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Abstract—In this paper we describe the architecture of a
quality-of-service (QoS) infrastructure for achieving controlled
application performance over the Cassandra distributed storage
system. We present an implementation of our architecture and
provide results from an evaluation using the Yahoo Cloud Serving
Benchmark (YCSB) on the Amazon EC2 Cloud. A key focus of
this paper is on a QoS-aware measurement-driven provisioning
methodology. Our evaluation provides evidence that the method-
ology is effective in estimating application resource requirements
and thus in achieving the type of controlled performance required
by data intensive performance-critical applications. While our
architecture is implemented and evaluated in the context of the
Cassandra distributed storage system, its principles are general
and can be applied to a variety of NoSQL systems.

I. INTRODUCTION

The new breed of NoSQL distributed storage systems has
dramatically changed the landscape of how information is
represented, manipulated, and stored in large-scale infras-
tructures today. These systems are currently at the forefront
of academic research and industrial practice, primarily due
to their high scalability and availability features. Managing
service performance over these systems is an area that attracts
significant interest as manifested by the success of early service
offerings in this space (e.g., DynamoDB [1]).

In this paper we present a quality of service (QoS) archi-
tecture and prototype that offers managed service performance
over a prominent NoSQL system, Apache Cassandra. Our ar-
chitecture is able to address the storage configuration problem,
namely to appropriately provision initial storage resources for
a target workload given a simple description of its characteris-
tics. It is also able to address the dynamic adaptation problem
by monitoring service performance at runtime and adjusting
to short-term variations by either throttling the application or
by expanding the set of resources assigned to it. Our focus
in this paper is primarily on the first problem: our solution to
it is based on a methodology using targeted measurements to
produce a set of tables expressing benchmark performance over
different configurations of Cassandra (number, type of servers).
Using the produced tables, we can estimate the resources
required to achieve the service-level objective (SLO) of an
application interpolation from the baseline measurements.

In previous work we described a preliminary design of our
QoS architecture and evaluated an early prototype of it [2]. In
this paper we extend our earlier work in several directions:

• SLA-driven initial provisioning

• Accounting for both response time and throughput

• QoS controller is an independent component, period-
ically communicating with clients via RPC

• Evaluation on industry-leading Amazon EC2 Cloud

• Ability to share servers (VMs) across independently
scaled workloads (e.g., different users/tables)

• Improved robustness of our prototype

Our key contributions in this paper are: A novel methodol-
ogy for configuring Cloud-based Cassandra storage clusters
for specific application SLOs; a dynamic QoS monitoring
and adaptation mechanism to control short-term workload
variations; and an extensive evaluation of our methodology in
Amazon Web Services’ EC2 Cloud. Our exposition proceeds
as follows: in Section II we discuss related work in this space.
In Sections III and IV we describe our design and implemen-
tation in the context of Apache Cassandra. In Section V we
present our evaluation, and finally in Section VI we conclude.

II. RELATED WORK

Distributed data stores (often referred to as key-value
stores) that implement distributed tabular structures with con-
figurable access semantics have recently been developed as
research prototypes as well as commercial systems to support a
number of rapidly-growing large-scale data-centric enterprises.
Examples of such systems include Dynamo [3], Bigtable [4],
and their open-source variants Cassandra [5] and HBase [6].
Cloud service offerings of these technologies are currently
widely available, offering a broad range of performance and
dependability characteristics.

As enterprises that have invested into Cloud computing are
now raising their expectations from best effort to guaranteed
levels of service, Cloud providers offer versions of their data-
centric services that support controlled performance, reliabilil-
ity, etc. Recently Amazon Web Services (AWS) announced
two new versions of existing services that offer guaranteed
read/write I/O throughput on a key-value store (this service is
branded DynamoDB) and provisioned I/O throughput over its
elastic block storage (service branded provisioned IOPS).

Providing quality of service over distributed storage has
been an active area of research for at least two decades.



Work at HP labs (a retrospective by John Wilkes provides a
good overview of this work [7]) addressed a wide range of
concerns, from specifications of workloads, QoS goals, and
device capabilities, to mappings of workload onto underlying
storage resources, and to run-time management of storage I/O
flows. It is worth noting that while QoS in networking is a
relatively mature field whose numerous research results have
progressed in many cases into formal protocol specifications
and products, storage QoS is a less mature area due to the
significantly more challenging technical issues involved (such
as for example non-linear behavior due to caches and the
strong dependance on workload characteristics).

Work by Goyal et al. [8] in the context of the CacheCOW
system contributed algorithms for dynamically adapting stor-
age cache space allocated to different classes of service
depending on observed response time, temporal locality of
reference, and the arrival pattern for each class. The focus
of this work was on centralized storage controllers rather
than distributed servers typically used in NoSQL systems.
More recently, Magoutis et al. [9] presented a self-tuning
storage management architecture that allows applications and
the storage environment to negotiate resource allocations with-
out requiring human intervention. The authors of this work
aim to maximize the utilization of all storage resources in
a storage area network subject to fairness (rather than user-
defined service-level objectives, as we do in this paper) in the
allocation of resources to applications.

With AWS being the current industry leader in guaranteed
performance over distributed Cloud storage, it is worth taking
a deeper look into their published and commercial work. Their
SOSP paper [3] describes their (internal at the time) Dynamo
key-value data store service which offered service-level agree-
ments (SLA) on the response-time of put/get operations (e.g.,
service-side completion within 300ms) offered by the service
measured on the 99.9th percentile of the total number of
requests, assuming the client does not exceed a peak level
of load (e.g., 500 requests / sec). The recently introduced
DynamoDB [1] is based on the published design of Dynamo
with the introduction of new technologies such as solid-state
storage (SSD) to address reliability issues.

DynamoDB departs from the original Amazon design in
its SLA specification. Namely, a user specifies performance
requirements on a database table in terms of request capacity
or number of 1KB read or write operations (also known as
units of read or write capacity) desired to be executed per
second. DynamoDB allocates dedicated resources to tables to
meet performance requirements, and automatically partitions
data over a sufficient number of servers to meet request
capacity. If throughput requirements change, the user can
update a table’s request capacity on demand. Average service-
side latencies for Amazon DynamoDB are reported to be in
the single-digit milliseconds range [1]. Applications whose
request throughput exceeds their provisioned capacity may be
throttled. DynamoDB does not seem to provide any guarantees
on the response time offered nor on the distribution of requests
on which their offered performance is evaluated (e.g., 99.9th
percentile over some time range).

Two of the most widely deployed NoSQL distributed
storage systems are HBase [6] and Cassandra [5]. HBase tables
contain rows of information indexed by primary key. The basic

unit of data is the column, which consists of a key and a
value. Sequences of columns (an arbitrary number) collectively
form a row. A number of logically-related columns can be
grouped into column families (CFs), which are kept physically
close in both memory and disk. HBase partitions data using a
distributed multi-level tree that splits each table into Regions
and stores Region data in the HDFS distributed file system
using a scheme similar to LSM trees [10].

Cassandra is an open source clone of Dynamo, combining
some features (such as column families, and storage manage-
ment based on LSM trees over local storage) from HBase.
Each node in a Cassandra cluster maps to a specific position
on a ring via a consistent hashing scheme [5]. Similarly, each
row maps to a position on the ring by hashing its key using
the same hash function. Each node stores all rows whose
keys hash between this node’s position and the position of
the previous n nodes on the ring when replicating n times.
Cassandra leverages an LSM-tree like scheme similar to that
used by HBase to store data except that individual files (called
SSTables) are stored in each node’s local file system as
opposed to a distributed file system. When reading a row stored
in one or more SSTables, Cassandra uses a row-level column
index (and optionally a Bloom filter) to find the necessary
blocks on disk.

The idea of measurement-based performance modeling has
been previously proposed by Anderson [11] in the context of
storage system design and configuration of RAID arrays [7].
Complex performance evaluations of systems have been stud-
ied by Westermann et al. [12], [13], including methods for
predicting application performance based on statistics over a
space of measurement data. Our methodology is closely related
to these approaches as we rely on a guided exploration of sys-
tem configuration space under different workload assumptions.
We differ from them on our focus on service-level management
of scalable and elastic NoSQL technologies such as Cassandra.

Specifying SLA requirements and obligations in machine-
readable form requires standards such as WS-Agreement by
the Open Grid Forum and WSLA by IBM [14]. WS-Agreement
defines a protocol for negotiating and creating agreements
between clients and service providers and for monitoring
compliance using Web services. The goal of WSLA is to
allow the creation of machine-readable SLAs for services
implemented using Web services technologies. Although not
specifically addressed in this paper, these standards can be
straightforwardly leveraged for expressing SLAs over NoSQL
technologies such as Cassandra.

III. DESIGN

Our architecture for service-level management over the
Cassandra distributed storage system is depicted in Figure 1.
The QoS controller is the core component of this architecture.
Its key functionalities are to (i) setup SLAs with application
clients, requesting their CF profiles (data set size and a coarse
characterization of their degree of locality, such as random,
zipf-like, etc. per CF) and performance requirements (cur-
rently focusing on satisfying response-time targets at certain
throughput rates); (ii) effect initial resource allocations for
the application; (iii) periodically collect monitored response-
time and throughput metrics from Cassandra clients and plan



Fig. 1: The Cassandra QoS architecture

and effect changes in resource allocations to better align
with requested targets; and (iv) perform admission control by
estimating overall resource utilization and level of satisfaction
of requirements for current commitments.

In this paper we primarily focus on the problem of initial
resource allocation. We describe a provisioning policy based
on predictions of service capacity requirements for applica-
tions. Our methodology relies on a set of performance tables
(such as Table I) of measured performance results (throughput
and response time) produced by a configurable load generator.
We use as load generator the Yahoo Client Serving Benchmark
(YCSB) [15] configured to produce a specific access pattern,
I/O size, and read/write ratio (collectively termed a workload
W ) and server (VM) type (S). YCSB performs 1KB accesses
with configurable read/write ratio using Zipf (featuring local-
ity) or uniformly-random probability distributions.

Workload: W ; Server type: S
``````````# Clients

# Servers 1 2 3 4 . . .

clients1 r1, t1 r2, t2 r3, t3 r4, t4 r5, t5
clients2 r1, t1 r2, t2 r3, t3 r4, t4 r5, t5
clients3 r1, t1 r2, t2 r3, t3 r4, t4 r5, t5

. . . r1, t1 r2, t2 r3, t3 r4, t4 r5, t5
TABLE I: Response time, throughput for variable load levels,

service capacities (for given workload, server types)

Given an application’s access pattern and desired load level,
we can determine the number of servers of a given type
required to achieve the desired throughput without exceeding
a response time threshold. When the desired application char-
acteristics or load levels do not exactly match a table entry we
apply interpolation from neighboring table entries.

Each Cassandra client (usually embedded into an applica-

tion) performs per-thread measurements of response time and
computes exponentially-weighted moving averages (EWMAs)
of response-time values using the following formula, where
r(T) is the response time sampled at time T and α=0.125.

EWMA(T ) = (1− α) ∗ EWMA(T − 1) + α ∗ r(T )

Each process computes response time EWMA and aggregate
throughput across all its threads and communicates both to the
QoS controller. The QoS controller combines the reported met-
rics across YCSB processes belonging to the same user. It uses
these metrics to take control actions, such as increase/decrease
I/O path parallelism, and optionally regulate cache assigned to
a CF [2] or throttle an application [9], [16].

The QoS controller is able to simultaneously interface
and control multiple independent users (representing different
workoads). Since multiple applications executing over the
same Cassandra cluster cannot normally be isolated in terms
of elasticity policies (e.g., allow application A to grow the
Cassandra cluster by one server while application B sees its
previous configuration), our design assigns each application
to its own independent Cassandra cluster (still allowing Cas-
sandra servers to share Cloud VMs) as shown in Figure 2.
Finally, for high availability we support a primary-backup
scheme using a shadow QoS controller to replicate the state
of the primary. Details of this approach are beyond the scope
of this paper.

IV. IMPLEMENTATION

Our implementation is based on Apache Cassandra version
1.0.10. YCSB is used as the canonical example of an applica-
tion throughout this section; the architecture however is general
and applies to any application that can run over the Cassandra
client library. Our implementation extends YCSB Cassandra
Client version 1.0.10 (hereafter referred to as Cassandra-
Client10). The Cassandra server-side code is unmodified. For



Fig. 2: Relationships between application processes, QoS controller, Cassandra clusters, and the Cloud infrastructure. The
shadow QoS controller forms a primary-backup pair with the main QoS controller for high availability

simplicity we assume single datacenter and rack, one CF per
cluster, single seed node (simple snitch), random partitioner,
and replication factor one. In Figure 1 solid boxes denote
existing components while dotted boxes denote our extensions.

To support our enhanced functionality (QoS attributes of
multiple users accessing different CFs and clusters), we have
added the following YCSB command-line arguments:
• -rt : desired response time for read/write requests.
• -throughput : desired throughput for read/write re-

quests.
• -QoS{Port, Name, IP} : RMI connection port, name,

address between YCSB user and QoSController.
• -dataPort : RMI port for data connection between

YCSB user and Cassandra cluster (each user is
mapped to a separate cluster).

• -cf : column family name.
Another key YCSB parameter is the statistical distribution

of requests, which can be uniformly random or Zipf (locality).
A YCSB application accesses a single Cassandra CF and in-
volves multiple concurrently executing load-producing threads.
Each thread uses a unique CassandraClient10 object.

Monitoring. We modified the Cassandra Thrift implementa-
tion depicted in Figure 1 to timestamp read and write op-
erations. CassandraClient10 computes read/write latency (ms)
and read/write throughput (MB/s) (using the Cassandra Thrift
timestamps) and stores them into a (per-thread) CassandraQoS
object. CassandraQoS computes the EWMA of response times
and estimates throughput by dividing the bytes transferred for
completed operations over a given time period. We have added
a StatGathering thread to YCSB to periodically (every 30
seconds) collect from all CassandraQoS objects their response-
time EWMAs and throughput values. StatGathering computes
the average of EWMAs and aggregate throughput across
YCSB threads. QoSController collects those numbers from
each YCSB process via periodic RMI calls.

QoS controller. The QoSController is a separate process
executing on a dedicated node. To enable the QoS controller
to simultaneously control independent YCSB workloads we:
• Allow each YCSB process to have access to a different

Cassandra server cluster. To allow sharing of VMs
across clusters, network ports (data and JMX) used
by a cluster are set per YCSB process.

• Give each YCSB process a separate RMI connection
to the QoSController.

Each YCSB process communicates with the QoSController
over its assigned RMI name, IP, and port, and passes to it
configuration information followed by the user’s SLA.

Configuration information includes parameters of its Cas-
sandra cluster: Name of cluster; initial and max number of
Cassandra servers; IP addresses of servers and seeds; data port
(for read/write operations) and JMX port for monitoring and
managing Cassandra servers. A Cassandra cluster initialized
for a specific YCSB process takes as parameters the ports all
servers should listen to, e.g. data port 9160, JMX port 7199
for Cluster0; data port 9161, JMX port 7198 for Cluster1; etc.

The QoSController starts JMX connections to each Cas-
sandra server in a cluster and periodically (every 30 seconds)
collects statistics on row cache capacity, current size, and
hit ratio. When row caches fill up (past a ramp up phase
after an elasticity action), the QoSController goes over a 10
minute period during which it checks I/O response times and
throughput (20 times) for compliance with the user-specified
SLO. If the SLO is violated, it decides to start a new server
to further distribute the load in the cluster.

Elasticity. When the QoSController starts a new server in
a cluster, it initiates a JMX connection to that server and
uses it to set specific attributes for that server such as row
cache capacity and to get information about the server it will
stream data from to balance the ring. When data streaming
is complete, the new server transitions into normal mode in
the cluster and is ready to receive client requests. At that
point, a cleanup thread in the QoSController deletes keys from
offloaded nodes using the JMX cleanup API.

A challenge we faced early on was that the standard version
of YCSB (as of version 0.1.4) does not take elasticity into
account: it statically binds to an initial set of Cassandra servers
and cannot dynamically redistribute load to an expanding
cluster. In our extended version, we check in YCSB whether
a new server has been inserted in the cluster (ring) before
each read or write operation (by checking the host attribute
in the list of properties) and if so we include the new server.
Each CassandraClient10 then re-selects the Cassandra server
to which it binds to and sends its requests. To spread the client
load uniformly over the servers we map each client to a server



by taking the modulo of the client identifier over the total
number of servers. This dynamic reassignment of clients to
servers is performed each time a new server enters the cluster.

Caching. At the Cassandra server side, we use fixed-size row
caches per CF, set using the JMX setCapacity method
exported by storage servers. In our earlier versions of our
implementation using JVM heap for cache memory we were
careful regulating these caches to avoid exceeding a certain
fraction of the total heap size. Our experience indicates that
exceeding that limit triggers frequent garbage collection (GC)
activity and leads to automatic cache-size reduction by Cassan-
dra. Our current implementation configures Cassandra servers
to use off-JVM heap memory (and thus not GC’ed) for its
caches (row cache, key cache, and memtable). We thus avoid
some of the cache-related memory pressure effects that impact
Cassandra performance in unpredictable ways. We do not
however fully prevent such activity, which is inherent in Java
implementations of data-intensive distributed systems.

V. EVALUATION

We evaluated our system on the Amazon Web Services
(AWS) EC2 Cloud using two different Cassandra clusters. The
first one (referred to as SMALL) consists of 7 servers of type
AWS m1.small featuring 1 virtual core with Intel Xeon pro-
cessors, 1.7GB DRAM, 160GB local (instance) storage. The
second one (MEDIUM) consists of up to 5 servers of type AWS
m1.medium featuring 1 virtual core with Intel Xeon processors,
3.75GB DRAM, 410GB local storage. The server operating
system is Linux Ubuntu 10.4.1 LTS, 64 bits. The Cassandra
software version (baseline) is 1.0.10 using the OpenJDK 1.6.0-
24 Java runtime environment with heap size of 1GB. Our
evaluation workload is the Yahoo Cloud Serving Benchmark
(YCSB) version 0.1.4. The YCSB workload executes on an
EC2 instance of type AWS m1.large (2 virtual CPUs, 7.5
GB DRAM, 840GB local storage). The QoSController process
executes on a dedicated AWS m1.small EC2 instance.

To exhibit our QoS-aware provisioning methodology we
focus on two distinct types of applications: those that exhibit
locality in table accesses and those that do not. We emulate
both by configuring YCSB to produce accesses based on (a)
a Zipf probability distribution; and (b) a uniformly-random
probability distribution. According to the Zipf distribution,
some records are extremely popular while most records are
unpopular. In addition, we have disabled the key cache to focus
on the characteristics of the row cache alone.

In the first part of our evaluation we produce instances
of Table I by progressively expanding I/O path parallelism
between the application and storage servers (via elasticity
actions) as much as needed to match the selected workloads
(no SLO is set in this phase). Our evaluation considers AWS
m1.small and m1.medium types; our methodology however
extends to coverage of other VM types. We use our extended
version of the YCSB benchmark configured for 128, 256, and
512 concurrent client threads to produce read-only uniformly-
random or Zipf workloads. In a real setting, the QoS controller
would build a larger set of tables for better coverage. However
the current set of points are sufficient for demonstrating our
approach. YCSB is initially setup over a Cassandra cluster of

two servers. Progressively, the QoS controller grows the cluster
to five (MEDIUM) or seven (SMALL) servers1.

Zipf distribution. In the first set of experiments, we configure
YCSB to produce a workload of ZIPF-distributed reads to 15
million 1KB records (a 15GB dataset). The QoS controller
sets the row cache size to 500MB per Cassandra server on the
initial cluster. The server row cache capacity is periodically
checked (every 30 secs). The QoS controller maintains the
cluster size until all server row caches have filled up and
then on for about 10 min. At that point the QoS controller
triggers an elasticity action. In this phase, the QoS controller
is configured to scale the system continuously as long as there
is performance benefit from doing so.

Figures 3 and 4 depict EWMA response time (a) and
throughput (b) in the SMALL and MEDIUM clusters respectively
with a load of 256 concurrent client threads. The horizontal
bars designate periods of data streaming during which a
new (bootstrapping) node receives data from offloaded nodes.
Tables II and III summarize our results for the SMALL and
MEDIUM clusters (in steady state) for 128, 256, and 512
concurrent client threads. As cluster size grows, performance
benefits come from increased I/O path parallelism as well as
from the larger aggregate cache capacity available (each new
server adds 500MB of cache to the cluster). Bootstrapping has
a performance hit, but this is typically small due to throttling
on streaming throughput applied by Cassandra.

As anticipated, the MEDIUM cluster can achieve a given
level of performance with fewer servers compared to SMALL.
For example, a response time of 34ms for 512 client threads is
achievable with either 7 m1.small VMs or with 4 m1.medium
VMs. Similarly, for the same load and service capacity level
the MEDIUM cluster achieves higher throughput (up to 45%)
compared to SMALL. Figures 5(a) and 5(b) depict the response
time vs. offered-load relationship in the two clusters with
growing service capacity. We also observe that results with
the SMALL cluster exhibit higher variation compared to the
MEDIUM cluster. This can be attributed to the fact that average
CPU utilization is lower (and thus more CPU available to
absorb spurious activity) in the MEDIUM vs. the SMALL cluster.

Uniformly random distribution. Similarly to the case of the
Zipf distribution, we configure YCSB to produce uniformly-
random reads over the same 15GB dataset with 128, 256, and
512 client threads. Figure 6 depicts performance results for the
MEDIUM cluster with 256 client threads (a similar figure for
SMALL is omitted due to space constraints). The throughput
drop at 83 min is due to a brief freeze of all Cassandra
VMs (which we believe is Cloud related). Tables IV and V
summarize our results from these experiments in steady state.
Similar to the Zipf distribution, we observe that throughput
increases and response time decreases with growing cluster
size, although less so (up to 15%) due to smaller benefit from
caching in this case (18% hit ratio vs. 60% for Zipf). The
MEDIUM cluster can achieve a given level of performance
with fewer servers compared to SMALL: a response time of
about 45ms for 512 client threads is achievable with either

1Our goal in sizing the two clusters was to provide comparable performance
at their maximum capacity. Since m1.medium VMs are more powerful than
m1.small, five m1.medium VMs are sufficient to match and exceed the
maximum performance possible with seven m1.small VMs.
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Fig. 3: Amazon’s M1.SMALL, Zipf distribution, 1 client with 256 threads
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Fig. 4: Amazon’s M1.MEDIUM, Zipf distribution, 1 client with 256 threads

ZIPF-100% READS: AMAZON M1.SMALL
``````````# Clients

# Servers 2 3 4 5 6 7

128 23.37, 5.55 19.7, 6.66 15.62, 7.72 13.98, 8.81 12.18, 10.17 10.75, 11.6
256 49.51, 5.47 37.92, 6.87 32.3, 8.5 25, 9.65 22.4, 11.1 18.01, 11.14
512 102.23, 5.21 76.15, 6.59 61.01, 8 51.45, 9.8 44.01, 10.9 34.6, 12.2

TABLE II: Response time (ms), throughput (MB/sec) for ZIPF access pattern on Amazon’s M1.SMALL

ZIPF-100% READS: AMAZON M1.MEDIUM
``````````# Clients

# Servers 2 3 4 5

128 13.53, 9.27 11.73, 11.85 8.93, 14.7 5.89, 15.9
256 25.73, 10 19.64, 11.67 16.57, 14.88 12.02, 16.20
512 58.44, 9.33 44.63, 11.95 34.36, 15 25.77, 17.95

TABLE III: Response time (ms), throughput (MB/sec) for ZIPF access pattern on Amazon’s M1.MEDIUM

UNIFORM-100% READS: AMAZON M1.SMALL
``````````# Clients

# Servers 2 3 4 5 6 7

128 25.4, 4.8 22.17, 6.14 17.61, 7.06 15.76, 8.17 12.78, 9.55 12.24, 10.4
256 51.28, 5.16 51.12, 4.88 40.94, 6.46 33.24, 7.8 26.6, 9.4 22.7, 10.7
512 116.9, 4.42 83.14, 5.58 70.27, 7.70 54.73, 9.25 44.24, 10.6 44.46, 10.6

TABLE IV: Response time (ms), throughput (MB/sec) for UNIFORM access pattern on Amazon’s M1.SMALL

UNIFORM-100% READS: AMAZON M1.MEDIUM
``````````# Clients

# Servers 2 3 4 5

128 15.69, 8.78 11.8, 11.18 10.16, 13.06 7.52, 14.75
256 28.79, 9.05 24.64, 11.24 19.39, 13.51 14.77, 15.22
512 60.5, 8.64 48.8, 11.08 45.99, 12.77 28.44, 14.8

TABLE V: Response time (ms), throughput (MB/sec) for UNIFORM access pattern on Amazon’s M1.MEDIUM
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Fig. 5: Response time (ms) vs. offered load for different cluster capacities in the ZIPF workload
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Fig. 6: Amazon’s M1.MEDIUM, Uniformly random distribution, 1 client with 256 threads

ZIPF-100% READS: AMAZON M1.SMALL
``````````# Clients

# Servers 2 3 4 5 6 7

256 49.51, 5.47 37.92, 6.87 32.3, 8.5 25, 9.65 22.4, 11.1 18.01, 11.14
384 75.87, 5.34 57.03, 6.73 46.65, 8.25 38.22, 9.72 33.20, 11.00 26.3, 11.67
512 102.23, 5.21 76.15, 6.59 61.01, 8 51.45, 9.8 44.01, 10.9 34.6, 12.2

TABLE VI: The row on 384 clients is a weighted average of the rows on 256 and 512 clients on Amazon’s M1.SMALL

7 m1.small VMs or with 4 m1.medium VMs. Similarly, the
MEDIUM cluster achieves a higher level of throughput com-
pared to SMALL for the same load level.

Validation of the methodology. At the initial stage of the
YCSB benchmark the user sets up an SLA for the CF created
and accessed by YCSB. In the SLA the user specifies the
dataset size (15GB), degree of locality (ZIPF), the requested
maximum average response time for read operations (40ms),
an upper limit on throughput (384 threads), and row size
(1KB). The QoS controller uses Table II to estimate the
capacity to achieve the requested SLA. It uses weighted-
average interpolation to produce the new row for 384 threads
shown in Table VI. Other approaches to estimation have been
explored in the past [11], [13]; a more thorough exploration
of such techniques however is outside the scope of this paper.

Using the predictions of Table VI, the QoS controller
provisions a 5-node Cassandra cluster of EC2 m1.small type
VMs, creates a CF on it and periodically monitors the achieved
response time and throughput. Figure 7 shows that response
time and throughput closely approximate the levels predicted
by Table VI. Although average response time is below 40ms,
throughput is slightly higher than expected (10.55 vs 9.72

MB/s). Since the user-requested SLA is achieved, the QoS
controller does not trigger any further elasticity actions.

Although (due to space constraints) we have focused on
read-only workloads in this paper, we provide some insight
to the characteristics of write workloads. Figure 8 depicts
YCSB response time and throughput in an identical setup
to the one used in Figure 7 (384 threads, 5 servers). We
observe that response time is higher (61ms vs. 37.3ms) while
throughput is lower (4.9MB/s vs. 10.6MB/s) with both metrics
exhibiting more noise compared to the read-only workload.
Cassandra’s default write policy (unstable writes to commit log
and memtable with periodic syncs to disk) largely decouples
write performance from the disk device. However interference
with frequent memtable/SSTable compaction activity (espe-
cially intensive in a 100% write workload) hurts performance
due to increased I/O activity as well as increased CPU needs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a methodology for QoS-aware
provisioning of Cassandra clusters based on application SLAs.
Our evaluation demonstrates that the methodology is effective
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Fig. 7: Amazon’s M1.SMALL, Zipf read-only distribution, 1 client with 384 threads, 5 servers
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Fig. 8: Amazon’s M1.SMALL, Zipf write-only distribution, 1 client with 384 threads, 5 servers

in predicting server capacity requirements given simple ap-
plication workload descriptions. Part of the simplicity of our
approach stems from the scalability and elasticity mechanisms
built into NoSQL systems such as Cassandra; we believe that
our work is more broadly applicable to such systems.

A number of QoS management aspects were omitted from
our evaluation due to space constraints. A full exposition of
write-intensive workloads and the handling of interference
between workloads feature prominently on this list. Based
on our experience with write workloads we believe that our
methodology can straightforwardly extend to them. Workload
interference has been deemed to be an important parameter
in the past [7], especially over disk drives. We believe that
with the proliferation of flash drive (SSD) technology, the
importance of interference at the disk-drive level is less critical
today than it was ten years ago. However, contention for other
resources (CPU, memory) still needs to be taken into account
in provisioning concurrent workloads over Cassandra clusters.
We plan to evaluate the above QoS aspects in our future work.
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