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Abstract

This paper introduces OASIS, a self-tuning storage
management architecture that allows applications and the
storage environment to negotiate resource allocations with-
out requiring human intervention. The goal of OASIS is
to maximize the utilization of all the storage resources in
the storage area network subject to fairness in the allo-
cation of resources to applications. To achieve this goal,
OASIS continually inspects the application’s I/O behavior,
and determines the application’s storage requirements au-
tomatically. Subsequently, OASIS communicates this in-
formation from the applications to a storage manager by
means of a communication protocol that isolates the com-
plexities of applications and storage from each other. The
OASIS framework includes algorithms to dynamically and
continuously map application requirements into appropri-
ate low-level resource allocations. A key advantage of OA-
SIS over best-effort systems is the ability to fairly share
storage resources between workloads of varying charac-
teristics. What distinguishes OASIS from other managed
systems however, is its self-tuning nature. We implemented
a prototype of the OASIS architecture and performed ex-
periments on a set of competing synthetic workloads de-
rived from traces. Our results show that OASIS is able to
detect the bandwidth and latency requirements of the com-
peting workloads and generate a fairer allocation of stor-
age resources than a best-effort approach. More impor-
tantly, experience with a real-life database scenario, shows
that OASIS is able to satisfy the bandwidth requirements of
competing multi-threaded workloads without any storage
administrator input. In particular, OASIS is able to iden-
tify an under-performing workload and ensure it receives a
fair share of the overall storage system resources, resulting
in a performance increase by as much as a factor of five for
that workload over best-effort resource allocation.

1. Introduction

A significant challenge in today’s data centers is the
growing complexity of the deployed applications as well

as that of the overall architecture of the data centers. This
challenge is manifested by the high cost of system admin-
istration and the cost and complexity of deploying applica-
tions that are robust under variations in application work-
load and infrastructure changes in the data center. Further-
more, information flow in complex applications follows
several paths through the various components of the data
center, making analysis of the applications challenging [1].

Shared scalable storage systems are an integral part of
modern data centers and have been studied extensively in
the past [7]. Data centers that employ shared scalable stor-
age systems typically do so for the ability to scale stor-
age capacity independently of server capacity, to increase
the utilization and availability of storage resources, and for
the ability to share data between collaborating applications.
The increasing complexity of applications and of the data
center infrastructure complicates the task of allocating stor-
age resources that match the requirements of these complex
applications. There is increasing evidence that best-effort
resource allocations cannot satisfy the demands of applica-
tions [4, 10, 12]. This is fundamentally intuitive: the more
complex an environment is, the more challenging it is to
find a set of resource allocations that maximize the satisfi-
ability of the applications requesting them.

This paper deals specifically with the problem of gen-
erating storage resource allocations that match application
requirements. One possible approach is to have system ad-
ministrators describe in detail the application’s storage re-
source requirements, typically represented as service-level
objectives [2, 4, 12], and use planning tools to generate
appropriate allocations. This practice however, is fraught
with several difficulties. First, system administrators are
usually unable to give a detailed description of storage re-
source requirements of their applications and rely instead
on rough estimates based on intuition or on past experi-
ence with the application workload. Second, the specifi-
cation of storage resource requirements of an application
can only be statistical in nature and thus cannot describe
the complex information flows in an application with suf-
ficient accuracy. Third, the time and cost required to gen-
erate the storage resource requirements of an application
is an issue for organizations, particularly when the exper-



tise required is hard to come by. A natural consequence of
the time and cost issues is that the service-level objectives
specified by the largest data center system administrators
tend to be punitive rather than descriptive.

In OASIS, we adopt a fundamentally different approach
in allocating storage resources to applications. Instead of
requiring costly and potentially erroneous system adminis-
trator input in trying to determine application requirements
on storage, we rely on automatic and continuous measure-
ments of the application’s I/O behavior to generate stor-
age requirements. These storage requirements are peri-
odically conveyed to the storage subsystem using a com-
munication protocol. A key characteristic of this proto-
col is the specification of mutually comprehensible require-
ments (e.g., bandwidth, latency) without any additional
application-specific or storage-specific details. In this way
we are able to separate applications and storage in two in-
dependent domains, the application domain and the storage
domain, hiding the complexity of each domain from the
other.

The goal of OASIS is to maximize the utilization of the
resources on the storage area network subject to fairness
in the allocation of resources to applications. To achieve
this goal, OASIS incorporates algorithms to map the appli-
cation’s storage requirements into appropriate low-level re-
source allocations. These algorithms use storage resource
models and fairness policies to ensure that the allocation
of resources to applications meet their demands as closely
as possible. What this means in practice is that OASIS can
use information from applications and storage resources to
control aggressive storage flows and shift resources to less
aggressive applications that could potentially be resource-
starved in best effort systems.

A key difference of OASIS from other managed stor-
age systems is its self-tuning nature. In other words, the
input to OASIS decision-making is not an external, human-
specified goal but rather a set of internal, dynamic, and au-
tomatically collected measurements of application storage
requirements. Finally, another key characteristic of OASIS
is that it operates on the generic management interfaces ex-
posed by the applications and storage subsystems.

The rest of this paper is structured as follows: In Sec-
tion 2 we position OASIS in relation to past research work.
In Section 3 we describe the architecture of OASIS and pro-
vide a high-level overview of the interactions between ap-
plications, the storage manager, and the storage subsystem.
Following that, we describe the algorithms used to coor-
dinate resources between these components. In Section 4
we describe our prototype implementation of the OASIS ar-
chitecture and the experiments we used to evaluate OASIS.
In particular, the evaluation focuses on the management of
bandwidth and latency requirements of (a) competing syn-
thetic workloads that model application I/O behavior ob-
served in traces; and (b) two real-life application workloads

that concurrently access a database. Our results show that
OASIS is able to detect the bandwidth and latency require-
ments of the competing synthetic workloads and to gen-
erate a fairer allocation of storage resources than a best-
effort approach. Experience with the real-life database sce-
nario shows that OASIS is able to satisfy the bandwidth
requirements of the two competing workloads, a random
write-dominated transactional workload and a sequential
read-dominated aggregation workload, in a fair manner and
without any storage administrator input. In comparison,
a best-effort allocation model exhibits resource constraints
when applied to the same workloads. Finally, the paper
ends with conclusions and suggestions for future work.

2. Related work

Extensive research on self-tuning operating systems and
databases in recent years [6, 15, 16, 17] has been motivated
by the increasing complexity of these systems and the high
level of expertise required to manage them. Much of this
prior work has focused on automatically determining op-
timal settings for appropriate system controls. In OASIS
we focus on self-tuning complex storage environments for
allocating storage resources to applications.

The OASIS approach is based on the principle that re-
source allocations must be made with the goal of maximiz-
ing the utilization of all storage resources subject to fairness
in the allocation to the applications. As such, the OASIS ap-
proach is similar in principle to the framework defined by
Kelly et al. [11], which defines fairness in resource alloca-
tion as the optimization of the aggregate utility function of
all principals in a system. The underlying mechanisms in
such systems typically involve policies that grant resources
in an additive manner and revoke them proportionately in a
multiplicative manner. An example of such a discipline is
the congestion control policies found in TCP. A character-
istic of such systems is that they tend to favor short flows
(i.e., those using a small number of resources) as opposed
to long flows.

Previous work on storage resource management sys-
tems focuses primarily on achieving service-level objec-
tives (SLOs) set by a system administrator. Typical SLOs
include an upper bound on the I/O latency of a flow as-
suming that the offered load (e.g., throughput) will not ex-
ceed a certain threshold. Systems such as Facade [12],
SLEDS [4], and Triage [10] aim to achieve latency SLOs
by regulating the rate of application I/O streams entering
the storage environment. Other systems, such as YFQ [3]
and Cello [14] attempt to balance application requirements
and efficiency of resource utilization. YFQ extends the
Weighted Fair-Queuing (WFQ) algorithm originally ap-
plied to CPU and networks to disks in order to enforce pro-
portional sharing of disk bandwidth. All these systems use
a different notion of fairness to that outlined in the previous



paragraph. Their notion of fairness is based on service dif-
ferentiation, i.e., protecting the level of service offered to a
workload from surges in the demands of other workloads.

One common aspect of all systems designed to enforce
SLOs is that these SLOs must be specified by storage ad-
ministrators and are potentially erroneous. The alterna-
tive of using statistical measurements to generate storage
SLOs is hard and not likely to be followed in practice due
to the difficulty of collecting detailed measurements of the
complex information flows in an application. Even when
detailed past measurements are available, it is hard to ex-
trapolate these measurements to different storage environ-
ments or changing application workloads. At the same
time, statistical specifications of application-storage inter-
action cannot capture all information about I/O flows. Past
studies have shown that even for a simple application, there
will be time intervals where the storage resource specifica-
tions significantly underestimate the application workload
due to the nature of storage accesses [9].

While OASIS does not preclude (and can in fact coexist
with) mechanisms designed to enforce SLOs, its focus is
fundamentally on automating the interaction between ap-
plications and the storage environment while maximizing
resource utilization. In OASIS, system objectives are deter-
mined automatically and dynamically based on the current
demands of applications, instead of relying on human in-
put. OASIS learns those requirements by monitoring the
I/O demands of the application. Our decision to go with
an automated approach rather than a human one is to avoid
the degree of error involved in manually estimating appli-
cation commodity requirements. The learning mechanism
may have a time delay before it can approximate the com-
modity requirement for an application but it will be able to
adjust dynamically to new changes much faster than man-
ual input.

3. Architecture

In this section we introduce the OASIS architecture start-
ing from a high-level overview of the interactions between
its three main components: applications, storage manager,
and storage subsystem. Next, we describe the communi-
cation protocol by means of which these interactions are
realized. Finally, we discuss the algorithms that dictate the
allocation of resources to applications.

3.1. Environment

In this study we assume an environment where a set of
applications P1 . . .Pn are deployed on a set of hosts and are
accessing a set of storage subsystems over a storage net-
work. To simplify analysis, we assume that each applica-
tion corresponds to a single host, although multiple appli-
cations may map to the same host as shown in Figure 2.

In the general case, the architecture allows the assignment
of multiple applications to multiple hosts. The allocation
of storage resources to applications is managed by a stor-
age manager as shown in the diagram of Figure 1. For the
purpose of this study we assume a single storage manager,
although the architecture does not preclude the presence of
multiple storage managers.

3.2. Interaction

The model of interaction between applications and the
storage manager is guided by the principle that these are
two complex entities in different domains of expertise, and
is thus impractical to embed knowledge about the one do-
main into the other. We thus chose to keep the application
and storage manager domains logically separate and use a
communication protocol for resource negotiation between
them. This model of interaction has many advantages:

• The application and storage domains can continue to
evolve in terms of functionality and complexity, while
the mechanics of their interaction via the communica-
tion protocol remain unchanged.

• The communication protocol has been designed to op-
erate on the generic management interfaces exposed
by applications and storage subsystems.

• The level of isolation between the application and
storage domains can make it easy to extend this in-
teraction model to other domains.

The OASIS communication protocol conveys application
requirements to the storage manager in terms of commodi-
ties, which are virtual negotiable entities well-understood
by both domains. Examples of commodities include band-
width, latency and space. We assume that the applica-
tion domain knows how to translate its requirements into
commodities and that the storage manager domain knows
how to translate commodities into low-level resource allo-
cations.

Figure 1 shows the interaction between the OASIS com-
ponents. Each application, as well as the storage manager,
are associated with a protocol end-point. The application
protocol end-point is the part of the communication proto-
col that is responsible for continuously monitoring the ap-
plication’s current demand for commodities as well as its
utilization of the commodities that have been granted to it,
to analyze the monitored information, and to periodically
communicate requests for additional commodities to the
storage manager protocol end-point. The design and func-
tionality of the application protocol end-point (described
in detail in Section 3.3), which operates without requiring
any administrator input, is the key behind the automated
operation of OASIS. The application protocol end-point is
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Figure 1. High-level architecture. This figure shows the
interaction between the applications, the storage manager
and the storage subsystem. The applications and the stor-
age manager interact via commodity requests, allocations,
and revocations. The commodities are mapped into stor-
age subsystem resources that are managed by the storage
manager.

considered functionally distinct from the application for the
remainder of the paper.

The storage manager protocol end-point is the part of
the communication protocol that is responsible for receiv-
ing requests for commodities and translating them into al-
location of resources in the storage environment. In con-
trast to a commodity, a resource is a manageable entity in
the storage subsystem that can be controlled by the stor-
age manager. The storage manager protocol end-point is
described in detail in Section 3.4.

3.3. Application Protocol End-Point

The functionality of the application protocol end-point
can be better understood by first considering the system
view of Figure 2, which shows two applications P1 and P2
submitting I/O requests to a set of host I/O queues Q[P1]1,
Q[P1]2, Q[P2]1, and Q[P2]2. In general, Q[Pi] j is the queue
that allows application Pi access to a host-mounted logical
disk LUN j. This logical disk is backed by a set of storage
volumes exported by one or more storage subsystems.

I/O requests between application queues and the storage
subsystems flow over I/O paths referred to as data paths.
A data path has several storage elements associated with it:
the host I/O queue, the network path(s) from the queue to
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Figure 2. Sample OASIS Topology. In this example, two
applications P1 and P2 access volumes LUN1 and LUN2
imported from a storage subsystem via the queues Device
Queue 1 and Device Queue 2. The volumes LUN1 and
LUN2 map to Storage Volume 2 and Storage Volume 4 in
the storage subsystem.

the storage subsystems, and the I/O queues at the interme-
diate switches. We use the data path as the primary point of
analysis for an application’s resource requirements. Note
that a single I/O stream to a virtual storage volume can
comprise multiple data paths if the virtual storage volume
maps to multiple physical storage volumes.

The application protocol end-point associated with ap-
plication Pi monitors the queues Q[Pi] j over time intervals
(t, t +δt) and observes the following quantities: the average
I/O arrival rate Dt

i, j; the average I/O completion rate X t
i, j;

the average I/O latency Rt
i, j; and the average I/O size St

i, j.
The interval δt is determined empirically by observing the
reaction time of the storage manager protocol end-point;
it is also the minimum time interval between successive in-
vocations of the communication protocol by the application
end-point.

Next we focus on two commodities: bandwidth and la-
tency.

3.3.1. Bandwidth. The application protocol end-point
periodically communicates its bandwidth requirements to
the storage manager protocol end-point to ensure that
the latter has up-to-date information about the bandwidth
needs of each queue Q[Pi] j and can manage the resources
appropriately. In the initial communication, the applica-
tion protocol end-point communicates the total bandwidth
requirement at that time for the queue in question. If band-



width is represented as a commodity C, then the number of
units ct

i, j(δt) requested from the storage manager protocol
end-point at time t over time period δt can be represented
as the product

ct
i, j(δt) = Dt

i, j(δt) ·St
i, j(δt)

For each request for bandwidth, the storage manager
protocol end-point performs a bandwidth allocation (ex-
pressed, for example, in sectors/second). The exact amount
of the allocation is specified in the response message from
the storage manager protocol end-point. The application
protocol end-point keeps track of the total bandwidth allo-
cation At

i, j granted to it. The storage manager can revoke
bandwidth from one or more applications when the system
becomes resource-constrained, as explained in Section 3.4.
In such cases, the storage manager explicitly notifies the
corresponding application protocol end-points, which ad-
just their record of allocation to account for the decrease.

The application protocol end-point communicates with
the storage manager protocol end- point whenever any of
the following two conditions are true: (i) the average arrival
rate exceeds the bandwidth allocation; or (ii) the observed
average completion rate is lower than the bandwidth allo-
cation even though the demand is equal to or higher than
the allocation. The amount of bandwidth requested in case
(i) is equal to the arrival rate. In case (ii), the completion
rate is less than both the arrival rate and allocation. This in-
dicates a resource shortage for the commodity in question.
However the application protocol end-point still communi-
cates with the storage manager protocol end-point to indi-
cate that the application’s demands have not decreased, and
the current level of allocation is still accurate. The amount
of communication traffic between the application and stor-
age manager protocol end-points can vary depending on
the workload characteristics and the responsiveness of the
system.

In addition to the request for the commodity, the appli-
cation protocol end-point also passes along the identity of
the storage volumes (physical or virtual) that the I/O re-
quests in the input queue are addressed to. This informa-
tion is needed by the storage manager protocol end-point to
identify the data paths for the input queue.

3.3.2. Latency. The latency analysis at the application
protocol end-point is also performed on a per input queue
basis. The application protocol end-point measures the la-
tency of every I/O request but initially categorizes the la-
tencies per input queue Q[Pi] j.

Let us assume a set of latency data points uniformly
sampled over some base time period. The core of the anal-
ysis is to compare the sets of latency data points in the base
time period and the current time period, and detect whether
there is a latency shift. If the latency shift is considered
high, the application protocol end-point communicates a

latency request to the storage manager. The latency shift
detection is calculated by computing the maximal cross-
correlation [5] between the two sets of latency data points
for a variety of latency shifts.

If the latency shift is negative, then it means that the
current time period has lower latency than the base time
period. Consequently, the base time period is now set to
the current time period. All future comparisons are made
to this new base time period.

3.4. Storage Manager Protocol End-point

The goal of the storage manager is to ensure maximum
utilization of all the available resources in the system sub-
ject to fairness in the resource allocation to the applica-
tions. The criteria that we have chosen for our algorithms
and evaluation is proportional fairness as explained below.
However, the storage manager protocol end-point is not
limited by this definition of fairness; it can be modified to
implement any other definition of fairness too.

Each application computes its demands for certain com-
modities and conveys them to the storage manager. The
storage manager internally converts the commodity de-
mands to resource requirements, and tries to allocate and
revoke resources as required. When resources are available
in the system, the storage manager will allocate these re-
sources as the requests arrive from different applications.
However, when the system is resource constrained, the
storage manager will revoke resources proportionally from
other applications in order to allocate them to the applica-
tion making the new demand.

Previous work in the networking domain [11] defined
proportional fairness in a system, as the property that the
aggregate of proportional changes in resource allocation is
non-positive. For example, if the original resource alloca-
tion to application Pi is xi and the new allocation is x∗i , then
the system is said to be proportionally fair iff:

n

∑
i=1

x∗i − xi

xi
≤ 0

Our algorithms for allocation and revocation of storage re-
sources presented in Sections 3.4.1 and 3.4.2, exhibit this
property.

In order to achieve proportional fairness, we would ide-
ally want to base resource revocation on both the current
allocation and usage of a particular resource by an applica-
tion. However, in the case of storage resources such as disk
bandwidth, allocation does not necessarily imply a guaran-
tee (i.e., it is often an upper bound). It is thus possible that
an application appears to use less than its allocated amount
only because the system is resource-constrained overall.
For example, consider an application Pi which is allocated
Ai units of bandwidth but is using only Ui < Ai. In such a



case, it is difficult to know whether the need of Pi has really
gone down or whether the system is resource-constrained
and Pi cannot receive its allocated bandwidth. Since revok-
ing resources from applications based on their usage may
lead to starvation of certain applications, we base our revo-
cation policy solely on the allocation of the resources.

This notion of fairness propagates up to the applications
as follows: The application protocol end-point communi-
cates1 the commodity requirements of applications to the
storage manager protocol end-point using the OASIS com-
munication protocol as depicted in Figure 1. The storage
manager maps these commodity requests to resource allo-
cations. As long as this mapping is reasonably accurate, the
fairness of resource allocations will be reflected in the fair-
ness of commodity allocations. If the application protocol
end-points continuously communicate their requirements
to the storage manager, the storage manager algorithm will
inherently lead to fairness in meeting the demands of the
applications for resources.

Next, we describe the steps in processing a commodity
request at the storage manager protocol end-point.

Identifying data paths. A request to the storage manager
end-point for ci, j units of commodity C along the I/O
queue Q[Pi] j may be relevant to multiple data paths that
correspond to that input queue. The storage manager pro-
tocol end-point maps the I/O queue into its corresponding
data paths by examining the list of volumes in the request
for the commodity.

Resource mapping. The storage manager protocol
end-point then maps the commodity request to a vector
of resource requests for each identified data path. The
number of resources depends on the nature of the data path.
For example, a host-attached IDE drive has considerably
less resources associated with it than a networked storage
volume. The mapping is specific to the nature of the data
path and cannot be easily generalized; examples of such
mapping functions are given in our experimental setup.
We define one mapping function per commodity, and in
certain cases, the storage manager protocol end-point may
learn this function over a period of time.

Resource management. The storage manager first deter-
mines the quantity of resources required. If a particular re-
source is available in the system, the storage manager will
allocate it to meet the demands of the applications. The
interesting case is when the system is resource constrained
and no spare resources are available. The determination of
whether there is a resource constraint depends on the nature
of the resource. One type of resource is measurable and has

1Remember that the application protocol end- point is functionally dis-
tinct from the application itself and does not require any application mod-
ification or human involvement.

a fixed quantity at any given point in time; e.g. memory in
an I/O buffer cache. The resource constraint condition is
easily verifiable by examining the available quantity of that
resource. Another type of resource is characterized by a
total quantity that is only estimable and varies over time;
an example of such a resource is disk bandwidth. The total
disk bandwidth at time t depends on the nature of access to
the disk at that time and is higher for sequential accesses
compared to random. We explain how the storage man-
ager manages resources by focusing on two commodities:
bandwidth and latency.

3.4.1. Bandwidth. We assume that a commodity re-
quest for bandwidth maps to the disk bandwidth for a stor-
age subsystem. The mapping between a commodity re-
quest for bandwidth and the equivalent resource request is
the identity function; a request for x units for the band-
width commodity translates to a request for x units of the
disk bandwidth resource.

The total capacity of the storage subsystem with respect
to disk bandwidth is not fixed. This capacity cannot be
easily calculated, as the capacity varies with time due to
many factors including the workload access pattern. So, in
the bandwidth resource management algorithm, the storage
manager does not calculate the total disk bandwidth capac-
ity. Instead it uses revocations to adjust the total allocations
to the estimated capacity of the system whenever the stor-
age subsystem hits a resource constraint. The bandwidth
management algorithm is given in Algorithm 1.

Algorithm 1: Bandwidth Management Algorithm
Data: Bandwidth allocated to appn. i is Ai

Data: Bandwidth usage of appn. i is Ui

upon receiving bandwidth request B from
application P

1 if AP = UP then
/*System not resource-constrained

*/
2 allocate B units of bandwidth to P
3 else

/*System resource-constrained */
4 A← ∑n

i=1 Ai
5 U ← ∑n

i=1 Ui

6 revoke Ai−
Ai
A ·U from all appns. except P

Upon receiving a request for bandwidth, the storage
manager monitors the bandwidth usage U and the band-
width allocation A of the requesting application. Suppose
it observes that the bandwidth usage is less than the allo-
cation. A request for more resources (mapped from the
request for more commodities) even when the usage is less
than the allocation indicates that the application is not re-



ceiving all the allocated resources. Thus, the storage man-
ager concludes that the system is resource constrained and
revokes resources from all the applications. The storage
manager calculates a new total allocation of the bandwidth
by computing the total amount of bandwidth used by all ap-
plications. The rationale behind this is that there is no spare
capacity in a resource-constrained environment so the total
allocation equals the total amount of bandwidth used by
all applications at that given instant. In order to meet this
new allocation, the storage manager now revokes resources
proportionally from each application (Alg. 1, Step 6). Re-
sources are not revoked from the requesting application be-
cause it has already made a request for additional resources
and the storage manager avoids penalizing it further. On
the other hand, if the usage is equal to the allocation, the
storage manager concludes that the system is not resource
constrained, and simply allocates the resources to the re-
questing application (Alg. 1, Step 2).

This algorithm is trivially proportionally fair because in
a resource-constrained system, it revokes bandwidth from
each application but does not allocate additional bandwidth
to any application. The aggregate change is thus always
non-positive.

Note that the storage manager algorithm does not dis-
tinguish between applications based on the efficiency of the
I/O streams. This choice recognizes the fact that I/O ineffi-
ciency may be due to factors beyond the application’s con-
trol (e.g., data layout in the storage subsystem). Since we
currently do not provide any mechanism to correct I/O inef-
ficiency (e.g., modify data layout for sequential access), we
do not penalize applications with inefficient I/O streams.
However, we can easily modify Algorithm 1 (Step 6) to
revoke fewer resources from efficient applications thereby
encouraging efficient I/O streams. On the other hand, the
storage manager tends to favor applications which issue
multiple I/O requests at the same time. Applications which
wait for an I/O request to be completed before issuing the
next I/O request are at a disadvantage because bandwidth
is only allocated upon request.

3.4.2. Latency. Latency depends on several factors in-
cluding the storage hierarchy (i.e. the hierarchy of caches
and queues starting from the application protocol end-point
to the physical disks where the data resides) as well as the
hit ratios and queuing bottlenecks at each stage of the stor-
age hierarchy. A comprehensive analysis of latency with
respect to all the resources in the storage environment is
very complex. However, as the cache is a primary factor
that affects latency, we examine how the primary storage
subsystem cache determines the latency profile of an appli-
cation workload.

A challenge in performing resource management for la-
tency is the estimation of the cache requirements of the
various application workloads based on their cache usage

history. The usage of the cache resource by an application
is calculated by periodically measuring the hit ratio on the
cache allocated to the application2. In addition to the hit ra-
tio, the storage manager also keeps track of the cache size
allocated to an application. Thus, for every application, the
storage manger maintains two arrays: the cache size array,
and the hit ratio array for a period where measurements of
cache size and hit ratio have been taken. The time period is
assumed to be the most recent one as that time period has
the maximal workload correlation with the present time [8].

Upon receiving a request for lower latency, the first step
is to filter the cache size and hit ratio arrays so as to se-
lect the most recent hit ratio for a particular cache size. At
the end of the filtering, there will be two distinct arrays:
the filtered cache size array, and the filtered history list ar-
ray. The storage manager uses the two arrays to construct
a piecewise linear function F that can be used to calculate
the cache size to obtain a particular hit ratio. The slope of
F gives an estimate of the expected hit rate per unit cache
size. In general, F will change when the behavior of a
workload exhibits a shift, such as a change in the working
set size or in the sequentiality of its accesses.

When an application protocol end-point detects a la-
tency shift and consequently makes a request to correct
the shift, the storage manager protocol end-point employs
the cache usage history and the generated piecewise linear
function to generate a cache size resource request to the
storage subsystem. The cache management algorithm is
given in Algorithm 2.

Algorithm 2: Cache Management Algorithm
Data: Cache allocated to appn. i is Ai

upon receiving request for latency from application
P
convert request to hit ratio requirement
determine extra cache C required to meet hit ratio

1 if cache not available then
2

/*Proportional revocation */
3 A← ∑n

i=1 Ai

4 revoke Ai
A−Ap

·C from all appns. except P

5 allocate cache C to P

Cache allocation can be easily measured so the stor-
age manager can determine if the system is resource con-
strained or not. If the system is resource constrained, then
the storage manager revokes the cache from the applica-
tions proportionally (Alg. 2, 4), and allocates it to the
requesting application (Alg. 2, 5). If the system is not re-

2A previous study on the subject [8] demonstrated that periodic mea-
surement is as effective as continuous measurement for the purpose of
calculating cache usage.



source constrained, the available cache is allocated as re-
quested (Alg. 2, 5).

Algorithm 2 satisfies proportional fairness as follows: if
each application i loses C · Ai

A−Ap
of the cache, then the total

cache revoked is C ·∑n
i=1,i 6=p

Ai
A−Ap

= C. C units of cache
are allocated to application P. Thus the aggregate change
is C−C = 0.

3.4.3. Oscillations. One important aspect of the re-
source management algorithm is the dampening of allo-
cation oscillations in a resource-constrained environment.
Consider a resource-constrained system with two com-
peting applications that make alternating demands for re-
sources that have just been allocated to the other applica-
tion. If the storage manager naı̈vely responds to the re-
quests, the resource allocation will continually oscillate be-
tween the two applications. To avoid these oscillations, the
storage manager only allocates a fraction of the amount of
resources requested. If the allocation to demand ratio of an
application is high, then the application will receive a lot
less resources than if the application’s allocation to demand
ratio is low. This forces an inversely exponential conver-
gence of an application’s allocation to its ultimate demand
and prevents oscillations.

4. Evaluation

To evaluate OASIS, we implemented a prototype involv-
ing a storage manager, a shared storage subsystem, and
a number of applications. First, we describe our experi-
mental setup (§4.1), followed by an evaluation of the OA-
SIS resource management architecture with respect to the
two commodities of interest, bandwidth (§4.2) and latency
(§4.3). We use competing synthetic workloads to compare
the fairness of the resource allocation performed by OASIS
to that of a best-effort (i.e., uncontrolled) system. The syn-
thetic workloads were generated after evaluating sample
traces. We also evaluate the responsiveness of the OASIS
resource management system by the speed with which the
system responds to application requests for resources. This
evaluation also offers insight into the frequency of commu-
nication between the protocol end-points.

In Section 4.4 we use a real-life database application
scenario to evaluate how OASIS is able to handle the re-
source requirements of different workloads as compared to
a best-effort system. This real-life scenario allows us to
examine the behavior of OASIS in situations where:

• there are a varying number of application threads

• there is a mix of sequential and random accesses

• the access patterns of an application thread vary over
time

4.1. Experimental Setup

The storage manager, storage subsystem, and appli-
cations are implemented on an Intel workstation with
four 2.4 GHz CPUs and 4 GB of RAM running Linux
2.6.8. There are no architectural constraints in OASIS that
prevent the co-existence of (possibly multiple instances of)
each component (applications, storage manager, storage
subsystems) in a single system or in a fully distributed
environment.

Applications. The applications used for experimentation
are (a) a configurable process, hereafter referred to as a
worker, which issues I/O requests to the storage subsystem
according to a specified pattern, and (b) a database work-
load representative of a real-life scenario. The database
workload is described in more detail in Section 4.4.

The worker process produces an I/O workload with the
desired characteristics and interfaces with the application
protocol end-point described in Section 3. The application
protocol end-point in turn communicates with the storage
manager protocol end-point to request resource allocation.
The worker process takes an input several parameters that
guide its behavior: (i) Number of stages: The specification
can be broken down into an arbitrary number of stages,
where each stage determines a different I/O access pattern
for the worker. A number of parameters determine the pat-
tern for each stage. (ii) Sequentiality: This determines the
degree of sequentiality in a stage in the specification. (iii)
Block Size: This determines the block size used in a stage
in the specification. (iv) Duration: This determines the
duration of the stage in seconds. (v) Rate: This determines
the rate of I/Os accessing the storage subsystem in a stage
of the specification.

Storage Manager. The storage manager protocol end-
point and resource allocation algorithms are implemented
as described in Section 3 in the context of a Linux applica-
tion server.

Storage Subsystem. The Intel workstation has five 36GB
7200 RPM SCSI disks which are used as a part of the stor-
age subsystem in this experimental setup. In addition to
the base physical infrastructure, the storage subsystem im-
plementation provides disk bandwidth allocation services
to the storage manager. The allocation management code
resides inside the Linux kernel and acts as an I/O scheduler
for the disks in the storage subsystem. The I/O scheduler is
implemented using two-level disk scheduling with multiple
queues, which is similar to the Cello [14] disk scheduling
framework that allocates disk bandwidth to different ap-
plication classes. The upper level scheduler performs the
bandwidth allocation, while the default Linux block sched-
uler is used as the lower level scheduler.



We also implemented a storage cache in the Intel
workstation to manage latency as a commodity between
the application and storage manager protocol end-points.
In this setup, the latency commodity is mapped to the
cache space resource as described in Section 3.4.2. The
storage cache is implemented as a user-level cache [13] of
disk blocks in the application’s address space.

4.2. Bandwidth

In the first set of experiments, we consider the case
of workloads with competing demands and focus on
managing the disk bandwidth resource.

Competing Workloads. In this experiment we evaluate the
OASIS resource management algorithm and compare it to
a best-effort system by considering competing workloads
that place high demands on the storage system, exceeding
the maximum capacity.

To evaluate the competing workload scenario, we con-
sider two identically configured workers that perform raw
(unbuffered) 4KB read accesses to a logical disk device.
The only difference between the workers is that one per-
forms sequential accesses whereas the other performs ran-
dom accesses. Each worker produces I/O requests at a con-
stant rate of 60 IOPS for a four-minute interval. The total
rated capacity of the logical disk device is about 100 ran-
dom 4KB IOPS.

The results of the experiment are shown in Figure 3.
The first thing to note is that the best-effort scenario is un-
able to provide an equitable allocation of resources to the
two applications. The worker with the sequential work-
load is able to obtain significantly better bandwidth usage
than the one with the random workload. In fact an analy-
sis of the queue backlog of the two workers shows that the
average I/O queue length in the worker with the random
workload is 13.4 compared to a corresponding value of 2.1
for the worker with the sequential workload. By contrast,
the OASIS resource management algorithm manages more
equitable bandwidth usage between the two workers, and
the difference in the average I/O queue lengths of the two
workers is negligible (< 0.5%). One thing to note is that the
OASIS system requires some lead time in fully satisfying
the demand from the workers, something that is explored
next in the responsiveness experiments.

Examining the behavior of the OASIS resource man-
agement algorithm further in Figure 3, bandwidth usage
converges to the same level for both workers with little
variation3 In fact, the allocations tend to oscillate in the

3The current version of the OASIS bandwidth management algo-
rithm does not take the efficiency of I/O streams into account when
re-distributing disk bandwidth between processes, as explained in Sec-
tion 3.4.1.

initial stages. However, the storage manager protocol
end-point detects that the usage of both workers is less
than the allocations and infers a resource constraint. The
storage manager protocol end-point consequently dampens
the oscillations by revoking progressively smaller amounts
of bandwidth allocations as is seen clearly in Figure 3. The
dampening is triggered for as long as the utilization of the
workers cannot match the corresponding demand.

Responsiveness. In this experiment we evaluate the re-
sponsiveness of our system to growing application demand
for resources. First, we examine responsiveness in the case
of growing demand for bandwidth. We use a single worker
issuing random 4KB I/O read requests for 60 seconds per-
forming raw (unbuffered) accesses over a logical disk de-
vice at a constant rate of 80 IOPS seconds, with an initial
disk bandwidth allocation of 8 IOPS. The results of this
experiment are shown in Figure 4. The results depict the
bandwidth utilization of the worker in the case of a best-
effort system without any resource management as well as
in the case with the application protocol end-point send-
ing disk bandwidth requests. The time period between disk
bandwidth requests is varied from 1s to 5s in increments
of 2s for the latter case. The utilization is measured at the
storage manager protocol end-point.

A key observation is that the bandwidth allocation of the
worker converges to the demand at the same rate when the
time period between disk bandwidth requests is less than
or equal to 3 seconds. However, the convergence is slower
when the time period between bandwidth requests is 5 sec-
onds. This indicates that all application protocol end-points
must adopt very similar time periods to sample the appli-
cation queues to achieve similar convergence rates to their
demand. In addition, different sampling time periods may
skew resources towards applications that sample their ap-
plication queues more frequently in a resource-constrained
environment.

While the best-effort system reaches its peak bandwidth
more rapidly than with resource management, these results
also suggest that a high initial disk bandwidth allocation
(equal to or higher than 80 IOPS in this case) would result
in behavior identical to the case of the best-effort system.

4.3. Latency

Next, we focus on managing latency for workloads with
varying demands on the subsystem cache. In this case, the
application protocol end-point is continuously monitoring
the average latency in the application I/O stream(s).
When the application protocol end-point determines that
a significant latency shift has occurred it sends a request
for latency reduction to the storage manager protocol
end-point. The storage manager then follows the resource
management algorithm for cache space as detailed in
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Figure 3. Competing workloads: The figure shows the I/O bandwidth demand, allocation, and usage of two competing workers
with equal bandwidth demand with the OASIS resource management protocol. The worker on the left (Worker 1) uses a sequential
workload while the worker on the right (Worker 2) uses a random workload. The figure also shows the usage of the two competing
workers under a best-effort scenario where no allocation management is used. Bandwidth, measured at the storage manager protocol
end-point in disk sectors per second, is shown on the y-axis. Time in seconds is shown on the x-axis.

Section 3.4.2.

Competing Workloads. In this experiment we evaluate
the OASIS resource management algorithm by considering
competing workloads whose latency demands on the stor-
age system are close to maximum capacity. We also com-
pare the behavior of our resource management algorithm to
a best-effort system.

The experimental setup in this case involves two work-
ers that are identically configured to perform random I/O
reads using 4KB blocks within a 100MB working set stored
in a 36GB disk4. The rate of I/O issues from each worker

4Note that each worker accesses a separate data set stored in a separate
disk to avoid interference in disk accesses.

is fixed at 15 IOPS for the entire duration of the experi-
ment (15 minutes). The I/O path to the disk passes through
the block level cache whose implementation is described in
Section 4.1. Each worker’s initial cache allocation granted
by the storage manager is 80MB in the OASIS case. In
order to mask the effects of capacity (cold) misses, each
worker initially warms the cache by sequentially reading
the entire working set. The second worker is started 2.5
minutes after the first worker to ensure that the application
protocol end-point of the latter has reached a stable point
in its latency measurements.

When the experiment is run with the OASIS resource
management scheme, the results show a convergence to a
fair distribution of cache resources between the two work-
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Figure 4. Responsiveness to increasing bandwidth demands. Disk bandwidth utilization in the absence and presence of the
disk bandwidth resource management algorithm. In the latter case, the minimum period between requests for additional bandwidth
varies between one, three, and five seconds. Bandwidth, measured at the storage manager protocol end-point in disk sectors per
second, is shown on the y-axis. Time in seconds is shown on the x-axis.

ers. As soon as the second worker starts, the storage man-
ager revokes 10MB from the first worker in order to add it
to the 70MB of available cache space and grant the second
worker its initial allocation of 80MB (Figure 5(b)). Subse-
quent requests from the workers’ application protocol end-
points for latency reductions result in progressively smaller
allocations, satisfied through equal-sized revocations from
the allocation of the other worker. In this way, the storage
manager ensures that the variation in allocations diminishes
significantly around the stable point of 75MB. Note that
(unlike the case of bandwidth) the storage manager can eas-
ily detect that the system is in a resource-constrained state
since the total cache size is limited to 150MB.

The behavior is very different in the best effort scenario.
In this case, the first worker process is able to put the en-
tire working set of 100 MB into memory because there are
no allocation constraints. Subsequently, the second worker
process starts and but has only 60 MB of cache space to
hold its working set. As a result, there is a significant dif-
ference in performance between the two worker processes
– this phenomenon is not observed during the OASIS case
because of a fairer cache allocation between the two worker
processes. Over time in the best-effort case, cache replace-
ment starts to slowly neutralize the difference between the
allocations to the two worker processes and asymptotically
narrows the performance gap.

It is important to note that while convergence to a fair
allocation of resources is a property of the OASIS scheme,
the best-effort shows only apparent convergence. In other
words, the behavior of the best-effort scheme is completely
dependent on the I/O rates of the worker processes – there
are situations where the best-effort scheme will not con-
verge. For example, if the I/O rates of the first and sec-
ond workers are 100 and 60 IOPS, the cache allocations
would remain constant for the duration of the experiment

for the best-effort case. In the same scenario, the workers
in the OASIS scheme would show behavior identical to that
in Figure 5. The convergence in the OASIS scheme is in-
dependent of the I/O rates of the worker processes and is
decided by the commodity demand for latency.

Another issue is whether the OASIS results are sensitive
to the initial allocation of 80 MB to the two competing
processes. A variation of initial allocations reveals a
variation of convergence times to a stable allocation of
resources but the converged allocation of cache resources
is identical and fair.

Responsiveness. Another important observation from the
latency-time and cache space-time graphs of Figure 5 is
that system responsiveness in the face of growing demand
for latency reduction is in the order of tens of seconds,
which is in contrast with the typical system response in the
case of bandwidth (Figure 4). A key factor that accounts
for this difference lies in the speed with which the appli-
cation protocol end-point detects a latency shift. Since la-
tency is directly related to hit ratio and the latter is a slowly-
changing statistical measure, a latency shift cannot be de-
tected as rapidly as a change in the bandwidth demand.

4.4. Database Workload

The goal of this experiment is to validate the previous
experimental results by evaluating a case representative of
a real-life application scenario involving multiple applica-
tion processes contending for resources in a shared storage
environment. The real-life application scenario examines
situations where both the number and access patterns of
application threads vary over time. Furthermore, the dom-
inant access pattern of application threads is either random
or sequential. We examined several such scenarios that are
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Figure 5. Competing workloads: Two processes (P1, P2) compete for cache space over a duration of 15 minutes in both OASIS

and best-effort modes. The graphs on the right show that OASIS is able to generate a fairer allocation of resources than a best-effort
approach. The graphs on the left indicate the effect on latency.

problematic in shared storage environments and chose one
that is important, yet easy to replicate. In this scenario,
a transaction-processing workload runs concurrently on a
set of database tables with an aggregation workload. The
transaction-processing workload gathers operational data
from a collection of remote agents and applies it to the
database. The aggregation workload runs periodically and
generates statistical reports on the contents of the data pop-
ulated by the transactional workload for review by manage-
ment. In typical shared storage environments, the aggre-
gation workload is sequential in nature and tends to over-
whelm the random-natured transaction processing work-
load. Both the aggregation and transaction workloads are
highly parallelized with multiple threads of control. Fur-
ther details about the workloads can be seen in Table 6.

There is minimal lock contention between the transac-
tion and aggregation workloads. Row-level locking is used
with a transaction isolation level of read-committed that al-

lows readers and writers to proceed in parallel without strict
serialization. The choice was made by the application ar-
chitects to improve performance and minimize lock con-
tention.

In this experiment, the workloads were identical to those
used in the real-life scenario, whereas the experimental
setup is a close approximation to the actual environment
where the real-life scenario was observed. We chose the
open-source PostgreSql for hosting the database tables.
The version of the database used was 7.4.3 and was not
modified for the purpose of this experiment. The database
was large with about 8 million records spread over multi-
ple tablespaces. The aggregator workload ran concurrently
with the transaction-processing workload on an overlap-
ping set of tables. The database was hosted on the same
experimental setup used in the previous experiments.

The offered load in the transaction processing workload
was progressively scaled (by up to a factor of 8, in multi-



Workload Transaction Aggregation
Nature Random Sequential
Average Inter-arrival time 0.121 ms 0.049 ms
Average I/O Size 0.81 KB 3.95 KB
Percentage of Reads 6% 99.9%

Figure 6. Workload Characteristics: The table shows the characteristics of the transaction and aggregation workload with
respect to sequentiality, inter-arrival time, I/O size and read-write ratio.

Mode Best-effort OASIS

Trans Trans Trans Aggr Aggr Trans Trans Aggr Aggr
Workload Perf Queue Perf Queue Perf Queue Perf Queue
Scaling (TPS) Len (TPS) Len (TPS) Len (TPS) Len

1 49 7.2 26780 0 163 0 20472 0
2 82 15.8 25178 0 360 0 17290 0
4 142 19.5 22933 0 803 0 15400 0
8 235 31.8 20787 0 1029 0 13584 0

Figure 7. Database Workload: The table shows the performance of the transaction and aggregation workloads in both best-
effort and OASIS mode with bandwidth resource management. The performance is reported in transactions per second (TPS). The
transaction workload was scaled from 1 to 8 in multiples of 2 and is reported as Transaction Workload Scaling on the leftmost
column. The average queue length for the transaction and aggregation workloads is shown for both modes of resource management.

ples of 2) relative to a base workload. Whereas in real life
the transaction processing workload is slowly varying, for
experimental analysis we decided to fix the offered load to
an average rate during a run of the experiment.

The experiment was run in two modes: in the first best-
effort mode, the environment mimics a traditional shared
storage environment where no attempt is made to regu-
late the allocation of resources to the workloads. In the
second OASIS mode, we used the bandwidth reservation
scheme described in Sections 3 and 4.1. While the work-
loads were not modified, we implemented an application
protocol end-point for both the workloads that monitored
the database statistics and generated commodity requests
for bandwidth based on the observed statistics. The statis-
tics observed are not specific to PostgreSql and are also
available in other databases such as MySql, Derby (Cloud-
scape), Oracle, DB2 and SqlServer.

Table 7 reports the performance of the transaction and
aggregation workloads in both best-effort and OASIS mode
with bandwidth resource management. The performance
is reported in transactions per second (TPS). The transac-
tion workload is reported as Transaction Workload Scaling
on the leftmost column. The average queue length for the
transaction and aggregation workloads is shown for both
modes of resource management.

Several factors can be eliminated in interpreting the re-
sults in Table 7. First, the same block level scheduler is
used in both modes removing any scheduling effects from
the comparison of the results. Second, the cache profiles
of both the transaction and aggregation workload are small

compared to the overall read and write cache sizes (< 5%)
and can be ruled out as a factor. Finally, as discussed be-
fore, lock contention between the two workloads is mini-
mal by design and not a factor in determining the perfor-
mance difference.

The first thing to note from the results in Table 7 is that
the OASIS bandwidth resource management scheme is able
to remove the queue build ups in both the transaction and
aggregation workloads, while the best-effort case shows a
queue-build up in the transaction workload. A very im-
portant corollary to this result is that the OASIS resource
management algorithm does not favor one workload over
the other and attempts to maximize the resource utilization
for both workloads. Hypothetically, it is possible to influ-
ence the priority of workloads to favor one over another but
that is not within the scope of this paper.

Another observation from Table 7 is that the OASIS
bandwidth resource management scheme provides as much
as a factor of 5 improvement in the performance of the
transaction workload. At the same time, the aggregation
workload was impacted by about 30-40%. This was due to
the increase in the transaction workload that was random
in nature and affected the sequentiality of accesses in the
aggregation workload.

In this experiment, the total disk bandwidth is not con-
stant in all these experiments. This is due to the mix of se-
quential and random accesses in the aggregation and trans-
action workloads. This further demonstrates that the band-
width resource management algorithm is able to adapt to
variations in total allocated bandwidth.



5. Conclusions and Future Work

The paper introduces a new storage management archi-
tecture named OASIS that allows applications and the stor-
age environment to negotiate resource allocations using a
communication protocol without any human intervention.
To achieve this goal, OASIS relies on several key features:

• Continually inspects the application’s I/O behavior,
and determines the application’s storage requirements
automatically.

• Communicates this information from the applications
to a storage manager by means of a communication
protocol that isolates the complexity of applications
and storage from each other.

• Uses algorithms that dynamically and continuously
map application requirements into appropriate low-
level resource allocations in order to maximize the
storage utilization of all resources subject to fairness
in the allocation of resources to applications.

We implemented a prototype of the OASIS architecture
and performed experiments on a set of competing work-
loads derived from traces. Our results show that OASIS is
able to detect the bandwidth and latency requirements of
the competing workloads and generate a fairer allocation
of storage resources than a best-effort approach. More-
over, experience with a real-life database scenario, shows
that OASIS is able to satisfy the bandwidth requirements of
competing multi-threaded workloads without any storage
administrator input. In particular, OASIS is able to identify
an under-performing workload and ensure it receives a fair
share of the overall storage system resources, resulting in a
performance increase by as much as a factor of five for that
workload over best-effort resource allocation.

A key direction of future work would be to analyze the
behavior of OASIS in more complex storage environments.
One challenge in such environments is that an application
requirement could map to multiple resources requiring an
additional decision making process in selecting the right
set of resources to allocate to the application. In addition,
it would be interesting to explore the complex interaction
between these different resources.
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