of more

than 2 TB of storage from ten heterogeneous storage

controllers supplied by one or more vendors. On the host

side, there are more than 1,600 servers connected via four

Fibre Channel fabrics with multiple SAN switches. In

such an environment, administrators are typically

responsible for provisioning servers and storage when

new applications are added or the demand for an existing

application increases. Provisioning the storage and

adjusting the SAN zoning to create multiple paths to each

newly provisioned volume can take several days to a

week when done manually. The administrator needs to

identify which storage subsystems have available storage

and which of the newly provisioned servers are able to

meet the performance requirements and can access that

storage by means of at least two fabrics (to reduce the

likelihood of a single point of failure). Once the storage

controllers are identified, volumes are created (using the

storage controller management tool) and zoning is

performed (using the switch fabric management tool).

After performing several steps with different tools, the

final configuration may not be ideal and may cause

unintended problems with other systems attached to the

SAN. Thus, there is a need for higher-level tools that

assist the administrator with tasks such as provisioning

in order to prevent unintended side effects and to allow

changes to be made in hours instead of days.

Data center environments are constantly evolving.

After the initial plan deployment, administrators are

typically required to continuously monitor application

performance to ensure that it is not degrading. Solving a

performance degradation problem is nontrivial in large

environments and can take several hours of investigation

to pinpoint a saturated server, switch, storage subsystem,

or Fibre Channel port. After pinpointing the saturated

device, the administrator has to then investigate the cause

of saturation. For example, a Fibre Channel port at

the storage controller can become saturated as a result of

re-zoning such that most of the storage traffic from the

fabric to the controller flows through a single port instead

of being load-balanced across the multiple storage-

controller ports. This underscores the need

administrators have for validating configuration changes

so they can prevent misconfiguration problems from

occurring. Further, there is a need to track changes in the

configuration over an extended period of time such that a

configuration snapshot for different time periods is

available. Finally, when the problem does occur,

administrators need help short-listing the devices and

configuration changes for deeper analysis.

Advanced analytic tools in SRMs can assist in change

management, configuration analysis, provisioning,

performance management, problem determination,

resiliency planning, root-cause analysis, and impact

analysis. These tools use the raw data aggregated by the

SRM and analyze it to generate insights and

configuration options for such tasks as provisioning and

problem resolution. In this paper, we describe such tools

in the context of the IBM TPC. These tools help with four

key administrative performance-management tasks:

change management, configuration analysis, provisioning

and capacity planning, and performance management

and problem determination, each discussed in the
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subsequent sections. To further enhance the ability of

these modules to extract information from the raw data,

we are developing SMART (storage management

analytics and reasoning technology) [8], a library of data-

aggregation functions for device modeling. SMART uses

regression functions, workload trending using time-series

analysis, end-to-end dependency functions, and data-

clustering techniques to detect abnormalities in workload

and device characteristics. For more detailed information

about SMART and its functions, please refer to our

related papers [9–13].

Change management
Administrators often update the system configuration, for

example, create and delete storage volumes, configure

zones within the Fibre Channel switches, change the

logical unit number masking of hosts and storage

volumes, and add new devices, hosts, and switches.

Configuration changes do not always take into account

potential second-order effects on other applications that

share the same SAN. For example, re-zoning a switch

may cause traffic to be redirected to other switches, which

can create a potential bottleneck for other applications.

Also, it is well documented that a high percentage of

storage downtime is caused by incorrect configuration

changes [14, 15]. Traditionally, administrators

maintained change logs that were manually updated with

the details of the configuration changes. These logs are

used for problem diagnosis, often at a much later point in

time and by a person other than the one who made the

change. In enterprise environments in which tens of daily

configuration changes can be affected by multiple

administrators, there is a need for a systems management

tool with the ability to track configuration history at a

fine granularity so that an administrator can accurately

reconstruct the precise state of the infrastructure at a

given point in time and use this information for problem

determination, change management, or auditing

purposes. The change rover component in TPC is

designed to satisfy this requirement.

The change rover provides temporal browsing

capability by making old data versions nameable and

accessible, thus allowing the user to reconstruct

configuration changes over a specified duration of time.

Administrators have two mechanisms for generating the

configuration history: on-demand and scheduled. With

the on-demand method, an administrator can take an

asynchronous snapshot of the system configuration at

will. Additionally, each snapshot can be associated with

an optional text tag. This tag can facilitate subsequent

collaborative debugging by a team of administrators and

it provides a means for auditing configuration change

actions. The scheduled method of generating a

configuration history lets users specify how frequently

snapshots of the system configuration are taken. The

history generation scheduler wakes up at the assigned

time and does its work unobtrusively in the background

without requiring intervention. This method automates

the cumbersome task of collecting periodic snapshots of

the system configuration state. However, any product

that stores historical data results in increased

consumption of storage space. Thus, the change rover

uses innovative technology to populate the database

repository that records only the configuration deltas (as

opposed to global snapshots) to minimize storage space

consumption for history data. As in a log-structured file

system, there is still the overhead created by the need

to replay the history to reconstruct the configuration

at some point in time; however, this runtime overhead is

minimized by intelligent use of database views and

indexes, and the savings in database space and overhead

compensate for the residual performance overhead.

Semantically, the change rover shows changes to

devices, device attributes, device interconnections, and

zoning configurations. Fundamentally, there are four

types of change operations that are of interest with

respect to the configuration of an entity: addition (e.g.,

provisioning a new volume on a storage subsystem),

modification (e.g., increasing the capacity of a given

volume), deletion (e.g., deleting a storage volume), and

no change.

A typical usage scenario for the change rover follows.

In a large distributed system configuration, changes

happen quite frequently. A change that negatively

impacts performance may not be noticed for weeks. At

the point when the administrator tries to solve the

problem, it is typically very difficult to determine which of

the many configuration changes could have caused the

problem. Using the change rover, the administrator can

go back and compare the system state from the time

before trouble reports started coming in and compare it

with later states of the system. The time slot under

consideration can be further refined until the problem is

identified and fixed. The synchronized graphical and

tabular views generated by the change rover, along with

drill down (moving from a summary view to more

detailed data), make it possible for the administrator to

view and compare the configuration at discrete points in

time and thus rapidly determine which configuration

change was the culprit.

In summary, the change rover provides a scalable and

easy-to-use way to visualize storage configuration at a

specific point in time and to compare configurations at

specific points in time for rapid problem determination.

Configuration analysis
Adherence to best practices is essential for successful

configuration and deployment of complex systems. While
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deploying a system in a data center, experts rely on

experience and best-practice guidelines to proactively

prevent configuration problems from occurring.

According to the IBM SAN Central team—an internal

group in IBM that deals with installation, configuration,

and troubleshooting of SANs for customers and gathers

and maintains a large knowledge base of customer

problems, solutions, and best practices—80% of

configuration problems are caused by the violation of

best practices. Generating a best-practices user’s manual

is costly, requiring many man-years of data gathering and

analysis. It is difficult for system administrators to

maintain their own dynamic set of best practices because

the technology is continuously evolving and intervendor

interoperability standards are still immature and lead to

hard-to-diagnose configuration problems.

The configuration analysis functionality in TPC is a

better approach. It is an extensible, policy-based analytic

framework to validate storage infrastructures against

best-practice violations in an end-to-end fashion. Best-

practice policies are encoded in a declarative policy

language and cover a wide range of domains, such as

fabric security, fabric configuration, storage and server

security, and configuration. The functionality is

extensible and allows the addition of policies for such

areas as server management and IP (Internet Protocol)

network fabric management. These policies are grouped

into the following categories:

1. Parametric—Accepts input parameters from the

administrator as thresholds.

2. Nonparametric—Does not require input parameters

from the administrator.

The following is an example of a parametric policy.

� Policy—Each fabric may have a maximum of n

number of zones. (In this policy, the administrator

can supply the value of n on the basis of the type of

fabric that imposes the zone number constraint.)
� Explanation—The configuration analysis function

checks whether the number of zone definitions in the

fabric is larger than the number that was entered by

the administrator. In large fabrics, too large a number

of zone definitions can become a problem. Fabric

zone definitions are controlled by one of the switches

in that fabric, and limiting their number ensures that

the zoning tables for the switch do not run out of

space. The zone-set scope is not supported by this

policy.

The following is an example of a nonparametric policy.

� Policy—Each host bus adapter (HBA) accesses

storage subsystem ports or tape ports, but not both.
� Explanation—The configuration analysis function

determines whether an HBA accesses both storage

subsystem and tape ports. Because HBA buffer

management is configured differently for storage

subsystems and tape, it is not desirable to use the

same HBA for both disk and tape traffic. A policy

violation is generated if a zone set allows an HBA

port to access both disk and tape. The fabric and

zone-set scopes are not supported by this policy

because an HBA can be connected to multiple fabrics.

The configuration analysis tool can be configured to

have different scopes that can range from the entire

environment to a single Fibre Channel fabric or a set of

Fibre Channel zone sets. These scopes can be selected on

the basis of the policies to be verified. Administrators can

decide to run a group of policies on a particular scope,

which is called a profile. Primitives such as scope and

profile help administrators customize their configuration

analysis environment.

Generally, configuration changes are scheduled

periodically or are synchronized with important event

occurrences in a managed storage environment. Tasks

such as storage provisioning and access control are tested

offline before being put into production. Administrators

can synchronize their configuration changes using

configuration analysis to determine whether any best

practice will be violated because of these changes. They

can incrementally fix the violations and run configuration

analysis. A more detailed discussion of currently

supported policies is available in the TPC version 3.3

update guide [16]. In our ongoing research, we are

applying machine-learning techniques to generate the list

of best practices from large collections of customer

problem logs [17].

Provisioning and capacity planning
One of the most challenging and time-consuming tasks in

enterprise data centers is application provisioning.

Introducing a new application (or even changing the

characteristics of an existing application) often takes

weeks. This is due primarily to the complexity involved in

capacity planning (identifying appropriate resources that

can be allocated to the application) and executing the

plan to provision the actual resources for the application.

Capacity planning has long been done manually by

using rules of thumb and back-of-the-envelope

calculations. Beginning with the basic capacity

requirement, an administrator decides how many storage

volumes to create, what their individual sizes should be,

and whether enough space is available in the subsystems

to accommodate the new volumes. With an understanding
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of the nature of the new workload (e.g., the read/write

ratio and the random/sequential ratio), the administrator

can try to choose where to place the new volumes so that

the application performance objectives can be met

without adversely impacting any preexisting workloads.

As shown in Figure 1, there are several parameters to take

into account. It requires not only familiarity with the

complex internal structure of all available subsystems and

access to the resource utilization and performance data

for the subsystem components, but also the ability to

analyze and match them appropriately.

The SAN storage-provisioning planner functionality in

TPC is designed to assist administrators in this process. It

uses live monitored performance data for each of the

internal subsystem components (device adapters, ranks,

and storage pools) and performs a detailed analysis on

the basis of subsystem models and performance upper

bounds to select appropriate subsystems. This analysis

and selection is a complex optimization task, as it

involves bin-packing algorithms and must deal with the

hierarchical constraints imposed by the internal structure

of the subsystems. Once the administrator selects a plan

to deploy, the volumes are created on the chosen

subsystems and a suitable number of paths from the hosts

to these volumes are set up, as are zoning configurations

as well [18].

The current TPC provisioning planner focuses

primarily on optimizing storage subsystem utilization by

careful placement. With new virtualization technologies

providing greater server isolation and mobility, more

attention is now being paid to ensuring the appropriate

utilization of server resources in conjunction with the

storage and I/O (input/output) fabric. Our ongoing work

extends the TPC planner to include integrated server and

storage placement using a new technique called SPARK

(stable proposals and resource knapsacks) [19]. Using a

novel combination of the stable marriage and 0/1

knapsack solutions, SPARK provides the first such

mechanism to decide placement for both computation

and data in a coupled manner. (Computation could be

placed, for instance, on a virtual machine.) This ensures

that applications requiring higher I/O rates are placed on

appropriate server–storage combinations.

A second stream of ongoing work is to reduce or

eliminate dependence on white-box models (only internals

can be viewed) for storage devices used in optimizations.

White-box models are less generic and limited to the

scope of only a few subsystems. SMART is a library of

black-box models (inputs and outputs can be viewed)

under development that is being designed to learn models

of subsystems based solely on their observed performance

data. Applicable machine-learning algorithms for device

models include regression methods, such as multivariate

linear regression and multivariate adaptive regression

splines [20], and decision-tree methods, such as

classification and regression tree (CaRT) [21] and

M5 [22]. Both CaRT and M5 are included in SMART.

Time-series models in SMART characterize a

workload on the basis of its historical behavior. The

model is used for predicting future behavior and for

analyzing pattern, periodicity, abnormality, and trend of

a data series. It helps the administrator make better

decisions in capacity planning. There are two main

categories of time-series analyses: time domain and

frequency domain. Analysis in the time domain is most

often used to determine trends and make predictions. We

use the popular autoregressive integrated moving average

(ARIMA) method [23] for time-domain analysis.

ARIMA models require that the order of the components

be determined—a challenging task when it has to be done

Figure 1
Storage configuration and planning operation. (LUN: logical unit number; OLTP: online transaction processing.)

Provide best LUN

recommendations

Configuration 

data

- I/O demand (I/O operations/s/GB)

- Average transfer size (KB/s)
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- Cache utilization

- Peak activity time
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- OLTP high

- Data warehouse

- Sequential batch

- Document archival
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Historical

performance data
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manually. Through an extensive series of experiments, we

have developed best-practice values that allow us to

determine this order. We use fast Fourier transforms [24]

for frequency-domain analysis. Fourier transform gives

periodograms in which a periodic data series shows spikes

at its cycle, while a nonperiodic series is typically flat with

little variation.

Performance management and problem
determination
Storage administrators are responsible for ensuring that

enterprise applications maintain a certain level of I/O

performance (in terms of average I/O throughput and

response time). This task involves a detailed

understanding of the end-to-end server–storage path

consisting of server connectivity to Fibre Channel

switches, the connectivity of switches to other switches

and storage controllers, and the logical configuration of

storage pools and volumes within the storage controllers.

A typical enterprise-scale storage environment consists of

thousands of hosts, hundreds of Fibre Channel switches

with 8 to 64 ports each connecting tens of enterprise-class

storage controllers, tape libraries, and other devices. The

order of the number of end-to-end paths from host

servers to storage volumes can range upward from

thousands to millions. Manually correlating data

collected from individual devices within the infrastructure

is no longer a feasible alternative.

Performance management starts with appropriately

provisioning storage capacity and bandwidth on the basis

of application requirements. In addition, path and zone

planning is required to ensure that there is sufficient

bandwidth for connectivity between the application

server or servers and the storage subsystem. After the

initial setup, administrators continuously monitor and

analyze the end-to-end path to ensure that the

performance requirements are satisfied. Performance

violations can occur for several reasons with varying

levels of complexity. Violations can be caused by simple

device failures that are easy to detect or by relatively

complex device saturation caused by skew in the

workload of one or more applications sharing the device.

Thus, problem determination is an important aspect of

performance management and requires that

administrators drill down until they uncover the reason

for a performance violation.

There are several performance-management and

problem-determination tools with varying levels of

automation available in TPC. As described earlier, the

configuration analyzer continuously analyzes

configuration changes and checks for violations of best

practices as a method intended to prevent performance

problems before they occur. Similarly, the change rover

maintains historical configuration information, making it

possible for an administrator to review configuration

changes that could possibly have led to a performance

violation.

An important aspect of performance management and

problem determination is to provide end-to-end

information to the administrator using an intuitive,

flexible interface that allows administrators to understand

the overall environment and enables them to drill down

into the details of logical or physical entities to diagnose

system problems. The TPC datapath explorer is such an

interface. It uses advanced human–computer interaction

(HCI) concepts [25]. Its design objectives were derived

from numerous real-world case studies conducted to

understand how administrators execute their day-to-day

tasks and make use of available data for decision making.

The explorer provides a view of the end-to-end path

dependencies between servers and storage subsystems or

between storage subsystems (e.g., from a SAN volume

controller to back-end storage). In addition to

discovering path dependencies, the explorer also derives

the end-to-end performance and health information, that

is, information that consists of critical and other

configuration alerts related to the devices (typically found

in the device logs). In order to provide an intuitive view,

the overall datapath (Figure 2) is divided into three

groups: host, fabric, and subsystem.

Some of the key HCI concepts the explorer uses to

radically simplify tasks such as system diagnosis to trace

the source of a problem from a host to a switch to a

storage subsystem [26–28] are as follows:

� Semantic zooming and progressive disclosure—A

visualization technique for rendering very-high-

density data by adaptively changing the level of data

abstraction. While graphical zooming changes the

scale of the object being viewed, semantic zooming

changes the level of information abstraction, for

example, zooming out would mean going to a higher

level of abstraction. It is often employed in

conjunction with progressive disclosure, which

provides task-specific presentation and interaction in

a sequence of displays. Much of this capability was

achieved by anticipating the steps administrators

would take in completing tasks and then creating

displays to support the completion of those tasks

quickly.
� Multilevel, multiperspective layouts—Explorer is

capable of providing multiple views of the system

topology (server, fabric, and storage centric) with

varying levels of abstraction (overview, group, single

devices). Initially, users are shown an overview of

their entire systems environment in which devices are

grouped by type. In the event of a problem, users can
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view aggregated status to trace information to

troubled devices by drilling further down into the

environment, for example, beginning with fabric

groups and then moving downward eventually to a

switch in a fabric. The administrator can quickly

recall a specific view without having to back in to or

out of panel hierarchies or lose context.

� Grouping and aggregation—The explorer organizes

devices into a number of task-dependent groups that

can be custom defined. Users can focus not only on a

smaller number of devices but also on devices that are

relevant to the task at hand. For example, an

administrator can first regroup hosts by status and

then identify critical entities; they can then regroup

again by operating system or by a user-defined

location property to gain a different perspective on

the problem. Individual groups can be collapsed or

expanded in place. Collapsed groups show a summary

of their contents that enables users to survey the

contents and see important device information, such

as degraded status, even at higher levels. Aggregation

of device information helps in monitoring a large

number of entities, even when monitoring at higher

levels, and helps guide administrators to the root

cause of a problem at lower levels.

� Overlays—The viewer provides overlays to add task-

specific information such as health status,

performance status, or zone memberships. Overlay

status information is aggregated for groups up the

hierarchy of devices.

As an example, if a host is running slowly, the system

administrator can use explorer to ascertain the health of

the associated I/O path and determine whether a

component has failed or a link is congested. The explorer

highlights the performance problems that might be

causing the slow application response. As another

example, a system administrator may want to determine

whether the I/O paths for two applications (on separate

host logical unit numbers) are in conflict with each

other (e.g., because they share a common switch).

After viewing the I/O paths for these two applications,

the administrator can make the required zoning or

connectivity change to alleviate the problem.

Our ongoing research is focused on two aspects of

problem determination: abnormality detection and path

correlation. Abnormality detection analyzes the monitored

data to identify similarity clusters and isolate abnormal

samples in multidimensional performance data. It is

designed to answer questions such as What are the typical

workload characteristics? and Is the input abnormal? If

an abnormality is detected, it triggers an alert for the

Figure 2
End-to-end entity correlation using topology viewer.
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administrator and records a detailed snapshot of the

system configuration for later analysis. Path correlation

refers to the task of determining the mapping of each

application workload to the different paths and links in

the system. It is used to answer questions such as Which

applications are going through this link, port, or device?

and What are the application paths? Path correlation

functions are the basis for dependency discovery, problem

determination, and impact analysis. The literature shows

that there has been significant interest in using correlation

models for problem diagnosis and root-cause analysis

[26–30]. These models capture the relationships among

different components in the system by analyzing request

traces collected by node instrumentation or request

probing. These path correlation models capture the

relationships among different components in the system

by analyzing request traces collected by node

instrumentation or request probing.

To provide support for abnormality detection, we are

implementing a data-clustering module as part of the

SMART library. Data clustering is done using machine-

learning algorithms, namely k-means [31] and expectation

maximization [32]. The basic idea is that normal

monitoring samples will have similar values and will

always be clustered together (e.g., the response time of a

device for a given load will be similar in normal

circumstances); the abnormal samples will be far away

from their corresponding clusters and hence can be

detected and notification provided. The distance

measurement for abnormality considers the weighted

Euclidean distance between the sample and its cluster

centroid. We use weighted distance because different

metrics have different statistics, for example, a cache hit is

between 0% and 100%, while the I/O rate ranges into the

thousands. Metric weights are obtained from in-house

experiments and preloaded in the SMART library.

The path correlation module in SMART uses the

topology and fabric zoning information available in TPC.

The application-to-server mappings and those to the

server port, controller port, controller, and disk array are

extracted from the TPC. Routing information within the

fabric network is managed automatically by fabric

switches and, thus, is not available. Fortunately, fabric

networks typically use uniform configurations with

simple topology designs, which makes it easy to infer

routing paths. High redundancy in enterprise storage

systems is a challenge for path correlation. In a typical

real-world setup, one server has at least two unshared

fabric networks connecting to the storage controller, and

each path uses two to four redundant connections at each

device for load-balancing and failover. Existing

dependency models are not applicable since we cannot

currently instrument storage controllers or send probing

requests. A complete study of load-balancing and failover

behavior remains for future work.

Related work
Data storage needs have been rapidly increasing, creating

the need for more automated storage management. There

has been a significant amount of research in the area of

storage resource manager (SRM) tools that can be

differentiated along five axes: discovery and monitoring

of heterogeneous storage hardware and resources,

analyzing and reporting normal and anomalous behavior,

configuration and capacity planning, change execution,

and ease of use. The key SRM tools available today

include CA Storage Resource Manager [33], EMC

ControlCenter [6], HP Storage Essentials [34], IBM

TPC [5], Symantec storage management solutions [35],

and Network Appliance NetApp Storage Suite [36]. In

addition to these, there are other smaller companies (such

as Akorri, Brocade Communications Systems, and

Tek-Tools) in the market that focus on individual aspects

of storage management. A brief comparative study of

these commercial tools is available from Russell and

Passmore [37] in their ‘‘magic quadrant’’ analysis, which

compares major SRM software against different criteria.

In our view, the key aspect that distinguishes the IBM

TPC solution from the others is an easy-to-use unified

console that integrates all the SRM functions and

provides a seamless way for the administrator to discover,

monitor, analyze, plan, and execute by making use of the

advanced analytics described in this paper.

Visualizing high-density data is an area of active

research in the HCI domain [25, 38]. Topology viewer

uses some of the HCI concepts such as semantic zooming

and progressive disclosure to change the level of data

abstraction adaptively. The change rover is related to

software versioning tools that keep track of different

software modifications and allow users to compare their

changes with earlier versions of their code. The change

rover applies similar concepts in the SAN environment so

that system administrators can keep track of changes in

the configuration of devices, zones, and interconnects.

The configuration analyzer enables the use of Technology

Infrastructure Library (ITIL**) [39] best practices for the

management of storage infrastructures and services.

Provisioning and capacity planning have been well

studied [40]. There are many commercially available tools

(e.g., EMC ControlCenter SAN Manager [6] and CA

SAN Designer [41]) and research prototypes (such as

Minerva [42], Ergastulum [43], and HP Appia [44]) that

perform capacity planning for shared storage systems.

One of the major factors that differentiate TPC from

these products is that it can plan volume allocation, port

selection, or zoning on the basis of runtime performance

and subsystem internal component utilization, which may
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become necessary once the infrastructure has been

deployed. Previous algorithms [45] for disk layouts and

file placements have been proposed, but the difficulty is

taking into account the hierarchical and other practical

constraints that are common in modern SAN

environments.

Conclusion and future work

In the last few years, there has been a significant evolution

in the domain of storage management. Starting with the

manual collection of data from individual device

management graphical user interfaces, storage

management is evolving to an approach that standardizes

the collection of data for multivendor devices followed by

persistence in a common repository and provides end-to-

end topology information integrated with analytic tools

to assist administrators with day-to-day administrative

tasks. In this paper, we presented a description of various

analytic features of the IBM TPC in the context of

existing techniques used by administrators and described

how TPC tools can simplify the day-to-day tasks of

change management, configuration analysis, provisioning

and capacity planning, performance management, and

problem determination.

Our ongoing research is focused on further automation

and simplification of the error-prone tasks of disaster

recovery planning, charge back [46], end-to-end

provisioning optimization [19], storage service

outsourcing [47], and others that are currently executed

using back-of-the-envelope calculations. Management

decisions are becoming more proactive rather than being

reactive. Administrators are increasingly using what-if

analyzers [48] to evaluate the impact of configuration

changes and system events. Our grand vision is a tighter

integration of storage management with server, virtual

machine, and IP network management, providing an end-

to-end application-level management environment with

dynamic continuous optimization.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of EMC
Corporation, Hewlett-Packard Development Company, L.P.,
Office of Government Commerce, or Sun Microsystems, Inc., in
the United States, other countries, or both.
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40. D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Capacity
Planning and Performance Modeling: From Mainframes to
Client-Server Systems, Prentice-Hall, Inc., Upper Saddle
River, NJ, 1994.

41. CA, Inc., CA SAN Designer; see http://ca.com/us/products/
product.aspx?ID¼4590.

42. G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, A. Veitch,
and J. Wilkes, ‘‘MINERVA: An Automated Resource
Provisioning Tool for Large-Scale Storage Systems,’’ ACM
Trans. Comput. Syst. 19, No. 4, 483–518 (2001).

43. E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla, and
Q. Wang, ‘‘Quickly Finding Near-Optimal Storage Designs,’’
ACM Trans. Comput. Syst. 23, No. 4, 337–374 (2005).

44. J. Ward, M. O’Sullivan, T. Shahoumian, and J. Wilkes,
‘‘Appia: Automatic Storage Area Network Fabric Design,’’
Proceedings of the Conference on File and Storage
Technologies, Monterey, CA, 2002, pp. 203–217.

45. J. Wolf, ‘‘The Placement Optimization Program: A Practical
Solution to the Disk File Assignment Problem,’’ Proceedings
of the 1989 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, Oakland,
CA, 1989, pp. 1–10.

46. S. Agarwala, R. Routray, and S. Uttamchandani,
‘‘ChargeView: An Integrated Tool for Implementing
Chargeback in IT Systems,’’ Proceedings of the 11th IEEE/
IFIP Network Operations and Management Symposium,
Salvador, Bahia, Brazil, 2008, see http://www.iit.edu/
;routram/ChargeView.pdf.

47. S. Uttamchandani, K. Voruganti, R. Routray, L. Yin, A.
Singh, and B. Yolken, ‘‘BRAHMA: Planning Tool for
Providing Storage Management as a Service,’’ Proceedings of
the IEEE International Conference on Services Computing,
Salt Lake City, UT, 2007, pp. 1–10.

48. A. Singh, M. Korupolu, and K. Voruganti, ‘‘Zodiac: Efficient
Impact Analysis for Storage Area Networks,’’ Proceedings of
the Fourth USENIX Conference on File and Storage
Technologies, San Francisco, CA, 2005, pp. 73–86.

Received October 1, 2007; accepted for publication

S. GOPISETTY ET AL. IBM J. RES. & DEV. VOL. 52 NO. 4/5 JULY/SEPTEMBER 2008

350

December 19, 2007; Internet publication June 18, 2008



Sandeep Gopisetty IBM Almaden Research Center,
650 Harry Road, San Jose, California 95120
(sandeep@almaden.ibm.com). Mr. Gopisetty is a Senior Technical
Staff Member and manager. He leads the autonomic storage
management research, where he is responsible for the strategy,
vision, and architecture of the TPC and its analytics. He is
currently working on various optimization and resiliency analytics
for autonomic storage resource manager and integrated systems
management. He is the recipient of several patents and IBM
corporate recognition awards including an Outstanding Innovation
Award and a Supplemental Outstanding Technical Achievement
Award for his vision and technical contributions to the architecture
of the TPC as well as leadership in driving his vision into plan and
through implementation with a team that spanned three divisions.
He also received an Outstanding Technical Achievement Award
and a Supplemental Outstanding Technical Achievement Award,
both for character recognition. His research interests include
object-oriented systems, Sun Java**, C and Cþþ programming,
and distributed database systems development. He graduated with
an M.S. degree in computer engineering from Santa Clara
University.

Sandip Agarwala IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (sagarwala@us.ibm.com).
Dr. Agarwala is a Research Staff Member. He holds a Ph.D. degree
in computer science from the Georgia Institute of Technology, and
a B.Tech. degree in computer science from the Indian Institute of
Technology, Kharagpur. His research interests are in the general
area of experimental computer systems, with primary focus on the
design, development, and analysis of system- and middleware-level
techniques to diagnose performance, manage resources, and
automate the management of large-scale distributed systems.

Eric Butler IBM Almaden Research Center, 650 Harry Road,
San Jose, California 95120. Mr. Butler is an Advisory Software
Engineer. He holds B.S. and M.S. degrees in electrical engineering
from San Jose State University. His research interests include data
center optimization; integrated system, storage, and network
management; and storage systems.

Divyesh Jadav IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (divyesh@almaden.ibm.com).
Dr. Jadav is a Software Architect in the Storage Systems and
Servers group. He holds a B.E. degree from Bombay University,
India, and M.S. and Ph.D. degrees from Syracuse University, all in
computer engineering. He has worked in the areas of RAID
(Redundant Array of Independent Disks) software, autonomic
performance control, and storage resource management.

Stefan Jaquet IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120. Mr. Jaquet is a Senior Software
Engineer. He holds a B.S. degree in mathematics and computer
science from Santa Clara University, and an M.S. degree in
computer science from San Jose State University. He has worked
on various data management, storage systems, and storage
management projects, and he is currently focused on integrated
storage and systems management as well as storage performance
management software.

Madhukar Korupolu IBM Almaden Research Center,
650 Harry Road, San Jose, California 95120
(madhukar@us.ibm.com). Dr. Korupolu is a Research Staff

Member. He holds M.S. and Ph.D. degrees in computer science
from the University of Texas at Austin, and a B.Tech. degree in
computer science from the Indian Institute of Technology, Madras.
His areas of interest and contribution are in capacity planning and
provisioning (technology released as part of IBM TotalStorage
Productivity Center), autonomic resource management and related
server and storage optimization in data centers, virtualization
management, and more generally, algorithms and distributed
systems. He is presently an Associate Editor for the ACM journal
Transactions on Storage.

Ramani Routray IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (routrayr@us.ibm.com).
Mr. Routray is an Advisory Software Engineer. He holds an M.S.
degree in computer science from Illinois Institute of Technology.
His research interests include storage systems, SAN simulation,
integrated systems management, machine learning, and disaster
recovery.

Prasenjit Sarkar IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120. Dr. Sarkar is a Research Staff
Member in computer science and Master Inventor whose focus is
on autonomic data storage resource management. He has made
key architectural contributions in the areas of self-management,
optimization, fault analysis, storage provisioning, and
orchestration that are featured in the IBM TotalStorage
Productivity Center suite of products. He holds a B.S. degree in
computer science and engineering from the Indian Institute of
Technology, Kharagpur, and M.S. and Ph.D. degrees in computer
science, both from the University of Arizona. His initial research
at IBM focused on the then-emerging field of storage networking
over IP networks. In addition to authoring Internet Engineering
Task Force (IETF) industry standards, he was instrumental in
designing and releasing the industry’s first iSCSI (Internet Small
Computer System Interface) storage controller in June 2001. He
has received five patents and three IBM Outstanding Technical
Achievement Awards.

Aameek Singh IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (aameek.singh@us.ibm.com).
Dr. Singh holds a Ph.D. degree in computer science from the
Georgia Institute of Technology. His research interests include
integrated management and security for enterprise-scale storage
and distributed systems.

Miriam Sivan-Zimet IBM Almaden Research Center, 650
Harry Road, San Jose, California 95120. Ms. Sivan-Zimet is an
Advisory Software Engineer and holds an M.S. degree in computer
science from the University of California at Santa Cruz.

Chung-Hao Tan IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (chungtan@us.ibm.com).
Mr. Tan is a Senior Software Engineer. He holds an M.S. degree in
computer science from the University of Southern California.
His research interests include HCI, system management, and
machine learning.

Sandeep Uttamchandani IBM Almaden Research Center,
650 Harry Road, San Jose, California 95120
(sandeepu@us.ibm.com). Dr. Uttamchandani holds M.S. and
Ph.D. degrees from University of Illinois, Urbana–Champaign. He

IBM J. RES. & DEV. VOL. 52 NO. 4/5 JULY/SEPTEMBER 2008 S. GOPISETTY ET AL.

351



currently leads the research effort in developing and delivering a
resiliency planner for the IBM systems management product line.
He has been involved in projects relating to storage protocols,
distributed file systems, autonomic storage management, and large-
scale customer deployments. He started and developed the
SMART project at IBM Almaden Research Center, which
explored model-based techniques for storage management. He has
authored several papers in key systems conferences and key patent
disclosures in the systems management domain.

David Merbach IBM Systems and Technology Group,
3605 Highway 52 North, Rochester, Minnesota 55901
(dmerbach@us.ibm.com). Mr. Merbach is an architect for the
TotalStorage Productivity Center.

Sumant Padbidri IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (spadbidr@us.ibm.com).
Mr. Padbidri is a Senior Technical Staff Member and lead architect
for the TotalStorage Productivity Center at IBM. He holds an
M.S. degree in computer science from the University of Bombay.

Andreas Dieberger IBM Almaden Research Center,
650 Harry Road, San Jose, California 95120. Dr. Dieberger is a
Research Staff Member working on HCI.

Eben M. Haber IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120. Dr. Haber is a Research Staff
Member working on HCI. He holds a Ph.D. degree from the
University of Wisconsin–Madison where he worked on improving
user interfaces for database systems. His interests include
databases, user interfaces, and visualization of structured
information. He has worked on data mining and visualization as
well as user interface design, and he is currently studying human
interactions with complex systems.

Eser Kandogan IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120. Dr. Kandogan is a Research
Staff Member. He holds a Ph.D. degree from the University of
Maryland, where he studied computer science with a specialization
in HCI. His current interests include human interaction with
complex systems, policy-based system management, ethnographic
studies of system administrators, information visualization, and
end-user programming.

Cheryl A. Kieliszewski IBM Almaden Research Center,
650 Harry Road, San Jose, California 95120 (cher@us.ibm.com).
Dr. Kieliszewski is a Research Scientist focused on the human
element of service system design. She has worked in human factors
and has a background in general design and HCI. She holds a
Ph.D. degree in industrial and systems engineering from the
Virginia Polytechnic Institute.

Dakshi Agrawal IBM Research Division, Thomas J. Watson
Research Center, 19 Skyline Drive, Hawthorne, New York 10532
(agrawal@us.ibm.com).Dr.Agrawal received aB.Tech. degree from
the Indian Institute of Technology–Kanpur, an M.S. degree from
Washington University, and a Ph.D. degree from the University of
Illinois, Urbana–Champaign, all in electrical engineering. He
manages the Network Management Research group.

Murthy Devarakonda IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598. Dr. Devarakonda is a Senior Manager and
Research Staff Member in the Services Research department at the
IBM T. J. Watson Research Center. He received his Ph.D. degree
in computer science from the University of Illinois at Urbana–
Champaign in 1988. Presently, his research is focused on
distributed file systems, Web technologies, storage and systems
management, and now services computing. He received three IBM
Research Division Awards for his work on distributed file systems
and Global Technology Outlook development. Dr. Devarakonda
is a Senior Member of the IEEE and the ACM.

Kang-Won Lee IBM Research Division, Thomas J. Watson
Research Center, 19 Skyline Drive, Hawthorne, New York 10532.
Dr. Lee is a Research Staff Member and a manager of the Wireless
Network Research group. He holds a Ph.D. degree in computer
science from the University of Illinois, Urbana–Champaign, and
B.S. and M.S. degrees in computer engineering from the Seoul
National University. His research interest lies in distributed
computing systems, wired and wireless computer networks, and
on-demand policy-based computer system management. He
received an IBM Research Division Award for his contribution in
policy-based autonomic computing systems.

Kostas Magoutis IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (magoutis@us.ibm.com). Dr. Magoutis is a Research Staff
Member in the Services Research department. His research
interests are in distributed systems, storage systems, and IT
services. Recently, he has been working on modeling and
management of distributed middleware systems, self-regulating,
high-speed access to network storage systems, and improving the
design and delivery of IT services. He holds a Ph.D. degree in
computer science from Harvard University.

Dinesh C. Verma IBM Research Division, Thomas J. Watson
Research Center, 19 Skyline Drive, Hawthorne, New York 10532
(dverma@us.ibm.com). Dr. Verma is a researcher and senior
manager in the networking technology area. He holds a Ph.D.
degree in computer networking from the University of California
Berkeley, a Masters in Management of Technology degree from
Polytechnic University, and a B.S. degree in computer science from
the Indian Institute of Technology, Kanpur. He holds 24 patents
related to computer networks and has authored more than 50
papers and four books in the field. He is the program manager for
the U.S. and UK International Technology Alliance in Network
Sciences. He is a Fellow of the IEEE and has served in various
program committees and technical committees. His research
interests include topics in wireless networks, network management,
distributed computing, and autonomic systems.

Norbert G. Vogl IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (vogl@us.ibm.com). Mr. Vogl holds degrees in mathematics
and computer science from Clarkson University and Pennsylvania
State University. He develops service and application prototypes,
and his experience includes decision support for storage allocation,
IT in the small and medium business sector, bulk file delivery via
satellite communication systems, video and data transmission over
residential broadband, and workflows of intraenterprise electronic
commerce.

S. GOPISETTY ET AL. IBM J. RES. & DEV. VOL. 52 NO. 4/5 JULY/SEPTEMBER 2008

352


