
Optimization Algorithms for

Discrete Markov Random Fields,

with Applications to Computer

Vision

Nikos Komodakis

A thesis submitted for the degree of

Doctor of Philosophy

University of Crete

Computer Science Department

Heraklion

Supervisor: Professor Georgios Tziritas

(May 2006)

Abstract

We are what we repeatedly do.

Excellence, then, is not an act, but a habit.

—Aristotle 384 BC–322 BC

A large variety of important tasks in low-level vision, image analysis and pat-

tern recognition can be formulated as discrete labeling problems where one seeks

to optimize some measure of the quality of the labeling. For example such is

the case in optical flow estimation, stereo matching, image restoration to men-

tion only a few of them. Discrete Markov Random Fields are ideal candidates

for modeling these labeling problems and, for this reason, they are ubiquitous

in computer vision. Therefore, an issue of paramount importance, that has at-

tracted a significant amount of computer vision research over the past years, is

how to optimize discrete Markov Random Fields efficiently and accurately. The

main theme of this thesis is concerned exactly with this issue. Two novel MRF op-

timization schemes are thus presented, both of which manage to extend current

state-of-the-art techniques in significant ways.

On one hand, a novel framework is proposed that is based on the duality theory

of Linear Programming (LP) and provides an alternative as well as more general

view of existing graph-cut methods such as the α-expansion technique, which is

included merely as a special case. Moreover, unlike α-expansion which is valid

only for MRFs with metric potentials, the derived algorithms provably generate

almost optimal solutions for a much wider class of MRFs that are frequently

encountered in computer vision, which is an important advance. Results on a

variety of low level vision tasks demonstrate the efficacy of our approach.

On the other hand, a novel optimization scheme, called Priority-BP, is proposed

which carries two very important extensions over standard Belief Propagation

ii

(BP): priority-based message scheduling and dynamic label pruning. For the first

time, these two extensions work in cooperation in order to deal with one of the

major limitations of BP: its inefficiency in handling MRFs with very large discrete

state-spaces. Moreover, both extensions are generic and do not make any use of

domain-specific knowledge. They are therefore applicable to any discrete Markov

Random Field i.e. a very wide class of problems in computer vision.

In order to demonstrate the effectiveness of Priority-BP, a novel exemplar-

based framework (based on Priority-BP) is also proposed which treats the prob-

lems of image completion, texture synthesis and image inpainting in a unified

manner, while managing to compare favorably with related state-of-the-art meth-

ods. According to our framework, all of the above mentioned tasks are posed as

discrete MRF optimization problems with a well-defined global objective function.

Thanks to our Priority-BP algorithm, the intolerable (due to the huge number of

labels) computational cost of optimizing the resulting MRF is drastically reduced.

Furthermore, visually inconsistent results due to greedy patch assignments are

avoided, since our method always manages to maintain many candidate source

patches for each block of missing pixels. Numerous results on a wide variety of

difficult image completion cases prove the efficacy of our framework.

Finally, as an application of our LP-based MRF optimization techniques, we

turn our attention to a research topic that lies at the convergence of the fields of

computer vision and computer graphics: the virtual reconstruction of 3D environ-

ments based on image sequences. Contrary to most of the existing image-based-

modeling-and-rendering (IBMR) methods, which typically require large amount of

image data and are thus suitable mostly for small scale scenes, here we propose

a novel hybrid (geometry & image based) framework that is capable of providing

photorealistic walkthroughs of very large, complex outdoor scenes at interactive

frame rates. Furthermore, our framework is fully automatic and takes as input

only a sparse set of stereoscopic image pairs from the scene. Based on these

image pairs, a novel hybrid data representation of a 3D scene, called morphable

3D-mosaics, is then automatically extracted. According to it, a 3D scene is repre-

sented as a series of enhance local 3D models that allow a continuous morphing

between each successive two of them to be taking place during rendering. The

morphing is both photometric as well geometric and always proceeds in a phys-

iii

ically valid way. MRFs play a crucial role for the correct estimation of the mor-

phing and, for optimizing these MRFs, we make use of our LP-based optimization

methods. Our framework has already been successfully applied to the virtual 3D

reconstruction of the Samaria gorge in Crete and a sample from the results that

have been obtained is shown as well.

iv

Acknowledgements

I first wish to express my sincere gratitude towards my advisor, Professor Geor-

gios Tziritas, who guided and supported me throughout the years. His office door

was always open to me whenever i needed his advice. I also want to thank him

for giving me the opportunity to explore and deal with challenging research topics.

I would also like to thank assistant Professor George Georgakopoulos. His won-

derful lectures on algorithms and complexity (that i was lucky enough to attend)

gave the inspiration for part of the research that was conducted in this thesis. In

addition, i would like to thank Professor Panos Trahanias, as well as all the mem-

bers of my thesis committee, for their insightfull comments, which were indeed of

great value for the improvement of the quality and presentation of this thesis.

A special thanks also goes to Professor Nikos Paragios. Although being far away,

he has always been willing to offer his valuable advice, as well as its constructive

comments, on various early manuscripts.

I should note that the biggest part of the research in this thesis has been funded

by the European DHX (Digital Ecological and Artistic Heritage Exchange) project.

Finally, I want to express my deepest gratitude towards my parents for their unfal-

tering love and support. They have always been a tremendous source of strength

for me. Last but not least, i want to thank my wife, Vaggelio. Through all these

years she has always been by my side, encouraging, helping and caring. I am

pretty sure that, without her support, this thesis would not have been possible.

Nikos Komodakis

Heraklion, 2006.

vi

Contents

Abstract i

Acknowledgements v

Thesis organization 1

1 Introduction 5

1.1 The optimization paradigm in vision 5

1.2 Discrete labeling problems and Markov Random Fields 10

1.3 State-of-the-art optimization methods for discrete Markov Random

Fields . 17

1.4 Thesis contributions . 19

2 Background on Markov Random Fields 25

2.1 Introduction . 25

2.2 Basics of Markov Random Fields 26

2.3 Gibbs random fields and Markov-Gibbs equivalence 28

2.4 Maximum a posteriori estimation 30

2.5 State-of-the-art MRF optimization techniques 32

2.5.1 The α-expansion algorithm 32

2.5.2 Loopy belief propagation . 35

2.6 Other MRF optimization methods in vision 39

3 Approximate Labeling via Graph Cuts Based on Linear Programming 43

3.1 Introduction . 44

3.2 Related work . 50

3.3 The primal-dual schema . 52

3.3.1 The primal and dual LPs (Linear Programs) corresponding to

Metric Labeling . 54

viii

3.3.2 An intuitive view of the dual variables 56

3.3.3 Applying the primal-dual schema to Metric Labeling 57

3.4 The PD1 algorithm . 58

3.4.1 Update of the primal and dual variables 63

3.5 The PD2 algorithm . 66

3.6 PD3: extending PD2 to the semimetric case 70

3.7 Experimental results . 74

3.7.1 Per-instance suboptimality bounds 74

3.7.2 Stereo matching . 78

3.7.3 Image restoration and image completion 80

3.7.4 Optical flow estimation . 82

3.7.5 Synthetic problems . 84

3.8 Conclusions . 85

4 Priority-BP and the Problem of Image Completion 87

4.1 Introduction . 88

4.2 Image completion as a discrete global optimization problem 94

4.3 Priority-BP . 95

4.3.1 Priority-based message scheduling 96

4.3.2 Assigning priorities to nodes 100

4.3.3 Applying Priority-BP to image completion 101

4.3.4 Label pruning . 104

4.4 Extensions & further results . 106

4.5 Conclusions . 111

5 3D Visual Reconstruction of Large Scale Natural Sites 113

5.1 Introduction . 115

5.2 Related work . 120

5.3 Overview of the modeling pipeline 121

5.4 Local 3D models construction . 123

5.4.1 Disparity estimation . 124

5.5 Relative pose estimation between successive local models 125

5.5.1 Wide-baseline feature matching under camera looming . . . 126

5.6 Morphing estimation between successive local models 128

ix

5.6.1 Estimating optical flow between wide-baseline images Ik and

Ik+1 . 130

5.6.2 Geometric morphing in region Ψ̄ 134

5.7 Rendering pipeline . 138

5.7.1 Decimation of local 3D models 140

5.8 3D-mosaics construction . 142

5.8.1 Rotation (Rij) estimation between views Ii, Ij 143

5.8.2 Geometric rectification of local models 143

5.8.3 Merging the rectified local models 146

5.9 Further results . 146

5.10Conclusions . 150

A Technical proofs for theorems of chapter 3 153

A.1 Proof of theorem 3.2 about the optimality properties of the PD1 algo-

rithm . 153

A.2 Proof of theorem 3.3 about the optimality properties of the PD2µ

algorithm . 160

A.3 Proving the equivalence between algorithm PD2µ=1 and the α-expansion

min-cut algorithm . 164

References 167

Author’s publication list 181

x

List of Figures

0.1 Chart showing thesis overview . 1

1.1 An example of the stereo matching problem 7

1.2 In the optical flow problem, we need to compute the 2D pixel dis-

placements between the current and the next frame 7

1.3 In image restoration, we are given an image corrupted with noise

and try to recover a restored image that should be as similar as

possible to the true original image. 7

1.4 In image segmentation, we ideally want to assign a label to each

pixel so that pixels belonging to the same object have equal labels. 8

1.5 For detecting a face inside a given image, we try to locate certain

characteristic parts of the face e.g. nose, mouth and eyes. 8

1.6 Typically, for problems in early vision, the graph G coincides with

the image grid e.g. a graph corresponding to a 4×4 image is shown

here. 13

1.7 If we try to estimate disparity based only the data terms of the energy

function, then a noisy disparity map will almost surely be produced.

Here we show the resulting disparity for the left and right image of

figure 1.1. To ensure a better result, we must also take contextual

constraints into account. 13

1.8 We can model a face as a graph consisting of 4 objects: nose, mouth

and two eyes. Each object is assumed to have a specific appearance,

while some of the objects are connected to each other with springs.

These springs try to keep the objects at an ideal relative distance.

For detecting faces, we then need to locate that graph inside the

image, but without stressing the springs too much. 17

xii

2.1 The set of nodes in B separates the sets A and C since any path

from A to C necessarily passes through B. Therefore, in any MRF

with this graph, random variables xA, xC will be conditionally inde-

pendent given variables xB. 28

2.2 The cliques of the graph in figure (a) are shown in figure (b). There-

fore, any Gibbs distribution p(x) on this graph can be expressed

as: p(x) ∝ exp
(

−Vqrgt(xq, xr, xg, xt)− Vrhg(xr, xh, xg)− Vhp(xh, xp)−

Vhs(xh, xs)
)

. 30

2.3 A cut consisting of the edges sp, pr, rh is shown in this figure. This

is, in fact, the minimum st-cut in the above graph since there is no

other st-cut with cost less than 10. 33

2.4 The labeling shown on the right image is an example of a green-

expansion of the labeling on shown on the left image. In this case,

labels correspond to colors. 35

2.5 If a node p wants to send a message mpq(xq) to a neighboring node

q, then it must make use of the messages msp(xp),mrp(xp),mtp(xp)

coming from the rest of its neighbors. 37

2.6 If a node p wants to calculate its belief bp(xp) about any of the labels

xp ∈ L, it must then collect the messages msp(xp),mqp(xp),mrp(xp),mtp(xp)

coming from all of its neighboring nodes. 38

3.1 (a) The difficulty of the ML problem depends critically on the type of

label distance dab chosen. The global optimum in the case of a lin-

ear distance function can be found by using the technique described

in [68], while an approximate solution in the case of a metric dis-

tance can be computed using the α-expansion method [27]. (b) A

comparison of our framework with respect to existing state-of-the-

art graph-cut methods. 48

xiii

3.2 (a) By weak duality the optimal cost cT x∗ will lie between the costs

bT y and cT x of any primal-dual pair of feasible solutions (x, y).

Therefore if bT y and cT x are close enough (e.g. their ratio r1 is

≤ f) so are cT x∗ and cT x (e.g. their ratio r0 is ≤ f as well), thus

proving that x is an f-approximation to x∗. (b) Dual and primal

feasible solutions make local improvements to each other until the

final costs bT yt, cT xt are close enough (e.g. their ratio is ≤ f). We

can then apply the primal-dual principle and conclude that xt is an

f-approximation to x∗. 53

3.3 Visualization of the dual variables for a graph G consisting of just

2 neighbors p, q while L = {a, b, c}. Each vertex holds a copy of all

labels in L and all these labels are represented by circles which are

located at certain heights specified by the ht variables. Label c at p

is pulled up due to the increase of the balance variable ypq,c and so

the corresponding label at neighboring vertex q is pulled down due

to the decrease of the conjugate variable yqp,c. The active labels of

p, q are drawn with a thicker circle. 57

3.4 The basic structure of the algorithms PD1, PD2 and PD3. 57

3.5 (a) An arrangement of labels (represented by circles) for a graph G

with 3 vertices p, q, r and 2 edges pq, qr of weights wpq, wqr. The

label set is L = {a, c}. The thicker circles represent the active la-

bels. Also, the red arrows indicate how the c labels will move in

respond to an update of the balance variables while the dashed cir-

cles show the final position of those labels after the update. (b) The

corresponding graph Gx,y
c that will be used for updating the balance

variables. Interior/exterior edges are drawn with solid/dashed lines

respectively. 61

xiv

3.6 (a) An initial arrangement of labels’ heights at the start of a c-

iteration. All vertices p, q, r are currently assigned label a (as in-

dicated by the thick circles). (b) The new heights as updated by the

update_duals_primals routine after applying a maximum flow algo-

rithm to the graph in (d). Red and blue arrows show how the c-labels

move due to the update of the balance variables. Movements due

to changes in conjugate balance variables are drawn with the same

line style and color. The dashed circles indicate the final positions

of the c-labels. (c) The new active labels (thick circles) that were se-

lected based on the ‘‘reassign rule’’. Only vertex p had to change its

active label into c. This is so because only p still has its label c below

its previous active label a or equivalently only edge sp of the graph

in (d) is unsaturated while any paths to q or r are not. (d) The as-

sociated capacitated graph (assuming that all balance variables are

initially zero) and the resulting flows due to the maximum flow algo-

rithm. Notice that, as expected, the flows fp, fq, fr at exterior edges

reflect the total movement of the c-labels at p, q, r respectively. In

this example the Potts metric has been used as distance dab (i.e.

a 6= b⇒ dab = 1). 65

3.7 Pseudocode for the PD1 algorithm. 67

3.8 Pseudocode of the PD2µ algorithm. The routine update_duals_primals

is not shown because it is the same as the corresponding routine of

the PD1 algorithm. The only difference is that a subset of the edges

of Gxk,ȳk

c have different capacities (see text). 68

3.9 (a) The left and (b) right images for one stereo pair from the Tsukuba

data set. (c) The disparity estimated by the PD1 algorithm. (d) and

the PD2µ=1 algorithm. The Potts distance (a metric) has been used

in this example and so PD3a, PD3b, PD3c produce the same result

with PD2µ=1. 76

xv

3.10 These 3 plots show how the primal-dual ratios vary during the first

4 outer iterations (or equivalently the first 60 = 4 · 15 inner itera-

tions) using the Tsukuba sequence as input. (Left) The potts metric,

(Middle) the trunc.linear metric and (Right) the trunc. quad. semi-

metric have been used respectively as label distance dab. Notice how

rapidly the ratios drop in all cases (i.e. they get very close to 1 just

after a few inner iterations). 79

3.11 (a) One image from the SRI tree image sequence. (b) Computed

disparities when using PD3a and the semimetric dκ,λ
4,ab with (κ, λ) =

(2, 10). (c) Disparities computed by the α-β-swap algorithm using

the same semimetric. The solution of α-β-swap has 8.3% higher

energy than the corresponding solution of the PD3a algorithm de-

spite the fact that both algorithms try to minimize exactly the same

energy function. 79

3.12 (a) Uniqueness constraint is not favored and the graph G coincides

with the image grid. A common label distance is used for all edges

(i.e. hdist1 = vdist1) (b) To favor the uniqueness constraint we

introduce additional horizontal edges in G which connect any pixel

with the K pixels to its right (K is the maximum disparity). 80

3.13 Red pixels indicate occlusions . 80

3.14 (a) Original uncorrupted image. (b) Noisy input image. (c) Restored

image using semimetric dκ,λ
4,ab, (κ, λ) = (2, 30) (d) Restored image us-

ing the truncated linear metric dλ
2,ab, λ=30. 81

3.15 Examples of image restoration and image completion 82

3.16 Estimated flow between frames 4, 5 (1st row) and 11, 12 (2nd row)

of yosemite sequence. Although more outer iterations were used by

α-β-swap, its optical flow had 19.2% and 56.7% higher energy than

our optical flow. 83

3.17 α-β-swap produces an energy which is higher by (a) 17%, (b) 23%

and (c) 28% with respect to our algorithm’s energy. Notice that as

the number of labels increases the gap in performance increases as

well. 85

xvi

3.18 A synthetic example where the graph G has 3 vertices {p, q, r} and 2

edges {pq, qr} while the labels L are {a, b, c}. Label costs cpa and the

distance dab (a semimetric) are shown. The α-β-swap algorithm can

get stuck in labeling A whose cost is T i.e. arbitrarily larger than the

true minimum cost which is 4 (labeling B). On the contrary PD3a,

PD3b, PD3c can always locate the optimal labeling B. Example

taken from [27]. 85

4.1 Object removal is just one example of the many uses of image com-

pletion. In the specific example shown above, the user wants to

remove a person from the input image on the left. He therefore sim-

ply marks a region around that person and that region must then be

filled automatically so that a visually plausible outcome is obtained. 89

4.2 Image inpainting methods, when applied to large or textured missing

regions, oversmooth the image and introduce blurring artifacts. . 91

4.3 The nodes and edges of an MRF associated with image comple-

tion. In this example, the w, h parameters were set equal to w =

2gapx, h = 2gapy. 94

4.4 For the boundary node r, its label cost Vr(xr) will be an SSD over

the red region while for nodes p, q their potential Vpq(xp, xq) will be

an SSD over the green region. Node s is an interior node and so its

label cost Vs(xs) will always be zero. 94

4.5 Message scheduling during the forward pass: currently only red

nodes have been committed and only messages on red edges have

been transmitted. Among uncommitted nodes (i.e blue nodes) the

one with the highest priority (i.e node p) will be committed next and

will also send messages only along the green edges (i.e only to its

uncommitted neighbors q, r). Messages along dashed edges will be

transmitted during the backward pass. Priorities are indicated by

the numbers inside uncommitted nodes. 100

4.6 In column (c) darker patches correspond to nodes that are visited

earlier during message scheduling at the first forward pass 102

xvii

4.7 The plots in (a), (b) and (c) show the sorted relative beliefs for the

MRF nodes a, b and c in figure (d) at the start of Priority-BP. Relative

beliefs plotted in red correspond to labels in the confusion set. This

set determines the priority of the corresponding node. 103

4.8 (a) Although the red, green and blue patches correspond to distinct

labels, they are very similar and so only one has to be an active label

for a node. (b) A map with the number of active labels per node (for

the 2nd example of Figure 4.6). Darker patches correspond to nodes

with fewer labels. As can be seen interior nodes often require more

labels. (c) The corresponding histogram showing the percentage of

nodes using a certain number (in the range Lmin = 3 to Lmax = 20)

of active labels. (d) The active labels for node a in Fig. (a). 105

4.9 Image completion. From left to right: original images, masked im-

ages, visiting order at 1st forward pass, Priority-BP results 107

4.10 texture synthesis results produced with the Priority-BP algorithm 108

4.11 An example of text removal . 109

4.12 An image inpainting example . 109

4.13 Texture synthesis using the ‘‘incoherence penalty terms’’. Notice

that, in this case, the output texture has been synthesized by copy-

ing large chunks from the input texture. 109

4.14 Some more results on image completion, produced using the Priority-

BP algorithm. From left to right: original images, masked images,

visiting order at 1st forward pass, Priority-BP results 112

5.1 A schematic view of the plenoptic function 116

5.2 Overview of our approach: (a) A sparse set of stereoscopic views is

captured at key-positions along the path (b) One local 3D model is

constructed out of each stereoscopic view (c) As the user traverses

the path a morphable 3D model is displayed during rendering. This

way a continuous morphing between successive local models takes

place at any time, with this morphing being both photometric as

well as geometric. 117

5.3 The modeling pipeline . 121

xviii

5.4 For calibrating our camera we capture images of a chess pattern at

random positions and orientations. 122

5.5 (a) Depth map Z0 of a local model (black pixels do not belong to its

valid region dom0). (b) A rendered view of the local model using an

underlying triangle mesh . 124

5.6 The 2 stages needed for disparity estimation 125

5.7 (a) Image Ik along with computed optical flow vectors (blue seg-

ments) for all points marked white. (b) Image Ik+1 along with

matching points (also marked white) for all marked points of (a).

A few epipolar lines are also shown. In both images, the yellow

square around a point is analogous to the point’s estimated scale

factor (10 scales S = {1, 0.9−1, ..., 0.1−1} have been used). 127

5.8 Two more examples (one example per row) of wide baseline matching

from another scene. Optical flow vectors (on image Ik) as well as

estimated epipolar lines (on image Ik+1) are shown again. Also,

notice the large camera motion taking place in the top example e.g.

the stones in the water appear much closer to the camera in figure

(b) than in figure (a). 127

5.9 Given a point p ∈ Ik and a candidate matching point q ∈ Ik+1, we

search across a range of scales 1=s0<s1 <...<sn by first projecting

q on rescaled images and then comparing the neighborhood of each

of the resulting pixels with the neighborhood of p in Ik. 133

5.10 Maps of: (a) scale factors and (b) optical flow magnitudes for all

points in Ψ, as estimated after applying the optical flow algorithm

to the images of Fig. 5.7 and while using 10 possible scales S =

{1, 0.9−1, ..., 0.1−1}. (c) Corresponding optical flow magnitudes when

only one scale S = {1} has been used. As expected, in this case the

algorithm fails to produce exact optical flow for points that actually

have larger scale factors. We note that darker pixels in a grayscale

image correspond to smaller values. 133

xix

5.11 (a) Destination depth map Zdst for points inside region Ψ after using

optical flow of Fig. 5.10(b) and applying eq. (5.3). To completely

specify morphing we need to extend this map to the points in region

Ψ̄ (b) Depth map Zdst of (a) extended to points in Ψ̄ without applying

geometric morphing. Notice that there exist discontinuities along

the boundary ∂Ψ̄. (c) Depth map Zdst of (a) extended to points in

Ψ̄ after applying geometric morphing. 134

5.12 Rendered views of the morphable 3D-model during transition from

the key-position corresponding to image 5.7(a) to the key-position of

image 5.7(b): (a) when no geometric morphing is applied to points

in Ψ̄ and (b) when geometric morphing is applied to points in Ψ̄. (c)

A close-up view of the rendered image in (b). Although there is no

geometric discontinuity, there is a difference in texture resolution

between the left part of the image (points in Ψ̄) and the right part

(points in Ψ) because only points of the latter part are morphed

photometrically. 135

5.13 Pixel shader code (and the associated vertex shader code), written

in GLSL (OpenGL Shading Language), for implementing the photo-

metric morphing. 138

5.14 Skeleton code in C for applying vertex blending in OpenGL. . . . 138

5.15 (a) Estimated disparity field corresponding to a local 3D model Lk. (b)

Resulting full 3D model produced when a non-decimated 2D trian-

gulation of the geometric maps has been used. (c) Simplified 3D

model of Lk produced using a decimated 2D triangulation where the

emax threshold has been set equal to 0.5 pixels. 141

5.16 Rendered views of: (a) a local model Lj (b) a local model Li (c) a

3D-mosaic of Li, Lj without geometry rectification (holes are due to

errors in the geometry of the local models and not due to misregis-

tration in 3D space) (d) a 3D-mosaic of Li, Lj after RECTIFYLi
(Lj)

has been applied (e) a bigger 3D-mosaic created from Li, Lj as well

as another local model which is not shown 145

xx

5.17 A synthetic example illustrating the superiority of our approach

against feathering (see also text). (a) True depth maps. (b) Es-

timated noisy depth maps. (c) Resulting 3D-mosaic’s depth map

using feathering. (d) Resulting 3D-mosaic’s depth map using our

method. 146

5.18 Another example of a 3D-mosaic constructed using our method.

Top row: three separate local 3D-models Bottom row: the result-

ing 3D-mosaic . 147

5.19 Two stereoscopic views as would be rendered by the VR system (for

illustration purposes these are shown in the form of red-blue images).148

5.20 Each row contains sample rendered views of a separate morphable

3D model. In each row the leftmost, rightmost images correspond

to the views at posk, posk+1 respectively. 149

5.21 Some rendered views that are produced as the virtual camera tra-

verses a path through the so-called ‘‘Iron Gates’’ area, which is the

most famous part of the Samaria Gorge. In this case the virtual

camera passes through a series of successive morphable 3D models.149

5.22 (a) The left image of a stereoscopic image pair that has been cap-

tured at a region passing through a small river. (b) The estimated

disparity by using a stereo matching procedure. As expected, the

disparity field contains a lot of errors for many of the points on the

water surface. This is true especially for those points that lie near

the sun reflections on the water. (c) The corresponding disparity

when a 2D homography is being used to fill the left-right correspon-

dences for the points on the water. In this case the water surface is

implicitly approximated by a 3D plane. 151

5.23 (a) Some rendered views of the gorge that also contain a synthetically

generated volumetric fog. (b) A rendered view where a synthetic 3D

model of the agrimi, a wild animal which is specific to the Samaria

Gorge, has been integrated into the 3D virtual environment. (c)

Another view with an oleander plant integrated as well. 151

List of Tables

3.1 Average suboptimality bounds (colums 2-6) obtained for the Tsukuba

data set. As expected they are much closer to 1 than the theoreti-

cal suboptimality bounds fapp listed in the last column and thus a

nearly optimal solution is obtained in all cases. Note that PD2µ=1

can be applied only if dab is a metric and in that case PD2µ=1, PD3a,

PD3b and PD3c (as well as their bounds) coincide. 77

3.2 The average suboptimality bounds (columns 2-4-6-8-10) obtained

when applying our stereo matching algorithms to one scanline at

a time (instead of the whole image). In this case, we are also able

to compute the true average suboptimality (columns 3-5-7-9-11)

of the generated solutions using dynamic programming. As can

be seen by inspecting the table the suboptimality bounds always

approximate the true suboptimality relatively well, meaning that

they can be safely used as a measure for judging the goodness of a

generated solution. 77

3.3 Error statistics for the image restoration example of Fig. 3.14 . . . 81

Thesis organization

An overview of this thesis appears in Figure 0.1. Its main theme is concerned

with robust as well as efficient optimization techniques of discrete Markov Ran-

dom Fields. To this end, two novel optimization schemes are proposed, both of

which manage to extend current state-of-the-art techniques in significant ways.

As a demonstration of the effectiveness of our algorithms, we also use them in

two different computer vision applications: image completion and visual 3D re-

construction of large scale natural sites. In fact, for both of these tasks, novel

frameworks are proposed, which also nicely advance related state-of-the-art tech-

niques.

Visual 3D reconstruction of large natural sites
with the morphable 3D-mosaics framework

Visual 3D reconstruction of large natural sites
with the morphable 3D-mosaics framework

Image completion using
global optimization

Image completion using
global optimization

Global optimization techniques
for discrete MRFs in computer vision

Global optimization techniques
for discrete MRFs in computer vision

LP-based MRF optimization techniquesLP-based MRF optimization techniques Priority-BPPriority-BP

applications

proposed methods

Fig. 0.1: Chart showing thesis overview

2 LIST OF TABLES

Based on the observations made above, this thesis is organized (in a chapter by

chapter basis) in the following manner:

Chapter 1

This chapter introduces the reader to the optimization paradigm in vision and

sets the general context for the optimization framework that will be used in the

remainder of the sequel. By providing examples, it illustrates the modeling power

of MRFs and explains how these can capture a wide range of problems in computer

vision. Finally, it provides a brief description of the main contributions of this

thesis with respect to the current state-of-the-art MRF optimization methods.

Chapter 2

This chapter provides all necessary background about Markov Random Fields and

gives a bayesian justification for the form of their energy function. In addition,

the two current state of the art MRF optimization techniques, α-expansion and

loopy belief propagation, are briefly described, while a short review of some other

popular MRF optimization techniques is provided as well.

Chapter 3

During this chapter, a novel framework is presented that is based on the duality

theory of linear programming and generalizes as well as extends existing graph-

cut methods. A number of algorithms are derived based on our framework, just

one of which is shown to be equivalent to the α-expansion technique. Moreover,

unlike α-expansion, it is proved that the proposed algorithms can generate almost

optimal solutions for a very wide class of Markov Random Fields with both metric

and non-metric potential functions.For demonstrating the effectiveness of our

framework, we also present experimental results on a variety of low level vision

tasks.

Chapter 4

During this chapter, a novel MRF optimization scheme, called Priority-BP, is pre-

sented which carries 2 very important extensions over standard belief propaga-

tion: priority-based message scheduling and dynamic label pruning. Together,

LIST OF TABLES 3

these two extensions manage to resolve what is currently considered as the ma-

jor limitation of Belief Propagation: its inefficiency in handling MRFs with very

large discrete state-spaces. Our method is generic and can therefore be applied

to any MRF i.e. a very wide class of problems in computer vision. To demon-

strate the effectiveness of Priority-BP, we show how that algorithm can be applied

to the problems of image completion, texture synthesis and image inpainting. A

novel exemplar-based framework is thus presented that manages to unify all all

of the above mentioned tasks by formulating them as discrete MRF optimization

problems with a well defined objective function. Results on a wide variety of diffi-

cult image completion examples are included and demonstrate the efficacy of our

approach.

Chapter 5

During this chapter, as an application of our LP-based MRF optimization tech-

niques, we turn our attention to the study of novel image based modeling and

rendering methods, a research topic that lies at the convergence of computer vi-

sion and graphics. To overcome the limitations of existing IBR methods, that

usually require large amount of image data and are thus targeted mostly for

small scale scenes, a novel hybrid (geometry & image based) framework is pre-

sented which is capable of providing photorealistic walkthroughs of large, com-

plex outdoor scenes at interactive frame rates. The proposed framework is called

morphable 3D-mosaics and its main ingredients are thoroughly explained and an-

alyzed during this chapter. In addition, we show results that have been obtained

by successfully applying our IBMR framework to the virtual 3D reconstruction

of the Samaria gorge in Crete, which is one of the largest and most magnificent

gorges in Europe.

Appendix A

This appendix contains all technical proofs for the theorems and lemmas pre-

sented during chapter 3.

4 LIST OF TABLES

C H A P T E R 1

Introduction

This chapter servers an introductory goal. On one hand, it introduces the opti-

mization paradigm and explains why optimization techniques are so important in

computer vision research. On the other hand, it illustrates through examples how

such techniques can be used for solving a wide variety of computer vision problems.

Furthermore, it sets the general context for the optimization framework that will be

used throughout the rest of the thesis, while it also briefly motivates the reason

why new optimization methods, capable of handling the challenges posed by cur-

rent computer vision problems, are needed. Finally, the chapter ends by providing

a brief description of the main contributions of this thesis with respect to state-of-

the-art optimization algorithms that are currently used in computer vision research.

Vision is the art of seeing things invisible

—Jonathan Swift

1.1 The optimization paradigm in vision

As electronic components get cheaper and cheaper, there is a dramatic in-

crease in the use of computer technology over the last years. Nowadays computers

assist humans for a large variety of tasks. They are used e.g. in communications

(computer networks), in automating laborious tasks (car industry) or even just for

entertainment. However, despite this fact, the ability for computers to mimic the

human intelligence remains still an elusive goal. A first step towards achieving

this goal would be made if computers could take advantage of (i.e. analyze) the

huge amount of visual data that can be given as input to them (e.g. by connecting

them to peripheral devices such as digital cameras) and which contain numerous

6 Introduction

and valuable information about the surrounding environment. This is exactly the

main objective of the field called Computer Vision: to make computers ‘‘see’’, i.e.

to make computers capable of interpreting and analyzing digital images (either

static or moving).

To this end, computer vision needs to deal with a variety of interrelated tasks,

each one of them being responsible for extracting a different type of semantic

information that is hidden behind the raw image data. To give to the reader

a rough idea of what kind of tasks one may encounter in computer vision, we

mention here only a few typical examples of computer vision problems that are

related to extracting either low-level or high-level information:

Stereo matching [18,90,115,126,139,151] We are given a pair of two images,

a left and a right image, captured by two digital cameras, which are aligned to

each other, i.e. they are located at the same height and both look towards the

same direction. We want to find for each pixel of the left image its horizontal

displacement, also known as disparity, in the right image (see Figure 1.1).

This way, 3D information about the surrounding scene can be extracted (e.g.

by intersecting the 3D rays that pass through corresponding pixels in the two

images). This mimics the ability of the human vision system to extract 3D

information based on the stereoscopic images entering the left and right eye.

Optical flow estimation [9,62,65,67,141] Given two successive frames from

an image sequence that has been captured by a moving video camera, we

want to find for each pixel in the current frame where it has moved in the

next frame. In this case, a pixel may appear to move not only horizontally

but also vertically and so we need to estimate the 2D displacement, called

optical flow, for each pixel (see Figure 1.2).

Image restoration or denoising [33,88,93,104,108,122] We are given a digi-

tal image corrupted with noise (e.g. due to bad lighting conditions at the

time of the capture). Before trying to infer any higher level information from

that image, it would be necessary to remove the noise and restore the orig-

inal content of the image (see Figure 1.3). In other words, we seek to find

the true underlying pixel intensities (or colors if we are dealing with color

images).

1.1 The optimization paradigm in vision 7

(a) Left image (b) Right image (c) True disparity map

Fig. 1.1: An example of the stereo matching problem

(a) Current frame (b) Next frame (c) True optical flow field

Fig. 1.2: In the optical flow problem, we need to compute the 2D pixel displacements

between the current and the next frame

(a) True original image (b) Image corrupted with

noise

(c) Restored image

Fig. 1.3: In image restoration, we are given an image corrupted with noise and try to

recover a restored image that should be as similar as possible to the true original image.

Image segmentation [48,94,119,144,148] Given as input a single image we

want to be able to partition it into regions so that each region corresponds to

one of the different object that may be present in that image. Put otherwise,

we want to assign a label to each pixel so that pixels corresponding to the

same object have the same label (see Figure 1.4). The image segmentation

task can be useful if we wish to extract further higher-level information for

each one of the objects displayed in the image.

8 Introduction

(a) Input image (b) Segmented image: different colors

correspond to different labels

Fig. 1.4: In image segmentation, we ideally want to assign a label to each pixel so that

pixels belonging to the same object have equal labels.

(a) Input image (b) Detected parts of a face

Fig. 1.5: For detecting a face inside a given image, we try to locate certain characteristic

parts of the face e.g. nose, mouth and eyes.

Object detection and localization [2,30,46,47,142] In this case, we want to

know if an object, which belongs to a particular category of objects (e.g.

people faces), is located inside a given image and, in case it is, we also want

to find out its 2D location. To this end, one possible strategy is to use a

part based representation of the object and then try to locate its various

parts inside the image. For instance, for detecting faces one might start

looking for four parts: one nose, one mouth and two eyes (see Figure 1.5).

Of course, in this case, care must be taken so that the spatial configuration

of the detected parts does resemble the typical spatial configuration of a

person’s nose, mouth and eyes.

1.1 The optimization paradigm in vision 9

In all of the tasks mentioned above we want to infer some hidden quantities

~x (disparity, optical flow, etc.) based on some (possibly) noisy observations ~d

consisting of the input visual data. One common way to achieve this is by refor-

mulating the task at hand as an optimization problem. In particular, we design

an objective function F (also called the energy function):

F : (~x, ~d)→ F(~x, ~d)

which assigns an energy F(~x, ~d) to each possible combination (~x, ~d) of the hidden

quantities and the input data. This energy should represent how bad any given

solution ~x fits the input visual data ~d as well as how bad ~x satisfies all physical

constraints imposed by the problem at hand. Based on this framework, we then

choose that solution ~xopt, which yields the minimum energy among all possible ~x:

~xopt = arg min
~x
F(~x, ~d)

The extensive use of the optimization paradigm in vision is favored by the

fact that various uncertainties exist in almost every vision process. For instance,

the sources of uncertainties can be image noise (due to imperfect sensors or

quantization errors), occlusions in the observed image or ambiguities in the visual

interpretation. Based on this fact, one can quickly realize that perfect or exact

solutions hardly exist. On the contrary, inexact but optimal solutions are usually

what one can hope to obtain in the best case. In fact, it is exactly due to the

existence of these uncertainties that principles from statistics or probability theory

are often used as the basis for deriving the exact form of the energy functionF(·, ·).

Furthermore, one additional advantage of the optimization approach to vision is

coming from the fact that the energy function itself can always provide a global

quantitative measure that can be used for evaluating the goodness of a resulting

solution. Moreover, this function F(·, ·) can be also used as a guide during the

search for a minimal solution.

We should note that for any given instance of a computer vision problem, the

observations ~d remain fixed (i.e. the optimization is taking place only with respect

to the hidden quantities ~x). Therefore, for notational simplicity, we will hereafter

drop the symbol ~d from F(~x, ~d) and denote the objective function simply as F(~x).

10 Introduction

Furthermore, ~x will always be assumed to be a vector and we will therefore refer

to it simply as x hereafter.

1.2 Discrete labeling problems and Markov Random

Fields

Two of the most important issues in optimization-based vision are:

• on one hand, the modeling of the state of nature, i.e. how do we choose

to represent the hidden quantities x

• and on the other hand, the objective function, i.e. what kind of form do

we allow the energy function F(·) to have

These two issues are interrelated to each other and can have a great impact on

how effective the optimization process will be.

With respect to the first of these issues, a very common way of representing the

hidden quantities is through a discrete set of labels, in which case the problem

is reduced to a discrete labeling problem. More specifically, whenever we refer to

this term we will hereafter mean a problem which is defined in terms of two basic

entities: a graph G and a set of labels L.

The graph G = (V,E) consists of a discrete set of N objects1 and a set of edges

E. The objects will hereafter be denoted as:

V = {p, q, r, . . .}

and can represent features, e.g. a corner point or a line segment, on which a

quantity must be estimated, while the edges E of the graph are used for encoding

all relationships between the objects of G. Typically, for problems in low level

vision, objects will correspond to pixels in the image grid.

Furthermore, in our case, it will always be assumed that the set of labels L

is discrete, consisting of |L| labels in total. These labels will correspond to the

hidden quantities that we want to estimate and can represent e.g. intensities,

disparities, or any other quantity of interest. Under these circumstances the

1we will use the terms object, vertex, node, site interchangeably throughout

1.2 Discrete labeling problems and Markov Random Fields 11

problem is reduced to that of assigning a label from the label set L to each one of

the objects in V . In other words we need to define a mapping x with domain L

and range V , i.e.:

x : L → V

so that xp = x(p) represents the unique label assigned to node xp.

With respect to the issue of specifying the form of the energy function F(·) a

very important aspect is related to the fact that the chosen energy function should

be able to somehow encode all contextual constraints between the objects. Over

the years, it has been realized by computer vision researchers that this is an ab-

solutely necessary condition for one to be able to interpret the visual information

hidden in images [85,105,132]. It turns out that a very good (and common) way

for modeling these contextual constraints is by using what is currently known

as a discrete Markov Random Field (MRF) [87,147]. Markov Random Fields have

their roots in probability theory and are thus a particular type of probabilistic

graphical model. More specifically, they belong to the class of the so-called undi-

rected graphical models. A more rigorous description of Markov Random Fields

will be given in chapter 2 along with a justification of the form of their associated

objective function. For now, however, it suffices to state directly what the exact

form of that objective function F(·) will be 2:

F(x) = Fdata(x) + Fprior(x).

The first term is known as the data term and is decomposed in the following way:

Fdata(x) =
∑

p∈V

Vp(xp),

while the second term, which is also known as the prior term, is defined to be

equal to:

Fprior(x) =
∑

(p,q)∈E

Vpq(xp, xq).

2Throughout this thesis we are assuming a 1st order discrete Markov Random Field containing

only pairwise interactions between objects. Note however that this does not hurt the generality of

our formulation, since even a MRF of higher order (i.e. a MRF involving higher order interaction

terms) can be reduced to a 1st order MRF by introducing a set of auxiliary variables [145].

12 Introduction

The general form of the objective function is thus the following:

F(x) =
∑

p∈V

Vp(xp) +
∑

(p,q)∈E

.Vpq(xp, xq) (1.1)

Intuitively, the data term Vp(xp) encodes how much the assignment of label xp to

node p disagrees with the observed image data at that node. On the other hand,

the prior terms Vpq(xp, xq) are used for encoding the contextual constraints that

need to be imposed between neighboring objects in the graph. Put otherwise, they

express our a priori knowledge about the labels before even observing any image

data at all. They are therefore used for assigning a high energy to any labeling

which is considered to be highly unlikely a priori. The functions Vp(·), Vpq(·, ·) are

also known as single and pairwise potential functions respectively.

Despite this seemingly simple formulation of the energy function associated

to an MRF, Markov Random Fields are capable of capturing a very wide range

of problems in computer vision. This will become obvious in the illustrating

examples that now follow:

Stereo matching:

In this case the labels correspond to a discretized set of disparities. We

therefore set:

L = {0, 1, ..., K},

where K denotes the maximum allowed disparity.

The graph G = (V,E) corresponds to the image grid, i.e. each object repre-

sents a pixel and has the top, bottom, left and right pixel as its neighbors

(see Figure 1.6).

The data terms should measure how well corresponding pixels in the left

and right image (as determined by the disparity field) match, i.e. how similar

their intensities are. The simplest such measure is:

Vp(xp) = |Iright(p− xp)− Ileft(p)|

where the symbols Ileft and Iright represent the 2D array of intensities for

the left and right image respectively.

1.2 Discrete labeling problems and Markov Random Fields 13

Fig. 1.6: Typically, for problems in early vision, the graph G coincides with the image grid

e.g. a graph corresponding to a 4×4 image is shown here.

Fig. 1.7: If we try to estimate disparity based only the data terms of the energy function,

then a noisy disparity map will almost surely be produced. Here we show the resulting

disparity for the left and right image of figure 1.1. To ensure a better result, we must also

take contextual constraints into account.

If the disparity estimation is based only on the optimization of the data

terms, then a rather noisy result will be produced (see Figure 1.7). To fix

this, we need to impose a so-called smoothness contextual constraint. This

generic constraint, which is typically used in many problems in computer

vision, merely expresses the fact that physical properties in a neighborhood

of space or time present some coherence and do not change in an abrupt

fashion. In our case, this translates to the a priori knowledge that pixels

which lie next to each other in the image plane tend to have similar dispar-

ities most of the time (except for pixels lying along an object’s boundary).

To this end, the following pairwise potential function will be used, which

penalizes neighboring pixels with unequal disparities and is also known as

14 Introduction

the Potts model in the literature [26]:

Vpq(xp, xq) =











1, if xp 6= xq

0, if xp = xq

Optical flow estimation:

The difference with stereo matching is that now labels are two dimensional

vectors, representing displacements in both the horizontal and vertical im-

age axis:

L = {−Kx, ..., Kx} × {−Ky, ..., Ky},

where Kx and Ky represent the maximum allowed horizontal and vertical

displacements in pixels.

The graph G as well as the data terms Vp(·) are defined in the same way as

in stereo matching. E.g.:

Vp(xp) = |Inext(p + xp)− Icurrent(p)|,

where Icurrent and Inext represent the 2D array of intensities for the current

and next frame respectively.

The prior terms should again impose a smoothness constraint for the 2D

optical flow field and can be defined as follows:

Vpq(xp, xq) = min(||xp − xq||
2,M)

Here, M denotes the maximum allowed penalty that can be imposed. The

main use of this parameter is for not allowing discontinuities along object

boundaries to be overpenalized [19].

Image restoration:

The labels correspond to image intensities:

L = {0, 1, ..., 255}.

The graph G again coincides with the image grid.

1.2 Discrete labeling problems and Markov Random Fields 15

The data terms are defined so as to express the fact that the restored inten-

sity xp at any pixel p should be close to the observed intensity I(p), i.e.:

Vp(xp) = |I(p)− xp|

where I represents the 2D array of observed image intensities.

A pairwise potential function which is commonly used in image restoration

is the truncated quadratic semimetric:

Vpq(xp, xq) = min(|xp − xq|
2,M)

where M denotes again the maximum penalty that can be imposed.

Image segmentation:

Here, each segmented region corresponds to a different label. E.g., in the

case of binary segmentation where we want to partition the image into a

foreground and a background region, we set:

L = {background, foreground}

Graph G coincides with the image grid.

The data terms measure the log likelihood of a pixel belonging to either the

foreground or the background:

Vp(background) = − log Pb

(

I(p)|p ∈ background
)

Vp(foreground) = − log Pf

(

I(p)|p ∈ foreground
)

The probability density functions Pb, Pf can be modeled as two separate

gaussian mixture models which have been learnt beforehand [25].

For the pairwise potential functions a contrast sensitive Potts model can be

used as in the case of stereo matching.

Object detection and localization:

All examples shown so far concerned low-level vision problems. Markov

16 Introduction

Random Fields, however, can be also used for modeling higher level prob-

lems. In the case of the object detection problem, we can model an object

as a collection of parts with each part having a specific ideal appearance.

We can also imagine that some of the parts are connected to each other by

springs which try to keep them in an ideal relative distance [46]. We then

want to find a configuration for the parts so that, on one hand, their appear-

ance matches the underlying image data and, on the other hand, springs

are not stretched too much (see Figure 1.8).

In this case the labels designate the position of the parts and correspond to

all 2D positions in the image grid:

L = {1, 2, ..., w} × {1, 2, ..., h},

where w and h represent the image width and height.

The nodes V of the graph G correspond to the parts, while the edges E show

which parts are connected to each other by a spring.

The data term Vp(xp) measures how well the ideal appearance of the part

corresponding to node p matches the underlying image data at position xp

i.e. at the position where the part is assumed to be located. E.g. if the

ideal appearance of a part at node p is represented by a patch, say IDEALp,

we could then set Vp(xp) to be equal to the sum of square differences (SSD)

between the patches IDEALp and Ip (where Ip denotes the patch of the input

image at location xp):

Vp(xp) = SSD(Ip, IDEALp).

The pairwise potential function Vpq(xp, xq) measures the deformation of the

spring connecting two parts, i.e. the deviation from the ideal relative dis-

tance dpq between the parts corresponding to nodes p and q:

Vpq(xp, xq) = ||(xp − xq)− dpq||
2.

Both the ideal appearances of parts {IDEALp}p∈V as well as their ideal rela-

1.3 State-of-the-art optimization methods for discrete Markov Random

Fields 17

?

Fig. 1.8: We can model a face as a graph consisting of 4 objects: nose, mouth and two

eyes. Each object is assumed to have a specific appearance, while some of the objects are

connected to each other with springs. These springs try to keep the objects at an ideal

relative distance. For detecting faces, we then need to locate that graph inside the image,

but without stressing the springs too much.

tive distances {dpq}(p,q)∈E are assumed to have been estimated from training

images during a learning stage that has taken place beforehand.

1.3 State-of-the-art optimization methods for dis-

crete Markov Random Fields

Besides the issues of data representation and the choice of the objective func-

tion, another very important issue is that of the optimization algorithm that will

be used for finding an optimal solution. A major concern here is the problem of

local minima existing in any non-convex objective function. Depending on how

local minima are handled, optimization techniques are divided into two general

categories:

Local optimization techniques: These are all techniques which are capable of

computing just a local minimum and are thus very sensitive to the initial

estimate.

Global optimization techniques: Strictly speaking, these are all techniques which

can provably find the exact global optimum regardless of their starting point.

In practice, however, any optimization method which is capable of extracting

a nearly optimal solution and is not sensitive to the initial estimate is also

said, loosely speaking, to belong to this class. This more loose definition of

a global optimization method will be assumed hereafter.

18 Introduction

In the case of a discrete Markov Random Field, this issue of local minima

becomes very important and can greatly affect the quality of the generated solu-

tions. The reason for this is because, on one hand, the associated MRF energy

functions are highly non-convex and, on the other hand, even for Markov Ran-

dom Fields with very simple pairwise potential functions, e.g. the Potts function,

their optimization turns out to be an NP-complete problem. This has slowed down

the early adoption of the optimization approach for MRFs, since local optimiza-

tion techniques (like ICM [16]) that were initially used, have proved to be very

inefficient in practice.

Over the last years, however, there has been a resurged interest in the use of

discrete MRFs. The primary reason for this has been the introduction of two pow-

erful global optimization techniques: graph-cuts (the α-expansion algorithm) and

loopy belief propagation. These two algorithms have achieved improved results

over older techniques and have been used in a large variety of computer vision

tasks. E.g., in stereo matching, the top contenders for the best stereo matching

algorithm rely either on graph cuts or on belief propagation. Furthermore, papers

related to these algorithms have won recent academic rewards [71, 81, 82] and

it would be no exaggeration to say that nowadays almost all papers which are

related to inference of discrete MRFs and have also appeared in any of the top

computer vision conferences, such as ICCV, CVPR or ECCV, are exclusively using

either one of these two techniques.

Graph-cuts and belief propagation are two optimization methods that rely on

entirely different principles to achieve their goal. A more detailed analysis of these

methods will be given in chapter 2 but, for now, it suffices to briefly sketch an

intuitive description of how these two techniques work:

α-expansion min-cut: This is a greedy iterative algorithm, which works like a

gradient descent approach. At each iteration it tries to find, among a large

number of solutions, the one which brings the greatest decrease in the

energy of the MRF. This procedure is repeated until no further improvement

in the energy of the MRF can be achieved, in which case the algorithm

terminates.

The important thing here is that the α-expansion algorithm reduces the

problem of selecting the best solution at each iteration to a binary labeling

1.4 Thesis contributions 19

problem which, in turn, is reduced into the problem of finding the minimum

cut in an appropriately constructed capacitated graph. This last reduction

forms the core of the α-expansion method. We should note however that this

reduction is valid only in the case where each pairwise potential function

Vpq(·, ·) of the Markov Random Field is a metric distance i.e., roughly speak-

ing, Vpq(·, ·) satisfies the triangle inequality. The α-expansion algorithm can

thus be applied only to MRFs with metric pairwise potentials, in which case

it is guaranteed that it can always produce a solution which is close to the

optimal one.

loopy belief propagation: BP is an iterative algorithm which works by propagat-

ing local messages along the nodes of a Markov Random Field. At each iter-

ation every node sends outgoing messages to all of its neighboring nodes as

well as accepts incoming messages from each one of its neighboring nodes.

Sending and receiving new messages for the next iteration is based solely

on the existing set of messages at the current iteration. This procedure is

therefore repeated until all the messages stabilize, i.e. they cannot change

too much per iteration, in which case it is decided that the algorithm should

terminate.

Based on the above description, it becomes obvious that the central concept,

on which belief propagation relies its operation, is of course the messages.

At each iteration, every node must send one message per label (i.e. |L|

messages in total) to each one of its neighbors. Intuitively, the message

sent from a node p to another node q about label xq indicates how likely

node p thinks that node q should be assigned that specific label. After

stabilization of all messages, each node chooses that label which has the

maximum support based on all incoming messages at the node. One could

thus argue that BP operates in a distributed fashion: in order to select their

labels, nodes work in a cooperative manner by sending votes to each other

about which labels they should finally prefer.

1.4 Thesis contributions

There are three major issues when designing an MRF optimization algorithm:

20 Introduction

Range of applicability: this refers to what kind of discrete MRFs the algorithm

can be applied to. Of course, an algorithm’s applicability depends on the

kind of assumptions that it makes in order to ensure a correct operation.

These assumptions usually affect the form of the MRF objective function

that can be optimized. We would obviously like the algorithm to be able

to handle as general MRF energy functions as possible. This will ensure

that the energy function can indeed capture a wide range of computer vision

problems. E.g. if the MRF energy function that has been chosen for modeling

a specific problem is too simple, then it may very well be the case that the

‘‘correct’’ solution to the problem does not actually coincide with the global

minimum of that function. Obviously, there is not much one can hope to

gain from MRF optimization if, even this basic condition, does not hold true.

Optimality properties: this issue refers to what kind of guarantees the algo-

rithm can make with respect to the optimality of the solutions it generates.

Computing the exact global optimum is usually out of the question since,

for the great majority of ‘‘interesting’’ MRFs, optimizing their energy turns

out to be an NP-complete problem. However, the algorithm should at least

provably generate solutions that are nearly optimal, i.e. close to the true

(but unknown) global optimum.

Computational efficiency: from a practical point of view it is also critical that the

algorithm exhibits a low computational cost (both in time and space). This

should be true especially for low level vision problems, where one usually

has to deal with very large MRFs.

With respect to the issues mentioned above, the two state-of-the-art algo-

rithms, graph-cuts and belief propagation, exhibit a complementary behavior.

For instance, one of the main limitations of the α-expansion min-cut algorithm is

that it is applicable only to a restricted class of MRFs. In particular, as already

mentioned, it can be applied only to MRFs with metric pairwise potentials. This

assumption, however, is too restrictive and does not hold for many of the MRFs

that one may wish to use in computer vision (besides, it would be too naive for one

to believe that, among the great variety of tasks encountered in computer vision,

all of them will satisfy this rather artificial assumption). But for those MRFs which

1.4 Thesis contributions 21

do satisfy the property of having metric potentials, the α-expansion algorithm can

always guarantee that the cost of its solution will be within a known factor of the

optimum.

On the other hand, loopy belief propagation imposes no restrictions on the

MRF’s pairwise potential functions and can handle Markov Random Fields with

arbitrary energies. However, one of its biggest limitations is currently considered

the fact that it exhibits a very high computational cost when the cardinality of the

label set L is very large. This means that, in practice, loopy belief propagation

cannot be applied to MRF problems with a huge number of labels, something

which severely limits its applicability with respect to problems in computer vision.

The main contribution, presented during the first part of this thesis, concerns

the introduction of novel MRF optimization techniques, which manage to extend

both graph-cuts as well as belief propagation in significant ways and can also help

these algorithms to overcome all of their limitations mentioned above. A detailed

description of the related contributions for each one of the two algorithms will be

provided in the next chapters of this thesis. However, for the purpose of giving

a quick overview of these contributions to the reader, a very brief description of

them is following next.

More specifically, with respect to graph-cuts, a new framework for designing

approximation algorithms is proposed whose theoretical roots lie on duality of

linear programming . Its main contributions are briefly the following:

• It can handle a very wide class of MRFs with both metric and non-metric

energy functions.

• Most importantly, even for non-metric energies, the proposed algorithms

have guaranteed optimality properties (i.e. worst-case suboptimality bounds).

• It includes the min-cut α-expansion method merely as a special case (for

metric energies).

• Besides the worst-case bounds, the proposed algorithms also provide much

smaller per-instance suboptimality bounds, which prove to be very tight

in practice (i.e. very close to 1). This actually implies that the generated

solutions are always almost optimal.

22 Introduction

• Finally, the proposed framework is offering new insights into existing graph-

cut techniques.

On the other hand, a novel optimization technique which carries two important

extensions over standard belief propagation is also proposed in this thesis. These

two extensions are:

• priority-based message scheduling

• and dynamic label pruning

Both of them work in cooperation to resolve what is currently considered the main

limitation of belief propagation, i.e. its inefficiency to handle problems with a huge

number of labels.

Furthermore, to verify and demonstrate the effectiveness of our Priority-BP

algorithm, we apply it to the problem of image completion, which currently forms

a very active research topic in computer vision. In fact, a part of this thesis’s con-

tribution also relates to this problem as well. More specifically, a new exemplar-

based framework for image completion is proposed which makes the following

contributions:

• It treats the tasks of image completion, texture synthesis and image inpaint-

ing in a unified way

• Contrary to existing greedy techniques, all of these tasks are posed in the

form of a discrete optimization problem with a well defined global objective

function.

• Our method is automatic (i.e. no user intervention required) and manages to

avoid greedy patch assignments by maintaining (throughout its execution)

many candidate source patches for each block of missing pixels. In this way,

visual inconsistencies are prevented during the image completion process.

Finally, in order to conclude this introductory chapter, we would like to note

that discrete MRFs are currently ubiquitous in computer vision. Due to this fact,

the task of performing proper inference on these MRFs is currently considered

of utmost importance and requires the existence of effective global optimization

techniques, that will go beyond the limitations of existing methods. Based on

1.4 Thesis contributions 23

these observations, we therefore strongly believe that the contributions made in

this thesis can be of broad interest and will find use in a large number of tasks in

computer vision.

24 Introduction

C H A P T E R 2

Background on Markov Random Fields

The role of this chapter is to provide fundamentals of Markov Random Fields.

In particular, it provides a brief but self-contained introduction to Markov Random

Fields (which are now defined in a more rigorous manner) but, most importantly, it

gives a Bayesian justification for the form of their energy function, which constitutes

one of the main goals of this chapter. In addition, the two current state of the art

MRF optimization techniques, α-expansion and loopy belief propagation, are briefly

described and some basic concepts, related to these two algorithms, are introduced.

Finally, the chapter ends with a short review of some other MRF optimization tech-

niques, that have been also used in computer vision over the past years.

As far as the laws of mathematics refer to reality, they are not certain;

and as far as they are certain, they do not refer to reality.

—Albert Einstein (1879–1955)

2.1 Introduction

As already mentioned in the previous chapter, the form of the MRF objective

function that will be minimized plays a very important role in the modeling of a

computer vision task. Therefore, in order to put an optimization-based method

on firm theoretical grounds, one must derive the associated energy function using

some well established criteria, while he should avoid relying on an objective func-

tion that was derived in a heuristic manner. Based on the well known fact that

uncertainties inevitably exist in almost any computer vision task, it is no surprise

that principles from probability and statistics have been the perfect candidates

for deriving such established criteria up to now. For instance, the Maximum

26 Background on Markov Random Fields

Likelihood criterion (used when only knowledge about the distribution of the ob-

servations is available) or the Maximum Entropy principle [41] (used when only

prior information is available) are two such well known examples. In the most

interesting case where we want to make use of both a likelihood as well as a

prior, then the maximum a posteriori (MAP) criterion is the one which is used

most often [54,128]. However, for imposing the MAP criterion, one needs to find

a way for defining the prior probability efficiently. Moreover, for this prior to be

effective, it must be able to account for all contextual constraints between objects

participating in the problem. As we shall see next, Markov Random Fields provide

a principled way for performing exactly this task, i.e. specifying the form of the

prior distribution in such a manner that spatial interactions between objects are

taken into account. Most importantly, however, MRFs are also able to achieve

this task in a way which is very efficient, i.e. by making use of local interactions

only.

2.2 Basics of Markov Random Fields

Markov Random Fields are particular cases of what is currently known as

undirected graphical models. For defining a discrete Markov Random Field we

need a discrete set of labels L as well as a graph G = (V,E) consisting of N

objects (i.e. |V | = N). A Markov Random Field is then formed by associating with

each node p ∈ V a random variable xp, which can take values in the label set

L. The sample space (or configuration space) XN is the set of all N-dimensional

vectors x = {xp|p ∈ V } with components lying in L and the cardinality of that

space is equal to |XN | = |L|N . Also, the edges E of the underlying graph G rep-

resent probabilistic dependencies between random variables. A Markov Random

Field thus defines a probability distribution, which assigns to each vector x in the

sample space a probability mass p(x). However, not all distributions are allowed

by a Markov Random Field. A valid distribution p(x) should respect the proba-

bilistic dependencies implied by the graph edges. More specifically, the following

definition holds:

Definition 2.1. The random variables x = {xp}p∈V are said to form a Markov

Random Field with underlying graph G, if whenever the sets A and C are separated

2.2 Basics of Markov Random Fields 27

in the graph G by a set B then the random variables xA, xC are conditionally

independent given the variables xB, i.e.

p(xA, xC |xB) = p(xA|xB)p(xC |xB).

In the above definition A,B,C represent arbitrary subsets of nodes in V while

the notation xA denotes all random variables corresponding to nodes included in

the set A, i.e. xA = {xp : p ∈ A}. We also say that the set of nodes B separates

the sets A and C, if for any path in the graph G starting from A and ending in C,

that path necessarily passes through at least one node belonging to B (see Figure

2.1).

This definition of a Markov Random Field is actually a generalization of one

dimensional Markov Processes. In fact, in the context of one dimensional Markov

Processes, the above definition merely translates to the well known fact that the

past and the future observations are conditionally independent given the present

observations. Based on the above definition, we also see that the role of the

graph G is to act as a kind of filter for the allowed distributions: only those

distributions which manage to pass all the conditional independence tests implied

by the graph G make up the family of MRF distributions. Also, another nice thing

with MRF distributions is that conditional independency between nodes can be

easily inspected simply by applying a graph theoretic operation to the underlying

graph G.

Furthermore, the seemingly complex set of conditional independencies implied

by the above definition of a Markov Random Field actually turns out to be equiva-

lent to a much smaller set of local conditional independencies. More specifically,

the following equivalent definition of a Markov Random Field also holds true:

Definition 2.2. The random variables x = {xp}p∈V are said to form a Markov

Random Field, if the following two conditions hold:

• p(x) is strictly positive for all x

• p(xp|xNp
) = p(xp|xV −p), where Np represents all neighboring nodes of p in G,

while V − p denotes all nodes of the graph G except for p.

The first condition needs to be assumed for some technical reasons (which are

usually satisfied in practice), while the second condition simply states the fact

28 Background on Markov Random Fields

A
B C

Fig. 2.1: The set of nodes in B separates the sets A and C since any path from A to C
necessarily passes through B. Therefore, in any MRF with this graph, random variables

xA, xC will be conditionally independent given variables xB.

that any node in the graph G depends only on its immediate neighbors. This last

condition is exactly what allows Markov Random Fields to model contextual con-

straints between objects in an efficient manner, since all contextual constraints

are now enforced only through local interactions between neighboring nodes in G,

which constitutes a very important advantage of Markov Random Fields. In fact,

this advantage is one of the main reasons why MRFs are so much preferred in

practice.

2.3 Gibbs random fields and Markov-Gibbs equiva-

lence

As already mentioned, any probability distribution that is defined on a Markov

Random Field must satisfy certain constrains. But what is the exact form of such

a distribution? To answer this question we must first define another concept.

Definition 2.3. The set of random variables x = {xp : p ∈ V } is said to be a Gibbs

random field with respect to the graph G, if and only if its distribution p(x) is a

Gibbs distribution, i.e. it has the following form:

p(x) =
1

Z
· exp

(

−
∑

C∈C

VC(x)
)

. (2.1)

In the above definition, Z (which is also known as the partition function) is just

a normalizing constant so that the sum of all probabilities is equal to unity. It is

2.3 Gibbs random fields and Markov-Gibbs equivalence 29

thus defined as follows:

Z =
∑

x∈XN

exp
(

−
∑

C∈C

VC(x)
)

.

Also, the symbol C denotes the set of all maximal cliques in the graph G. A clique

is defined to be any fully connected subset of the nodes V of G, while it is also

called maximal, if it is not properly contained within any other clique. We should

also note that whenever we mention the term clique hereafter, we will always

implicitly refer to a maximal clique.

The symbols VC(x) represent the so-called clique potentials, where each VC(x)

is a real function that depends only on the random variables contained in clique

C. Other than that, the clique potential functions are not restricted to have any

specific form. Obviously the smaller the sum of all clique potentials for a certain

sample x, the higher the probability mass p(x), which will be assigned to that

sample.

The following theorem [15,58] proves the equivalence between MRFs and Gibbs

random fields:

Theorem 2.4 (Hammersley-Clifford). A distribution p(x) over a discrete random

vector x is a Gibbs distribution (i.e. it is defined by equation (2.1)), if and only if the

random variables x make up a Markov random field with respect to the graph G.

The practical value of this theorem is that it gives us an easy way to define the

joint probability function of a Markov Random Field. In order to achieve that, it

suffices for us to simply specify the clique potential functions. These functions

therefore encode all desired contextual constraints between labels and, obviously,

choosing the proper form for these functions constitutes the most important stage

during MRF modeling.

Due to the fact that we will be dealing only with 1st order Markov random fields

throughout the rest of this thesis, the potential functions for all cliques with more

than 2 elements will be assumed to be zero hereafter. Actually, the cliques of size

2 correspond to the edges E of the graph G and so for any such clique C, say

consisting of the elements p and q, its potential function will be denoted as:

VC(x) = Vpq(xp, xq).

30 Background on Markov Random Fields

r

g
h

q

t

p

s

(a)

r

g
h

q

t

p

s

(b)

Fig. 2.2: The cliques of the graph in figure (a) are shown in figure (b). Therefore, any Gibbs

distribution p(x) on this graph can be expressed as: p(x) ∝ exp
(

−Vqrgt(xq, xr, xg, xt) −
Vrhg(xr, xh, xg)− Vhp(xh, xp)− Vhs(xh, xs)

)

Therefore the joint probability distribution defined by the corresponding MRF will

have the following form:

P (x) =
1

Z
· exp

(

−
∑

(p,q)∈E

Vpq(xp, xq)
)

. (2.2)

2.4 Maximum a posteriori estimation

We now return to our initial objective, i.e. determining the actual form of the

objective function F(·) to be optimized. To this end, we recall here that in many

applications we are given a set of noisy observations d = {dp|p ∈ V } and our goal

is to estimate the true values of some hidden random variables x = {xp|p ∈ V }.

Many such applications were presented in the previous chapter. For instance,

in the image restoration problem the observations d would correspond to a noisy

version of an image, while x would represent the true underlying intensities of

that image. Due to the existence of uncertainties in any application of this kind,

a very common way to estimate the random variables x is by using the so-called

maximum a posteriori criterion. From a Bayesian point of view, this criterion

corresponds to minimizing the risk under the zero-one cost function. According

to the MAP estimation, we choose to assign to the random variables x those values

x̂, which maximize the posterior distribution of x given all the observations d, i.e.:

x̂ = arg max
x∈XN

p(x|d).

2.4 Maximum a posteriori estimation 31

Using the Bayes rule, it follows that:

p(x|d) ∝ p(d|x)p(x) (2.3)

and so the posterior distribution turns out to be proportional to the product of the

likelihood p(d|x) and the prior p(x). Therefore, in order to specify the posterior

distribution, we first need to determine the form of p(d|x) as well as p(x).

Regarding the likelihood p(d|x), one typically assumes that the observations d

are conditionally independent given the hidden random variables x, which means

that:

p(d|x) =
∏

p∈V

p(dp|xp). (2.4)

Without loss of generality we can express each conditional density p(dp|xp) in

exponential form, i.e.:

p(dp|xp) = exp
(

−Vp(xp)
)

(2.5)

and so, due to the above two equations (2.4), (2.5), the likelihood function becomes

equal to:

p(d|x) = exp
(

−
∑

p∈V

Vp(xp)
)

. (2.6)

For fully determining the form of the posterior distribution, we are still left

just with specifying the prior distribution p(x). But this is exactly the point

where Markov Random Fields come into play and prove to be extremely useful.

In particular, we are going to assume that the hidden random variables x make

up a Markov Random Field and so their prior distribution is going to be given by

equation (2.2).

Therefore, by substituting the prior and the likelihood into the posterior (i.e.

by substituting equations (2.2) and (2.6) into equation (2.3)), we finally get:

x̂ = arg max
x∈XN

exp
(

−
∑

p∈V

Vp(xp)−
∑

(p,q)∈E

Vpq(xp, xq)
)

, (2.7)

which is obviously equivalent to minimizing the following function:

F(x) =
∑

p∈V

Vp(xp) +
∑

(p,q)∈E

Vpq(xp, xq). (2.8)

32 Background on Markov Random Fields

This is, however, exactly the same objective function as the one presented in

chapter 1 (see equation (1.1)).

2.5 State-of-the-art MRF optimization techniques

Given the Bayesian justification about the form of the objective function that

was presented in the previous section, we now turn into the matter of how to

optimize this function. For general MRFs this problem becomes NP-hard and so

finding the optimal solution is far from being an easy task to achieve. During

this section, we will briefly describe the main ideas behind the two currently

dominating approaches for tackling this problem:

• α-expansion [27] and

• loopy belief propagation [103]

We should note that both of these methods are currently considered state-of-the-

art with respect to the task of optimizing a Markov Random Field. Furthermore,

they have already been applied to a variety of problems in computer vision.

2.5.1 The α-expansion algorithm

Before describing the algorithm, we very briefly review some basic concepts

related to graph cuts. Let G0 = (V0, E0) be a weighted graph. We assume that

this graph has two distinguished vertices, the source and the sink,which are also

called the terminals. Then any subset of edges C ⊂ E0 is called a cut if after

removing all the edges in C then the two terminals are separated in the induced

graph G0(C) = (V0, E0 − C). In addition, there should be no proper subset of C

that could separate the two terminals. We also associate a certain cost to each

of the cuts in G, where the cost of a cut C is defined to be equal to the sum of all

the weights on the edges of C. The minimum cut problem then simply amounts to

finding the cheapest cut among all cuts that separate the two terminal nodes (see

Figure 2.3).

We should note that there exist standard combinatorial-based algorithms (of

low order polynomial complexity) for solving the minimum cut problem. Most of

2.5 State-of-the-art MRF optimization techniques 33

q

h

t

p

r

s
source sink

5

2
3

12

23
40

55

11

Fig. 2.3: A cut consisting of the edges sp, pr, rh is shown in this figure. This is, in fact,

the minimum st-cut in the above graph since there is no other st-cut with cost less than

10.

them are actually based on solving another related problem, the max-flow prob-

lem, which can actually be shown to be equivalent to the problem of finding the

minimum cut. According to the max-flow problem we seek to find the maximum

amount of flow that can leave the source and arrive at the sink, while passing

through any of the edges of the graph. In this case, the weight of an edge is inter-

preted as the edge’s capacity, i.e. it represents the maximum flow that can pass

through that edge. As the following well known theorem indicates, minimum cut

and max-flow are equivalent to each other [55]:

Theorem 2.5 (max-flow min-cut). The maximum amount of flow from the source

to the sink equals the cost of the minimum cut that separates the source and the

sink.

Before describing the α-expansion method, we should also note that this al-

gorithm can be applied only to MRFs for which each pairwise potential function

Vpq(·, ·) is a metric, i.e. it satisfies the following properties for any triplet of labels

a, b, c:

Vpq(a, b) ≤ Vpq(a, c) + Vpq(c, b) (2.9)

Vpq(a, b) = 0⇔ a = b (2.10)

Vpq(a, b) = Vpq(b, a) (2.11)

The α-expansion method is an iterative gradient descent algorithm which works

in the following manner: At the start of each iteration a current solution x exists.

Then a large set of candidate solutions is constructed by perturbing the current

solution x. Among all these candidate solutions, the α-expansion algorithm tries

to find the one which brings the greatest decrease in the MRF energy. The re-

sulting solution x′ then replaces x and becomes the new current solution. This

34 Background on Markov Random Fields

process is repeated until no more decrease in the MRF energy can be achieved.

Pseudocode for the α-expansion method is shown in algorithm 1.

Algorithm 1 The α-expansion algorithm

1: start with an arbitrary labeling x
2: set success = 0

3: for each label α in L do

4: find x′ = arg minF(x̃) among x̃ within one α-expansion of x
5: if F(x′) < F(x) then

6: x = x′

7: success = 1

8: end if

9: end for

10:

11: if success = 1 then

12: goto 2

13: else

14: set x̂ = x
15: end if

16: return x̂

More specifically, given the current solution x and any label, say α, the algo-

rithm tries to find the best solution among the set of all possible α-expansions of

x (i.e. the set of all α-expansions of x corresponds to the set of candidate solu-

tions mentioned above). During each iteration this is repeated for all labels α in

L. A solution x′ is called an α-expansion of another solution x if and only if for

all p ∈ V it holds that either x′
p = xp or x′

p = α [27]. In other words, during the

transition from x to x′ any set of nodes are allowed to change their labels to α (see

Figure 2.4).

The problem of finding the best α-expansion, say x′, of the current solution

x can be shown to be equivalent to optimizing a binary MRF problem with labels

{keep, change}. Intuitively, assigning the label keep to a node p corresponds to

x′
p = xp, i.e. node p keeps its current label, while assigning the label change

to a node p corresponds to x′
p = α, i.e. node p changes its label into α. The

contribution of the α-expansion algorithm is that it manages to show that the cost

of any solution to this binary MRF problem actually corresponds to the cost of a

cut in an appropriately constructed two-terminal graph whose capacities depend

on the current solution x. Therefore, optimizing the binary MRF (or in other

words extracting the best α-expansion move) reduces to finding the minimum cut

in the capacitated graph. As the α-expansion algorithm continually tries to find

2.5 State-of-the-art MRF optimization techniques 35

Green
E x p a ns i o n

Fig. 2.4: The labeling shown on the right image is an example of a green-expansion of

the labeling on shown on the left image. In this case, labels correspond to colors.

the best expansion moves, it becomes evident that this algorithm actually tries to

optimize the original MRF by repeatedly estimating the minimum cut in a series

of capacitated graphs.

The metric assumption for the pairwise potentials Vpq(·, ·) is necessary because

otherwise the equivalence between finding the best expansion move and finding

the minimum cut in the (appropriately constructed) capacitated graph does not

hold true any more.

2.5.2 Loopy belief propagation

The α-expansion was a combinatorial-based algorithm. On the other hand,

belief propagation is based on an entirely different principle: it tries to find a

MAP estimate by iteratively solving a finite set of equations until a fixed point is

obtained.

However, before one is able to understand how this set of equations comes up,

one must first get acquainted with the notion of ‘‘messages’’, which is another

central concept in BP. In fact, belief propagation is nothing more than an iterative

algorithm, which works by continuously propagating local messages between the

nodes of the MRF graph. At every iteration, each node sends messages to all of its

neighboring nodes, while it also accepts messages from these nodes. This process

repeats until all messages stabilize, i.e. they do not change any more. Therefore,

the set of equations whose fixed point one tries to find, actually corresponds to

the equations governing how messages are updated during each iteration.

The set of messages sent from a node p to a neighboring node q will be denoted

by {mpq(xq)}xq∈L. Therefore, the total number of such messages is always |L|

(i.e. there exists one message per label in L). Intuitively, the meaning of the

36 Background on Markov Random Fields

message mpq(xq) is that it expresses how likely node p thinks that node q should

be assigned label xq. Furthermore, whenever we say that node p sends a message

mpq(xq) to node q, what we practically mean is that the following update of the

message mpq(xq) is taking place:

mpq(xq) = min
xp∈L

{

Vpq(xp, xq) + Vp(xp) +
∑

r: r 6=q,(r,p)∈ E

mrp(xp)
}

(2.12)

The interpretation of the above equation is that if node p wants to send the mes-

sage mpq(xq) to node q (i.e. if node p wants to tell how likely it thinks that label

xq should be assigned to node q), then node p must first traverse all of its own

labels xp ∈ L and then decide which one of them provides the greatest evidence

for assigning label xq to node q. But for taking this decision, node p must consider

two factors:

• First, assuming that label xp is assigned to node p, that node must con-

sider how compatible label xp is with label xq (this is measured by the term

Vpq(xp, xq))

• And second, node p must also measure what is the likelihood that he is

assigned label xp.

Obviously, on one hand, this likelihood will depend on the observed data

at node p (see term Vp(xp)). On the other hand, node p must also ask the

opinion of its remaining neighbors about label xp (this is measured by the

sum
∑

r:r 6=q,(r,p)∈E mrp(xp)). Therefore, before a node p sends a message to

another node q, he must first consult the rest of its neighbors by receiving

messages from them (see Figure 2.5). Put otherwise, during belief propaga-

tion, all MRF nodes work in cooperation in order to make a decision about

the labels that they should finally choose. This cooperation between nodes

is reflected by the exchange of opinions (i.e. messages), which is taking

place during the algorithm.

The updating of messages, according to equation (2.12), continues until all of

the messages have finally converged. Then, after convergence, a set of so-called

beliefs {bp(xp)}xp∈L is computed for every node p in the MRF. These beliefs are

2.5 State-of-the-art MRF optimization techniques 37

qp

r

s

t… …
mtp

msp

mrp

mpq

Fig. 2.5: If a node p wants to send a message mpq(xq) to a neighboring node q, then

it must make use of the messages msp(xp), mrp(xp), mtp(xp) coming from the rest of its

neighbors.

estimated using the following equation:

bp(xp) = −Vp(xp)−
∑

r:(r,p)∈E

mrp(xp). (2.13)

The intuitive meaning of belief bp(xp) is that it roughly expresses how likely node p

thinks that label xp should be assigned to him. Obviously, this will again depend

on two things:

• on one hand, node p must take into account the observed data at that node

(see term Vp(xp))

• on the other hand, node p must also consider the advice given by all of its

neighbors about label xp, which is accounted by the sum
∑

r:(r,p)∈E Vrp(xp)

in equation (2.13) (see also Figure 2.6).

Based on the above observations, once all beliefs have been computed, each node

is then assigned the label having the maximum belief:

x̂p = arg max
xp∈L

bp(xp). (2.14)

Strictly speaking, beliefs actually approximate the so-called max-marginals i.e.

each belief bp(xp) approximates the maximum conditional probability that can be

obtained given the fact that node p has been already assigned the label xp
1.

1Actually, as we are working in the − log domain, beliefs approximate the opposite of the min-

marginals e.g. bp(xp) approximates the opposite of the minimum energy that can be obtained

given that node p has already been assigned label xp.

38 Background on Markov Random Fields

qp

r

s

t… …
mtp

msp

mrp

mqp

Fig. 2.6: If a node p wants to calculate its belief bp(xp) about any of the labels xp ∈ L, it

must then collect the messages msp(xp), mqp(xp), mrp(xp), mtp(xp) coming from all of its

neighboring nodes.

Algorithm 2 Belief propagation algorithm

1: for all (p, q) ∈ E do {initialize all messages to zero}

2: for all labels xq ∈ L do

3: set m0
pq(xq) = 0

4: end for

5: end for

6:

7: for k = 1 to K do {update messages iteratively in K iterations}

8: for all messages mk
pq and all labels xq ∈ L do

9: mk
pq(xq) = minxp∈L

{

Vpq(xp, xq) + Vp(xp) +
∑

r:r 6=q,(r,p)∈E mk−1
rp (xp)

}

10: end for

11: end for

12:

13: for all nodes p ∈ V do {compute beliefs}

14: for all labels xp ∈ L do

15: bp(xp) = −Vp(xp)−
∑

r:(r,p)∈E mK
rp(xp)

16: end for

17: end for

18:

19: for each node p ∈ V do {assign the labels of maximum belief}

20: set x̂p = arg maxxp∈L bp(xp)

21: end for

Pseudocode for the belief propagation method is shown in algorithm 2. It can

be proved that, in the case of a tree structured graph, belief propagation is exact,

i.e. the exact global optimum of the MRF energy is computed. Not only that, but

it can be actually shown that this global optimum may be computed in just one

iteration. However, if the MRF graph contains cycles then no such guarantee can

be provided and belief propagation can only estimate a local optimum. Moreover,

many iterations are then needed (this also explains why the algorithm has been

given the name loopy belief propagation in this case). On the other hand, up

to now, it has been experimentally proved that belief propagation can produce

2.6 Other MRF optimization methods in vision 39

very good results for a wide variety of computer vision tasks. Furthermore, there

have also been some results, which indicate that the solutions generated by belief

propagation possess certain optimality properties.

Finally, we should note that there are actually two versions of belief propa-

gation: the max-product and the sum-product algorithm. The difference is that

sum-product computes the marginal posterior of each node, while max-product

maximizes the posterior of each node, i.e. it computes the max-marginals. The

algorithm that has been presented above corresponds to the max-product algo-

rithm but, due to the fact that we are using negative log probabilities, instead of

maximizing products of terms we are actually minimizing sums of terms.

2.6 Other MRF optimization methods in vision

Except for the two specific state-of-the-art algorithms that have been pre-

sented in the previous section, there also exist some other methods related either

to graph-cuts or to belief propagation. These methods will be reviewed separately

in those chapters that are dealing specifically with graph-cuts and belief propa-

gation.

For now, and before finishing this chapter, we would just like to mention

some other techniques, besides graph-cuts and belief propagation, which also

have been used in computer vision for the optimization of Markov Random Fields.

Obviously, as the full list of MRF optimization techniques is vast, we will be able

to refer only to a selected and very small subset of these methods.

To start with, it is worth mentioning the so-called Markov Chain Monte Carlo

(MCMC) methods [8,91,110,133,134]. These are actually techniques which can

be used for sampling any type of distribution. However, thanks to a procedure

named simulated annealing [31, 74], sampling can be also used for optimization

purposes. Simulated annealing is inspired by an analogy with metallurgy, in

which slow cooling (annealing) is used to produce metal that is tougher than that

which is produced from rapid cooling. When a Markov chain simulation (typically

a Metropolis sampler [98]) is used to sample a Gibbs distribution, the analogous

procedure is to introduce a temperature parameter T into the Gibbs distribu-

tion, which is gradually reduced from a very high initial value to a value close

40 Background on Markov Random Fields

to zero. When T is large the sampler can move freely through state space, thus

escaping poor local minima. On the other hand, when the temperature is close to

zero the distribution mass is concentrated in the area near the global minimum

and so sampling becomes equivalent to optimization. The hope is that, as T is

gradually decreased, one will be able to track the global minimum. Asymptoti-

cally, simulated annealing can always guarantee to extract the global optimum.

This, however, requires infinite time in practice and so only local minima can be

estimated.

Another class of techniques, resembling the way simulated annealing works,

are the so-called continuation methods with graduated non convexity (GNC) [20]

being one such example. In these methods the role of the temperature is played by

another parameter γ. In this case, the intractable non-convex energy function is

approximated by a sequence of energy functions parameterized by this parameter

γ. When γ is large the energy function becomes strictly convex and so locating the

global optimum is easy. However, as γ decreases, the energy function becomes

non-convex and local minima are starting to appear. The hope is that if γ is

decreased gradually, then by tracking the sequence of local minima we will be able

to locate the global optimum at the end. Unfortunately, however, continuation

methods cannot provide any optimality guarantees about their solutions, except

for certain special cases.

Another commonly used technique is dynamic programming [4,10]. This is a

technique which can extract the exact global optimum when applied to Markov

Random Fields which are one dimensional. Actually, dynamic programming can

be considered just as a special case of belief propagation in the case where the

underlying graph is reduced to a chain. Of course, the fact that it can be ap-

plied only to one-dimensional MRFs severely limits its applicability, especially for

problems of early vision which typically require a 2D MRF.

Iterated Conditional Modes (ICM) [16] is another deterministic optimization

technique which has been proposed by Besag. ICM tries to maximize the joint

probability of an MRF by maximizing local conditional probabilities sequentially.

More specifically, at each step of the algorithm, an MRF node is chosen and that

node is then assigned the label which minimizes the energy of the MRF under the

condition that all other nodes keep their labels fixed. This is repeated for all nodes

2.6 Other MRF optimization methods in vision 41

of the MRF until convergence i.e. until the energy cannot decrease further. The

main disadvantage of ICM is that it is greedy and very sensitive to initialization.

Therefore, unless a good initial estimate is given to ICM, it can easily get trapped

to poor local minima. Highest Confidence First (HCF) is a deterministic algorithm

which tries to improve ICM and has been proposed by Chou and Brown [35]. Its

feature is that it processes the nodes of the MRF in a specific order. To this end,

it introduces an uncommitted label and then uses a certain strategy for choosing

which MRF node to ‘‘committ’’ next. Experimental results show that HCF is, on

the whole, better than ICM with respect to the task of minimizing the energy of

an MRF.

Another technique, which has also been widely used in image and vision com-

munity, is the relaxation labeling method [35,66,100,111]. The idea of relaxation

labeling is to replace the discrete labels with continuous ones that must lie on a

high dimensional simplex. In this way, the problem of optimizing a discrete MRF

is converted into a constrained continuous optimization problem, which can then

be solved using standard gradient descent techniques.

Finally, we should note that another class of optimization techniques are the

so-called Genetic algorithms [56,64]. These are optimization methods which are

inspired by the principle of natural evolution in the biological world and try to

simulate the evolutionary process: in a population of individuals, those who pos-

sess the highest goodness-of-fit values are the ones who finally survive. Although

genetic algorithms are general purpose optimization methods, their main disad-

vantage is that they are mostly based on heuristic procedures.

42 Background on Markov Random Fields

C H A P T E R 3

Approximate Labeling via Graph Cuts Based

on Linear Programming

During this chapter, a new framework is presented for both understanding and

developing graph-cut based combinatorial algorithms suitable for the approximate

optimization of a very wide class of MRFs that are frequently encountered in com-

puter vision. The proposed framework utilizes tools from the duality theory of linear

programming in order to provide an alternative and more general view of state-of-

the-art techniques like the α-expansion algorithm which is included merely as a

special case. Moreover, contrary to α-expansion, the derived algorithms generate

solutions with guaranteed optimality properties for a much wider class of prob-

lems, e.g. even for MRFs with semimetric potentials. In addition, they are capable

of providing per-instance suboptimality bounds in all occasions, including discrete

Markov Random Fields with an arbitrary potential function. These bounds prove

to be very tight in practice (i.e. very close to 1), which means that the resulting

solutions are almost optimal. The effectiveness of our algorithms is demonstrated

by presenting experimental results on a variety of low level vision tasks, such as

stereo matching, image restoration, image completion and optical flow estimation,

as well as on synthetic problems.

One’s mind, once stretched by a new idea, never regains its original dimensions.

—Oliver Wendell Holmes (1809–1894)

44 Approximate Labeling via Graph Cuts Based on Linear Programming

3.1 Introduction

To present the material of this chapter in its full generality, we will adopt a

very small change in notation and terminology. In particular, we are going to

introduce the Metric Labeling Problem (or ML for short), which slightly generalizes

pairwise Markov Random Fields. Like the case of Markov Random Fields, the

Metric Labeling Problem (that has been first introduced by Kleinberg and Tardos

[75]) can capture a broad range of discrete classification problems that arise in

computer vision. According to that problem’s definition, the task is to classify

a set V of n objects by assigning to each object a label from a given discrete

set L of labels. To this end, we are also given a weighted graph G = (V,E,w),

where the set of edges E represents the pairwise relationships between the objects

while the weight wpq of an edge pq represents the strength of the relationship

between objects p, q. Each labeling of the objects in V is represented by a function

x : V → L, where xp denotes the label assigned to object p. Furthermore, like

Markov Random Fields, any such labeling is associated with a certain cost which

can be decomposed into terms of 2 kinds:

• On one hand, for each p ∈ V there is a label cost cp,a ≥ 0 for assigning label

a = xp to p. Intuitively, the label costs express the likelihood of assigning

labels to objects.

• On the other hand, for each pair of objects p, q that are related (i.e. connected

by an edge in the graph G) there is a so-called separation cost for assigning

labels a = xp, b = xq to them. This separation cost is equal to wpqd
pq
ab where,

as already mentioned, the edge weight wpq represents the strength of the

relationship between p, q, while dpq
ab is a distance function between labels

measuring how similar two labels are. The intuition behind this definition

of the separation cost is that objects which are strongly related to each

other should be assigned similar labels. This helps in preserving the spatial

coherence of the final labeling. Also, notice that each edge pq can have its

own unique distance dpq
ab. Furthermore, in the original formulation of Metric

Labeling, the distance dpq
ab was assumed to be a metric, i.e. dpq

ab = 0 ⇔ a =

b, dpq
ab = dpq

ba ≥ 0, dpq
ab ≤ dpq

ac + dpq
cb but here we will relax this assumption.

3.1 Introduction 45

Based on these definitions the total cost F(x) of a labeling x equals:

F(x) =
∑

p∈V
cp,xp

+
∑

(p,q)∈E
wpqd

pq
xpxq

and the goal is to find a labeling with the minimum total cost.

It is obvious that the definition of the Metric Labeling problem is almost iden-

tical to the definition of a Markov Random Field. For instance, if we assume that

all edge weights are set equal to unity (i.e. wpq = 1), then simply by setting:

cp,a = Vp(a) (label costs↔ single node potentials)

dpq
ab = Vpq(a, b) (distance function↔ pairwise potentials)

one can easily see that, in this case, optimizing the cost in this Metric Labeling

problem is completely equivalent to minimizing the energy of a discrete MRF whose

pairwise potential function has been replaced by the distance function between

labels [75]. For this reason, we will hereafter use the terms Metric Labeling

and Markov Random Field, as well as the terms pairwise potential and distance

function interchangeably. Also, in order to simplify notation, we will hereafter

assume that all edges share a common distance function dab, i.e.:

dpq
ab ≡ dab.

Therefore, in this case, the function describing the Metric Labeling cost becomes

equal to:

F(x) =
∑

p∈V
cp,xp

+
∑

(p,q)∈E
wpqdxpxq

.

Due to the direct connection between Metric Labeling and Markov Random

Fields that was mentioned above, solving the Metric Labeling problem is (in gen-

eral) NP-hard and therefore one can only hope for methods that provide approxi-

mate solutions. To this end two are the main classes of methods that have been

proposed so far. On one hand, there exist those methods, which are based en-

tirely on combinatorial optimization [27, 59, 69, 113, 138]. An advantage for the

methods of this class is that they are efficient. In addition, they have been applied

with great success to many problems in computer vision. However, up to now,

they have been interpreted only as greedy local search techniques. On the other

46 Approximate Labeling via Graph Cuts Based on Linear Programming

hand, there exists a second class of techniques which are based on linear pro-

gramming [5,34,75], i.e. they rely on an entirely different principle. The methods

of this class are very general and possess good theoretical properties. However,

their main drawback is that they impose an intolerable computational cost, which

actually makes them impossible to use for almost all practical problems encoun-

tered in computer vision. The reason for this intolerable computational cost stems

from the fact that all these methods need to formulate Metric Labeling as an equiv-

alent linear integer program, which can grow very large (i.e. it can have a huge

number of variables). This is always the case if the cardinality of the set V is

large as well (i.e. like the great majority of problems arising in early vision). A

direct consequence of this fact is that it then becomes extremely expensive to

obtain a solution to the corresponding linear relaxation of this integer program.

For better illustrating this point, we can consider the following integer program

(introduced by Chekuri et al. in [34]) that provides an equivalent formulation of

Metric Labeling:

min
∑

p∈V

∑

a∈L

cp,axp,a +
∑

(p,q)∈E

wpq

∑

a,b∈L

dabxpq,ab (3.1)

s.t.
∑

a
xp,a = 1 ∀ p ∈ V (3.2)

∑

a
xpq,ab = xq,b ∀ b ∈ L, (p, q) ∈ E (3.3)

∑

b
xpq,ab = xp,a ∀ a ∈ L, (p, q) ∈ E (3.4)

xp,a, xpq,ab ∈ {0, 1} ∀ p ∈ V, (p, q) ∈ E, a, b ∈ L

Here, for expressing the cost of Metric Labeling as a linear function, the vari-

ables {xp}p∈V have been replaced with the binary variables {xp,a}p∈V,a∈L and

{xpq,ab}(p,q)∈E,a∈L,b∈L. The {0, 1}-variable xp,a indicates that vertex p is assigned

label a, while the {0, 1}-variable xpq,ab indicates that vertex p is labeled a as well

as vertex q is labeled b. The first constraints (3.2) simply express the fact that each

vertex must receive exactly one label, while constraints (3.3), (3.4) maintain con-

sistency between variables xp,a, xq,b and xpq,ab in the sense that if xp,a = 1, xq,b = 1

they force xpq,ab = 1 as well. Actually, the variables xpq,ab, xqp,ba indicate exactly the

same thing. Therefore, in order to reduce the number of variables and thus reduce

the computational cost, we can safely eliminate one of these variables from the

3.1 Introduction 47

integer program. To this end, we will hereafter assume without loss of generality

that only one of (p, q), (q, p) belongs to E for any neighbors p, q (this way, only one

of the variables xpq,ab, xqp,ba will appear in the definition of this integer program).

Also, the notation ‘‘p ∼ q’’ will hereafter denote the fact that p, q are neighbors to

each other, i.e. ‘‘either only (p, q)∈E or only (q, p)∈E’’. Nevertheless, despite

the above mentioned reduction of variables, solving the linear relaxation of this

integer program still remains an intractable task if the number of objects in V is

not small enough. E.g. if we want to apply this method to a stereo matching prob-

lem, where the input images have size 512×512 while the maximum disparity is

64, then we would need to solve an LP with more than 512 × 512 × 64 × 64 = 230

variables. This certainly goes beyond the limits of any LP solver that is currently

considered as state-of-the-art.

To overcome the limitations of current state-of-the-art methods a new frame-

work is proposed in this document, which provides novel global minimization

algorithms for the approximate optimization of the Metric Labeling problem (and

thus of a very wide class of MRFs frequently encountered in computer vision). It

makes use of the primal-dual schema of linear programming in order to derive

efficient (i.e. combinatorial) approximation techniques with guaranteed optimal-

ity properties, thus bridging the gap between the two classes of approximation

algorithms mentioned above. The major contributions of the proposed framework

are the following:

1) It turns out that the difficulty of the Metric Labeling problem depends criti-

cally on the type of the chosen distance dab between labels (see Figure 3.1(a)). Up

to now, one limitation of the state-of-the-art α-expansion method [27] was that

it had to assume that this distance was a metric1, i.e. it satisfied the triangle

inequality. However this case often does not hold in practice, thus limiting the

applicability of the α-expansion method. On the contrary, the algorithms derived

in the proposed framework only require that the distance function is a semimetric,

i.e. dab = 0 ⇔ a = b, dab = dba ≥ 0. This is a much weaker assumption, since

it essentially requires that the potential function of the associated MRF is just a

symmetric and nonnegative function, two conditions which are usually satisfied

1We should note that it is possible for one to change the α-expansion method so that it can

be applied to semimetrics as well [27]. However, this method of handling non-metric distances is

very inefficient as well as inappropriate since it completely misses any structure of the distance

function.

48 Approximate Labeling via Graph Cuts Based on Linear Programming

LINEAR METRIC ARBITRARY

LABEL
DISTANCE

GLOBAL OPTIMUM
CAN BE COMPUTED

EXACTLY

GLOBAL OPTIMUM
CAN BE APPROXIMATED

ONLY LOCAL OPTIMUM
CAN BE COMPUTED

DIFFICULTY OF
ML PROBLEM

(a)

Method Metric dab Semimetric dab

α-expansion Approximation ×
α-β-swap Local optimum

our framework Approximation

Local optimum

Approximation

(b)

Figure 3.1: (a) The difficulty of the ML problem depends critically on the type of label

distance dab chosen. The global optimum in the case of a linear distance function can

be found by using the technique described in [68], while an approximate solution in the

case of a metric distance can be computed using the α-expansion method [27]. (b) A

comparison of our framework with respect to existing state-of-the-art graph-cut methods.

in practice. In fact, the assumption of a symmetric distance is redundant, since

none of the theorems in this chapter use it and so our algorithms can handle any

distance for which dab = 0⇔ a = b, dab ≥ 0. For this reason the term semimetric

will hereafter imply just these conditions.2

This opens the way for applying our techniques to a much wider class of MRFs

with much more general energy functions. Given that MRFs are ubiquitous in

computer vision this also implies that these algorithms can handle many more

instances of a large variety of computer vision tasks (including stereo matching,

image restoration, image completion, optical flow estimation etc.). In all of these

problems the use of more sophisticated MRF-based priors is allowed based on

our framework, thus leading to a better modeling of the problem at hand. This is

important since it is a well-known fact that the choice of the prior can play a very

significant role in the quality of the generated solutions.

2) Furthermore, the quality of these solutions also depends critically on how

close they are to the true optimum of the MRF energy function. A key contribution

of our framework is that even in the case of a semimetric it can still guarantee

that the generated solution will always be within a known factor of the global

2In fact our framework can be easily extended to even handle distances for which the condition

dab = 0⇔ a = b is not true.

3.1 Introduction 49

optimum, i.e. a worst-case suboptimality bound can be provided in this case (see

Figure 3.1(b)). This is in contrast to local optimization methods (e.g. ICM [16] or

HCF [35]), which (by definition) can only guarantee to obtain just a local minimum

(possibly far away from the true optimum).

3) In fact, in practice, the resulting solutions are much closer to the true opti-

mum than what the worst-case approximation factors predict, i.e. they are nearly

optimal. This can be verified thanks to our algorithms’ ability of also providing

per-instance suboptimality bounds which, in practice, prove to be much tighter

(i.e. much closer to 1) than their worst-case counterparts. These bounds can

therefore be used to access the optimality of the generated solutions and are, for

this reason, very useful in deciding the ability of the chosen MRF for modeling the

problem under consideration (e.g. the existence of a solution that is nearly opti-

mal, but which does not look intuitively good implies that a different MRF should

be chosen). Moreover, since these per-instance bounds are updated throughout

the algorithm’s execution they can be also used in assessing its convergence,

thus possibly reducing the total running time. We should also note that the ex-

istence of such per-instance suboptimality bounds is a characteristic property of

any primal-dual algorithm [34,75,140]. What is important to state in our case,

however, is that on one hand these per-instance suboptimality bounds tend to be

very tight in practice and on the other hand no large linear programs need to be

solved for getting these bounds.

4) The generality and power of our framework is exhibited by presenting var-

ious algorithms, just one of which is proved to be equivalent to the α-expansion

graph cut technique (i.e. a method which is currently considered state-of-the-art).

Our framework therefore provides an alternative and more general view of these

very successful graph-cut techniques, which can now be interpreted not merely

as greedy local search but in terms of principles drawn from the theory of linear

programming, thus shedding further light on their essence. This is an important

advance which, we believe, may open the way for new related research and can

thus lead to even better MRF optimization algorithms in the future. It also consti-

tutes, in our opinion, one of the major contributions of the work described in this

chapter. Moreover, the primal-dual schema, a powerful optimization tool that was

already known to people in combinatorial optimization, is now also introduced to

50 Approximate Labeling via Graph Cuts Based on Linear Programming

the field of computer vision, which can prove to be a great benefit too.

The rest of the chapter is organized as follows. We review related work in sec-

tion 3.2. In section 3.3 the primal-dual schema is presented, which will guide the

design of all of our approximation algorithms. These algorithms are described in

sections 3.4 - 3.6. More specifically, we will progressively present 3 different fam-

ilies of primal-dual algorithms, which are named PD1, PD2 and PD3 respectively.

Algorithm PD1 forms the base for deriving and understanding the other two types

of algorithms and so the main points of that algorithm are described thoroughly in

section 3.4. In section 3.5 we derive PD2µ, which is the second family of primal-

dual algorithms that are parameterized by a variable µ. Unlike algorithm PD1, all

algorithms in this family can be applied only to metric MRFs. Furthermore, we

show that the well-known α-expansion technique is equivalent to just one mem-

ber of this family of algorithms. In particular, α-expansion arises if we simply set

µ = 1, i.e. it is equivalent to algorithm PD2µ=1. In section 3.6, we present algo-

rithms PD3, which make up the third family of our primal-dual methods. These

algorithms manage to extend, as well as generalize the α-expansion method (i.e.

algorithm PD2µ=1) to the case of non-metric MRFs. In addition, despite this gen-

eralization, these algorithms manage to maintain the theoretical approximation

guarantees of the PD2µ=1 algorithm. Experimental results are shown in section

3.7, while we conclude in section 3.8. We note that for reasons of clarity, all

technical proofs for the theorems of this chapter are deferred to appendix A.

3.2 Related work

There is a vast amount of computer vision methods on how MRFs can be

optimized. Such methods include for example the ICM-algorithm, the Highest-

Confidence-First heuristic, multi-scale MRFs, relaxation labeling, graduated non-

convexity and mean field annealing to mention just a few of them. However, all

of the above-mentioned methods as well as the great majority of the methods in

the literature are only able to provide a local minimum that can be arbitrarily far

away from the true optimum, thus giving no guarantees about the quality of the

resulting solutions (i.e. how close these are to the true optimum). Most closely

related to our work are those (few) approaches that do provide such guarantees

3.2 Related work 51

about the optimality of their solutions.

One such class of approximation algorithms [5,34,75] is based on formulating

the MRF optimization problem as a natural integer program. A linear program-

ming relaxation of that integer program is then solved and a randomized rounding

technique is being used to extract a near the optimum integer solution. Different

authors choose different linear programs or rounding techniques to use for that

purpose. Although these algorithms appear to have good theoretical properties,

they are still impractical to use in problems of early vision since in that case the

linear program to be solved becomes extremely large. Moreover, in order to pro-

vide any guarantees about the suboptimality of their solutions, they usually need

to further assume that the MRF potential function is a metric.

Another class of approximation algorithms is based on combinatorial optimiza-

tion. Out of these algorithms a very popular one is the α-expansion graph cut

method [27,138]. This can be interpreted as an iterative local search technique

which, at each iteration, tries to extract a better solution (i.e. one with lower

energy) by finding the minimum cut in a suitable graph. This state-of-the-art

method has proved to be very efficient in practice and has been applied with great

success to many problems in computer vision [24,25,51,52,73,78,80–82,150].

Its drawback, however, is that (in its original formulation) α-expansion is only

applicable to MRFs with a metric potential function. In fact, for some of these

metrics, graph-cut techniques with better optimality properties seem to exist as

well [59]. Recently, however, at the same time with our work, Rother et al. [112]

managed to extend the α-expansion method to the semimetric case. In order

to achieve this, they make use of a technique, which seems related to our PD3

algorithm.

Related to α-expansion is also the α-β-swap algorithm [27]. Although this is

a more general method, as it applies to semimetric potentials as well, it does not

seem to be as effective as α-expansion. This mainly has to do with the fact that

it provides no guarantees about the optimality of its solutions and thus may very

well get stuck to a bad local minimum. Finally, we should note that for a certain

class of MRFs there also exist graph cut based methods, which are capable of

extracting the exact global optimum [68,69,101,113]. However these require the

potential function to be convex, as well as the labels to be one-dimensional, a fact

52 Approximate Labeling via Graph Cuts Based on Linear Programming

which restricts their applicability.

For the sake of completeness we should also mention that there also exist those

optimization algorithms that are based on belief propagation [103]. Although they

impose no restrictions on the type of the MRF potential function to be chosen,

one of their drawbacks is that they do not always converge. An exception to

this is the recently proposed tree-reweighted belief propagation algorithm, which

can be implemented in a way so that it provably converges [77]. Furthermore,

another disadvantage of all Belief Propagation algorithms is that their theoretical

optimality properties are not yet well understood, although progress has been

made with respect to this issue over the last years [77,77,79,140,149].

3.3 The primal-dual schema

Let us consider the following pair of primal and dual linear programs:

Primal: min cT x Dual: max bT y

s.t. Ax = b, x ≥ 0 s.t. AT y ≤ c

Here A = [aij] represents an m × n matrix, while b, c are column vectors of size

m,n respectively. We would like to find an optimal solution to the primal program

under the additional constraint that its components are integer numbers. Due to

this integrality requirement this problem is in general NP-complete and so we need

to settle with estimating approximate solutions. A primal-dual f-approximation

algorithm achieves that by use of the following principle:

Primal-Dual Principle. If x and y are integral-primal and dual feasible solutions

satisfying:

cT x ≤ f · bT y, (3.5)

then x is an f -approximation to the optimal integral solution x∗, i.e. cT x ≤ f · cT x∗

This principle is essentially a direct consequence of the Weak Duality Theorem.

The reason for this is rather simple and is also illustrated graphically in Figure

3.2(a): in particular, due to weak duality it will hold that the cost cT x∗ of the

optimal integral solution will always lie between the dual cost bT y and the primal

cost cT x. If we therefore manage to bring these two quantities, bT y and cT x, close

3.3 The primal-dual schema 53

*0 xc
xcr T

T

=

yb
xc

r T

T

=1

ybT xcT*xcT

cost of optimal
integral solution x*

cost of optimal
integral solution x*

primal cost of
integral solution x

primal cost of
integral solution x

dual cost of
solution y

dual cost of
solution y

(a) The primal-dual principle

f
yb
xc

tT

tT

≤≤≤≤

1ybT 1xcT2ybT … tT yb 2xcTtT xc …

sequence of dual costssequence of dual costs sequence of primal costssequence of primal costs

*xcT

(b) The primal-dual schema

Figure 3.2: (a) By weak duality the optimal cost cT x∗ will lie between the costs bT y and

cT x of any primal-dual pair of feasible solutions (x, y). Therefore if bT y and cT x are close

enough (e.g. their ratio r1 is ≤ f) so are cT x∗ and cT x (e.g. their ratio r0 is ≤ f as well),

thus proving that x is an f-approximation to x∗. (b) Dual and primal feasible solutions

make local improvements to each other until the final costs bT yt, cT xt are close enough

(e.g. their ratio is ≤ f). We can then apply the primal-dual principle and conclude that

xt is an f-approximation to x∗.

to each other (e.g. by making their ratio r1 = cT x/bT y less or equal to f) then we

will have succeeded in making the costs cT x∗ and cT x to come close to each other

as well (e.g. their ratio r1 = cT x/cT x∗ will also be less than f), thus proving that

x is an f-approximation to x∗. The above principle lies at the heart of any primal-

dual technique. In fact, the various primal-dual methods mostly differ in the way

that they manage to estimate a pair (x, y) satisfying the fundamental inequality

(3.5). One very common way for that (but not the only one) is by relaxing the

so-called primal complementary slackness conditions [136]:

Theorem (Relaxed Complementary Slackness). If the pair (x, y) of integral-

primal and dual feasible solutions satisfies the so-called relaxed primal comple-

mentary slackness conditions:

∀ xj > 0⇒
m

∑

i=1

aijyi ≥ cj/fj

54 Approximate Labeling via Graph Cuts Based on Linear Programming

then (x, y) also satisfies the Primal-Dual Principle with f = maxj fj and therefore x

is an f -approximation to the optimal integral solution.

The relaxed complementary slackness conditions is nothing but a restatement

of the fundamental inequality (3.5) after taking advantage of the fact that solutions

x, y satisfy the feasibility conditions of the primal and dual program respectively.

Based on the above theorem, during a primal-dual f-approximation algorithm the

following iterative schema is usually being used:

Primal-Dual Schema. Keep generating pairs of integral-primal, dual solutions

{(xk, yk)}tk=1 until the elements xt, yt of the last pair are both feasible and satisfy

the relaxed primal complementary slackness conditions.

This schema is illustrated graphically in Figure 3.2(b). At each iteration, based

just on the current dual feasible solution yk, we perturb the current primal feasible

solution xk so that its primal cost cT xk comes closer to the dual cost bT yk. This is

also applied in reverse (i.e. yk is perturbed as well) and a new primal-dual pair,

say (xk+1, yk+1), is thus generated. This is repeated until the costs of the final

primal-dual pair are close enough. The remarkable thing with this procedure is

that the two processes (i.e. the primal and the dual) make local improvements to

each other and yet they manage to achieve an approximately global objective at the

end. Also, it is worth mentioning that one can thus devise different approximation

algorithms merely by specifying a different set of slackness conditions (i.e. different

fj) each time.

3.3.1 The primal and dual LPs (Linear Programs) corresponding

to Metric Labeling

For the case of Metric Labeling we will use integer program (3.1) as our primal

linear program after first relaxing its {0, 1}-constraints to xp,a ≥ 0, xpq,ab ≥ 0. The

3.3 The primal-dual schema 55

dual of the resulting LP then has the following form:

max
∑

p
yp

s.t. yp ≤ htyp,a ∀p ∈ V, a ∈ L (3.6)

ypq,a + yqp,b ≤ wpqdab ∀a, b ∈ L, (p, q) ∈ E (3.7)

where: htyp,a ≡ cp,a +
∑

q:q∼p
ypq,a (3.8)

To each vertex p, there corresponds one dual variable yp. Also, to each edge

(p, q) ∈ E (and any label a), there correspond 2 dual variables ypq,a and yqp,a. All

the dual variables ypq,a, yqp,a will be called ‘‘balance variables’’ hereafter and we

will also say that ypq,a is the conjugate balance variable of yqp,a (and vice versa).

The auxiliary variables hty
p,a will be called ‘‘height variables’’. The reason for this

name, as well as for introducing these redundant variables will become clear in

the sections that are following. For defining a dual solution, only the balance

variables ypq,a, as well as the yp variables must be specified. The height variables

htyp,a can then be computed by (3.8).

Throughout this chapter we will be considering only feasible {0, 1}-primal so-

lutions, i.e. the primal variables {xp,a}p∈V,a∈L and {xpq,ab}(p,q)∈E,a∈L,b∈L will always

take values in the set {0, 1}. It is then trivial to see that such solutions can be

completely specified once we know what label has been assigned to each ver-

tex. For this reason, instead of maintaining all primal variables {xp,a}p∈V,a∈L and

{xpq,ab}(p,q)∈E,a∈L,b∈L, we will hereafter adopt the usual notation according to which

a primal solution x refers just to a set of labels {xp}p∈V , where xp denotes the label

assigned to vertex p. Under this notation, xp,a = 1 is equivalent to xp = a, while

xpq,ab = 1 implies xp = a, xq = b. Based on this observation, it is then not difficult

to check that the relaxed slackness conditions related to the xp,a variables are

reduced to:

yp ≥ cp,xp
/f1 +

∑

q:q∼p
ypq,xp

, (3.9)

while the slackness conditions related to the xpq,ab variables reduce to:

xp 6= xq ⇒ ypq,xp
+ yqp,xq

≥ wpqdxpxq
/f2 (3.10)

xp = xq = a⇒ ypq,a + yqp,a = 0 (3.11)

56 Approximate Labeling via Graph Cuts Based on Linear Programming

where we consider the cases a 6= b and a = b separately.

Our objective will therefore be to find feasible solutions x, y satisfying the above

conditions (3.9), (3.10) and (3.11) for specific values of f1 and f2. Conditions (3.11)

simply say that conjugate balance variables are opposite to each other. For this

reason we set by definition:

yqp,a ≡ −ypq,a ∀ (p, q) ∈ E, a ∈ L (3.12)

and so we do not have to worry about conditions (3.11) hereafter.

3.3.2 An intuitive view of the dual variables

A way of viewing/visualizing the dual variables, that will prove useful when

later designing our approximation algorithms, is the following: for each vertex p,

we consider a separate copy of the complete set of labels L. It is then assumed

that all of these labels are objects, which are located at certain heights relative to

a common reference plane (see Figure 3.3). The height of any label a at vertex p is

given by the dual variable hty
p,a. Expressions like ‘‘label a at p is below/above label

b’’ imply htyp,a ≶ htyp,b. The role of the balance variables is then to contribute to the

increase or decrease of a vertex’s height. In particular, due to (3.8), the height of

label a at p can be altered only if at least one of the balance variables {ypq,a}q:q∼p

is altered as well. In addition, due to the fact that conjugate balance variables are

opposite to each other (see (3.12)), changes in the height of label a at p also affect

the height of that label at a neighboring vertex. In Figure 3.3, for example, each

time we increase the height of label c at p, say by increasing balance variable ypq,c,

the height of c at the neighboring vertex q is decreased by the same amount due

to the decrease of the conjugate variable yqp,c.

Before proceeding let us also define some terminology. Let x, y be any pair of

integral-primal, dual solutions. We will call the label that x assigns to p (i.e. xp)

the active label at p. We will also refer to the height of the active label at p (i.e.

htyp,xp
) as merely the height of p. We will call the sum of the heights of all vertices

the ‘‘Approximate Primal Function’’ (or APF for short), i.e. APF x,y =
∑

p htyp,xp
.

This function’s name comes from the fact that if x, y satisfy the relaxed slackness

conditions then it is easy to prove that APF approximates the primal objective

3.3 The primal-dual schema 57

ypq,c

yqp,c

α=xq

α=xp

c

b

p q
wpq

c
b

y
apht ,

y
cpht ,

y
bpht ,

y
aqht ,

y
bqht ,

y
cqht ,

reference plane

Fig. 3.3: Visualization of the dual variables for a graph G consisting of just 2 neighbors

p, q while L = {a, b, c}. Each vertex holds a copy of all labels in L and all these labels are

represented by circles which are located at certain heights specified by the ht variables.

Label c at p is pulled up due to the increase of the balance variable ypq,c and so the

corresponding label at neighboring vertex q is pulled down due to the decrease of the

conjugate variable yqp,c. The active labels of p, q are drawn with a thicker circle.

function.

Also, any balance variable in the set {ypq,xp
}q:q∼p (i.e. any balance variable

of the form ypq,xp
with q adjacent to p) will be called an active balance variable

at vertex p. Another important quantity is the load between two neighbors p, q

(loadx,y
pq) which is defined as the sum of the 2 active balance variables ypq,xp

, yqp,xq

i.e. loadx,y
pq = ypq,xp

+ yqp,xq
. If relaxed slackness conditions (3.10) hold, then

due to (3.10) and (3.7) it is easy to see that wpqdxpxq
/f2 ≤ loadx,y

pq ≤ wpqdxpxq

and so the load between p, q can be thought of as a virtual separation cost which

approximates the actual separation cost wpqdxpxq
between p, q.

3.3.3 Applying the primal-dual schema to Metric Labeling

Most of our primal-dual algorithms will achieve an approximation factor of

1: k ← 1; xk ←init_primals(); yk ←init_duals();

2: LabelChange← 0
3: for each label c in L do

4: ȳk ← preedit_duals(c, xk, yk);
5: [xk+1, ȳk+1]←update_duals_primals(c, xk, ȳk);
6: yk+1 ←postedit_duals(c, xk+1, ȳk+1);
7: if xk+1 6= xk then LabelChange← 1
8: k++;

9: end for

10: if LabelChange = 1 then goto 2;

11: if algorithm 6= PD1 then yfit ←dual_fit(yk);

Fig. 3.4: The basic structure of the algorithms PD1, PD2 and PD3.

58 Approximate Labeling via Graph Cuts Based on Linear Programming

fapp = 2dmax

dmin
where dmin ≡ mina6=bdab and dmax ≡ maxa6=bdab. Their basic structure

can be seen in Figure 3.4. The initial primal-dual solutions are generated inside

init_primals and init_duals. During an inner iteration (lines 4-8 in Figure 3.4) a

label c is selected and a new primal-dual pair of solutions (xk+1, yk+1) is generated

by updating the current pair (xk, yk). During this iteration, among all balance

variables of yk (i.e. {yk
pq,a}

a∈L
p,q:p∼q) only the balance variables of the c labels (i.e.

{yk
pq,c}p,q:p∼q) are modified. We call this a c-iteration of the algorithm. |L| such

iterations (one c-iteration for each label c in the set L) make up an outer iteration

(lines 2-9 in Figure 3.4) and the algorithm terminates if no vertex changes its label

during the current outer iteration.

During an inner iteration the main update of the primal and dual variables

takes place inside update_duals_primals while preedit_duals and postedit_duals

modify the dual variables before and after the main update. The Primal-Dual al-

gorithms that will be considered are named PD1, PD2, PD3. The dual_fit routine,

which is used only in the last two of them, serves only the purpose of applying a

scaling operation to the last dual solution.

3.4 The PD1 algorithm

During this section we will assume that dab is a semimetric. In the case

of the PD1 algorithm our goal will be to find feasible x, y satisfying slackness

conditions (3.9), (3.10) with f1 = 1 and f2 = fapp. By replacing f1 = 1 in (3.9) that

condition becomes yp ≥ htyp,xp
. Since it also holds that yp ≤ mina htyp,a (by the dual

constraints (3.6)), it is easy to see that (3.9) reduces to the following 2 equations:

yp = min
a

htyp,a (3.13)

htyp,xp
= min

a
htyp,a (3.14)

In addition, loadx,y
pq = ypq,xp

+ yqp,xq
(by definition) and so by replacing f2 = fapp in

(3.10) that condition reduces to:

xp 6= xq ⇒ loadx,y
pq ≥ wpqdxpxq

/fapp (3.15)

3.4 The PD1 algorithm 59

Therefore the objective of PD1 is to find feasible x, y satisfying conditions (3.13)-

(3.15) and for this, PD1 uses the following strategy: At each iteration it makes

sure that conditions (3.13) and (3.15) are automatically satisfied by the current

primal-dual pair. In addition, it makes sure that the current dual solution is

feasible (primal solutions are always integral-feasible by construction). To this

end it always imposes the following constraints to the current dual solution:

ypq,a ≤ wpqdmin/2 ∀ a ∈ L, p ∼ q (3.16)

To see that (3.16) ensures feasibility, it is enough to observe that due to this

constraint the following inequality can be derived: ypq,a + yqp,b ≤ 2wpqdmin/2 =

wpqdmin ≤ wpqdab and so the dual constraints (3.7) hold true. This implies that

solution y is indeed feasible, since the other dual constraints (3.6) already hold

true due to condition (3.13).

All that remains then for PD1 to achieve its goal is just to ensure that after a

finite number of iterations, slackness conditions (3.14) are satisfied as well. These

conditions simply require that the active label of any vertex must be ‘‘lower’’ than

all other labels at that vertex. So assuming that at the start of an outer iteration

all conditions (3.13)-(3.16) except for (3.14) are satisfied, the update of the primal

and dual variables roughly proceeds as follows:

Dual variables update: Given the current primal solution (i.e. the current label

assignment), we try to update the balance variables so that for each vertex its

active label stays at the same height, while the rest of the labels at that vertex are

raised above the active label. However, this may not be possible for all vertices

because each time that one label goes up, another one at a neighboring vertex goes

down. Furthermore, we cannot raise labels as much as we like since the balance

variables cannot increase beyond the bounds imposed by constraints (3.16).

Primal variables update: Therefore after the rearrangement of the labels’ heights,

there might still be some vertices violating condition (3.14), i.e. their active labels

do not have the lowest height. We select a suitable subset of these vertices and

assign to them new active labels with lower heights so that condition (3.14) is

satisfied by as many of these vertices as possible. The reason we may not be able

to do that for all the vertices is that we must still take care that conditions (3.15)

are maintained as well.

60 Approximate Labeling via Graph Cuts Based on Linear Programming

However, by keep repeating this procedure, the number of vertices violating

(3.14) decreases per iteration and so in the end all conditions (3.13)-(3.16) will

hold true. Also note that it is always trivial to enforce conditions (3.13) (we simply

set each dual variable yp equal to mina htyp,a).

The rearrangement of the labels’ heights takes place in groups, one group per

inner iteration. In particular, during a c-iteration only the heights of the c-labels

are rearranged so that as many of these labels as possible are raised above the

corresponding active labels. To this end solution y is changed into solution y ′ by

changing only variables {ypq,c}p,q:p∼q (i.e. the balance variables of all c-labels) into

{y′
pq,c}p,q:p∼q. The new heights will therefore be hty′

p,c. We must be careful, though,

during this update of the c-heights. E.g. in Figure 3.5(a) we would like the c-labels

at p and q to move at least as high as the active label xp=a of p and the active label

xq=a of q respectively (label c at r does not need to move at all since it is already

the active label of r). However, if we raise label c at p until it reaches xp, say by

increasing ypq,c, then label c at q will go below xq due to the decrease of conjugate

variable yqp,c, thus breaking condition (3.14) for q.

It turns out that the optimal update of the c-heights can be simulated by

pushing the maximum amount of flow through an appropriate directed graph

Gx,y
c = (V x,y

c , Ex,y
c , Cx,y

c), an example of which can be seen in Figure 3.5(b). The

capacities Cx,y
c of this graph depend on x, y (which are the primal-dual solutions

at the start of the c-iteration), while its nodes V x,y
c consist of all the nodes of graph

G (these are the internal nodes) plus two special external nodes the source s and

the sink t. Furthermore, all nodes of Gx,y
c are connected by two types of edges:

interior and exterior edges (drawn with solid/dashed lines respectively in Figure

3.5(b)). All these edges are constructed as follows:

Interior edges: For each edge (p, q) ∈ G, we insert 2 directed interior edges

pq and qp in graph Gx,y
c . The amount of flow fpq coming out of p through pq will

represent the increase of the balance variable ypq,c, while the reverse flow fqp will

represent the decrease of the same variable ypq,c. The total change of ypq,c will

therefore be:

y′
pq,c = ypq,c + fpq − fqp (3.17)

The total change in yqp,c is defined symmetrically (since any flow coming out of p

through pq will enter q and vice versa) and so y′
pq,c = −y′

qp,c, i.e. conjugate balance

3.4 The PD1 algorithm 61

fpq--fqp
fqp -fpq

a=xp c

c=xr
c

p q r
wpq wqr

a=xq

a

y
xp p

ht ,

y
cpht ,

y
cqht ,

y
xq q

ht ,

y
xr r

ht ,

y
arht ,

(a)

p q r

s (source)

t (sink)

fpq fqp

fp

fr

fq

fqr frq

y
xq

y
cqqt q

hthtcap ,, −=

0=qrcap

cqppqqp ydwcap ,min 2 −=

cpqpqpq ydwcap ,min 2 −=

y
cp

y
xpsp hthtcap

p ,, −=

0=rqcap

1=srcap

(b)

Fig. 3.5: (a) An arrangement of labels (represented by circles) for a graph G with 3 vertices

p, q, r and 2 edges pq, qr of weights wpq, wqr. The label set is L = {a, c}. The thicker

circles represent the active labels. Also, the red arrows indicate how the c labels will

move in respond to an update of the balance variables while the dashed circles show

the final position of those labels after the update. (b) The corresponding graph Gx,y
c that

will be used for updating the balance variables. Interior/exterior edges are drawn with

solid/dashed lines respectively.

variables remain opposite to each other as they should.

Based on (3.17), it is obvious that the capacity cappq of edge pq will represent

the maximum allowed increase of ypq,c (attained if fpq = cappq, fqp = 0), while

a similar conclusion holds for capqp. Based on this observation cappq, capqp are

assigned as follows: if the active label of p (or q) is equal to c then the height of c at

p (or q) must stay fixed at this iteration and so we want no increase in ypq,c, yqp,c.

Therefore, it should hold that:

xp = c or xq = c⇒ cappq = capqp = 0 (3.18)

In all other cases (i.e. if xp 6= c, xq 6= c) cappq, capqp are set so that the values of

the new balance variables y′
pq,c, y′

qp,c can never exceed wpqdmin/2 and feasibility

conditions (3.16) are therefore maintained for the new dual solution y ′. For this

62 Approximate Labeling via Graph Cuts Based on Linear Programming

reason cappq, capqp are set so that:

ypq,c + cappq = wpqdmin/2 = yqp,c + capqp. (3.19)

The capacities of blue/red edges in Figure 3.5(b), for example, are defined by

(3.18)/(3.19) respectively.

Exterior edges: Each internal node p connects to either the source node s or

the sink node t (but not to both of them) through an exterior edge. We have 3

possible cases to consider:

Case 1: If c is ‘‘below’’ xp (i.e. htyp,c < htyp,xp
), then we would like to raise label

c by exactly as much as needed so that it reaches label xp. E.g. in Fig. 3.5(a)

we would like that label c at p reaches label a at p. To this end, we connect the

source node s to node p through a directed edge sp. The flow fp passing through

that edge will then represent the total increase in the height of label c, i.e.:3

hty
′

p,c = htyp,c + fp (3.20)

Therefore, based on (3.20), the capacity capsp of the edge sp will represent the

maximum allowed raise in the height of c. Since we need to raise c only as high

as the current active label of p, but not higher than that, we therefore set:

capsp = htyp,xp
− htyp,c. (3.21)

The capacity of edge sp in Fig. 3.5(b) is defined this way.

Case 2: If c is not ‘‘below’’ xp (i.e. htyp,c ≥ htyp,xp
) and is also not the active label

of p (i.e. c 6= xp), then we can afford a decrease in the height of c as long as c

remains ‘‘above’’ xp (e.g. this is the case with label c at q in Fig. 3.5(a)). To this

end, we connect p to the sink node t through directed edge pt. This time the flow

fp through edge pt will equal the total decrease in the height of c, i.e.:

hty
′

p,c = htyp,c − fp (3.22)

3To verify (3.20) it suffices to combine (3.17) with the flow conservation at node p which reduces

to fp =
∑

q:q∼p

(

fpq − fqp

)

. It then holds: htyp,c + fp

(3.8)
=

(

cp,c +
∑

q:q∼p ypq,c

)

+ fp =
(

cp,c +

∑

q:q∼p ypq,c

)

+
∑

q:q∼p

(

fpq − fqp

) (3.17)
=

(

cp,c +
∑

q:q∼p ypq,c

)

+
∑

q:q∼p

(

y′

pq,c − ypq,c

)

= cp,c +

∑

q:q∼p y′

pq,c

(3.8)
= hty

′

p,c

3.4 The PD1 algorithm 63

and so cappt will represent the maximum value of such a decrease. Therefore,

based on the fact that c has to remain above xp, we set:

cappt = htyp,c − htyp,xp
. (3.23)

See edge qt in Fig. 3.5(b) for an example belonging to this case.

Case 3: Finally, if c is the active label of p (i.e. c = xp) then we want to keep

the height of c fixed at the current iteration (e.g. this is the case with label c at r

in Fig. 3.5(a)). As in case 1, we again connect the source node s to node p through

directed edge sp. This time, however, no flow passes through any interior edge

incident to p (due to (3.18)). So fp = 0 (due to the flow conservation at p) and

the height of label c will not change (see (3.20)), as was intended. By convention

we set the capacity capsp of edge sp equal to one in this case (see edge sr in Fig.

3.5(b)):

capsp = 1. (3.24)

3.4.1 Update of the primal and dual variables

We are now ready to describe how the primal and dual variables are updated

during a c-iteration, i.e. what actions are performed by each of the main routines

of PD1.

preedit_duals(c, xk, yk): For all of the considered algorithms this routine’s role

is to edit current solution yk into solution ȳk that will be used (along with xk) as

input for the construction of the graph Gxk,ȳk

c of the previous section. No editing

is needed in the case of PD1 and so ȳk = yk.

update_duals_primals(c, xk, ȳk): The primal-dual pair xk+1, ȳk+1 is generated

inside this routine. For the generation of ȳk+1, the graph Gxk,ȳk

c is constructed

and a maximum flow algorithm is applied to it. The resulting flows are used in

updating only the balance variables of the c labels as explained in the previous

section (see (3.17)), i.e.:

ȳk+1
pq,c = ȳk

pq,c + fpq − fqp. (3.25)

64 Approximate Labeling via Graph Cuts Based on Linear Programming

Therefore, due to (3.20), (3.22), the heights of all c labels will also change as:

htȳ
k+1

p,c = htȳ
k

p,c +











fp if p is connected to node s

−fp if p is connected to node t
(3.26)

Based on the new heights (e.g. see Fig. 3.6(b)), we now need to update xk into

xk+1 i.e. assign new labels to vertices. Since only the c labels have changed their

heights (and thus only them may have gone above or below the active labels), this

amounts to deciding whether a vertex keeps its current active label or is assigned

the label c. On one hand, this should be based on whether the c-label of a vertex

managed to ‘‘raise’’ as high as the active label of that vertex or is ‘‘below’’ it. On

the other hand, we must also ensure that conditions (3.15) will still hold true for

xk+1, ȳk+1. It turns out that both criteria can be achieved just by considering the

flows in Gxk,ȳk

c and making use of the following rule:

reassign rule. Label c will be the new label of p (i.e. xk+1
p = c), if and only if there

exists an unsaturated4 path between the source node s and node p. In all other

cases, p keeps its current label i.e. xk+1
p = xk

p.

See Fig. 3.6(c) for an example of applying the reassign rule. Based on this rule

the following properties can then be shown to hold true for the resulting solutions

xk+1, ȳk+1 (see appendix A for a proof):

Lemma 3.1. Any pair of primal-dual solutions (xk+1, ȳk+1) satisfies the following

properties:

Property 1: If at least one vertex has changed its active label, then it holds true

that:

APF xk+1,ȳk+1

<APF xk,ȳk

Property 2: htȳ
k+1

p,xk+1
p
≤ htȳ

k+1

p,c

Property 3: If c = xk+1
p 6= xk+1

q , then ȳk+1
pq,c = ȳk

pq,c + cappq

Property 1 can be used to prove that the algorithm will finally terminate (or else the

APF function should decrease for ever, which obviously cannot be true assuming

4A path is unsaturated if flow < capacity for all forward arcs and flow > 0 for all backward

arcs

3.4 The PD1 algorithm 65

a=xp c c

c

p q r

135

10

120

70

120

70

wpq=200 wqr=1000

a=xq a=xr

(a) Initial heights

fpq

-fpq

fqr

-fqr

a=xp c c

c

p q r

135

10

120

70

120

70

wpq=200 wqr=1000

a=xq a=xr

110

(b) Updated heights of c-labels

a

c cc=xp

p q r

135

70 70

wpq=200 wqr=1000

a=xq a=xr

110

(c) Updated active labels

p

q
r

s

t

capsp=125

caprt=50

capqp=100

cappq=100 capqr=500

caprq=500

fpq=100
fqp=0

fp=100

fqr=50
frq=0

fr=50
capqt=50

fq=50

(d) Capacitated graph Gxk,ȳk

c

Fig. 3.6: (a) An initial arrangement of labels’ heights at the start of a c-iteration. All

vertices p, q, r are currently assigned label a (as indicated by the thick circles). (b) The

new heights as updated by the update_duals_primals routine after applying a maximum

flow algorithm to the graph in (d). Red and blue arrows show how the c-labels move due

to the update of the balance variables. Movements due to changes in conjugate balance

variables are drawn with the same line style and color. The dashed circles indicate the

final positions of the c-labels. (c) The new active labels (thick circles) that were selected

based on the ‘‘reassign rule’’. Only vertex p had to change its active label into c. This

is so because only p still has its label c below its previous active label a or equivalently

only edge sp of the graph in (d) is unsaturated while any paths to q or r are not. (d) The

associated capacitated graph (assuming that all balance variables are initially zero) and

the resulting flows due to the maximum flow algorithm. Notice that, as expected, the flows

fp, fq, fr at exterior edges reflect the total movement of the c-labels at p, q, r respectively.

In this example the Potts metric has been used as distance dab (i.e. a 6= b⇒ dab = 1).

integer capacities), while property 2 asserts that for any vertex its new active label

is always ‘‘below’’ its c-label, as intended. Furthermore, property 3 can be used

to prove that conditions (3.15) remain true for the current iteration.

postedit_duals(c, xk+1, ȳk+1): However, for maintaining conditions (3.15) dur-

ing the next iterations as well, it turns out that postedit_duals needs to change

solution ȳk+1 into yk+1 so that all active balance variables of ȳk+1 become nonneg-

ative variables of yk+1, while also neither the APF nor any of the loads are altered

during this change. In the case of PD1 it can be shown that any of the active

balance variables of ȳk+1, i.e. any variable of the form ȳk+1

pq,xk+1
p

, ȳk+1

qp,xk+1
q

, may be

negative during a c-iteration only if xk+1
p = xk+1

q = c. In this case postedit_duals

simply needs to set yk+1
pq,c = yk+1

qp,c = 0 with no other differences existing between

ȳk+1, yk+1.

PD1’s pseudocode is shown in Figure 3.7. Based on this definition the following

66 Approximate Labeling via Graph Cuts Based on Linear Programming

theorem can be proved asserting that PD1 always leads to an fapp-approximate

solution:

Theorem 3.2. The final primal-dual solutions generated by PD1 satisfy all condi-

tions (3.13)-(3.16) and so they also satisfy the relaxed slackness conditions with

f1 = 1, f2 = fapp.

3.5 The PD2 algorithm

Algorithm PD2 (unlike PD1) can be applied only if dab is a metric. In fact, PD2

represents a family of algorithms parameterized by a variable µ∈[1
fapp

, 1]. PD2µ

will achieve slackness conditions (3.9), (3.10) with f1 =µfapp and f2 =fapp. The

reason for µ≥ 1
fapp

is because f1 <1 can never hold.

A main difference between algorithms PD1 and PD2µ is that the former is

always generating a feasible dual solution at any of its inner iterations, while the

latter will allow any of these dual solutions to become infeasible. However, PD2µ

ensures that the (probably) infeasible dual solutions are ‘‘not too far away from

feasibility’’. This practically means that if these solutions are divided by a suitable

factor, they will become feasible again. This method (i.e. turning an infeasible

dual solution into a feasible one by division) is also known as ‘‘dual-fitting’’ [136]

in the linear programming literature.

More specifically, the PD2µ algorithm generates a series of intermediate pairs

of primal-dual solutions with the following properties: all of them satisfy slackness

condition (3.10) as an equality with f2 = 1
µ
, i.e.:

xp 6= xq ⇒ loadx,y
pq = µwpqdxpxq

. (3.27)

In addition, the last one of these intermediate pairs satisfies the exact (i.e. f1 = 1)

slackness condition (3.9) which, as explained in section 3.4, reduces to:

yp = min
a

htyp,a (3.28)

htyp,xp
= min

a
htyp,a (3.29)

However, the dual solution of this last pair may be infeasible, since (although it

3.5 The PD2 algorithm 67

1: init_primals: initialize xk by a random label assignment

2:

3: init_duals

4: yk = 0
5: for each pair (p, q) ∈ E with xk

p 6= xk
q do

6: yk
pq,xk

p
= −yk

qp,xk
p

= wpqdmin/2 = yk
qp,xk

q
= −yk

pq,xk
q

7: end for

8: set yk
p = mina hty

k

p,a for all p ∈ V {imposes (3.13)}

9:

10: {this routine generates ȳk}

11: preedit_duals(c, xk, yk): ȳk = yk

12:

13: {this routine generates xk+1, ȳk+1}

14: update_duals_primals(c, xk, ȳk)
15: xk+1 = xk, ȳk+1 = ȳk

16: Apply max-flow to Gxk,ȳk

c and compute flows fp, fpq

17: set ȳk+1
pq,c = ȳk

pq,c + fpq − fqp for all p, q with (p, q) ∈ E

18: for all p ∈ V, set xk+1
p = c⇔ ∃ unsaturated path s p in Gxk,ȳk

c

19:

20: {this routine generates yk+1}

21: postedit_duals(c, xk+1, ȳk+1)
22: yk+1 = ȳk+1

23: for each pair (p, q) ∈ E with xk+1
p = xk+1

q = c do

24: if ȳk+1
pq,c < 0 or ȳk+1

qp,c < 0 then yk+1
pq,c = yk+1

qp,c = 0

25: end for

26: set yk+1
p = mina hty

k+1

p,a for all p ∈ V {imposes (3.13)}

Fig. 3.7: Pseudocode for the PD1 algorithm.

satisfies dual constraints (3.6) due to (3.28)) in place of constraints (3.7) it can be

shown to satisfy only:

ypq,a + yqp,b ≤ 2µwpqdmax ∀a, b∈L, (p, q)∈E (3.30)

Nevertheless these conditions ensure that the last dual solution, say y, is not

‘‘too far away from feasibility’’. This means that by replacing y with yfit = y

µfapp

we can then show that:

yfit
pq,a + yfit

qp,b =
ypq,a + yqp,b

µfapp

(3.30)

≤
2µwpqdmax

µfapp

=
2µwpqdmax

µ2dmax/dmin

= wpqdmin ≤ wpqdab

meaning that yfit is feasible. The generation of yfit (given y) is exactly what the

dual_fit routine does. Furthermore, by using (3.27) and (3.30), it then takes

68 Approximate Labeling via Graph Cuts Based on Linear Programming

1: init_primals: initialize xk at random

2:

3: init_duals

4: yk = 0
5: for all (p, q) ∈ E with xk

p 6= xk
q do {imposes (3.27)}

6: yk
pq,xk

p
= −yk

qp,xk
p

= µwpqdxk
pxk

q
/2

7: yk
qp,xk

q
= −yk

pq,xk
q

= µwpqdxk
pxk

q
/2

8: end for

9: set yk
p = mina hty

k

p,a for all p ∈ V {imposes (3.28)}

10:

11: preedit_duals(c, xk, yk)
12: ȳk = yk

13: for each (p, q) ∈ E with xk
p 6= c, xk

q 6= c do

14: a = xk
p, b = xk

q

15: ȳk
qp,c = µwpqdac − ȳk

pq,a; ȳk
pq,c = −ȳk

qp,c

16: end for

17:

18: postedit_duals(c, xk+1, ȳk+1)
19: edit ȳk+1 into yk+1 so that active balance variables of yk+1 are ≥ 0

20: set yk+1
p = mina hty

k+1

p,a for all p ∈ V {imposes (3.28)}

21:

22: dual_fit(yk): yfit = yk

µfapp

Fig. 3.8: Pseudocode of the PD2µ algorithm. The routine update_duals_primals is not

shown because it is the same as the corresponding routine of the PD1 algorithm. The

only difference is that a subset of the edges of Gxk,ȳk

c have different capacities (see text).

only elementary algebra to show that the primal-dual pair (x, yfit) (x being the

last primal solution) satisfies the relaxed slackness conditions (3.9), (3.10) with

f1 = µfapp, f2 = fapp, thus leading to an fapp-approximate solution as well.

The main routines of PD2µ (see Figure 3.8) are mostly similar to the ones

of PD1 with only minor differences. The most important difference of the up-

date_duals_primals routine lies in the assignment of capacities to those interior

edges pq, qp of Gxk,ȳk

c whose endpoints p, q have labels 6= c at the start of the

current c-iteration i.e. xk
p = a 6= c and xk

q = b 6= c. Then, in place of (3.19), we

instead define:

cappq = µwpq(dac + dcb − dab) (3.31)

capqp = 0 (3.32)

3.5 The PD2 algorithm 69

Furthermore, in this case, preedit_duals edits yk into ȳk so that:

ȳk
pq,a + ȳk

qp,c = µwpqdac (3.33)

Finally, as in PD1, the role of postedit_duals is again to ensure that all active bal-

ance variables are nonnegative. Note that both preedit_duals and postedit_duals

take care so that neither the loads nor the APF function are altered while they

update the dual variables. E.g., in the case of preedit_duals, this means that the

following equalities holds true:

loadxk,ȳk

pq = loadxk,yk

pq (3.34)

APF xk,ȳk

= APF xk,yk

(3.35)

Also, note that (3.31) explains why dab must be a metric (or else it would hold

cappq < 0).

It can then be shown that PD2µ indeed generates an fapp-approximate solution

as the following theorem indicates:

Theorem 3.3. The final primal-dual solutions generated by PD2µ are feasible and

satisfy the relaxed complementary slackness conditions with f1 = µfapp and f2 =

fapp.

Furthermore, it holds that all PD2µ algorithms with µ < 1 are non-greedy al-

gorithms meaning that neither the primal (nor the dual) objective function nec-

essarily decreases (increases) per iteration. Instead, it is APF which constantly

decreases (see Property 1 of lemma 3.1) but since APF is always kept close to

the primal function the decrease in APF is finally reflected to the values of the

primal function as well. However, a notable thing happens if µ = 1. In that case,

due to (3.27), the load between any neighbors p, q equals exactly their separation

cost (i.e. loadxk,yk

pq = wpqdxk
pxk

q
) and so it can be shown that APF coincides with

the primal function. In addition, PD2µ=1 proves to be actually equivalent to the

c-expansion graph cut algorithm (that has been interpreted only as a greedy local

search technique up to now). This is stated in the next theorem:

Theorem 3.4. The label assignment xk+1 selected during a c-iteration of PD2µ=1 has

the minimum primal cost among all label assignments resulting after a c-expansion

70 Approximate Labeling via Graph Cuts Based on Linear Programming

of xk.

Its proof is based on the following lemma in which PRIMALx denotes the

value of the primal objective function at x, while x′ is any c-expansion of the

current primal solution xk:

Lemma 3.5. PRIMALxk+1

= APF xk+1,ȳk+1

≤ APF x′,ȳk+1

≤ PRIMALx′

3.6 PD3: extending PD2 to the semimetric case

By modifying PD2µ, three different variations (PD3a, PD3b, PD3c) may result

that are applicable even if dab is a semimetric. For simplicity we will consider

only the µ = 1 case, i.e. only variations of PD2µ=1. We also recall a fact that will

prove to be useful for explaining the rationale behind the algorithms’ definition:

(optimality criterion) the load between any p, q represents a virtual separation cost

which should be equal to the actual separation cost of p, q, if the current primal-dual

solutions are optimal.

The main difficulty of extending PD2µ=1 to the case of a semimetric relates to all

edges pq with capacity defined by (3.31) during a c-iteration, i.e. all interior edges

pq whose endpoints p, q are currently assigned labels 6= c (i.e. xk
p = a 6= c, xk

q =

b 6= c), while in addition the following inequality holds: dab > dac + dcb. Hereafter

we will call any such pair (p, q) a ‘‘conflicting pair’’ and the corresponding labels

(a, b, c) a ‘‘conflicting label-triplet’’. Depending on the way we deal with such a

‘‘conflicting pair’’, three different variations of PD2µ=1 may arise.

PD3a algorithm: We choose to set cappq = 0 in place of (3.31). In this case

it can be shown that if xk+1 assigns the pair of labels c, b to the objects p, q

respectively then the resulting load of p, q will be wpq(dab − dac), i.e. it will be

greater than the actual separation cost wpqdcb of p, q (this is true because (a, b, c)

is a ‘‘conflicting label-triplet’’, thus implying that dab > dac +dcb). Equivalently this

says that the virtual separation cost of p, q overestimates their actual separation

cost contrary to the optimality criterion above (in all other cases one can prove

that there is no such overestimation). Therefore, in this case, postedit_duals

modifies the dual variables so that the equality between the load and the actual

separation cost is restored and thus the violation of the optimality criterion is

3.6 PD3: extending PD2 to the semimetric case 71

canceled by the start of the next iteration. No other differences between PD2µ=1

and PD3a exist.

One may also view this cost overestimation as an equivalent overestimation

of the corresponding distance between labels. In the above case, for example,

we saw that if labels c, b are assigned to p, q by xk+1, then instead of the actual

separation cost wpqdcb the resulting overestimated cost would have been wpqd̄cb

with d̄cb = dab − dac. This is equivalent to saying that the algorithm has assigned

the virtual distance d̄cb > dcb to labels c, b instead of their actual distance dcb. On

the other hand, if (a, b) or (a, c) are assigned to p, q by xk+1, then no cost over-

estimation takes place and so the virtual distances for these labels coincide with

their actual distances i.e. d̄ab = dab, d̄ac = dac. Since d̄ac + d̄cb = d̄ab one could then

argue that by replacing d with d̄ what PD3a actually did was to overestimate the

distance between labels c, b in order to restore the triangle inequality for the current

‘‘conflicting label-triplet’’ (a, b, c). Put otherwise, it is as if a ‘‘dynamic approxima-

tion’’ of the d semimetric by a varying ‘‘metric’’ d̄ is taking place with this metric d̄

being constantly modified. Note also that for restoring the triangle inequality we

could have instead designed our algorithm so that it overestimates the distance

between labels a, c in place of that between c, b. Not only that, but we could have

also defined an application-dependent function, say resolve, which would decide

(based on the current ‘‘conflicting pair’’) which one of the two distances (i.e. dac or

dcb) would be overestimated each time.

Finally, it can be shown that the primal-dual solutions generated by both

PD3a and PD2µ=1 satisfy exactly the same conditions (3.27)-(3.30) and so PD3a

is always guaranteed to lead to an fapp-approximate solution as well. We can

therefore conclude that PD3a directly generalizes PD2µ=1 to the case of a semimetric

distance dab.

PD3b algorithm: We choose to set cappq = +∞ and no further differences

between PD3b and PD2µ=1 exist. This has the following important effect: the

solution xk+1 produced at the current iteration can never assign the pair of labels

c, b to the objects p, q respectively (due to this fact we will call labels c, b the ‘‘excluded

labels’’5). To prove this, it suffices to recall the ‘‘reassign rule’’ and also observe

5Note that, as in PD3a, we can modify PD3b so that a function resolve chooses which labels (i.e.

(a, c) or (c, b)) are ‘‘excluded’’ each time. Moreover, resolve could perhaps be defined based on a

priori knowledge about each specific problem.

72 Approximate Labeling via Graph Cuts Based on Linear Programming

that the directed edge pq can never become saturated by increasing its flow (since

cappq = +∞). Therefore, if label c is assigned to p by xk+1 (which, by the ‘‘reassign

rule’’, means that there is an unsaturated path s p) then label b can never be

assigned to q, since in that case the path s p → q would also be unsaturated

(since cappq = +∞) and, by the ‘‘reassign rule’’ again, q would have to be assigned

label c as well. Put otherwise, it is as if an infinite overestimation of the distance dcb

between labels c, b takes place by the algorithm and so those labels are implicitly

prevented from being assigned to the ‘‘conflicting pair’’. The price for that is that

no guarantees about the algorithm’s optimality can be provided. The reason is

that the balance variables may now increase without bound (since cappq = +∞)

and so we cannot make sure that the generated dual solutions satisfy a ‘‘not

too far away from feasibility’’ condition like (3.30). This in turn implies that no

dual-fitting technique can be applied in this case. However, PD3b has a nice

interpretation in the primal domain due to the following theorem:

Theorem 3.6. The solution xk+1 selected by PD3b during a c-iteration has the

minimum primal cost among all solutions that result after a c-expansion of xk,

except for those that assign ‘‘excluded labels’’ to ‘‘conflicting pairs’’.

The above theorem generalizes theorem 3.4 and can be proved using similar

reasoning with that theorem’s proof. Furthermore, it designates the price we pay

for dab being a semimetric: in the metric case we can choose the best assignment

among all c-expansion moves while in the semimetric case we are only able to

choose the best one among a certain subset of these c-expansion moves. Despite

this fact, the considered subset contains an exponential number of c-expansion

moves, which makes the algorithm a perfect candidate as a local minimizer.

Algorithm PD3c: PD3c first adjusts (if needed) the dual solution yk so that

for any 2 neighbors p, q it holds: loadxk,yk

pq ≤ wpq(dac + dcb). After this initial

adjustment, which is always easy to achieve, PD3c proceeds in exactly the same

way as PD2µ=1 except for the fact that distance dab in (3.31) is replaced with

distance d̄ab that is defined as: d̄ab =
load

xk,yk

pq

wpq
. Obviously d̄ab ≤ dac + dcb and so

cappq in (3.31) is valid, i.e. cappq ≥ 0. PD3c, PD2µ=1 have no other differences.

It is now interesting to examine what happens if p, q is a ‘‘conflicting pair’’ with

current labels a, b (i.e. xk
p = a 6= c, xk

q = b 6= c). In that case it also holds that

3.6 PD3: extending PD2 to the semimetric case 73

dac + dcb < dab and so:

d̄ab =
loadxk,yk

pq

wpq

≤
wpq(dac + dcb)

wpq

<
wpqdab

wpq

= dab

Furthermore, it is easy to show that if none of p, q is assigned a new label by

xk+1 (i.e. they both retain their current labels a, b), then the resulting load will be

equal to wpqd̄ab, i.e. it will underestimate the actual separation cost wpqdab since

d̄ab < dab as was shown above (in all other cases the load will coincide with the

actual separation cost).

Based on these observations, one can then see that the PD3c algorithm works

in a complementary way to the PD3a algorithm: in order to restore the triangle

inequality for the ‘‘conflicting label-triplet’’ (a, b, c), instead of overestimating the

distance between either labels (c, b) or (a, c) (like PD3a did), it chooses to underes-

timate the distance between labels (a, b). Again one may view this as a ‘‘dynamic

approximation’’ of the d semimetric by a constantly varying ‘‘metric’’ d̄, however

this time we set d̄ab =
load

xk,yk

pq

wpq
< dab, d̄ac = dac and d̄cb = dcb.

It can be shown that the intermediate primal-dual solutions generated by algo-

rithms PD3c and PD2µ=1 satisfy exactly the same conditions except for condition

(3.27). In place of that condition, the intermediate solutions of PD3c satisfy:

loadxk,yk

pq ≥ wpqd̂xk
pxk

q
, (3.36)

where d̂ab = minc∈L

(

dac + dcb

)

. By applying then the same (as in PD2µ=1) dual

fitting factor to the last dual solution of PD3c, one can easily prove that PD3c

leads to an f ′
app-approximate solution where:

f ′
app = fapp · c0 with c0 = max

a6=b

dab

d̂ab

. (3.37)

Finally, we should note that if dab is a metric then PD3a, PD3b, PD3c all coincide

with PD2µ=1.

74 Approximate Labeling via Graph Cuts Based on Linear Programming

3.7 Experimental results

We begin this section by first describing some unique properties of the pro-

posed algorithms that also prove to be very useful in practice (Section 3.7.1).

We then proceed and demonstrate our algorithms’ effectiveness in MRF energy

minimization. To this end, we apply them to a variety of low level vision tasks.

In particular, here we present experimental results on the problems of stereo

matching (Sections 3.7.1, 3.7.2), image restoration (Section 3.7.3), image comple-

tion (Section 3.7.3), as well as optical flow estimation (Section 3.7.4). As we show

all these tasks can be formulated as particular instances of the Metric Labeling

problem. Finally, to further analyze the performance of the proposed algorithms

we apply them on synthetic problems and show related results in Section 3.7.5.

3.7.1 Per-instance suboptimality bounds

An important advantage of any primal-dual algorithm is that after its execu-

tion it can always tell (for free) how well it performed with respect to any given

instance of Metric Labeling. In particular, as implied by the Primal-Dual Princi-

ple of section 3.3, given any pair (x, y) of integral-primal, dual-feasible solutions

then the ratio r = cT x/bT y of their costs automatically provides a new subopti-

mality bound in the sense that x is then guaranteed to be an r-approximation to

the optimal integral solution. The minimum of these ratios constitutes the per-

instance suboptimality computed by our algorithm. This leads to the following

consequence that proves to be very useful in practice:

By considering the sequence of primal-dual solutions {xk, yk}tk=1 generated through-

out the primal-dual schema, a series of suboptimality bounds {rk = cT xk/bT yk}tk=1

can be obtained. In practice, the minimum of these per-instance bounds turns out

to be much tighter (i.e. much closer to 1) than the worst-case bound predicted in

theory and so this allows one to have a much clearer view about the goodness of

the generated solution.

This has been verified experimentally by applying our algorithms to the stereo

matching problem. In this case, labels correspond to image pixel disparities and

they can be chosen from a set L = {0, 1, . . . , K} of discretized disparities where

K denotes the maximum allowed disparity. The vertices of the graph G are the

3.7 Experimental results 75

image pixels and the edges of G connect each pixel to its 4 immediate neighbors in

the image. During our tests, the label cost for assigning disparity a to the image

pixel p has been set equal to:

cp,a = |Iright(p− a)− Ileft(p)| (3.38)

where Ileft, Iright represent the intensities of the left and right images respectively.

We have applied our algorithms to the well-known Tsukuba stereo data set

[115] setting the maximum disparity value equal to K = 14, based on the provided

ground truth data. A sample from the results produced when using our algorithms

are shown in Fig. 3.9. It should be noted that no attempt has been made to

model occlusions during the stereo matching procedure, while, in addition, all

edge weights wpq have been set equal to each other instead of properly adjusting

their values based on image intensity edges (which would improve the results

considerably for this specific example). The reason for that as well as for using

the very simple label cost presented in (3.38) is because our main goal was not

to produce the best possible disparity estimation, but only to test the tightness of

the suboptimality bounds that are provided by the considered algorithms, i.e. to

test the effectiveness of these algorithms in minimizing the objective function.

To this end, 3 different distances dab have been used during our experiments.

These are the Potts distance d1,ab (a metric), the truncated linear distance dλ
2,ab

(also a metric) and the truncated quadratic distance dλ
3,ab (a semimetric), defined

as follows:

d1,ab = 1 ∀a 6= b (3.39)

dλ
2,ab = min(λ, |a− b|) ∀a, b (3.40)

dλ
3,ab = min(λ, |a− b|2) ∀a, b (3.41)

In the above equations the constant λ denotes the maximum allowed distance.

Each experiment consisted of selecting an approximation algorithm and a dis-

tance function and then using them for computing disparities for each one of the

Tsukuba stereo pairs. The average values of the obtained suboptimality bounds

are displayed in table 3.1. The columns fPD1
app , f

PD2µ=1

app , fPD3a
app , fPD3b

app , fPD3c
app of

that table list these averages for the algorithms PD1, PD2µ=1, PD3a, PD3b and

76 Approximate Labeling via Graph Cuts Based on Linear Programming

(a) (b) (c) (d)

Figure 3.9: (a) The left and (b) right images for one stereo pair from the Tsukuba data

set. (c) The disparity estimated by the PD1 algorithm. (d) and the PD2µ=1 algorithm. The

Potts distance (a metric) has been used in this example and so PD3a, PD3b, PD3c produce

the same result with PD2µ=1.

PD3c respectively. In addition, the last column lists the value of the correspond-

ing approximation factor fapp which, as already proved, makes up a worst-case

suboptimality bound for most of the above algorithms. By observing table 3.1 one

can conclude that the per-instance suboptimality bounds are much tighter (i.e.

much closer to 1) than the worst-case bounds predicted in theory. This holds

for all cases, i.e. for all combinations of algorithms and distances, and thus in-

dicates that the presented algorithms are always able to extract a nearly optimal

solution (with this being true even for the more difficult case where dab is merely a

semimetric).

Besides the tightness of the per instance suboptimality bounds, another im-

portant issue is their accuracy, i.e. how well these bounds predict the true sub-

optimality of the generated solutions. To investigate this issue we modified our

experiments in the following way: we applied our stereo matching algorithms to

one image scanline at a time (instead of the whole image). In this case the graph

G reduces to a chain and the true optimum can be easily computed using dy-

namic programming. This in turn implies that we are able to compute the true

suboptimality of a solution. By using this fact we have thus constructed table

3.2. Its columns fPD1
true , f

PD2µ=1

true , fPD3a

true , fPD3b

true , fPD3c

true contain the true average sub-

optimality of the solutions of PD1, PD2µ=1, PD3a, PD3b and PD3c respectively,

where the average is taken over all image scanlines. By examining that table

3.2 one may easily conclude that the true suboptimality of a solution is always

close to the corresponding estimated suboptimality bound. This means that these

bounds are relatively accurate and therefore reliable for judging the goodness of

an algorithms’s solution. Furthermore, in this way, we can always decide if a bad

3.7 Experimental results 77

Distance f
PD1
app f

PD2µ=1

app f
PD3a

app f
PD3b

app f
PD3c

app fapp

Potts 1.0104 1.0058 1.0058 1.0058 1.0058 2

Trunc. Linear λ=5 1.0226 1.0104 1.0104 1.0104 1.0104 10

Trunc. quad. λ=5 1.0280 - 1.0143 1.0158 1.0183 10

Table 3.1: Average suboptimality bounds (colums 2-6) obtained for the Tsukuba data

set. As expected they are much closer to 1 than the theoretical suboptimality bounds fapp

listed in the last column and thus a nearly optimal solution is obtained in all cases. Note

that PD2µ=1 can be applied only if dab is a metric and in that case PD2µ=1, PD3a, PD3b

and PD3c (as well as their bounds) coincide.

generated solution is the result of a bad optimization procedure or a bad modeling

of the problem at hand.

For the Tsukuba sequence, on average 4 outer iterations (or equivalently

60 = 4 · 15 inner iterations) are needed for the algorithms to terminate. The

corresponding running time is 46 secs (measured on a 2.4GHz CPU). The plots

in Figure 3.10 show how the primal-dual ratios vary during the execution of our

algorithms (for the Tsukuba data set). For the first two plots a metric distance

between labels has been used, while for the last one a semimetric distance has

been chosen. It is worth noticing how rapidly the primal-dual ratios drop in all

cases. They come very close to 1 just after a few inner iterations, meaning that

the algorithms converge really fast, while computing an almost optimal solution

at the same time. Based on this observation one may also use the values of these

ratios to control the algorithms’ convergence (e.g. if the ratios are close to 1 and

do not vary too much per iteration one may decide that convergence has been

Distance f
PD1
app f

PD1
true f

PD2µ=1

app f
PD2µ=1

true f
PD3a

app f
PD3a

true f
PD3b

app f
PD3b

true f
PD3c

app f
PD3c

true

Potts 1.0098 1.0036 1.0066 1.0004 1.0066 1.0004 1.0066 1.0004 1.0066 1.0004

Trunc. Linear 1.0202 1.0107 1.0115 1.0021 1.0115 1.0021 1.0115 1.0021 1.0115 1.0021

Trunc. quad. 1.0255 1.0130 - - 1.0135 1.0011 1.0144 1.0020 1.0160 1.0036

Table 3.2: The average suboptimality bounds (columns 2-4-6-8-10) obtained when ap-

plying our stereo matching algorithms to one scanline at a time (instead of the whole

image). In this case, we are also able to compute the true average suboptimality (columns

3-5-7-9-11) of the generated solutions using dynamic programming. As can be seen by

inspecting the table the suboptimality bounds always approximate the true suboptimal-

ity relatively well, meaning that they can be safely used as a measure for judging the

goodness of a generated solution.

78 Approximate Labeling via Graph Cuts Based on Linear Programming

reached). This way one may further reduce the running time of the algorithm.

3.7.2 Stereo matching

Besides the Tsukuba dataset we have also applied our algorithms to image

pairs from the SRI tree image sequence (Fig. 3.11(a)). The selected pairs had

a maximum disparity of 11 pixels. Given our algorithms’ ability to handle both

metric and semimetric distances equally well, the following semimetric has been

used in this case: dκ,λ
4,ab = |a − b| if |a − b| <= κ, otherwise dκ,λ

4,ab = λ. We always

assume κ < λ. In this specific example we have used (κ, λ) = (2, 10). The rationale

behind this distance is that it assigns a low penalty to small (i.e. ≤ κ) changes in

disparity (thus allowing surfaces with smoothly varying disparity like the slanted

ground in the SRI image), but assigns a high penalty λ to large disparity gaps.

Despite the fact that dκ,λ
4,ab is a semimetric our algorithms did not face any problem

in efficiently minimizing the corresponding objective function and thus localizing

the trees as well as the slanted ground in the SRI image. The resulting disparity

is shown in Figure 3.11(b). The average running time to convergence has been 33

secs. We have also applied the α-β-swap algorithm [27] to the SRI dataset using

exactly the same settings. Although this graph-cut based algorithm is applicable

even in the case of a semimetric label distance, its disadvantage is that it may

get trapped to a bad local minimum, i.e. it cannot make any guarantees about

the optimality of the solutions it generates. This is indeed the case here since,

despite the fact that exactly the same objective function has been minimized by

both algorithms, the final energy produced by α-β-swap was 8.3% higher than the

energy estimated by our method. The corresponding disparity is shown in Figure

3.11(c).

As a further example we illustrate how one could favor disparities that are

not violating the uniqueness constraint, just by use of an appropriate non-metric

distance dab. This can possibly lead to a better handling of occlusions as well in

some cases. To this end, an extra label for occlusions, say ô, is introduced first

whose label cost is equal to cô for all pixels i.e. cp,ô = cô. Assuming without loss of

generality that image scanlines coincide with the epipolar lines we then introduce

additional horizontal edges in the graph G: we connect any pixel (x, y) in the

left image to the K pixels to its right (x + 1, y), . . . ,(x + K, y), where K is the

3.7 Experimental results 79

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

inner iteration

pr
im

al
−d

ua
l r

at
io

potts distance

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

inner iteration

pr
im

al
−d

ua
l r

at
io

trunc. linear distance

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

inner iteration

pr
im

al
−d

ua
l r

at
io

trunc. quadratic distance

Figure 3.10: These 3 plots show how the primal-dual ratios vary during the first 4 outer

iterations (or equivalently the first 60 = 4·15 inner iterations) using the Tsukuba sequence

as input. (Left) The potts metric, (Middle) the trunc.linear metric and (Right) the trunc.

quad. semimetric have been used respectively as label distance dab. Notice how rapidly

the ratios drop in all cases (i.e. they get very close to 1 just after a few inner iterations).

(a) (b) (c)

Fig. 3.11: (a) One image from the SRI tree image sequence. (b) Computed disparities

when using PD3a and the semimetric dκ,λ
4,ab with (κ, λ) = (2, 10). (c) Disparities computed

by the α-β-swap algorithm using the same semimetric. The solution of α-β-swap has

8.3% higher energy than the corresponding solution of the PD3a algorithm despite the

fact that both algorithms try to minimize exactly the same energy function.

maximum disparity (see Fig. 3.12(b)). For measuring the separation cost between

the labels of (x, y), (x + k, y) we will use the distance function hdistk. We will

therefore use K different distance functions in total for all the horizontal edges.

On the other hand, no additional vertical edges are introduced and so any pixel

will be connected only to its immediate vertical neighbors as before with vdist1

denoting the common distance function for all these edges.

Distances hdist1, vdist1 (which are related to edges connecting pixels adjacent

in the image) will be used for enforcing the smoothness of the disparity field as

before. E.g. both can be set equal to the potts metric: hdist1ab = vdist1ab = d1,ab.

The rest of hdistk will be used just for assigning an extra penalty M to all pairs of

labels violating the uniqueness constraint. For all other pairs of distinct labels,

80 Approximate Labeling via Graph Cuts Based on Linear Programming

(x,y)

(x,y+1)

(x+1,y)
hdist1

vdist1

hdist1 = vdist1

(a) No uniqueness

constraint

…
(x,y)

(x,y+1)

(x+1,y) (x+2,y) (x+K,y)

hdistK

hdist2

hdist1

vdist1

(b) Edges of G in the case of

favoring the uniqueness

constraint

Percentage of pixels with absolute error > 1
in non-occluded regions 1.14%

Percentage of missed occluded pixels
in occluded regions 12.31%

(c) Error statistics for the ‘map’ pair

Figure 3.12: (a) Uniqueness constraint is not favored and the graph G coincides with

the image grid. A common label distance is used for all edges (i.e. hdist1 = vdist1) (b)

To favor the uniqueness constraint we introduce additional horizontal edges in G which

connect any pixel with the K pixels to its right (K is the maximum disparity).

hdistk then simply assigns a very small distance ε (with ε�M):

b = a+k ⇒ hdistkab = M, b 6= a+k & b 6= a⇒ hdistk
ab = ε, b = a⇒ hdistkab = 0.

A result of applying this distance (with cô = 23,M = 10, ε = 0.01) to the map

stereo pair appears in Fig. 3.13. Error statistics are displayed in Fig. 3.12(c).

3.7.3 Image restoration and image completion

In image restoration, we are given as input a corrupted (by noise) image and

the objective is to extract the original (uncorrupted) image. In this case the labels

represent intensities (or colors) while the label cost for assigning intensity a to

pixel p can be set equal to: cp,a = |I(p) − a|, where I represents the array of

intensities of the input image. The graph G that will be used when solving the

Metric Labeling problem coincides again with the image grid.

The example of Fig. 3.14 illustrates the importance of using semimetric dis-

tances dab on the task of image restoration as well. The original image (Fig. 3.14(a))

(a) The left ‘map’ image (b) The right ‘map’ image (c) Estimated disparity

Fig. 3.13: Red pixels indicate occlusions

3.7 Experimental results 81

(a) (b) (c) (d)

Fig. 3.14: (a) Original uncorrupted image. (b) Noisy input image. (c) Restored image

using semimetric dκ,λ
4,ab, (κ, λ) = (2, 30) (d) Restored image using the truncated linear

metric dλ
2,ab, λ=30.

Label distance dab pixels with intensity errors average intensity error

semimetric 8.2% 0.21

metric 41.4% 1.12

Table 3.3: Error statistics for the image restoration example of Fig. 3.14

consists of 2 identical patterns placed vertically. Each pattern’s intensity is kept

constant along the horizontal direction and increases linearly with step 2 from

top to bottom. The input image is then formed by corrupting the original image

with white noise (Fig. 3.14(b)). Although our algorithms managed to restore the

original image with only a few errors by use of the dκ,λ
4,ab semimetric (Fig. 3.14(c)),

this was not the case when the truncated linear metric dλ
2,ab (or the potts metric)

has been used, despite the tweaking of the λ parameter. The best obtained result

with such a metric (after tweaking λ) is shown in Fig. 3.14(d). The error statistics

for this restoration example are shown in table 3.3.

Another semimetric which is very commonly used in image restoration prob-

lems is the truncated quadratic distance dλ
3,ab = min(|a−b|2, λ). That distance with

λ = 200 was used in the restoration of the contaminated (with Gaussian noise)

image of Fig. 3.15(a). In this case the following function (which is more robust

against outliers) has been used for the label costs: cp,a = λ0min(|I(p) − a|2, λ1)

with λ0 = 0.05, λ1 = 104. Notice that our algorithm managed not only to remove

the noise completely (see Fig. 3.15(b)), but also to maintain the boundaries of the

objects at the same time.

The same semimetric (i.e. the truncated quadratic distance) can be also used

for the task of image completion. Besides containing Gaussian noise, the image in

Fig. 3.15(c) also has a part which has been masked. The labels costs of masked

82 Approximate Labeling via Graph Cuts Based on Linear Programming

(a) Noisy input

image

(b) Restored image (c) Noisy input

image with masked

pixels

(d) Restored and

completed image

Fig. 3.15: Examples of image restoration and image completion

pixels have been set to zero, while for the rest of the pixels the costs have been

set as before. As can be seen from Fig. 3.15(d), our algorithm managed not only

to remove the noise again, but also to fill the missing part in a plausible way.

3.7.4 Optical flow estimation

Global methods [19,28] estimate optical flow ux, uy by minimizing a functional

of the form: E(ux, uy) =
∫

I
ρD(Ixux + Iyuy + It) + λ · ρS(

√

|∇ux|2 + |∇uy|2)dxdy

where Ix, Iy, It denote spatial and temporal image derivatives while ρD, ρS denote

penalty functions. By discretizing E(ux, uy) we can easily incorporate all such

methods into our framework: the 1st term (which expresses the optic flow con-

straint equation) and the 2nd term (which is a regularizer) will then correspond to

the label costs and separation costs respectively. Furthermore, due to our weak

assumptions on dab, our framework allows us to set ρS equal to any of the so-

called robust penalty functions [19] (e.g. the Lorentzian ρS(x) = log(1 + 1
2
(x/σ)2)),

which are known to better cope with outliers or flow discontinuities. Due to this

fact our framework can also incorporate the state-of-the-art combined local-global

method (CLG) [28], which just replaces Ix, Iy, It (in the 1st term of the above func-

tional) with a structure tensor. This is important since our algorithms can always

compute a solution near the global minimum and so by using them as initializers

to CLG (or to any other global method) we can help such methods to avoid a local

minimum.

Besides using the optic flow constraint equation in our label costs, our frame-

3.7 Experimental results 83

(a) 4th frame of yosemite

sequence with clouds

(b) Our flow: 6.97o avg. angular error,

4 iterations

(c) α-β-swap flow: 14.73o avg.

angular error, 11 iterations, 19.2%

higher energy than (b)

(d) 11th frame of yosemite

sequence with clouds

(e) Our flow: 6.91o avg. angular error,

4 iterations

(f) α-β-swap flow: 39.29o avg. angular

error, 23 iterations, 56.7% higher

energy than (e)

Fig. 3.16: Estimated flow between frames 4, 5 (1st row) and 11, 12 (2nd row) of yosemite

sequence. Although more outer iterations were used by α-β-swap, its optical flow had

19.2% and 56.7% higher energy than our optical flow.

work also allows the use of other label costs. E.g. we can set cp,a = |I1(p+a)−I0(a)|

where I0, I1 are the 1st and 2nd image. In this case, due to the two-dimensional

nature of optical flow, it is important that not only the magnitudes, but especially

the directions of the optical flow vectors are estimated correctly as well. To this

end the following semimetric distance between labels can be used:

dab = distab + τ · angledistab

Here distab denotes a truncated euclidean distance between the optical flow vectors

a, b, i.e. distab = min(||a− b||,M), while the 2nd term is used for giving even more

weight to the correct estimation of the vectors’ direction. In particular, it penalizes

(in a robust way) abrupt changes in the direction of the vectors a, b and is defined

as follows:

angledistab =











1, if angleab > 45o

0, otherwise

where angleab denotes the angle (in degrees) between vectors a and b. We have ap-

plied both our algorithm and the α-β-swap algorithm to the well known yosemite

84 Approximate Labeling via Graph Cuts Based on Linear Programming

image sequence using as label distance the above semimetric with parameters

M = 5, τ = 5. The results as well as error statistics are shown in Figure 3.16.

What is important to note here is that although both algorithms are trying to minimize

exactly the same objective function, the resulting solutions of α-β-swap have much

higher energy. It seems that, contrary to our method, α-β-swap is not powerful

enough to escape from bad local minima in this case.

3.7.5 Synthetic problems

To further examine the ability of our algorithms to optimize the energy of an

MRF, we also tested them on a set of synthetic problems. In these problems the

vertices of a 30× 30 grid were chosen as the nodes of the graph G while the total

number of labels was set equal to K. The label costs for all nodes were generated

randomly by drawing samples from a uniform distribution in the [%0 %1] interval,

while for measuring the distance between labels a random semimetric has been

used that was constructed as follows: equal labels were assigned zero distance

whereas the distance for different labels was generated randomly in the [%0 %1]

interval again.

Three experiments have been conducted: in the 1st one, a random spanning

tree of the 30 × 30 grid was used as the graph G and the number of labels was

K = 60 while in the 2nd and 3rd experiment the graph G had inherited the struc-

ture of the underlying grid and the number of labels was K = 60 and K = 180

respectively. For each experiment 100 random problems were constructed (all

with %0 = 1, %1 = 100) and the resulting average energies per outer iteration, for

both our algorithm and the α-β-swap algorithm, are shown in the plots of Figure

3.17. Notice that, compared to α-β-swap, our algorithm manages to produce a

solution of lower energy in all cases. At the same time it needs less iterations to

converge. This behavior is a typical one and has been observed in real problems as

well. Notice also that as the number of labels or the graph complexity increases,

the gap in performance between the 2 algorithms increases as well.

The efficiency of our algorithms in the case where dab is a semimetric can be

also illustrated by the synthetic example of Figure 3.18. Although PD3a, PD3b

and PD3c are always able to locate the exact global minimum for this example,

the a-b swap algorithm may get stuck at a local minimum that can be arbitrarily

3.8 Conclusions 85

0 1 2 3 4 5 6
0

2

4

6

8

10
x 104

outer iteration

en
er

gy
our algorithm
α−β−swap

(a) 1st experiment: graph G is

a tree, K = 60 labels

0 2 4 6 8 10
2

4

6

8

10

12

14
x 104

outer iteration

en
er

gy

our algorithm
α−β−swap

(b) 2nd experiment: graph G is

a grid, K = 60 labels

0 2 4 6 8
2

4

6

8

10

12

14
x 104

outer iteration

en
er

gy

our algorithm
α−β−swap

(c) 3rd experiment: graph G is

a grid, K = 180 labels

Fig. 3.17: α-β-swap produces an energy which is higher by (a) 17%, (b) 23% and (c) 28%

with respect to our algorithm’s energy. Notice that as the number of labels increases the

gap in performance increases as well.

far from the true minimum.

qp r
T0 T
0T T
22 0

α
b
c

bα c
T/20 T
0T/2 T/2

T/2T 0

α
b
c

Labeling A
(Local minimum)

Labeling B
(Global minimum)

dαbCp,α

Label costs Label distance

qp r
bα c

qp r
cc c

Fig. 3.18: A synthetic example where the graph G has 3 vertices {p, q, r} and 2 edges

{pq, qr} while the labels L are {a, b, c}. Label costs cpa and the distance dab (a semimetric)

are shown. The α-β-swap algorithm can get stuck in labeling A whose cost is T i.e.

arbitrarily larger than the true minimum cost which is 4 (labeling B). On the contrary

PD3a, PD3b, PD3c can always locate the optimal labeling B. Example taken from [27].

3.8 Conclusions

A new theoretical framework has been proposed for both understanding and

developing algorithms for the approximate optimization of MRFs with both metric

and non-metric energy functions. This set of MRFs can capture a very important

class of problems in vision. The above framework includes the state-of-the-art α-

expansion algorithm merely as a special case (for metric energy functions). More-

over, it provides algorithms which have guaranteed optimality properties even for

the case of semimetric potentials. In fact, in all cases our primal-dual algorithms

are capable of providing per-instance suboptimality bounds which, in practice,

prove to be very tight (i.e. very close to 1) meaning that the resulting solutions are

nearly optimal. The theoretical setting of the proposed framework rests on duality

86 Approximate Labeling via Graph Cuts Based on Linear Programming

theory of linear programming, which is entirely different than the setting of the

original graph-cut work. This way an alternative and more general view of the

very successful graph-cut algorithms for approximately optimizing MRFs is pro-

vided which is an important advance. We strongly believe that this more general

view of graph cut techniques may give rise to new related research, which could

lead to even more powerful MRF optimization algorithms in the future. Moreover,

a novel optimization technique, the primal-dual schema, has been introduced to

the field of computer vision and the resulting algorithms have proved to give ex-

cellent experimental results on a variety of low level vision tasks, such as stereo

matching, image restoration, image completion and optical flow estimation. With

respect to metric MRFs, the PD2µ=1 has given very good results experimentally.

On the other hand, for the case of semimetric MRFs, the algorithms PD3a, PD3c

gave the best results in practice. Therefore, based on the fact that any of the

PD3 algorithms reduces to the algorithm PD2, if the distance function is a metric,

one may choose to implement either one of the PD3a, PD3c algorithms. Finally,

we should note that for certain special cases of the ML problem, our algorithms’

theoretical approximation factors coincide with the so-called integrality gap of the

linear program in (3.1), which is essentially the best possible approximation fac-

tor a primal-dual algorithm may achieve [136]. E.g. such is the case with the

Generalized Potts model, whose integrality gap is known to be 2 [75], i.e. equal

to fapp. This explains in yet another way why graph-cut techniques are so good

in optimizing problems related to the Potts energy. In conclusion, a new powerful

optimization tool has been added to the arsenal of computer vision, capable of

tackling a very wide class of problems.

C H A P T E R 4

Priority-BP and the Problem of Image

Completion

The main goal of this chapter is to present a new MRF optimization method,

called Priority-BP, which significantly extends standard Belief Propagation. For

reasons of concreteness, we prefer not to examine Priority-BP in an abstract way

but, instead, we choose to directly test the algorithm by applying it to the very

difficult problem of image completion, that has received growing attention in recent

years. Based on this observation, the contributions that are made in this chapter

are twofold:

On one hand, as already mentioned above, a novel optimization scheme (Priority-

BP) is proposed. Unlike previous work, it carries 2 important extensions over stan-

dard BP: priority-based message scheduling and dynamic label pruning. Together,

these two extensions manage to resolve what is currently considered as the major

limitation of Belief Propagation: its inefficiency in handling MRFs with very large

discrete state-spaces. Moreover, both extensions are generic and do not make use

of any domain-specific knowledge. They can therefore be applied to any MRF, i.e.

a very wide class of problems in computer vision. It is thus the first time, at least

to the best of our knowledge, that a framework which is targeted for general MRFs

manages to resolve the above mentioned major limitation of Belief Propagation.

On the other hand, to show the effectiveness of Priority-BP, a novel exemplar-

based framework is proposed, which treats the problems of image completion, tex-

ture synthesis and image inpainting in a unified manner. Contrary to most of the

existing methods, all of these tasks are posed as discrete MRF optimization prob-

lems with a well-defined global objective function. Furthermore, visually inconsis-

tent results due to greedy patch assignments are avoided, as our method manages

to maintain throughout its execution many candidate source patches for each block

of missing pixels. This is unlike the majority of current methods, which greedily fill

88 Priority-BP and the Problem of Image Completion

patches and keep them fixed thereafter. In addition, the effectiveness of our method

is demonstrated on a wide variety of difficult image completion examples.

The chapter starts with a description of the image completion problem as well as

a review of related work. It then continues with a presentation of our novel exemplar

based framework. The Priority-BP algorithm is described next, while, finally, it is

shown how that algorithm can be used in the problem of completing images.

When I’m working on a problem, I never think about beauty. I think only how to solve

the problem. But when I have finished, if the solution is not beautiful, I know it is wrong.

—Richard Buckminster Fuller (1895–1983)

4.1 Introduction

Image completion is a problem that has attracted a considerable amount of

attention over the last years. The goal of image completion is to fill the missing

part of an incomplete image in such a way that a visually plausible outcome is

obtained. Ideally, one would like to be able to apply the image completion process

to:

• complex natural images

• with (possibly) large missing parts

• in a fully automatic manner

For the above reasons, this is a very challenging problem. Moreover, it can have

many applications, e.g. in image editing, film post-production, image restoration

etc. (see Figure 4.1).

There have been three main approaches for dealing with the image completion

problem so far:

• statistical based methods

• PDE based methods

• as well as exemplar based methods

4.1 Introduction 89

Fig. 4.1: Object removal is just one example of the many uses of image completion. In the

specific example shown above, the user wants to remove a person from the input image

on the left. He therefore simply marks a region around that person and that region must

then be filled automatically so that a visually plausible outcome is obtained.

In order to briefly explain the main limitations of current state-of-the-art methods

for image completion, we provide a short review of related work for each one of

the three classes mentioned above.

Statistical based methods: These methods try to describe textures through the

use of compact parametric statistical models. E.g. Portilla and Simoncelli

[107] use joint statistics of wavelet coefficients for that purpose, while Heeger

and Bergen [61] make use of color histograms at multiple resolutions for

the analysis of the textures. Parametric statistical models have been also

proposed for the case of image sequences. E.g. Soatto et al. [114] have

proposed the so-called dynamic texture model, while a similar idea has been

also described by Fitzgibbon in [49]. A parametric representation for image

sequences had been previously presented by Szummer and Picard [130] as

well. These parametric models for video have been mainly used for modeling

and synthesizing dynamic stochastic processes such smoke, fire or water.

However, the main drawback of all the methods that are based on parametric

statistical models is that they are applicable only to the problem of texture

synthesis and not to the general problem of image completion. But even in

the restricted case of texture synthesis, they can synthesize only textures

which are highly stochastic and usually fail to do so for textures contain-

ing structure as well. Nevertheless, in cases where parametric models are

applicable, they allow greater flexibility with respect to the modification of

texture properties. E.g. Doretto and Soatto [39] can edit the speed as well

as other properties of a video texture by modifying the parameters of the

statistical model they are using (which is a linear dynamical system in their

90 Priority-BP and the Problem of Image Completion

case). Furthermore, these methods can be very useful for the process which

is reverse to texture synthesis, i.e. the analysis of textures .

PDE based methods: These methods, on the other hand, try to fill the missing

region of an image through a diffusion process by smoothly propagating

information from the boundary towards the interior. According to these

techniques, the diffusion process is simulated by solving a partial differen-

tial equation (PDE) which is typically non-linear and of high order. This

class of methods has been first introduced by Bertalmio et al. in [13], in

which case the authors try to fill a hole in an image by propagating image

Laplacians in the isophote direction. Their algorithm tries to mimic the be-

havior of professional restorators in image restoration. In another case, the

partial differential equations that have been employed for the image filling

process were related to the Navier-Stokes equations in fluid dynamics [12],

while Ballester et al. [7] have derived their own partial differential equations

by formulating the image completion problem in a variational framework.

Furthermore, recently, Bertalmio et al. [14] have proposed to decompose an

image into two components. The first component is representing structure

and is filled by using a PDE based method, while the second component

represents texture and is filled by use of a texture synthesis method. Fi-

nally, Chan and Shen [32] have used an elastica based variational model

for the process of image filling, while Bertalmio has also proposed the use

of a nonlinear PDE of third order in order to achieve (what he calls) contrast

invariant inpainting [11].

However, the main disadvantage of almost all PDE based methods is that

they are mostly suitable for image inpainting situations. This term usually

refers to the case where the missing part of the image consists of thin, elon-

gated regions. Furthermore, PDE-based methods implicitly assume that the

content of the missing resion is smooth and non-textured. For this reason,

when these methods are applied to images where the missing regions are

large or textured, they usually oversmooth the image and introduce blurring

artifacts (see Figure 4.2). On the contrary, we would like our method to be

able to handle images that contain possibly large missing parts. In addition

to that, we would also like our method to be able to fill arbitrarily complex

4.1 Introduction 91

(a) Original image (b) Image with missing

region

(c) Completion using

image inpainting

Fig. 4.2: Image inpainting methods, when applied to large or textured missing regions,

oversmooth the image and introduce blurring artifacts.

natural images, i.e. images containing texture, structure or a combination

of both.

Exemplar-based methods: Finally, the last class of methods consists of the so-

called exemplar-based techniques, which actually have been the most suc-

cessful techniques up to now. These methods try to fill the unknown region

simply by copying content from the observed part of the image. Starting

with the seminal work of Efros and Leung in [43], these methods have been

mainly used for the purpose of texture synthesis. All exemplar-based tech-

niques for texture synthesis that have appeared until now were either pixel-

based [22,143] or patch-based [84,89,148], meaning that the final texture

was synthesized one pixel or one patch at a time (by simply copying pixels

or patches from the observed image respectively). Somewhere in between is

the method of Ashikhmin [6] where a pixel-based technique, that favors the

copy of coherent patches, has been used in this case. Usually, patch-based

methods achieve results of higher quality since they manage to implicitly

maintain higher order statistics of the input texture. Among patch-based

methods, one should mention the work of Kwatra et al. [84] who manage to

synthesize a variety of textures by making use of computer vision graph-cut

techniques. Another interesting work is that of Hertzmann et al. [63] where

the authors try to automatically learn painting styles from training data that

92 Priority-BP and the Problem of Image Completion

consist of input-output image pairs. The painting styles, once learnt, can

then be applied to new input images. Also, Efros and Freeman [42] perform

what they call texture transfer, i.e. rendering an object with a texture taken

from a different object. Exemplar-based methods for texture synthesis have

been also used for the case of video. E.g. Schodl et al. [117] are able to

synthesize new video textures simply by rearranging the recorded frames

of an input video while the texture synthesis method of Kwatra et al. [84],

that has been mentioned above, applies to image sequences as well. Also,

Patwardhan et al. [102] use a video inpainting method for filling-in missing

parts of a video sequence taken from a static camera, while Bhat et al. [17]

have built an interactive system for synthesizing and editing video of natural

phenomena that exhibit continuous flow patterns.

As already mentioned earlier, exemplar-based methods have been mainly

used for the purpose of texture synthesis up to now. Recently, however,

there have been a few authors who have tried to extend these methods to

image completion as well. But, in this case, a major drawback of related ap-

proaches stems from their greedy way of filling the image, which can often

lead to visual inconsistencies. Some techniques try to alleviate this problem

by asking assistance from the user instead. E.g Jian Sun et al [127] require

the user to specify the curves on which the most salient missing structures

reside (thus obtaining a segmentation of the missing region as well), while

Drori et al [40] use what they call ‘‘points of interest’’. Also, some other

methods [70] rely on already having a segmentation of the input image. But

it is a well known fact that natural images segmentation is an extremely

difficult task and, despite extensive research, no general method for reliably

solving it currently exists. Some other methods [83, 146] are preferring to

take a more global approach and formulate the problem in a way that a

deterministic EM-like optimization scheme has to be used for image com-

pletion. It is well known, however, that expectation-maximization schemes

are particularly sensitive to the initialization and may get easily trapped to

poor local minima (thus violating the spirit of a global approach). For fixing

this problem, one has to use multiscale image completion, but this is still

not always safe. E.g any errors that may occur during the image completion

4.1 Introduction 93

process at the coarse scale, will probably carry through at finer scales as

well. Finally, recent exemplar-based methods also place emphasis on the

order by which the image synthesis proceeds, usually using a confidence

map for this purpose [36,40]. However, two are the main handicaps of re-

lated existing techniques. First, the confidence map is computed based on

heuristics and ad hoc principles that may not apply in the general case and

second, once an observed patch has been assigned to a missing block of

pixels, that block cannot change its assigned patch thereafter. This last fact

reveals the greediness of these techniques, which may again lead to visual

inconsistencies.

In order to overcome all the limitations of the above mentioned methods a

new exemplar-based approach for image completion is proposed, which makes

the following contributions:

1. Contrary to greedy synthesis methods we pose image completion as a dis-

crete global optimization problem with a well defined objective function.

2. Our formulation applies not only to image completion, but also to texture

synthesis and image inpainting thus providing a unified framework for all

of these tasks.

3. No user intervention is required by our method which manages to avoid

greedy patch assignments by maintaining (throughout its execution) many

candidate source patches for each block of missing pixels.

4. To this end a novel optimization scheme is proposed, the ‘‘Priority-BP’’ al-

gorithm, which carries 2 major improvements over standard belief propa-

gation: ‘‘dynamic label pruning’’ and ‘‘priority-based message scheduling’’.

Together they bring a dramatic reduction in the overall computational cost

of BP, which would otherwise be intolerable due to the huge number of ex-

isting labels. We should finally note that both extensions are generic and

can be used for the optimization of any MRF (i.e a wide class of problems in

vision).

94 Priority-BP and the Problem of Image Completion

S

T

h
w gapx

gapy

edge
nodep

Fig. 4.3: The nodes and edges of an MRF associated with image completion. In this

example, the w, h parameters were set equal to w = 2gapx, h = 2gapy.

T

S

p

q

r

s

xr

xs

xp

xq

Fig. 4.4: For the boundary node r, its label cost Vr(xr) will be an SSD over the red region

while for nodes p, q their potential Vpq(xp, xq) will be an SSD over the green region. Node

s is an interior node and so its label cost Vs(xs) will always be zero.

4.2 Image completion as a discrete global optimiza-

tion problem

Given an input image I0 as well as a target region T and a source region S

(where S is always a subset of I0−T), the goal of image completion is to fill T in a

visually plausible way simply by copying patches from S. We propose to turn this

into a discrete optimization problem with a well defined objective function. To this

end we propose the use of the following discrete Markov Random Field (MRF):

The labels L of the MRF will consist of all w × h patches from the source

region S1. For defining the nodes of the MRF an image lattice will be used with

an horizontal and vertical spacing of gapx and gapy pixels respectively. The MRF

nodes V will be all lattice points whose w × h neighborhood intersects the target

region, while the edges E of the MRF will make up a 4-neighborhood system on

that lattice (see Figure 4.3).

1Hereafter each label (i.e patch) will be represented by its center pixel

4.3 Priority-BP 95

The single node potential Vp(xp) (called label cost hereafter) for placing patch

xp over node p will encode how well that patch agrees with the source region

around p and will equal the following sum of squared differences (SSD):

Vp(xp) =
∑

dp∈[−w
2

w
2

]×[−h
2

h
2
]

M(p + dp)
(

I0(p + dp)− I0(xp + dp)
)2

, (4.1)

whereM(·) is a binary mask non zero only in region S (sinceM(·) is zero outside

S the label costs of interior nodes, i.e nodes whose w × h neighborhood does not

intersect S, will obviously be all zero). In a similar fashion the pairwise potential

Vpq(xp, xq) due to placing patches xp, xq over neighbors p, q will measure how well

these patches agree at the resulting region of overlap and will again be given by

the SSD over that region (see Figure 4.4). Note that gapx and gapy are set so that

such a region of overlap always exists.

Based on this formulation our goal will then be to assign a label x̂p ∈ L to each

node p so that the total energy F(x̂) of the MRF is minimized where:

F(x̂) =
∑

p∈V

Vp(x̂p) +
∑

(p,q)∈E

Vpq(x̂p, x̂q). (4.2)

Intuitively, any algorithm optimizing this energy is roughly solving a huge jigsaw

puzzle where source patches are the puzzle pieces while region T represents the

puzzle itself. One important advantage of our formulation is that it also provides

a unified framework for texture synthesis and image inpainting. E.g to handle

texture synthesis (where one wants to extend an input texture T0 to a larger

region T1) one suffices to set S = T0 and T = T1 − T0. Moreover, our framework

allows the use of (what we call) ‘‘completion by energy refinement’’ techniques,

one example of which we will see later.

4.3 Priority-BP

Furthermore, an additional advantage would be that we can now hopefully

apply belief propagation (i.e a state-of-the-art optimization method) to our en-

ergy function. Unfortunately, however, this was not feasible. The reason was

the intolerable computational cost of BP caused by the huge number of existing

96 Priority-BP and the Problem of Image Completion

labels. Motivated by this fact, one other major contribution of this work is the

introduction of a novel MRF optimization scheme, called Priority-BP, that can

deal exactly with this type of problems and carries two significant extensions over

standard BP: one of them, called dynamic label pruning, is based on the key idea

of drastically reducing the number of labels. However, instead of this happening

beforehand (which will almost surely lead to throwing away useful labels) pruning

takes place on the fly (i.e while BP is running) with a (possibly) different number

of labels kept for each node. The important thing to note is that only the beliefs

calculated by BP are used for that purpose. Furthermore, the second extension,

called priority-based message scheduling, makes use of label pruning and allows

us to always send cheap messages between the nodes of the graphical model.

Moreover, it considerably improves BP’s convergence thus accelerating comple-

tion even further.

The significance of our contribution also grows due to the fact that (as we shall

see) Priority-BP is a generic algorithm applicable to any MRF energy function.

This is unlike any prior use of Belief Propagation [53] and therefore, our method

resolves for the first time what is currently considered one of the main limitations

of BP: its inefficiency to handle problems with a huge number of labels. In fact

this issue has been a highly active research topic over the last years. Until now,

however, the techniques that have been proposed were valid only for restricted

classes of MRFs [21,45]. Not only that but our priority-based message scheduling

scheme can be used (independently of label pruning) as a general method for

accelerating the convergence of BP.

4.3.1 Priority-based message scheduling

BP is an iterative algorithm which works by propagating local messages along

the nodes of an MRF [103]. Messages sent from node p to node q form a set

{mpq(xq)}xq∈L, where element mpq(xq) indicates how likely node p thinks that

node q should be assigned label xq. Furthermore, messages are updated (i.e sent)

4.3 Priority-BP 97

until convergence as follows2:

mpq(xq) = min
xp∈L

{

Vp(xp) + Vpq(xp, xq) +
∑

r:r 6=q,(r,p)∈E

mrp(xp)
}

(4.3)

After convergence, a set of beliefs {bp(xp)}xp∈L is computed for each node, where

belief bp(xp) is defined as follows:

bp(xp) = −Vp(xp)−
∑

r:(r,p)∈E

mrp(xp) (4.4)

bp(xp) approximates the max-marginal of the posterior at node p and is therefore

roughly related to how likely label xp is for that node. Based on this fact a node

is then assigned the label of maximum belief i.e. x̂p = arg maxxp∈L bp(xp). It is

known that for tree structured graphs BP always gives the optimal solution while

for graphs with loops if BP converges it can only guarantee to find a local optimum.

In this form, however, BP is impractical for problems with a large number of

labels like ours. In particular, if |L| is the total number of labels (which, in our

case, can be many many thousands) then just the basic operation of updating

the messages from one node p to another node q takes O(|L|2) time. In fact the

situation is much more worse for us. The huge number of labels also implies that

for any pair of adjacent nodes p, q their matrix of pairwise potentials Vpq(·, ·) is

so large that cannot fit into memory and therefore be precomputed. That matrix

therefore must be reestimated every time node p sends its messages to node q,

meaning that |L|2 SSD calculations (between image patches) are needed for each

such update.

To deal with this issue we will try to reduce the number of labels by exploiting

the beliefs calculated by BP. However not all nodes have beliefs which are adequate

for this purpose in our case. To see that it suffices to observe that the label costs

at all interior nodes are all equal to zero. This in turn implies that the beliefs

at an interior node will initially be all equal as well, meaning that the node is

‘‘unconfident’’ about which labels to prefer. No label pruning may therefore take

place and so any message originating from that node will be very expensive to

calculate, i.e it will take O(|L|) time. On the contrary, if we had a node whose

2We work in the −log domain so we use the min-sum version of BP

98 Priority-BP and the Problem of Image Completion

labels could be pruned (and assuming that the maximum number of labels after

pruning is Lmax with Lmax � |L|), then any message from that node would take

only O(Lmax) time.

Based on this observation we therefore propose to use a specific message

scheduling scheme whose goal will be twofold. On on hand, it will make label

pruning possible and favor the circulation of cheap messages. On the other hand

it will speed up BP’s convergence. This issue of BP message scheduling, although

known to be crucial for the success of BP, it has been largely overlooked until

now. Also, to the best of the author’s knowledge it is the first time that mes-

sage scheduling is used in this manner for general graphical models. Roughly,

our message scheduling scheme will be based on the notion of priorities that are

assigned to the nodes of the MRF. Any such priority will represent a node’s con-

fidence about which labels to prefer and will be dynamically updated throughout

the algorithm’s execution. Our message scheduling will then obey the following

simple principle:

Message-scheduling principle. The node most confident about its labels should

be the first one (i.e. it has the highest priority) to transmit outgoing messages to its

neighbors.

There are two reasons why one may want to do this. The first is that the more

confident a node is, the more label pruning it can tolerate (before sending its

outgoing messages) and therefore the cheaper these messages will be. The second

reason is that we also help other nodes become more amenable to pruning this

way. Intuitively, this happens because the more confident a node is the more

informative its messages are going to be, meaning that these messages can help

the neighbors of that node to increase their own confidence and thus become

more tolerable to pruning as well. Furthermore, by first propagating the most

informative messages around the graphical model we also help BP to converge

much faster. This has been verified experimentally as well. E.g Priority-BP never

needed more than a small fixed number of iterations to converge for all of our

image completion examples.

A pseudocode description of Priority-BP is contained in algorithm 1. Each

iteration of Priority-BP is divided into a forward and a backward pass. The actual

message scheduling mechanism, as well as label pruning takes place during the

4.3 Priority-BP 99

Algorithm 1 Priority-BP

assign priorities to nodes and declare them uncommitted

for k = 1 to K do {K is the number of iterations}

execute ForwardPass and then BackwardPass

end for

assign to each node p its label x̂p that maximizes bp(·)

ForwardPass:

for time = 1 to N do {N is the number of nodes}

p = ‘‘uncommitted’’ node of highest priority

apply ‘‘label pruning’’ to node p
forwardOrder[time] = p ; p→committed = true;

for any ‘‘uncommitted’’ neighbor q of node p do

send all messages mpq(·) from node p to node q
update beliefs bq(·) as well as priority of node q

end for

end for

BackwardPass:

for time = N to 1 do

p = forwardOrder[time]; p→committed = false;

for any ‘‘committed’’ neighbor q of node p do

send all messages mpq(·) from node p to node q
update beliefs bq(·) as well as priority of node q

end for

end for

forward pass. This is also where one half of the messages gets transmitted (i.e

each MRF edge is traversed in only one of the 2 directions). To this end all nodes

are visited in order of priority. Each time we visit a node, say p, we mark it as

‘‘committed’’ meaning that we must not visit him again during the current forward

pass. We also prune its labels and then allow him to transmit its ‘‘cheap’’ (due

to pruning) messages to all of its neighbors apart from the committed ones (as

these have already sent a message to p during the current pass). The priorities

of all neighbors that received a new message are then updated and the process

continues with the next uncommitted (i.e unvisited) node of highest priority until

no more uncommitted nodes exist.

The role of the backward pass is then just to ensure that the other half of the

messages gets transmitted as well. To this end we do not make use of priorities,

but simply visit the nodes in reverse order (with respect to the order of the forward

pass) just transmitting the remaining unsent messages from each node. For

this reason no label pruning takes place during this pass. We do update node

100 Priority-BP and the Problem of Image Completion

0.1

0.1

0.3 …… p q

r

Fig. 4.5: Message scheduling during the forward pass: currently only red nodes have

been committed and only messages on red edges have been transmitted. Among un-

committed nodes (i.e blue nodes) the one with the highest priority (i.e node p) will be

committed next and will also send messages only along the green edges (i.e only to its

uncommitted neighbors q, r). Messages along dashed edges will be transmitted during

the backward pass. Priorities are indicated by the numbers inside uncommitted nodes.

priorities, though, so that they are available during the next forward pass.

Also, as we shall see, a node’s priority depends only on the current beliefs at

that node. One big advantage out of this is that keeping the node priorities up-to-

date can be done very efficiently in this case, since only priorities for nodes with

newly received messages need to be updated. The message scheduling mechanism

is further illustrated in Figure 4.5.

4.3.2 Assigning priorities to nodes

It is obvious that our definition of priority will play a very crucial role for

the success of the algorithm. As already mentioned priority must relate to how

confident a node is about the labels that should be assigned to him with the

more confident nodes having higher priority. An important thing to note in our

case is that the confidence of a node will depend solely on information that will

be extracted by the BP algorithm itself. This makes our algorithm generic (i.e

applicable to any MRF energy function) and therefore appropriate for a very wide

class of problems.

In particular our definition of confidence (and therefore priority as well) for

node p will depend only on the current set of beliefs {bp(xp)}xp∈L that have been

estimated by the BP algorithm for that node. Based on the observation that belief

bp(xp) is roughly related to how likely label xp is for node p, one way to measure

the confidence of this node is simply by counting the number of likely labels, e.g

those whose belief exceed a certain threshold bconf . The intuition for this is that

the greater this number the more labels with high probability exist for that node

4.3 Priority-BP 101

and therefore the less confident that node turns out to be about which specific

label to choose. And vice versa, if this number is small then node p needs to

choose its label only among a small set of likely labels. Of course only relative

beliefs brel
p (xp) = bp(xp) − bmax

p (where bmax
p = maxxp∈L bp(xp)) matter in this case

and so by defining the set CS(p) = |{xp ∈ L : brel
p (xp) ≥ bconf}| (which we will call

the confusion set of node p hereafter) the priority of p is then inversely related to

the cardinality of that set:

priority(p) =
1

|CS(p)|
(4.5)

This definition of priority also justifies why during either the forward or the

backward pass we were allowed to update priorities only for nodes that had just

received new incoming messages: the reason is that the beliefs (and therefore

the priority) of a node may change only if at least one incoming message to that

node changes as well (this is true due to the way beliefs are defined i.e bp(xp) =

−Vp(xp) −
∑

r:(r,p)∈E mrp(xp)). Although we tested other definitions of priority as

well (e.g. by using an entropy-like measure on beliefs) the above criterion for

quantifying confidence gave the best results in practice by far.

4.3.3 Applying Priority-BP to image completion

We pause here for a moment (postponing the description of label pruning to

the next section) in order to stress the advantages of applying our algorithm to

image completion while also showing related results.

First of all we should mention that although confidence has already been used

for guiding image completion in other works as well [36,40], our use of confidence

differs (with respect to these approaches) in two very important aspects. The first

is that we use confidence in order to decide upon the order of BP message passing

and not for greedily deciding which patch to fill next. These are two completely

different things: the former is part of a principled global optimization procedure,

while the latter just results in patches that cannot change their appearance after

they have been filled.

The second aspect is that in all of the previous approaches the definition of

confidence was mostly based either on heuristics or on ad hoc principles that were

simply making use of application-specific knowledge about the image completion

102 Priority-BP and the Problem of Image Completion

(a) original image (b) masked image (c) visiting order

during first forward

pass

(d) Priority-BP result (e) result of [36]

Fig. 4.6: In column (c) darker patches correspond to nodes that are visited earlier during

message scheduling at the first forward pass

process. On the contrary, as we saw, our definition of confidence is generic and

therefore applicable to any kind of images. Moreover, this way our method is

placed on firm theoretical grounds.

Three examples of applying Priority-BP to image completion are shown in Fig-

ure 4.6. As can be seen the algorithm has managed to fill the missing regions in a

visually plausible way. The third column in that figure shows the visiting order of

the nodes during the first forward pass (based on our definition of priority). The

darker a patch is in these images, the earlier the corresponding node was visited.

Notice how the algorithm learns by itself how to propagate first the messages of

the nodes containing salient structure where the notion of saliency depends on

each specific case. E.g the nodes that are considered salient for the first example

of Figure 4.6 are those lying along the horizon boundary. On the contrary for

the second example of that figure the algorithm prefers to propagate information

along the MRF edges at the interior of the wooden trunk first. The remarkable

thing is that in both cases such information was not explicitly encoded, but was,

instead, inferred by the algorithm.

This is in contrast to the state-of-the-art method in [36] where the authors

had to hardwire isophote-related information into the definition of priority (i.e a

4.3 Priority-BP 103

0 10000 20000

-4

-3

-2

-1

0

x 10
6

re
l.

be
lie

f a
t n

od
e

a

threshold b
conf

rel. beliefs > b
conf

(a) node a has minimum

priority

0 10000 20000

-4

-3

-2

-1

0

x 10
6

re
l.

be
lie

f a
t n

od
e

b

threshold b
conf

rel. beliefs > b
conf

rel. beliefs < b
conf

(b) node b has low priority

0 10000 20000

-4

-3

-2

-1

0

x 10
6

re
l.

be
lie

f a
t n

od
e

c

threshold b
conf

rel. beliefs > b
conf

rel. beliefs < b
conf

(c) node c has high priority

(d) the MRF nodes a, b and c

Fig. 4.7: The plots in (a), (b) and (c) show the sorted relative beliefs for the MRF nodes a,

b and c in figure (d) at the start of Priority-BP. Relative beliefs plotted in red correspond

to labels in the confusion set. This set determines the priority of the corresponding node.

measure which is not always reliably extracted or even appropriate e.g in images

with texture). The corresponding results produced by that method are shown

in the last column of Figure 4.6. In these cases only one label (i.e patch) is

greedily assigned to each missing block of pixels and so any errors made early

cannot be later backtracked, thus leading to the observed visual inconsistencies.

On the contrary, due to our global optimization approach, any errors that are

made during the very first iterations can be very well corrected later, since our

algorithm always maintain not one but many possible labels for each MRF node.

A characteristic case for this is the third example in Figure 4.6, where unless one

employs a global optimization scheme it is not easy to infer the missing structure.

Also, the plots in Figures 4.7(a), 4.7(b), 4.7(c) illustrate our definition of priority

in (4.5). They display the largest 20000 relative beliefs (sorted in ascending order)

that are observed at the very beginning of the algorithm for each of the MRF nodes

a, b, c in Figure 4.7(d) respectively. Relative beliefs plotted in red correspond to

labels in the confusion set. Node a, being an interior node, has initially all the

labels in its confusion set (since their relative beliefs are all zero) and is therefore

of lowest priority. Node b still has too many labels in its confusion set due to the

uniform appearance of the source region around that node. On the contrary node

104 Priority-BP and the Problem of Image Completion

c is one of the nodes to be visited early during the first forward pass, since only

very few labels belong to its confusion set. Indeed even at the very beginning we

can easily exclude (i.e prune) many source patches from being labels of that node

without the risk of throwing away useful labels. This is why Priority-BP prefers to

visit him early.

4.3.4 Label pruning

The main idea of ‘‘label pruning’’ is that as we are visiting the nodes of the MRF

during the forward pass (in the order induced by their priorities), we dynamically

reduce the number of possible labels for each node by discarding labels that are

unlikely to be assigned to that node. In particular, after committing a node,

say p, all labels having a very low relative belief at p, say less than bprune, are

not considered as candidate labels for p thereafter. The remaining labels are

called the ‘‘active labels’’ for that node. An additional advantage we gain this

way is that after all MRF nodes have pruned their labels at least once (e.g. at

the end of the first forward pass) then we can precompute the reduced matrices

of pairwise potentials (which can now fit into memory) and thus greatly enhance

the speed of our algorithm. The important thing to note is that ‘‘label pruning’’

relies only on information carried by the Priority-BP algorithm itself as well. This

keeps our method generic and therefore applicable to any energy function. A

key observation, however, relates to the fact that label pruning is a technique

not meant to be used on its own. Its use is allowed only in conjunction with

our priority-based message scheduling scheme of visiting most confident nodes

first (i.e nodes for which label pruning is safe and does not throw away useful

labels). This is exactly the reason why label pruning does not take place during

the backward pass.

In practice we apply label pruning only to nodes whose number of active labels

exceeds a user specified number Lmax. To this end when we are about to commit a

node we traverse its labels in order of belief (from high to low) and each such label

is declared active until either no more labels with relative belief greater than bprune

exist or the maximum number of active labels Lmax has been reached. In the case

of image completion, however, it turns out that we also have to apply an additional

filtering procedure as part of label pruning. The problem is that otherwise we may

4.3 Priority-BP 105

(a) (b)

5 10 15 20

25%

50%
’number of active labels’ histogram

(c) (d)

Fig. 4.8: (a) Although the red, green and blue patches correspond to distinct labels, they

are very similar and so only one has to be an active label for a node. (b) A map with

the number of active labels per node (for the 2nd example of Figure 4.6). Darker patches

correspond to nodes with fewer labels. As can be seen interior nodes often require more

labels. (c) The corresponding histogram showing the percentage of nodes using a certain

number (in the range Lmin = 3 to Lmax = 20) of active labels. (d) The active labels for

node a in Fig. (a).

end up having too many active labels which are similar to each other, thus wasting

part of the Lmax labels we are allowed to use. This issue is further illustrated in

Figure 4.8(a). To this end as we traverse the sorted labels we declare a label as

active only if it is not similar to any of the already active labels (where similarity is

measured by calculating the SSD between image patches), otherwise we skip that

label and go to the next one. Alternatively, we apply a clustering procedure to the

patches of all labels beforehand (e.g cluster them into textons) and then never use

more than one label from each cluster while traversing the sorted labels. Finally,

we should note that for all nodes a (user-specified) minimum number of active

labels Lmin is always kept.

The net result of label pruning is thus to obtain a compact and diverse set of

active labels for each MRF node (all of them having reasonably good beliefs). E.g

Figure 4.8(b) displays the number of active labels used by each of the nodes in

the second example of Figure 4.6. The darker a patch is in that figure the fewer

106 Priority-BP and the Problem of Image Completion

are the active labels of the corresponding node. As it was expected, interior nodes

often require more active labels to use. The corresponding histogram showing

the percentage of nodes that use a certain number of active labels is displayed

in Figure 4.8(c). Notice that more than half of the MRF nodes do not use the

maximum number of active labels (which was Lmax = 20 in this case). Also,

Fig. 4.8(d) displays the active labels that have been selected by the algorithm for

node a in Fig. 4.8(a).

4.4 Extensions & further results

Completion via energy refinement: One advantage of posing image com-

pletion as an optimization problem is that one can now refine completion simply

by refining the energy function (i.e adding more terms to it). E.g to favor spatial

coherence during image completion (i.e fill the target region with large chunks

of the source region) one simply needs to add the following ‘‘incoherence penalty

terms’’ V 0
pq to our energy function: V 0

pq(xp, xq) = w0 if xp − xq 6= p− q, while in all

other cases V 0
pq(xp, xq) = 0. These terms simply penalize (with a weight w0) the as-

signment of non-adjacent patches (with centers xp, xq) to adjacent nodes p, q and

have proved useful in texture synthesis problems (e.g see Figure 4.13). Thanks

to the ability of Priority-BP to handle effectively any energy function we intend to

explore the utility (with respect to image completion) of many other refinement

terms in the future. We believe that this will also be an easy and effective way

of applying prior knowledge or imposing user specified constraints on the image

completion process.

Pyramid-based image completion: Another important advantage of our method

is that it can also be used in multi-scale image completion, where a Gaussian

pyramid of images Ik, Ik−1, . . . , I0 is given as input. For this we begin by applying

Priority-BP to the image at the coarsest scale Ik. The output of this procedure

is then up-sampled and the result, say I ′k, is used for guiding the completion of

the image Ik−1 at the next finer scale. To this end the only part of our algorithm

that needs to be modified is that of how label costs are computed. In particu-

lar the mask M in (4.1) will be now non zero everywhere and so not only pixels

from the source region of Ik−1 are taken into account, but also pixels from the

4.4 Extensions & further results 107

Fig. 4.9: Image completion. From left to right: original images, masked images, visiting

order at 1st forward pass, Priority-BP results

unknown target region, where now the values for these pixels are borrowed from

the approximation image I ′k. The rest of the algorithm remains the same and this

process is repeated until we reach the image at the finest scale I0. An advantage

we gain this way is that features at multiple scales can be captured.

Figures 4.9, 4.14 contain further results on image completion. These re-

sults along with those in Figure 4.6 demonstrate the effectiveness of our method,

which was tested on a wide variety of input images. As can be seen from the

presented examples, Priority-BP was able to handle the completion of smooth

108 Priority-BP and the Problem of Image Completion

(a) Input

texture

(b) Visiting order during 1st

forward pass

(c) Output texture

Fig. 4.10: texture synthesis results produced with the Priority-BP algorithm

regions, textured areas, areas with structure as well as any combinations of the

above. Also, figure 4.10 contains some examples on texture synthesis. These were

again produced by utilizing our exemplar-based framework. In addition, Figure

4.11 demonstrates another possible application of Priority-BP. In this case, it has

been used for accomplishing the task of removing text from images whereas, in

Figure 4.12, Priority-BP has been employed as an image inpainting tool for the

restoration of a destroyed digital photograph. Our method had no problem of

handling these tasks as well. At this point, it is important to emphasize the fact

that, in all of the above cases, exactly the same algorithm has been used.

In Figure 4.13 we demonstrate an example of using the ‘‘incoherence penalty

terms’’ in texture synthesis. As one can observe the output texture does contain

large chunks of the input texture as intended. Also, in the last example of Fig-

4.4 Extensions & further results 109

(a) Input image with text (b) Visiting order at 1st

forward pass

(c) Priority-BP result

Fig. 4.11: An example of text removal

(a) Input image (b) Visiting order at 1st

forward pass

(c) Priority-BP result

Fig. 4.12: An image inpainting example

ure 4.9 we show the final result of a pyramid-based image completion. In this case

the input image was 481 × 321 and a 2-level pyramid has been used. We note

here that, for all of the presented examples, the visiting order of the nodes during

the first forward pass is shown as well. This contributes to illustrating how the

algorithm initially chooses to propagate information (i.e messages) for each one of

the input images. In our tests the patch size ranged between 7 × 7 and 27 × 27.

The running time on a 2.4GHz CPU varied from a few seconds up to 2 minutes for

Fig. 4.13: Texture synthesis using the ‘‘incoherence penalty terms’’. Notice that, in this

case, the output texture has been synthesized by copying large chunks from the input

texture.

110 Priority-BP and the Problem of Image Completion

256× 170 images, while the maximum number of labels Lmax was set between 10

and 50 (depending on the the input’s difficulty). For all of the examples the belief

thresholds were set equal to bconf=−ssd0, bprune=−2·ssd0, where ssd0 represents

a predefined mediocre SSD score between w × h patches. For the composition

of the final patches these are usually blended with weights that are proportional

to the confidence of the corresponding nodes. This technique gave very good re-

sults in practice, while more elaborate schemes like feathering or multi-resolution

splining have been also tried in some cases.

Finally, another point, that is worth mentioning (as it brings a great reduction

in the computational time), is the use of the fast Fourier Transform for performing

all SSD calculations needed by the algorithm [72, 121]. More specifically, the

estimation of all label costs as well as all pairwise potentials requires many SSD

computations. E.g, as indicated by equation (4.1), for estimating the label costs

for a node p we need to calculate the SSD between a local neighborhood around

p, say I0(p + dp), and every other source patch, say I0(xp + dp), with the result

being multiplied by a maskM(p + dp), i.e.:

Vp(xp) =
∑

dp

M(p + dp)
(

I0(p + dp)− I0(xp + dp)
)2

. (4.6)

By defining, however, the following identities:

t , xp

I1(dp) , I0(p + dp)

M1(dp) ,M(p + dp)

and substituting them into equation (4.6), that equation reduces to:

Vp(t) =
∑

dp

M1(dp)
(

I1(dp)− I0(t + dp)
)2

=
∑

dp

M1(dp)I1(dp)2 − 2
∑

dp

M1(dp)I1(dp)I0(t + dp) +
∑

dp

M1(dp)I0(t + dp)2

which can be also written as an expression involving correlations between func-

tions:

Vp(t) = 〈M1, I
2
1 〉(0)− 2〈M1 · I1, I0〉(t) + 〈M1, I

2
0 〉(t).

4.5 Conclusions 111

In the above expression, 〈· , ·〉 denotes the correlation operation. Furthermore,

the first term (i.e. 〈M1, I
2
1 〉(0)) is independent of t, which means that it can be

precomputed, and so we can estimate all values of function Vp(·) just by using two

correlation operations. However, the important thing to note is that these corre-

lations can now be computed very efficiently simply by moving to the frequency

domain and using the fast Fourier Transform (FFT) [109] therein. This way of

performing the computations greatly accelerates the whole process and can be

applied for estimating the pairwise potentials Vpq(·, ·) as well.

4.5 Conclusions

A novel approach which treats image completion, texture synthesis and image

inpainting in a unified manner has been presented. To avoid visually inconsistent

results due to greedy patch assignments, we pose all of these tasks in the form

of a discrete labeling problem with a well defined objective function. To solve that

problem a novel global optimization scheme, Priority-BP, has been proposed that

carries two very important extensions over standard BP: priority-based message

scheduling and label pruning. Our algorithm does not rely on image-specific prior

knowledge and can be applied to any kind of images. Furthermore, it is generic

(i.e applicable to any MRF energy) and thus copes with one of the main limitations

of BP: its inefficiency to handle problems with a huge number of labels. Finally, a

wide variety of examples have verified its effectiveness.

112 Priority-BP and the Problem of Image Completion

Fig. 4.14: Some more results on image completion, produced using the Priority-BP algo-

rithm. From left to right: original images, masked images, visiting order at 1st forward

pass, Priority-BP results

C H A P T E R 5

3D Visual Reconstruction of Large Scale

Natural Sites

During this chapter, as an application of our LP-based MRF optimization tech-

niques that we have introduced earlier, we will turn our attention to a different re-

search topic: the proposal of novel image based modeling and rendering methods,

which are capable of automatically reproducing faithful (i.e. photorealistic) digital

copies of complex 3D virtual environments, while also allowing the virtual explo-

ration of these environments at interactive frame rates. This topic lies at the conver-

gence of two research fields that are normally considered to be on opposite sides:

computer vision and computer graphics. Traditionally, computer graphics starts

with input geometric models and tries to produce images, while computer vision

works the other way around, i.e. it starts with images (or image sequences) and pro-

duces geometric models. Recently, however, there has been a convergence of these

two fields somewhere in the middle and the main reason for that was the introduc-

tion of the so-called IBMR (Image Based Modeling and Rendering) techniques. In this

case, computer graphics is concerned with the image-based-rendering part, while

computer vision is employed during the image-based-modeling process of IBMR

methods. IBMR techniques have received growing interest over the last years and

many of the related techniques that have been proposed managed to give excellent

results in a lot of cases. Nevertheless, despite the many advantages of IBMR meth-

ods, these techniques also exhibit certain limitations. For instance, in order to work

properly, they typically require very large amount of image data, which has as a re-

sult that these methods are difficult to use for the virtual reconstruction of large scale

3D environments. Thus, despite the large number of IBMR methods that have been

proposed so far, only few of them are capable of dealing with 3D scenes of large size.

Based on these observations, and in order to overcome the limitations of current

IBMR methods, this chapter presents a hybrid (geometry- & image-based) IBMR

114 3D Visual Reconstruction of Large Scale Natural Sites

technique suitable for providing interactive walkthroughs of large, complex outdoor

scenes. To this end, a new hybrid representation of a 3D scene is proposed, called

‘‘morphable 3D-mosaics’’. In our case, motion is restricted along a smooth prede-

fined path and the input to our system is a sparse set of stereoscopic views at

certain points (key-positions) along that path (one view per position). An approxi-

mate local 3D model is constructed from each view, capable of capturing photometric

and geometric properties of the scene only locally. Then during the rendering pro-

cess, a continuous morphing (both photometric & geometric) takes place between

successive local 3D models, using what we call a ‘‘morphable 3D-model’’. The

morphing proceeds in a physically-valid way. For this reason, a wide-baseline

image matching technique is proposed, handling cases where the wide baseline

between the two images is mainly due to a looming of the camera. Our system can

be also extended in the event of multiple stereoscopic views (and therefore multiple

local models) per key-position of the path (related by a camera rotation). In that

case one local 3D-mosaic (per key-position) is constructed comprising all local 3D

models therein and a ‘‘morphable 3D-mosaic’’ is used during the rendering pro-

cess. A partial-differential equation is adopted to handle the problem of geometric

consistency of each 3D-mosaic.

As we shall see, both for the local 3D-models extraction, as well as for the

construction of the morphable 3D-mosaics (i.e. the morphing estimation), MRFs

will play a very crucial role. Therefore, robust as well as efficient techniques are

needed for optimizing them. As expected, our MRF optimization methods introduced

in chapter 3 are going to be used for that purpose. Based on these observations,

the main goals of this chapter are thus twofold: On one hand, it presents the main

ingredients of our IBMR framework and explains its main contributions. On the

other hand, it also shows how our MRF techniques can be employed as part of

a complete practical application. In addition, we should note that our framework

has already been successfully applied for the virtual reconstruction of the Samaria

gorge in Crete, which is one of the largest and most magnificent gorges in Europe.

Therefore, for demonstrating the effectiveness of our framework, a sample from the

results that were obtained during this virtual reconstruction of the Samaria gorge

will be presented at the end of this chapter as well.

5.1 Introduction 115

Reality is merely an illusion, albeit a very persistent one.

—Albert Einstein (1879–1955)

5.1 Introduction

One research problem of computer graphics that has attracted a lot of atten-

tion over the last years is the creation of modeling and rendering systems capable

to provide photorealistic & interactive walkthroughs of complex, real-world envi-

ronments. Two are the main approaches that have been proposed so far for that

purpose. On one hand, there exist those techniques that are geometry-based.

techniques first try to estimate an accurate global 3D model of the scene. They

then use the extracted 3D model in order to render the scene under any given

viewpoint. One of their advantages is that they provide great flexibility and allow

many of the scene’s properties to be modified during rendering. E.g. by having a

global 3D model one can readily alter not only the viewpoint, but also the lighting

conditions of the scene. However, their big disadvantage comes from the fact that

extracting an accurate global 3D model can be either extremely time consuming

or very difficult (not to say impossible) in many cases. For example such a 3D-

model construction task can be easy for scenes containing mostly planar objects

(e.g. architectural-type scenes), but becomes extremely hard for outdoor scenes

containing objects with irregular geometry e.g. trees. The automatic extraction of

a 3D-model from images, also known as multiple view geometry, has been (and

still is) an active research topic in computer vision. In fact a significant amount

of progress has been achieved in this area over the last years [44,60,92].

A second class of techniques that has emerged during the last years are the so-

called Image Based Rendering (IBR) methods [96]. These techniques concentrate

their effort directly on how to fill the pixels of a novel view and skip the geometric

modeling of the scene completely. In place of the geometric modeling, a dense set

of images inside the scene is captured as a first step. One then tries to synthesize

any given view by appropriately resampling the previously acquired set of cap-

tured images. By thinking of the world’s appearance as a dense array of light rays

filling the space, one can easily see that what all image based rendering methods

116 3D Visual Reconstruction of Large Scale Natural Sites

actually try to do is to reconstruct the so-called plenoptic function [1]. This is a

7-dimensional function P (Vx, Vy, Vz, θ, φ, λ, t), which models a 3D dynamic envi-

ronement by recording the light rays at every space location (Vx, Vy, Vz), towards

every possible direction (θ, φ), over any range of wavelengths λ and at any time

t (see Figure 5.1). Each time we capture an image by a camera, the light rays

passing through the camera’s center of projection are recorded and so that im-

age can be considered as a specific sample of the plenoptic function. Based on

these observations, image based rendering can thus be thought of as the signal

processing task of reconstructing a continuous functions (in this case the plenoptic

function) based only on a discrete set of samples from that function. As IBR meth-

ods make use of actual images from the scene under consideration, one of their

greatest advantages is the fact that they can attain high levels of photorealism.

However, this comes at the price of requiring a big number of captured images.

This actually forms one of the biggest problem of IBR methods and is the main

reason that the great majority of existing IBR techniques can be applied only to

scenes of either small or medium scale. If one tries to apply such techniques to

large scale scenes, then he is confronted with a huge amount of data required

which makes these methods impractical for such cases.

So, while a lot of research has been done regarding small scale scenes, there

are only few examples of work dealing with large scale environments. The pre-

sented framework is such an example of a hybrid (geometry and image based)

approach, capable of providing photorealistic and interactive walkthroughs of

large-scale, complex outdoor environments. To this end, one major contribution

of this work is the proposal of a novel data representation for a 3D scene, called

morphable 3D-mosaics, consisting of a series of morphable (both geometrically

and photometrically) 3D models. The main assumption is that during the walk-

through, the user motion takes place along a (relatively) smooth, predefined path

t, λ

Fig. 5.1: A schematic view of the plenoptic function

5.1 Introduction 117

of the environment. The input to our system is then a sparse set of stereoscopic

views captured at certain locations (which we will call ‘‘key-positions’’ hereafter)

along that path (see Figure 5.2a). Assuming that initially there is only one view

per key-position, a series of local 3D models are then constructed, one for each

stereoscopic view, with these local models capturing the photometric and geomet-

ric properties of the scene at a local level and containing only an approximate

representation of the scene’s geometry (see Figure 5.2b). Then, instead of trying

to create a global 3D model out of all these local models (a task that can prove

to be extremely difficult in many cases and requires a very accurate registration

between local models), we rather follow a different approach. The key idea is

that during the transition between any two successive key-positions pos1, pos2,

along the path (with corresponding local models L1 and L2), a ‘‘morphable 3D-

model’’ Lmorph is displayed by the rendering process (see Figure 5.2c). At point

pos1 this model coincides with L1, while as we are approaching pos2 it is gradually

transformed into L2, coinciding with the latter upon reaching key-position pos2.

It is important to note that this morphing between local models is both photo-

metric and geometric. Moreover, we always ensure that the morphing proceeds

in a physically-valid way and is thus transparent to the user of the system. To

this end, a wide-baseline image matching technique is proposed which is capable

of extracting a dense field of correspondences between images whose difference

in appearance is mainly due to a looming of the camera. Therefore, during the

rendering process, and as the user traverses the predefined path, a continuous

morphing between successive local 3D models takes place all the time.

Our system can be also extended to handle the existence of multiple stereo-

scopic views per key position of the path, which are all related by a pure rotation of

stereoscopic views local 3D models

L1

L3
L2

key-positions

pos1

pos3

pos2

a b c

L3
L1 L2Lmorph

morphable 3D model

Fig. 5.2: Overview of our approach: (a) A sparse set of stereoscopic views is captured at

key-positions along the path (b) One local 3D model is constructed out of each stereo-

scopic view (c) As the user traverses the path a morphable 3D model is displayed during

rendering. This way a continuous morphing between successive local models takes place

at any time, with this morphing being both photometric as well as geometric.

118 3D Visual Reconstruction of Large Scale Natural Sites

the stereoscopic camera. In that case, there will also be multiple local models per

key-position. Therefore, before applying the morphing procedure, a 3D-mosaic per

key-position needs to be constructed as well. Each 3D-mosaic will simply com-

prise the multiple local models at the corresponding key-position and will itself

be a bigger local model covering a wider field of view. Morphing can then proceed

in the same way as before with the only difference being that these 3D-mosaics

will be the new local 3D models to be used during the stage of morphing (in place

of the smaller individual ones). So, during morphing, instead of a morphable 3D

model we will now have a morphable 3D mosaic.

Regarding the advantages of the proposed framework, the following points

could be made:

• To start with, it offers a very flexible way of representing a 3D scene in

the sense that one can put more emphasis either on the geometric or the

image based representation of the scene simply by respectively decreasing

or increasing the number of key-positions.

• No global 3D model of the environment needs to be assembled, a process

which can be extremely cumbersome and error-prone for large scale scenes

e.g. the global registration of multiple local models can accumulate a great

amount of error, while it also presumes a very accurate extraction of the

underlying geometry. On the contrary, no such accurate geometric recon-

struction of the individual local 3D models nor a very precise registration

between them is required by our framework in order that it can produce

satisfactory results.

• On the other hand, by making use of an image-based data representation,

our framework is also capable of reproducing the photorealistic richness of

the scene.

• At the same time it offers scalability to large scale environments, as only one

‘‘morphable 3D-model’’ is displayed at any time, while it also makes use of a

rendering path which is highly optimized in modern 3D graphics hardware.

• Data acquisition is very easy (e.g. collecting the stereoscopic images for a

path over 100 meters long took us only about 20 minutes) and requires no

5.1 Introduction 119

special or expensive equipment (just a pair of digital cameras and a tripod)

• Finally, our framework makes up an end-to-end system thus providing an

almost automated processing of the input data which are just a sparse set

of stereoscopic images.

Besides proposing a novel data representation for a 3D scene that makes use

of a concurrent photometric and geometric morphing procedure, various other

contributions are included as part of our image-based modeling and rendering

system:

• For instance, in the context of photometric morphing, a robust method for

obtaining a dense field of correspondences between wide baseline images

is proposed. On one hand, this task is reduced to a discrete energy min-

imization problem. On the other hand, for dealing with the existence of a

wide baseline, the resulting change of scale between pixels is also taken into

account during matching.

• Similarly, as part of obtaining a physically valid geometric morphing, a novel

approach for extracting the required 3D correspondences between local 3D

models is included. Our method is based on solving just a standard partial

differential equation and is very fast.

• Furthermore, in the context of the 3D mosaics construction, a technique

for combining local 3D models (related to each other by a 3D rotation) is

presented, which is again based on solving a standard partial differential

equation. Our method can cope with errors in the geometry of the local

3D models and always ensures that a consistent 3D mosaic is generated.

To this end, geometric rectifications are applied to each one of the local 3D

models during their merging.

• Finally, as part of our rendering pipeline, we propose the use of modern

graphics hardware to perform both photometric and geometric morphing,

thus drastically reducing the rendering time.

120 3D Visual Reconstruction of Large Scale Natural Sites

5.2 Related work

Many examples of geometry-based modeling methods of real world scenes can

be found in the computer vision literature [76,99,120,123–125,131]. One such

characteristic example is the work of Pollefey et al. [106] on 3D reconstruction from

hand-held cameras. Debevec et al. [37,38] propose a hybrid (geometry- and image-

based) approach, which makes use of view dependent texture mapping. However,

their work is mostly suitable for architectural type scenes. Furthermore, they

also assume that a basic geometric model of the whole scene can be recovered

interactively. In [50], an image-based technique is proposed by which an end-

user can create walkthroughs from a sequence of photographs, while in ‘‘plenoptic

modeling’’ [97] a warp operation is introduced that maps panoramic images (along

with disparity) to any desired view. However, this operation is not very suitable

for use in modern 3D graphics hardware. Lightfield [86] and Lumigraph [57] are

two popular image-based rendering methods, but they require a large number of

input images and so they are mainly used for small scale scenes.

To address this issue work on unstructured/sparse lumigraphs has been pro-

posed by various authors. One such example is the work of Buehler et al. [29].

However, in that work, a fixed geometric proxy (which is supposed to describe

the global geometry of the scene at any time instance) is being assumed, an as-

sumption that is not adequate for the case of 3D data coming from a sequence of

sparse stereoscopic views. This is in contrast to our work where view-dependent

geometry is being used due to the continuous geometric morphing that is tak-

ing place. Another example of a sparse lumigraph is the work of Schirmacher

et al. [116]. Although they allow the use of multiple depth maps, any possible

inconsistencies between them are not taken into account during rendering. This

is again in contrast to our work, where an optical flow between wide-baseline

images is estimated to deal with this issue. Furthermore, this estimation of opti-

cal flow between wide baseline images reduces the required number of views. For

these reasons, if any of the above two approaches were to be applied to large-scale

scenes, like those handled in our case, many more images (than ours) would then

be needed. Also, due to our rendering path which can be highly optimized in

modern graphics hardware, we can achieve very high frame rates during render-

ing, while the corresponding frame rates listed in [116] are much lower due to

5.3 Overview of the modeling pipeline 121

an expensive barycentric coordinate computation which increases the rendering

time.

In [137] Vedula et al. make use of a geometric morphing procedure as well,

but it is used for a different purpose which is the recovery of the continuous 3D

motion of a non-rigid dynamic event (e.g. human motion). Their method (like

some other methods [95, 152]) uses multiple synchronized video streams com-

bined with IBR techniques to render a dynamic scene, but all of these approaches

are mostly suitable for scenes of smaller scale (than the ones we are interested

in), since they assume that all of the cameras are static. Also, in the ‘‘Interactive

visual tours’’ approach [135], video (from multiple cameras) is being recorded as

one moves along predefined paths inside a real world environment and then image

based rendering techniques are used for replaying the tour and allowing the user

to move along those paths. This way virtual walkthroughs of large scenes can be

generated. Finally, in the ‘‘sea of images’’ approach [3], a set of omnidirectional

images are captured for creating interactive walkthroughs of large, indoor envi-

ronments. However, this set of images is very dense with the image spacing being

≈ 1.5 inches.

5.3 Overview of the modeling pipeline

A diagram of our system’s modeling pipeline is shown in Figure 5.3. We

will first consider the simpler case of having only one stereoscopic view per key-

position of the path.

Prior to capturing these stereoscopic views, a calibration of the stereoscopic

camera needs to take place first. During this stage both the external parameters

(i.e. the relative 3D rotation and translation between the left and right camera),

stereoscopic
camera

calibration

stereoscopic
camera

calibration

local
3D models

construction

local
3D models

construction

3D-mosaics
construction

3D-mosaics
construction

approximate
registration of

successive
local 3D models

approximate
registration of

successive
local 3D models

estimation of
photometric
morphing

estimation of
geometric
morphing

3D morphable models
construction

Are there
multiple views

per
key-position?

Are there
multiple views

per
key-position?

YES

NO

Fig. 5.3: The modeling pipeline

122 3D Visual Reconstruction of Large Scale Natural Sites

as well as the internal parameters of the stereoscopic camera are estimated. We

make the common assumption that both the left and right camera are modeled

by the usual pinhole. In this case their internal parameters are contained in the

so-called intrinsic matrices Kleft, Kright. Any such matrix has the following form:











fx c u0

0 fy v0

0 0 1











where (fx, fy) represents the focal length, c describes the skewness of the 2 image

axes while (u0, v0) represents the principal point. We also model (both radial and

tangential) lens distortion and the following model is assumed for this purpose:





x̂

ŷ



 =





1 + d1r
2 + d2r

4 + d5r
6 + 2d3xy + d4(r

2 + 2x2)

1 + d1r
2 + d2r

4 + d5r
6 + d3(r

2 + 2y2) + 2d4xy





where (x, y) are the ideal (distortion-free) pixel coordinates, (x̂, ŷ) are the corre-

sponding observed image coordinates and r =
√

x2 + y2. For estimating all of

these parameters we apply a method similar to that in [23], using as input stereo-

scopic image pairs of a calibrated chess pattern captured at random positions and

orientations by our camera (see Figure 5.4).

After the camera calibration has finished, then the following stages of the

modeling pipeline need to take place:

1. Local 3D models construction (section 5.4): A photometric and geometric

representation of the scene near each key-position of the path is constructed.

The geometric part of a local model needs to be only an approximation of the

true scene geometry.

Fig. 5.4: For calibrating our camera we capture images of a chess pattern at random

positions and orientations.

5.4 Local 3D models construction 123

2. Approximate registration between successive local 3D models (section 5.5):

An estimation of the relative pose between successive local models takes

place here. We should note that only a coarse estimate of the relative pose

is needed, since this will not be used for an exact registration of the local

models, but merely for the morphing procedure that takes place later.

3. 3D morphable models construction (section 5.6): The photometric as well as

the geometric morphing between successive local 3D models is estimated

during this stage of the modeling pipeline.

In the case that there are multiple views per key position of the path, then, as

already explained, there will also have to be an additional stage responsible for the

3D-mosaics construction. This stage needs to take place prior to the registration

step and is described in section 5.8. Finally, we describe the rendering pipeline

of our system in section 5.7.

5.4 Local 3D models construction

For each stereoscopic image pair, a 3D model describing the scene locally

(i.e. as seen from the camera viewpoint) must be produced during this stage.

To this end, a stereo matching procedure is applied to the left and right images

(denoted Ileft and Iright), so that disparity can be estimated for all points inside a

selected image region dom0 of Ileft (see section 5.4.1 about how this disparity can

be estimated). Using then the resulting disparity map (as well as the calibration

matrices of the cameras) a 3D reconstruction takes place and thus the maps X0,

Y0 and Z0 are produced (see Fig. 5.5(a)). These maps respectively contain the x,

y and z coordinates of the reconstructed points with respect to the 3D coordinate

system of the left camera.

The set L0 = (X0, Y0, Z0, Ileft, dom0) consisting of the images X0, Y0, Z0 (the

geometric-maps), the image region dom0 (valid domain of geometric-maps) and

the image Ileft (the photometric map) makes up what we call a ‘‘local model’’ L0.

Hereafter that term will implicitly refer to such a set of elements. By applying a

2D triangulation on the image grid of a local model, a textured 3D triangle mesh

can be produced. The 3D coordinates of triangle vertices are obtained from the

underlying geometric maps while texture is obtained from Ileft and mapped onto

124 3D Visual Reconstruction of Large Scale Natural Sites

(a) (b)

Fig. 5.5: (a) Depth map Z0 of a local model (black pixels do not belong to its valid region

dom0). (b) A rendered view of the local model using an underlying triangle mesh

the mesh (see Fig. 5.5(b)). It should be noted that the geometric maps of a local

model are expected to contain only an approximation of the scene’s true geometric

model.

5.4.1 Disparity estimation

Disparity estimation proceeds in two stages (see Figure 5.6). During the first

stage, we reduce the problem of stereo matching to a discrete labeling problem

which is going to be solved through the energy optimization a 1st order Markov

Random Field. The nodes of the corresponding MRF are going to be the pixels of

the left image and the single node potential for assigning disparity dp to pixel p is

going to be estimated as follows:

Vp(dp) = |Iright(p− dp)− Ileft(p)|2

Furthermore, for the pairwise potentials the truncated semimetric distance be-

tween disparities has been used, i.e.:

Vpq(dp, dq) = min(λ0, |dp − dq|
2) ,

where λ0 denotes the maximum allowed penalty that can be imposed. For the

optimization of the above MRF, the LP-based algorithms (introduced in chapter 3)

have been used, since they can always guarantee a solution which is close to the

optimal one. The role of the first stage is to produce a good initial estimate of the

disparity and to avoid any bad local minima during the optimization process.

Its output is then given as input to the next stage of the disparity estimation

5.5 Relative pose estimation between successive local models 125

Initial disparity
through discrete MRF

optimization

Initial disparity
through discrete MRF

optimization

Global refinement
of disparity field

for subpixel accuracy

Global refinement
of disparity field

for subpixel accuracy

Fig. 5.6: The 2 stages needed for disparity estimation

process, where a global refinement of the disparity field is taking place. To this

end, the energy of a first order Markov Random Field is again being minimized.

The difference, however, with respect to the first stage, is that now a local continu-

ous optimization scheme is being used so that disparities with subpixel accuracy

can be obtained. In particular, we use a standard gradient descent type algorithm

for minimizing the following energy function:

∑

(i,j)

(

Iright(i− dij, j)− Ileft(i, j)
)2

+ λ
∑

(i,j)

∑

p∈Nij

g(dij − dp) ,

where Nij is the 4-point neighborhood of pixel (i, j) and dij again represents the

unknown disparity field. The λ parameter is a regularization parameter, while

the potential function g(·) is chosen to be discontinuity adaptive [19] (e.g. a

truncated quadratic distance), so that a regularized solution, which also preserves

discontinuities, is finally computed. The disparity field is initialized with the

values estimated during the first stage. Due to this initialization the gradient

descent algorithm usually converges very fast and does not get trapped to any

poor local minima.

5.5 Relative pose estimation between successive lo-

cal models

Let Lk=(Xk,Yk,Zk, Ik, domk) and Lk+1=(Xk+1,Yk+1, Zk+1, Ik+1, domk+1) be 2

successive local models along the path. For their relative pose estimation, we

need to extract a set of point matches (pi, qi) between the left images Ik, Ik+1 of

models Lk, Lk+1 respectively (see section 5.5.1). Assuming that such a set of

matches already exists, then the pose estimation can proceed as follows: the

3D points of Lk corresponding to pi are Pi = (Xk(pi), Yk(pi), Zk(pi)) and so the

reprojections of pi on image Ik+1 are: p′i = Kleft(R · Pi + T) ∈ P
2, where R (a

126 3D Visual Reconstruction of Large Scale Natural Sites

3 × 3 orthonormal matrix) and T (a 3D vector) represent the unknown rotation

and translation respectively.

So the pose estimation can be achieved by minimizing the following reprojec-

tion error:
∑

i

dist(qi, p
′
i)

2

where dist denotes euclidean image distance. For this purpose, an iterative

constrained-minimization algorithm may be applied with rotation represented in-

ternally by a quaternion q (‖q‖=1). The essential matrix (also computable by

the help of the matches (pi, qi) and Kleft, Kright) can be used to provide an initial

estimate [60] for the iterative algorithm.

5.5.1 Wide-baseline feature matching under camera looming

Therefore the pose estimation problem is reduced to that of extracting a sparse

set of correspondences between Ik, Ik+1. A usual method for tackling the latter

problem is the following: first a set of interest-points in Ik are extracted (using

an interest-point detector). Then for each interest-point, say p, a set of candidate

points CANDp inside a large rectangular region SEARCHp of Ik+1 are examined and

the best one is selected according to a similarity measure. Usually the candidate

points are extracted by applying an interest-point detector to region SEARCHp as

well.

However unlike left/right images of a stereoscopic view, Ik and Ik+1 are sep-

arated by a wide baseline. Simple measures like correlation have been proved

extremely inefficient in such cases. Assuming a smooth predefined path (and

therefore a smooth change in orientation between Ik, Ik+1), it is safe to assume

that the main difference at an object’s appearance in images Ik and Ik+1, comes

from the forward camera motion along the Z axis (looming). The idea for extracting

valid correspondences is then based on the following observation: the dominant

effect of an object being closer to the camera in image Ik+1 is that its image region

in Ik+1 appears scaled by a certain scale factor s>1. That is, if p∈Ik, q ∈Ik+1 are

corresponding pixels: Ik+1(sq) ≈ Ik(p). So an image patch of Ik at p should look

similar to an image patch of an appropriately rescaled (by s−1) version of Ik+1.

Of course, the scale factor s varies across the image. Therefore the following

5.5 Relative pose estimation between successive local models 127

(a) (b)

Fig. 5.7: (a) Image Ik along with computed optical flow vectors (blue segments) for all

points marked white. (b) Image Ik+1 along with matching points (also marked white)

for all marked points of (a). A few epipolar lines are also shown. In both images, the

yellow square around a point is analogous to the point’s estimated scale factor (10 scales

S = {1, 0.9−1, ..., 0.1−1} have been used).

(a) image Ik (b) image Ik+1

(c) image Ik (d) image Ik+1

Fig. 5.8: Two more examples (one example per row) of wide baseline matching from an-

other scene. Optical flow vectors (on image Ik) as well as estimated epipolar lines (on

image Ik+1) are shown again. Also, notice the large camera motion taking place in the

top example e.g. the stones in the water appear much closer to the camera in figure (b)

than in figure (a).

strategy, for extracting reliable matches, can be applied:

1. Quantize the scale space of s to a discrete set of values S = {sj}
n
j=0, where

1 = s0 < s1 < ... < sn

2. Rescale Ik+1 by the inverse scale s−1
j for all sj ∈ S to get rescaled images

Ik+1,sj

For any q ∈ Ik+1, p ∈ Ik, let us denote by Ik+1,sj
(q) a (small) fixed-size patch

128 3D Visual Reconstruction of Large Scale Natural Sites

around the projection of q on Ik+1,sj
and by Ik(p) an equal-size patch of Ik

at p.

3. Given any point p ∈ Ik and its set of candidate points CANDp = {qi} in Ik+1,

use correlation to find among the patches at any qi and across any scale sj,

the one most similar to the patch of Ik at p:

(q′, s′) = arg max
qi,sj

corr(Ik+1,sj
(qi), Ik(p)).

This way, apart from a matching point q′ ∈ Ik+1, a scale estimate s′ is

provided for point p as well.

The above strategy has been proved very effective, giving a high percentage of exact

matches even in cases with very large looming. Such an example can be seen in

Fig. 5.7 wherein the images baseline is ≈ 15 meters, resulting in scale factors of

size ≈ 2.5 for certain image regions. Even if we set as candidate points CANDp

of a point p, all points inside SEARCHp in the other image (and not only detected

interest-points therein), the above procedure still picks the right matches in most

cases. The results in Figure 5.8 have been produced in this way.

5.6 Morphing estimation between successive local

models

At the current stage of the modeling pipeline, a series of approximate local

3D models (along with approximate estimates of the relative pose between ev-

ery successive two) are available to us. Let Lk = (Xk, Yk, Zk, Ik, domk), Lk+1 =

(Xk+1, Yk+1, Zk+1, Ik+1, domk+1) be such a pair of successive local models and

posk, posk+1 their corresponding key-positions on the path. By making use of

the approximate pose estimate between Lk and Lk+1, we will assume hereafter

that the 3D vertices of both models are expressed in a common 3D coordinate

system.

Rather than trying to create a consistent global model by combining all local

ones (a rather tedious task requiring among others high quality geometry and

pose estimation) we will instead follow a different approach, which is based on

5.6 Morphing estimation between successive local models 129

the following observation: near path point posk, model Lk is ideal for representing

the surrounding scene. On the other hand, as we move forward along the path

approaching key-position of the next model Lk+1, the photometric and geometric

properties of the environment are much better captured by that model. (For

example compare the fine details of the rocks that are revealed in Fig. 5.7(b) and

are not visible in Fig. 5.7(a)). So during transition from posk to posk+1, we will try

to gradually morph model Lk into a new destination model, which should coincide

with Lk+1 upon reaching point posk+1. (In fact, only part of this destination model

can coincide with Lk+1 since in general Lk, Lk+1 will not represent exactly the same

part of the scene). This morphing should be geometric as well as photometric (the

latter wherever possible) and should proceed in a physically valid way. For this

reason, we will use what we call a ‘‘morphable 3D-model’’:

Lmorph = Lk ∪ (Xdst, Ydst, Zdst, Idst)

In addition to including the elements of Lk, Lmorph also consists of maps Xdst, Ydst, Zdst

and map Idst containing respectively the destination 3D vertices and destination

color values for all points of Lk. At any time during the rendering process, the 3D

coordinates vertij and color colij of the vertex of Lmorph at point (i, j) will then be:

vertij =











(1−m)Xk(i, j) + mXdst(i, j)

(1−m)Yk(i, j) + mYdst(i, j)

(1−m)Zk(i, j) + mZdst(i, j)











(5.1)

colij = (1−m)Ik(i, j) + mIdst(i, j) (5.2)

where m is a parameter determining the amount of morphing (m=0 at posk,

m=1 at posk+1 and 0<m<1 in between). Specifying therefore Lmorph amounts to

filling-in the values of the destination maps {X,Y, Z, I}dst for each point p ∈ domk.

For this purpose, a 2-step procedure will be followed that depends on whether

point p has a physically corresponding point in Lk+1 or not:

1. Let Ψ be that subset of region domk⊆Ik, consisting only of those Lk points

that have physically corresponding points in model Lk+1 and let uk→k+1 be

a function which maps these points to their counterparts in the Ik+1 image.

(Region Ψ represents that part of the scene which is common to both models

130 3D Visual Reconstruction of Large Scale Natural Sites

Lk, Lk+1). Since model Lk (after morphing) should coincide with Lk+1, it must

then hold:














Xdst(p)

Ydst(p)

Zdst(p)

Idst(p)















=















Xk+1(uk→k+1(p))

Yk+1(uk→k+1(p))

Zk+1(uk→k+1(p))

Ik+1(uk→k+1(p))















∀p ∈ Ψ (5.3)

Points of region Ψ are therefore transformed both photometrically and geo-

metrically.

2. The rest of the points (that is points in Ψ̄=domk\Ψ) do not have counterparts

in model Lk+1. So these points will retain their color value (from model Lk)

at the destination maps and no photometric morphing will take place:

Idst(p) = Ik(p), ∀p ∈ Ψ̄ (5.4)

But we still need to apply geometric morphing to those points so that no

distortion/discontinuity in the 3D structure is observed during transition

from posk to posk+1. Therefore we still need to fill-in the destination 3D

coordinates for all points in Ψ̄.

The 2 important remaining issues (which also constitute the core of the mor-

phing procedure) are:

• How to compute the mapping uk→k+1. This is equivalent to estimating a 2D

optical flow field between the left images Ik and Ik+1.

• And how to obtain the values of the destination geometric-maps at the points

inside region Ψ̄, needed for the geometric morphing therein.

Both of these issues will be the subject of the two subsections that follow.

5.6.1 Estimating optical flow between wide-baseline images Ik

and Ik+1

In general, obtaining a reliable, relatively-dense optical flow field between wide-

baseline images like Ik and Ik+1 is a particularly difficult problem. Without addi-

5.6 Morphing estimation between successive local models 131

tional input, usually only a sparse set of optical flow vectors can be obtained in

the best case. In this case the basic problems are:

1. For every point in Ik, a large region of image Ik+1 has to be searched for ob-

taining a corresponding point. This way the chance of an erroneous optical

flow vector increases significantly (as well as the computational cost)

2. Simple measures (like correlation) are very inefficient for comparing pixel

blocks between wide-baseline images

3. Even if both of the above problems are solved, optical flow estimation is

inherently an ill-posed problem and additional assumptions are needed. In

particular, we need to somehow impose the condition that the optical flow

field will be piecewise smooth.

For dealing with the first problem, we will make use of the underlying geomet-

ric maps Xk,Yk,Zk of model Lk as well as the relative pose between Ik and Ik+1.

By using these quantites, we can theoretically reproject any point, say p, of Ik

onto image Ik+1. In practice since all of the above quantities are estimated only

approximately, this permits us just to restrict the searching over a smaller region

Rp around the reprojection point. The search region can be restricted further by

taking the intersection of Rp with a small zone around the epipolar line corre-

sponding to p. In addition, since we are interested in searching only for points of

Ik+1 that belong to domk+1 (this is where Lk+1 is defined), the final search region

SEARCHp of p will be Rp ∩ domk+1. If SEARCHp is empty, then no optical flow

vector will be estimated and point p will be considered as not belonging to region

Ψ.

For dealing with the second problem, we will use a technique similar to the

one described in section 5.5.1 for getting a sparse set of correspondences. As

already stated therein, the dominant effect due to a looming of the camera is

that pixel neighborhoods in image Ik+1 are scaled by a factor varying across the

image. The solution proposed therein was to compare image patches of Ik not

only with patches from Ik+1, but also with patches from rescaled versions of the

latter image. We will use the same technique here, with the only difference being

that instead of doing that for a sparse group of features we will now apply it to a

dense set of pixels of image Ik. For this purpose we will again use a discrete set

132 3D Visual Reconstruction of Large Scale Natural Sites

of scale factors S = {1=s0<s1<...<sn} and we will rescale image Ik+1 by each one

of these factors where, as before, image Ik+1 rescaled by s−1 (with s ∈ S) will be

denoted by Ik+1,s. As we shall see in the next paragraph, this will have the effect

of having to change the type of labels that we will use in the associated labeling

problem.

Finally, to deal with the ill-posed character of the problem, we will first reduce

the optical flow estimation to a discrete labeling problem and then formulate it

in terms of minimizing the energy of a first order Markov Random Field [87].

What is worth noting here is that, contrary to a standard optical flow estimation

procedure, the labels will now consist of vectors l = (dx, dy, s) ∈ R
2×S, where

the first 2 coordinates denote the components of the optical flow vector while the

third one denotes the scale factor. This means that after labeling, not only an

optical flow, but also a scale estimation will be provided for each point (see Fig.

5.10(a)). Given a label l, we will denote its optical flow vector by flow(l) = (dx, dy)

and its scale by scale(l) = s. Based on what was already mentioned above, the

labels which are allowed to be assigned to a point p in Ik will be coming from the

following set: LABELSp = {q − p : q ∈ SEARCHp} × S. This definition of the label

set LABELSp simply encodes the following two things:

• For any point p of the first image, we are searching for corresponding points

q only inside the restricted region SEARCHp

• We also search across all scales in S, i.e. given a candidate matching point

q ∈ SEARCHp for p, we compare patch Ik(p) ∈ Ik with any of the patches

Ik+1,s(q) ∈ Ik+1,s where the scale s traverses all the elements of set S (see

Figure 5.9). As before Ik(p) denotes a fixed size patch around p, while

Ik+1,s(q) denotes an equal-size patch, which is located around the projection

of q on the rescaled image Ik+1,s.

Getting an optical flow field is then equivalent to picking one element from the

cartesian product LABELS =
∏

p∈Ψ LABELSp. In our case, that element x of

LABELS, which minimizes the following energy should be chosen:

F(x) =
∑

(p,p′)∈ℵ

Vpp′(xp, xp′) +
∑

p∈Ψ

Vp(xp)

5.6 Morphing estimation between successive local models 133

…
q

p
Ik

Ik+1 = Ik+1,s �
Ik+1,s �

Ik+1,s �
Ik+1,s �

Fig. 5.9: Given a point p ∈ Ik and a candidate matching point q ∈ Ik+1, we search across

a range of scales 1=s0 <s1 <...<sn by first projecting q on rescaled images and then

comparing the neighborhood of each of the resulting pixels with the neighborhood of p in

Ik.

(a) (b) (c)

Fig. 5.10: Maps of: (a) scale factors and (b) optical flow magnitudes for all points in

Ψ, as estimated after applying the optical flow algorithm to the images of Fig. 5.7 and

while using 10 possible scales S = {1, 0.9−1, ..., 0.1−1}. (c) Corresponding optical flow

magnitudes when only one scale S = {1} has been used. As expected, in this case the

algorithm fails to produce exact optical flow for points that actually have larger scale

factors. We note that darker pixels in a grayscale image correspond to smaller values.

The first sum in F(x) represents the prior term and penalizes optical flow fields

which are not piecewise smooth, while the second sum in the above energy repre-

sents the likelihood and measures how well the corresponding optical flow agrees

with the observed image data. The symbol ℵ denotes a set of interacting pairs

of pixels inside Ψ (we typically assume a 4-system neighborhood) and Vpp′(·, ·)

denotes the pairwise potential function of the MRF. In our case, this function can

be set as follows:

Vpp′(xp, xp′) = min
(

||flow(xp)− flow(xp′)||2 + |scale(xp)− scale(xp′)|2, λ0

)

,

134 3D Visual Reconstruction of Large Scale Natural Sites

where λ0 denotes the maximum pairwise penalty that can be imposed. Simpler

pairwise potential functions, like the Potts function, have been also tested.

Regarding the terms Vp(xp), these measure the correlation between corre-

sponding image patches as determined by the labeling x. According to a labeling

x, for a point p in Ik its corresponding point is the projection into image Ik+1,scale(xp)

of point p + flow(xp). This means that we should compare the patches Ik(p) and

Ik+1,scale(xp)(p + flow(xp)) and, for this reason, we set:

Vp(xp) = corr(Ik(p) , Ik+1,scale(xp)(p + flow(xp)))

The above energy F(x) can be minimized using any of the LP-based MRF opti-

mization algorithms that we have introduced during chapter 3 of this thesis. The

resulting optical flow, obtained when using the two images of Figure 5.7 as input,

is shown in Figure 5.10. For comparison, we also show there (Figure 5.10(c)) the

corresponding optical flow result, which is estimated if no search across scales

takes place i.e. S = {1}. As expected, in this case, the resulting optical flow is

very noisy for regions that are actually undergoing a large change of scale.

5.6.2 Geometric morphing in region Ψ̄

After estimation of optical flow uk→k+1, we may apply equation (5.3) to all points

in Ψ and thus fill the arrays Xdst, Ydst, Zdst therein (see Fig. 5.11(a)). Therefore, at

Ψ̄

Ψ

∂Ψ̄
(a) (b) (c)

Fig. 5.11: (a) Destination depth map Zdst for points inside region Ψ after using optical

flow of Fig. 5.10(b) and applying eq. (5.3). To completely specify morphing we need to

extend this map to the points in region Ψ̄ (b) Depth map Zdst of (a) extended to points in

Ψ̄ without applying geometric morphing. Notice that there exist discontinuities along the

boundary ∂Ψ̄. (c) Depth map Zdst of (a) extended to points in Ψ̄ after applying geometric

morphing.

5.6 Morphing estimation between successive local models 135

(a) (b) (c)

Fig. 5.12: Rendered views of the morphable 3D-model during transition from the key-

position corresponding to image 5.7(a) to the key-position of image 5.7(b): (a) when no

geometric morphing is applied to points in Ψ̄ and (b) when geometric morphing is applied

to points in Ψ̄. (c) A close-up view of the rendered image in (b). Although there is no

geometric discontinuity, there is a difference in texture resolution between the left part of

the image (points in Ψ̄) and the right part (points in Ψ) because only points of the latter

part are morphed photometrically.

this stage of the modeling pipeline, the values of the destination geometric maps

Xdst, Ydst, Zdst are known for all points inside region Ψ, but are unknown for all

points inside region Ψ̄ = domk\Ψ (i.e. the region which is the complement of Ψ

in domk). Hereafter, the already known values of the destination geometric maps

will be denoted by X̂dst, Ŷdst, Ẑdst, i.e. we define:

X̂dst ≡ Xdst|Ψ, Ŷdst ≡ Ydst|Ψ, Ẑdst ≡ Zdst|Ψ

To completely specify morphing, we still need to fill the values of the destination

geometric maps for all points in Ψ̄ = domk\Ψ. In other words, we need to specify

the destination 3D vertices for all points of Lk in Ψ̄. Since these points do not

have a physically corresponding point in Lk+1, we cannot apply (5.3) to get a

destination 3D vertex from model Lk+1. The simplest solution would be that no

geometric morphing is applied to these points and that their destination vertices

just coincide with their Lk vertices. However, in that case:

• points in Ψ will have destination vertices from Lk+1,

• while points in Ψ̄ will have destination vertices from Lk

The problem resulting out of this situation is that the produced destination maps

Xdst, Ydst, Zdst (see Figs. 5.11(b), 5.12(a)) will contain discontinuities along the

boundary (say ∂Ψ̄) between regions Ψ and Ψ̄, causing this way annoying dis-

continuity artifacts (holes) in the geometry of the ‘‘morphable 3D-model’’ during

136 3D Visual Reconstruction of Large Scale Natural Sites

the morphing procedure. This will happen because the geometry of both Lk and

Lk+1, as well as their relative pose, have been estimated only approximately, and

therefore these two models may not match perfectly when placed in a common 3D

coordinate system.

The right way to fill-in the destination vertices at the points in Ψ̄ is based on

the observation that a physically valid destination 3D model should satisfy the

following 2 conditions:

1. On the boundary of Ψ̄, no discontinuity in 3D structure should exist, i.e. the

unknown values of Xdst, Ydst, Zdst along the boundary ∂Ψ̄ should match the

corresponding known values specified by X̂dst, Ŷdst, Ẑdst along that boundary.

2. In the interior of Ψ̄, the relative 3D structure of the initial Lk model should

be preserved.

Intuitively, these two conditions simply imply that, as a result of morphing, ver-

tices of Lk inside Ψ̄ must be deformed without distorting their relative 3D structure

so as to seamlessly match the 3D vertices of Lk+1 along the boundary of Ψ̄ . In

mathematical terms the first condition obviously translates to:

Xdst|∂Ψ̄ = X̂dst|∂Ψ̄, Ydst|∂Ψ̄ = Ŷdst|∂Ψ̄, Zdst|∂Ψ̄ = Ẑdst|∂Ψ̄

while the second condition, which imposes the restriction of preserving the relative

3D structure of Lk, simply implies:











Xdst(p)−Xdst(p
′)

Ydst(p)− Ydst(p
′)

Zdst(p)− Zdst(p
′)











=











Xk(p)−Xk(p
′)

Yk(p)− Yk(p
′)

Zk(p)− Zk(p
′)











,∀p, p′∈Ψ̄

which is easily seen to be equivalent to:











∇Xdst(p)

∇Ydst(p)

∇Zdst(p)











=











∇Xk(p)

∇Yk(p)

∇Zk(p)











, ∀p ∈ Ψ̄

We may then extract the destination vertices by solving 3 independent minimiza-

tion problems (one for each of Xdst, Ydst, Zdst) which are all of the same type. It

5.6 Morphing estimation between successive local models 137

therefore suffices to consider only one of them. E.g. for estimating Zdst we need

to find the solution to the following optimization problem:

min
Zdst

∫∫

Ψ̄

‖∇Zdst −∇Zk‖
2, with Zdst|∂Ψ̄ = Ẑdst|∂Ψ̄ (5.5)

For discretizing the above problem we can make use of the underlying discrete

pixel grid. To this end, we assume a 4-system neighborhood for the image pixels

and we denote byN (p) the corresponding neighborhood of pixel p. In this case, the

boundary ∂Ψ̄ equals the set ∂Ψ̄ = {p ∈ Ψ : N (p)∩ Ψ̄ 6= ∅} and the finite-difference

discretization of (5.5) yields the following quadratic optimization problem:

min
Zdst

∑

p∈Ψ̄

∑

q∈N (p)

(

Zdst(p)−Zdst(q)− [Zk(p)−Zk(q)]
)2

with Zdst(p) = Ẑdst(p), ∀p ∈ ∂Ψ̄

(5.6)

This quadratic problem is, in turn, equivalent to the following system of linear

equations:

|N (p)|Zdst(p)−
∑

q∈N (p)

Zdst(q) =
∑

q∈N (p)

(Zk(p)− Zk(q)), ∀p ∈ Ψ̄ (5.7)

Zdst(p) = Ẑdst(p), ∀p ∈ ∂Ψ̄ (5.8)

than can be solved with an iterative algorithm very efficiently due to the fact that

all these linear equations form a sparse (banded) system.

Also, an alternative way of solving our optimization problem in (5.5) is by

observing that any function minimizing (5.5) is also a solution to the following

Poisson equation with Dirichlet boundary conditions [153]:

4Zdst = div(∇Zk), with Zdst|∂Ψ̄ = Ẑdst|∂Ψ̄ (5.9)

Therefore, in this case, in order to extract the geometric maps Xdst, Ydst, Zdst it

suffices that we solve 3 independent Poisson equations of the above type. See

Figures 5.11(c), 5.12(b) for a result produced with this method.

138 3D Visual Reconstruction of Large Scale Natural Sites

// Vertex shader
void main() {
// set texture coordinates for multitexturing
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_TexCoord[1] = gl_MultiTexCoord1;

gl_Position = ftransform();
}

// Pixel shader
uniform float m; // the amount of morphing
uniform sampler2D tex0; //texture of image Ik

uniform smpaler2D tex1; //texture of image Ik+1

void main() {
vec2 st0 = texture2D(tex0,gl_TexCoord[0].st);
vec2 st1 = texture2D(tex1,gl_TexCoord[1].st);
gl_FragColor = (1-m)*st0+m*st1;
}

Fig. 5.13: Pixel shader code (and the associated vertex shader code), written in GLSL

(OpenGL Shading Language), for implementing the photometric morphing.

...

// enable vertex blending with 2 weights
glEnable(GL_VERTEX_BLEND_ARB);
glVertexBlendARB(2); ...

// set 1st blending weight for MESHk
Ψ
, MESHk

Ψ̄

glWeightfvARB(1-m);

// you can now render MESHk
Ψ
, MESHk

Ψ̄

glMatrixMode(GL_MODELVIEW0_ARB); ...

// set 2nd blending weight for MESHdst
Ψ

, MESHdst
Ψ̄

glWeightfvARB(m);

// you can now render MESHdst
Ψ

, MESHdst
Ψ̄

glMatrixMode(GL_MODELVIEW1_ARB);
...

Fig. 5.14: Skeleton code in C for applying vertex blending in OpenGL.

5.7 Rendering pipeline

An important advantage of our framework is that, regardless of the scene’s

size, only one ‘‘morphable 3D-model’’ Lmorph needs to be displayed at any time

during rendering, i.e. the rendering pipeline has to execute the geometric and

photometric morphing for only one local model Lk (as described in section 5.6).

This makes our system extremely scalable to large scale scenes. In addition to

that, by utilizing the enhanced capabilities of modern 3D graphics hardware, both

types of morphing can admit a GPU1 implementation, thus making our system

ideal for 3D acceleration and capable of achieving very high frame rates during

1GPU stands for Graphics Processing Unit

5.7 Rendering pipeline 139

rendering.

More specifically, for implementing the photometric morphing of model Lk,

multitexturing needs to be employed as a first step. To this end, both images

Ik, Ik+1 will be used as textures and each 3D vertex whose corresponding 2D point

p ∈ Ik is located inside region Ψ will be assigned 2 pairs of texture coordinates:

the first pair will coincide with the image coordinates of point p ∈ Ik, while the

second one will be equal to the image coordinates of the corresponding point

uk→k+1(p) ∈ Ik+1 (see (5.3)). Then, given these texture coordinates, a so-called

pixel-shader (along with its associated vertex-shader) [118] can simply blend the

two textures in order to implement (on the GPU) the photometric morphing defined

by (5.2). Pixel and vertex shaders are user defined scripts that are executed

by the GPU for each incoming 3D vertex and output pixel respectively. One

possible implementation of such scripts, for the case of photometric morphing,

is shown in Figure 5.13 where, for this specific example, the OpenGL Shading

Language (GLSL) [118] has been used for describing the shaders. As for the 3D

vertices, which are associated to points located inside region Ψ̄, the situation is

even simpler, since no actual photometric morphing takes place in there (see (5.4))

and so only image Ik needs to be texture-mapped onto these vertices.

On the other hand, for implementing the geometric morphing, the following

procedure is used: two 2D triangulations of regions Ψ, Ψ̄ are first generated

resulting into two 2D triangle meshes triΨ, triΨ̄. Based on these triangulations

and the underlying geometric maps of Lk, two 3D triangle meshes meshk
Ψ, meshk

Ψ̄

are constructed. Similarly, using triΨ, triΨ̄ and the destination geometric maps

Xdst, Ydst, Zdst, two more 3D triangle meshes meshdst
Ψ , meshdst

Ψ̄
are constructed as

well. It is then obvious that geometric morphing (as defined by (5.1)) amounts to

a simple vertex blending operation i.e. meshes meshk
Ψ, meshk

Ψ̄
are weighted by 1−m,

meshes meshdst
Ψ , meshdst

Ψ̄
are weighted by m and the resulting weighted vertices are

then added together. Vertex blending, however, is an operation that is directly

supported by all modern GPUs and, as an example, Figure 5.14 contains skeleton

code in C showing how one can implement vertex blending using the OpenGL

standard.

Therefore, based on the above observations, rendering a morphable model

simply amounts to feeding into the GPU just 4 textured triangle meshes. This is,

140 3D Visual Reconstruction of Large Scale Natural Sites

however, a rendering path, which is highly optimized in all modern GPUs and,

therefore, a considerable amount of 3D acceleration can be achieved this way

during the rendering process.

5.7.1 Decimation of local 3D models

Up to now we have assumed that a full local 3D model is constructed each

time, i.e. all points of the image grid are included as vertices in the 2D trian-

gulations triΨ, triΨ̄. However, we can also use simplified versions of these 2D

triangle meshes, provided, of course, that these simplified meshes approximate

well the underlying geometric maps. In fact, due to our framework’s structure,

a great amount of simplification can be achieved and the reason is that a sim-

plified model L′
k has to be a good approximation to the full local model Lk only

in the vicinity of posk (remember that model Lk is being used only in a local re-

gion around posk). Based on this observation, the following iterative procedure is

being used for the simplification of the 2D meshes: at the start of each iteration

there exists a current 2D Delaunay triangulation trii, which has as vertices only

a subset of the points on the image grid. Based on trii, an error function e(p)

is defined over the image grid, which is measuring how well the current meshi

approximates the underlying geometric maps (here meshi denotes the 3D surface

defined by trii). To each triangle, say T , of trii we then associate the follow-

ing two quantities: e(T) = maxp∈T e(p) (i.e. the maximum error across T) and

p(T) = arg maxp∈T e(p) (i.e. the interior point of T achieving this maximum error).

At each iteration the triangle Tmax = arg maxT∈trii e(T) of maximum error is se-

lected and its point p(Tmax) is added as a new vertex in the triangulation. This way

a new Delaunay triangulation trii+1 is given as input to the next iteration of the

algorithm and the process repeats until the maximum error maxT∈trii e(T) falls

below a user specified threshold emax, which basically controls the total amount

of simplification to be applied to the local model. Our algorithm is initialized with

a sparse Delaunay triangulation tri0 and the only restriction imposed on tri0 is

that it should contain the edges along the boundary between regions Ψ and Ψ̄ (i.e.

a constrained Delaunay triangulation has to be used) so that there are no cracks

at the boundary of the corresponding meshes.

For completely specifying the decimation process, all that remains to be de-

5.7 Rendering pipeline 141

(a) (b) (c)

Fig. 5.15: (a) Estimated disparity field corresponding to a local 3D model Lk. (b) Resulting

full 3D model produced when a non-decimated 2D triangulation of the geometric maps has

been used. (c) Simplified 3D model of Lk produced using a decimated 2D triangulation

where the emax threshold has been set equal to 0.5 pixels.

fined is the error function e(p). One option would be to set e(p) = ||dev(p)||,

where dev(p) = ||meshi(p)− [Xk(p) Yk(p) Zk(p)] || denotes the geometric deviation

at p between meshi and the underlying geometric maps (meshi(p) is the 3D point

defined by meshi at p). However, based on the fact that meshi needs to approxi-

mate Lk well only in a local region between positions posk and posk+1 of the path,

we choose to relate e(p) to the maximum projection error at these locations. More

specifically, we set:

e(p) = max(proj_errposk
, proj_errposk+1

),

where proj_errposk
and proj_errposk+1

denote the maximum projection error at

positions posk and posk+1 respectively, i.e.:

proj_errposk
= max

p∈Ik

||projposk
(dev(p))||

proj_errposk+1
= max

p∈Ik+1

||projposk+1
(dev(p))||

In practice this definition of the error e(p) has given excellent results and managed

to achieve much larger reductions in the geometric complexity of the local 3D

models. Furthermore, the user-defined threshold emax can now be expressed in

pixel units and can thus be set in a far more intuitive way by the user. An example

of a simplified local model that has been produced in this manner is shown in

Figure 5.15, in which case emax has been set equal to 0.5 pixels. We should finally

note that by using the simplified local 3D models one can reduce the rendering

time even further, thus achieving higher frame rates e.g. over 60fps.

142 3D Visual Reconstruction of Large Scale Natural Sites

5.8 3D-mosaics construction

Up to this point we have been assuming that during the image acquisition

process, we have been capturing one stereoscopic image-pair per key-position

along the path. We will now consider the case in which multiple stereoscopic

views per key-position are captured and these stereoscopic views are related to

each other by a simple rotation of the stereoscopic camera. This scenario is very

useful in cases where we need to have an extended field of view (like in large VR

screens) and/or when we want to be able to look around the environment. In this

new case, multiple local 3D models per key-position will exist and they will be

related to each other by a pure rotation in 3D space.

In order to reduce this case to the one already examined, it suffices that a

single local model per key-position (called 3D-mosaic hereafter) is constructed.

This 3D model should replace all local models at that position. Then at any time

during the rendering process, a morphing between a successive pair of these new

local models (3D-mosaics) needs to take place as before. For this reason, the term

‘‘morphable 3D-mosaics’’ is being used in this case.

As already explained, a 3D-mosaic at a certain position along the path should

replace/comprise all local models coming from captured stereoscopic views at that

position. Let Li = (Xi, Yi, Zi, Ii, domi) with i ∈ {1, . . . , n} be such a set of local

models. Then a new local model Lmosaic = (Xmosaic, Ymosaic, Zmosaic, Imosaic, dommosaic)

needs to be constructed, which amounts to filling its geometric and photometric

maps. Intuitively, Lmosaic should correspond to a local model produced from a

stereoscopic camera with a wider field of view placed at the same path position.

It is safe to assume that the images Ii (which are the left-camera images),

correspond to views related to each other by a pure rotation. (Actually, the relative

pose between 2 such images will not be pure rotation but will also contain a small

translational part due to the fact that the stereoscopic camera rotates around the

tripod and not the optical center of the left camera. However this translation is

negligible in practice). We may therefore assume that the local 3D models are

related to each other by a pure rotation as well. An overview of the steps that

needs to be taken for the construction of Lmosaic now follows:

• As a first step the rotation between local models needs to be estimated. This

5.8 3D-mosaics construction 143

will help us in registering the local models in 3D space.

• Then a geometric rectification of each Li must take place so that the re-

sulting local models are geometrically consistent with each other. This is

a necessary step since the geometry of each Li has been estimated only

approximately and thus contains errors.

• Eventually, the maps of the refined and consistent local models will be

merged so that the final map of the 3D-mosaic is produced

The most interesting problem that needs to be handled during the 3D-mosaic con-

struction is that of making all models geometrically consistent so that a seamless

(without discontinuities) geometric map of Lmosaic is produced. Each of the above

steps will be explained in the following sections.

5.8.1 Rotation (Rij) estimation between views Ii, Ij

First the homography Hij between images Ii, Ij will be computed. (Since the

views Ii, Ij are related by a rotation, Hij will be the infinite homography induced

by the plane at infinity.) For the Hij estimation [60], a sparse set of (at least

4) point matches between Ii, Ij is first extracted and then a robust estimation

procedure (e.g. RANSAC) is applied to cope with outliers. Inlier matches can then

be used to refine the Hij estimate by minimizing a suitable error function.

If Rij∈SO(3) is the 3×3 orthonormal matrix representing rotation, then: Hij =

KleftRijK
−1
left ⇔ Rij = K−1

leftHijKleft. In practice due to errors in the computed Hij,

the above matrix will not be orthonormal. So for the estimation of Rij [129], an

iterative minimization procedure will be applied to:
∑

k dist(p′k, KleftRijK
−1
leftpk)

2,

where (pk, p
′
k) are the inlier matches that resulted after estimation of Hij while

dist denotes euclidean image distance. The projection of K−1
leftHijKleft to the

space SO(3) of 3D rotation matrices will be given as initial value to the iterative

procedure.

5.8.2 Geometric rectification of local models

Since at this stage the rotation between any two local models is known, here-

after we may assume that the 3D vertices of all Li are expressed in a common 3D

144 3D Visual Reconstruction of Large Scale Natural Sites

coordinate system. Unfortunately Li are not geometrically consistent with each

other, so the model resulting from combining these local models directly, would

contain a lot of discontinuities at the boundary between any 2 neighboring Li (see

Fig. 5.16(c)). This is true because Li have been created independently and their

geometry has been estimated only approximately.

Let RECTIFYLi
(Lj) denote an operator which takes as input 2 local models,

Li, Lj, and modifies the geometric-maps only of the model Lj so that they are

consistent with the geometric-maps of the model Li (the geometric maps of Li

do not change during RECTIFY). Assuming that such an operator exists, then

ensuring consistency between all models can be achieved by merely applying

RECTIFYLi
(Lj) for all pairs Li,Lj with i < j.

So it suffices that we define RECTIFYLi
(Lj) for any 2 models, say Li, Lj. Let

X,Y, Z be the new rectified geometric-maps of Lj that we want to estimate so that

they are geometrically consistent with those of Li. Since we know homography

Hij, we may assume that image points of Li have been aligned to the image

plane of Lj. Let Ψ = domi ∩ domj be the overlap region of the 2 models. To be

geometrically consistent, the new rectified maps of Lj should coincide with those

of Li at points inside Ψ:

[

X(p) Y (p) Z(p)
]

=
[

Xi(p) Yi(p) Zi(p)
]

, ∀p ∈ Ψ (5.10)

We still need to define the rectified maps on Ψ̄ = domj\Ψ. On one hand, this must

be done so that no discontinuity appears along ∂Ψ̄ (and thus seamless rectified

maps are produced). On the other hand, we must try to preserve the relative

3D structure of the existing geometric-maps (of Lj) in the interior of Ψ̄. The last

statement amounts to:











X(p)−X(q)

Y (p)−Y (q)

Z(p)−Z(q)











=











Xj(p)−Xj(q)

Yj(p)−Yj(q)

Zj(p)−Zj(q)











∀p, q ∈ Ψ̄

5.8 3D-mosaics construction 145

+ = NO RECTIFY

WITH RECTIFY

a b c

de

Fig. 5.16: Rendered views of: (a) a local model Lj (b) a local model Li (c) a 3D-mosaic

of Li, Lj without geometry rectification (holes are due to errors in the geometry of the

local models and not due to misregistration in 3D space) (d) a 3D-mosaic of Li, Lj after

RECTIFYLi
(Lj) has been applied (e) a bigger 3D-mosaic created from Li, Lj as well as

another local model which is not shown

or equivalently:










∇X(p)

∇Y (p)

∇Z(p)











=











∇Xj(p)

∇Yj(p)

∇Zj(p)











, ∀p ∈ Ψ̄ (5.11)

Then, based on (5.11) and (5.10), we can extract the Z rectified map (X,Y

maps are treated similarly) by solving the following optimization problem:

min
Z

∫∫

Ψ̄

‖∇Z −∇Zj‖
2, Z|∂Ψ̄ = Zi|∂Ψ̄ (5.12)

The above problem, like the one defined by equation (5.5), can be reduced either

to a banded linear system or to a Poisson differential equation, as explained in

section 5.6.2. See Fig. 5.16(d) for a result produced with the latter method.

Another option for the merging of the geometric maps of Li, Lj could have been

the use of a feathering-like approach. The advantage of our approach (against

feathering) is the preservation of the model’s 3D structure. This can be illustrated

with a very simple example (see Figure 5.17). Let a rectangular planar object be

at constant depth Ztrue. Suppose that depth map Zi, corresponding to most of

the left part of the object, has been estimated correctly (Zi ≡ Ztrue) but depth map

Zj, corresponding to most of the right part of the object, has been estimated as

146 3D Visual Reconstruction of Large Scale Natural Sites

2 local models make up a
planar object at constant depth

Zi=Ztrue

boundary

Zj=Ztrue

(a)

due to errors, the 2 models
appear at different depths

boundary

Zi=Ztrue Zj=Ztrue+error

(b)

distortion in 3D structure
along the models’ boundary

(c)

no distortion
in 3D structure

(d)

Fig. 5.17: A synthetic example illustrating the superiority of our approach against feath-

ering (see also text). (a) True depth maps. (b) Estimated noisy depth maps. (c) Resulting

3D-mosaic’s depth map using feathering. (d) Resulting 3D-mosaic’s depth map using

our method.

Zj ≡ Ztrue + error. When using a feathering-like approach, the resulting object

will appear distorted in the center (its depth will vary from Ztrue to Ztrue + error

therein) and this distortion will be very annoying to the eye. On the contrary,

by using our method, an object still having a planar structure will be produced.

This is important since such errors often exist in models produced from disparity

estimation. In fact, in this case, the errors’ magnitude will be proportional to

depth and can thus be quite large for distant (to the camera) objects like, e.g.

local models of large scale scenes.

5.8.3 Merging the rectified local models

Since Hij is known for any i, j, we may assume that all local models are defined

on a common image plane. Therefore, due to the fact that the rectified geometric-

maps are consistent with each other, we can directly merge them so that the

{X,Y, Z}mosaic maps are produced. For the creation of the Imosaic photometric

map, a standard image-mosaicing procedure [129] can be applied independently.

The valid region of the 3D-mosaic will be: dommosaic= ∪idomi. Two 3D-mosaics

that have been constructed in this manner appear in Figures 5.16(e) and 5.18.

5.9 Further results

As part of the DHX research project, the ‘‘morphable 3D-mosaic’’ framework

has been already successfully applied to the visual 3D reconstruction of the well

known Samaria Gorge in Crete (a gorge which is considered to be one of the most

magnificent in the world and which was also awarded by the Council of Europe

5.9 Further results 147

+ +

Fig. 5.18: Another example of a 3D-mosaic constructed using our method. Top row:

three separate local 3D-models Bottom row: the resulting 3D-mosaic

with a Diploma First Class, as being one of Europe’s most beautiful spots). Based

on this 3D reconstruction, and by also using a 3D Virtual Reality installation, the

ultimate goal of that work has been to provide a lifelike virtual tour of the Samaria

Gorge to all visitors of the National History Museum of Crete, located in the city

of Heraklion. To this end, the most beautiful spots along the gorge have been

selected and for each such spot a predefined path, that was over 100 meters long,

was chosen as well. About 15 key-positions have been selected along each path

and approximately 45 stereoscopic views have been acquired at these positions

with 3 stereoscopic views corresponding to each position (this way a 120o wide field

of view has been covered). Using the reconstructed ‘‘morphable 3D-mosaics’’,

a photorealistic walkthrough of the Samaria Gorge has been obtained, which

was visualized at interactive frame rates by means of a virtual reality system.

The hardware equipment that has been used for the virtual reality system was

a PC (with a Pentium 4 2,4GHz CPU on it) which was connected to a single-

channel stereoscopic projection system from Barco consisting of a pair of circular

polarized LCD projectors (Barco Gemini), an active-to-passive stereo converter

as well as a projection screen. The rendering was done on a GeForce 6800 3D

graphics card (installed on the PC) and, for the stereoscopic effect to take place,

2 views (corresponding to the left and right eye) were rendered by the graphics

card at any time. Museum visitors were then able to participate in the virtual tour

simply by wearing stereo glasses that were matched to the circular polarization of

148 3D Visual Reconstruction of Large Scale Natural Sites

the projectors. Two sample stereoscopic views, as would be rendered by the VR

hardware, are shown in Figure 5.19. Despite the fact that a single graphics card

has been used, very high frame rates of about 30fps in stereo mode (i.e. 60fps in

mono mode) were obtained thanks to the optimized rendering pipeline provided by

our framework. A sample from the obtained rendering results (that were generated

in real time) are shown in Figure 5.20 for two different morphable models. In each

row of that figure the leftmost and rightmost images represent rendered views

of the model Lk and Lk+1 respectively, while the images in between represent

intermediate views of the morphable model along the path. Also, in Figure 5.21,

we show some more rendered views where, this time, the virtual camera traverses

a path containing more than one morphable 3D models.

Another difficulty that we had to face, during the visual reconstruction of the

Samaria Gorge, was related to the fact that a small river was passing through a

certain part of the gorge. This was a problem for the construction of the local 3D

models as our stereo matching algorithm could not possibly extract disparity (i.e.

find correspondences) for the points on the water surface. This was so because

the water was moving and, even in places where it was static, sun reflections that

existed on its surface were violating the lambertian assumption during stereo

matching (see Figure 5.22(a)). Therefore, the disparity for all pixels lying on the

water had to be estimated in a different way. To this end, as the water surface

was approximately planar, a 2D homography (i.e. a 2D projective transformation

represented by a 3 × 3 homogeneous matrix Hwater), directly mapping left-image

pixels on the water to their corresponding points in the right image, was estimated.

(a) (b)

Fig. 5.19: Two stereoscopic views as would be rendered by the VR system (for illustration

purposes these are shown in the form of red-blue images).

5.9 Further results 149

(a) Sample views of a morphable 3D model. Each view corresponds to a

different amount of morphing.

(b) Sample views (each with a different amount of morphing) for another morphable 3D model.

Fig. 5.20: Each row contains sample rendered views of a separate morphable 3D model.

In each row the leftmost, rightmost images correspond to the views at posk, posk+1 re-

spectively.

Fig. 5.21: Some rendered views that are produced as the virtual camera traverses a path

through the so-called ‘‘Iron Gates’’ area, which is the most famous part of the Samaria

Gorge. In this case the virtual camera passes through a series of successive morphable

3D models.

For estimating Hwater, we made use of the fact that most left-image pixels that

are located on the ground next to the river lie approximately at the same plane

as the water surface and, in addition to that, stereo matching can extract valid

correspondences for these pixels, as they are not on the water. A set {gi}
K
i=1 of such

150 3D Visual Reconstruction of Large Scale Natural Sites

pixels in the left image is thus extracted and their matching points {g ′
i}

K
i=1 in the

right image are also computed based on the already estimated disparity maps. The

elements of Hwater can then be easily recovered by minimizing, through a robust

procedure like RANSAC, the total reprojection error i.e. the sum of distances

between {Hwater · gi}
K
i=1 and {g′

i}
K
i=1. An example of a disparity field that has been

estimated with this method can be seen in Figure 5.22(c). We should note that,

by using a similar method, a 2D homography Hk→k+1
water , mapping pixels of Ik lying

on the water to their corresponding pixels in image Ik+1, can be computed as well.

This way we can also manage to estimate optical flow uk→k+1 for all pixels of image

Ik including those pixels of Ik that lie on the water.

Finally, we should mention that one of the additional benefits of having a

virtual 3D reconstruction of the gorge is the ability e.g. to add synthetic visual

effects or integrate synthetic objects into the environment. This way the visual

experience of a virtual tour inside the gorge can be enhanced even further. For

example, in Figure 5.23(a), we are showing some rendered views of the gorge,

where we have also added synthetically generated volumetric fog, while, in Figures

5.23(b) and 5.23(c), we show a synthetic view where an agrimi (a wild goat which

can be found only in the area of the Samaria Gorge), as well as an oleander plant

has been integrated into the 3D virtual environment.

5.10 Conclusions

In conclusion, we have presented a new approach for obtaining photorealistic

and interactive walkthroughs of large, outdoor scenes. To this end a new hybrid

data structure has been presented, which is called ‘‘morphable 3D-mosaics’’. No

global model of the scene needs to be constructed and at any time during the ren-

dering process, only one ‘‘morphable 3D-mosaic’’ is displayed. This enhances the

scalability of the method to large environments. In addition, the proposed method

uses a rendering path, which is highly optimized in modern 3D graphics hardware

and thus can produce photorealistic renderings at interactive frame rates. In the

future we intend to extend our rendering pipeline so that it can also take into

account data from sparse stereoscopic views that have been captured at locations

throughout the scene and not just along a predefined path. This could further

5.10 Conclusions 151

(a) (b) (c)

Fig. 5.22: (a) The left image of a stereoscopic image pair that has been captured at a

region passing through a small river. (b) The estimated disparity by using a stereo

matching procedure. As expected, the disparity field contains a lot of errors for many of

the points on the water surface. This is true especially for those points that lie near the

sun reflections on the water. (c) The corresponding disparity when a 2D homography is

being used to fill the left-right correspondences for the points on the water. In this case

the water surface is implicitly approximated by a 3D plane.

(a)

(b) (c)

Fig. 5.23: (a) Some rendered views of the gorge that also contain a synthetically generated

volumetric fog. (b) A rendered view where a synthetic 3D model of the agrimi, a wild

animal which is specific to the Samaria Gorge, has been integrated into the 3D virtual

environment. (c) Another view with an oleander plant integrated as well.

enhance the quality of the rendered scene and would also permit a more extensive

exploration of the virtual environment. Moreover, this extension still fits perfectly

to the current architecture of the 3D-accelerated rendering pipeline (a blending of

multiple local models will still be taking place). Furthermore, we intend to elimi-

nate the need for a calibration of the stereoscopic camera, as well as to allow the

stereo baseline to vary during the acquisition of the various stereoscopic views

(this will make the data acquisition process even easier). Another issue that we

152 3D Visual Reconstruction of Large Scale Natural Sites

want to investigate is the ability of capturing the dynamic appearance of any time

varying natural phenomena, such as moving water or grass that are frequently

encountered in outdoor scenes (instead of just rendering these objects as static).

To this end we plan to enhance our ‘‘morphable 3D-mosaic’’ framework so that

it can also make use of real video textures that have been previously captured

inside the scene. One limitation of our method is that it currently assumes that

the lighting conditions across the scene are not drastically different (something

which is not always true in outdoor environments). One approach, for dealing

with this issue, is to obtain the radiometric response function of each photograph

as well.

A P P E N D I X A

Technical proofs for theorems of chapter 3

A.1 Proof of theorem 3.2 about the optimality prop-

erties of the PD1 algorithm

The main purpose of this section is to provide a technical proof for theorem 3.2

of chapter 3, which basically states that the PD1 algorithm can always generate

an fapp-approximate solution (in the meanwhile we will also provide a proof for

Lemma 3.1). To this end, we will first start by stating some useful lemmas.

Lemma A.1. Given any pair of primal-dual solutions (x, y) to the primal and dual

LPs (Linear Programs) of Metric Labeling, then the following relationship between

the value of the ‘‘APF’’ and the ‘‘loads’’ holds true:

APF x,y =
∑

p

cp,xp
+

∑

(p,q)∈E

loadx,y
pq (A.1)

Proof:

APF x,y =
∑

p

htyp,xp
=

∑

p

(

cp,xp
+

∑

q:q∼p

ypq,xp

)

=
∑

p

cp,xp
+

∑

(p,q)∈E

(

ypq,xp
+ yqp,xq

)

=
∑

p

cp,xp
+

∑

(p,q)∈E

loadx,y
pq

Lemma A.2 (Flow conservation). The components {fp}p∈V , {fpq}(p,q)∈E of any

valid flow passing though the capacitated graph Gx,y
c satisfies the following equa-

tions:

fp =
∑

q:q∼p

(

fpq − fqp

)

(A.2)

154 Technical proofs for theorems of chapter 3

Proof: It follows directly by applying the flow conservation at node p of the graph

Gx,y
c .

Lemma A.3. Let p, q be two neighboring vertices i.e. p ∼ q. Then, during an inner

c-iteration of any of the algorithms PD1, PD2µ, PD3, the following properties hold

true:

(a) a 6= c⇒ ȳk+1
pq,a = ȳk

pq,a, htȳ
k+1

p,a = htȳ
k

p,a

(b) xk
p = c⇒ xk+1

p = c,
(

ȳk+1
pq,c , ȳk+1

qp,c

)

=
(

ȳk
pq,c, ȳ

k
qp,c

)

, htȳ
k+1

p,xk+1
p

= htȳ
k

p,xk
p

(c) htȳ
k+1

p,xk+1
p
≤ htȳ

k

p,xk
p

(d) htȳ
k+1

p,xk+1
p
≤ htȳ

k+1

p,c

(e) if p is assigned label c, but q keeps its current label (i.e. xk+1
p = c and

xk+1
q = xk

q), then ȳk+1
pq,c = ȳk

pq,c + cappq, i.e. the balance variable ȳk+1
pq,c attains its

maximum value

(f) (APF monotonicity) APF xk+1,ȳk+1

≤ APF xk,ȳk

Furthermore, if, at least one

change of label has taken place during the current c-iteration, then APF xk+1,ȳk+1

<

APF xk,ȳk

Proof:

(a) This property follows directly from the fact that only the balance variables

of the c labels are updated during a c-iteration, by definition.

(b) Due to xk
p = c and (3.18), the capacities of all interior edges pq́, q́p with q́

adjacent to p (i.e. q́ ∼ p) will be zero and so no flow can pass through them

i.e.:

fpq́ = fq́p = 0 ∀ q́ : q́ ∼ p (A.3)

If we then apply the flow conservation at node p (A.2), we can see that the

flow through edge sp will be zero as well (i.e. fp = 0), which in turn implies

that the edge sp is unsaturated (since capsp = 1 by (3.24)). Therefore by the

reassigning rule it will also be xk+1
p = c. Finally, the equality

(

ȳk+1
pq,c , ȳk+1

qp,c

)

=
(

ȳk
pq,c, ȳ

k
qp,c

)

follows directly from applying (A.3) to q́ = q and then using (3.25),

while the other equality htȳk+1

p,xk+1
p

= htȳ
k

p,xk
p

follows from fp = 0 and (3.26).

A.1 Proof of theorem 3.2 about the optimality properties of the PD1

algorithm 155

(c) if xk+1
p 6= c then it will necessarily hold xk+1

p = xk
p, since by the reassign rule

a vertex is either assigned label c or keeps its current label xk
p. Therefore

it will also be xk
p 6= c. So by setting xk+1

p = xk
p = a 6= c we may now apply

property (a) and easily conclude that htȳk+1

p,xk+1
p

= htȳ
k

p,xk
p
, which means that the

property holds in this case.

Therefore we may hereafter assume that xk+1
p = c. In that case, if p is

connected to the source node s then we may easily verify the property as

follows:

htȳ
k+1

p,xk+1
p

= htȳ
k+1

p,c = htȳ
k

p,c + fp by (3.26)

≤ htȳ
k

p,c + capsp

= htȳ
k

p,c +
(

htȳ
k

p,xk
p
− htȳ

k

p,c

)

by (3.21)

= htȳ
k

p,xk
p

Let us now consider the case where p is connected to the sink t: since we

assume xk+1
p = c the reassign rule implies that there must be an unsaturated

path, say s p, from s to p. But it must then hold fp = cappt or else there

will also be an unsaturated path s p → t between the source and the

sink which is impossible due to the max-flow min-cut theorem (see theorem

2.5 in chapter 2). Combining this fact (i.e. fp = cappt) with (3.26) and the

definition of cappt in (3.23) it then follows that:

htȳ
k+1

p,xk+1
p

= htȳ
k+1

p,c = htȳ
k

p,c − fp

= htȳ
k

p,c − cappt

= htȳ
k

p,c −
(

htȳ
k

p,c − htȳ
k

p,xk
p

)

= htȳ
k

p,xk
p

(d) If xk+1
p = c, the property obviously holds. So we may assume that xk+1

p 6= c.

In that case, it will also be xk
p 6= c as well (due to property (b)). If p is

connected to the source node s, then the arc sp must be saturated, i.e.

fp = capsp or else it would hold xk+1
p = c according to the reassign rule.

Using this fact as well as (3.26) and the definition of capsp in (3.21) the

156 Technical proofs for theorems of chapter 3

property then follows:

htȳ
k+1

p,c = htȳ
k

p,c + fp

= htȳ
k

p,c + capsp

= htȳ
k

p,c +
(

htȳ
k

p,xk
p
− htȳ

k

p,c

)

= htȳ
k

p,xk
p

= htȳ
k

p,xk+1
p

where the last equality is true due to the fact xk
p 6= c and property (a).

On the other hand, if p is connected to the sink t then:

htȳ
k+1

p,c = htȳ
k

p,c − fp by (3.26)

≥ htȳ
k

p,c − cappt

= htȳ
k

p,c −
(

htȳ
k

p,c − htȳ
k

p,xk
p

)

by (3.23)

= htȳ
k

p,xk
p

= htȳ
k

p,xk+1
p

where again the last equality is true due to the fact xk
p 6= c and property (a).

(e) If xk
q = c then cappq = 0 (due to (3.18)), while also ȳk+1

pq,c = ȳk
pq,c (by property

(b)) and so the property obviously holds. Therefore we may assume that

xk
q 6= c, which implies that xk+1

q 6= c as well (since xk+1
q = xk

q). Since p has

been assigned the label c, there must exist an unsaturated path s p from

s to p. But then the forward arc pq as well as the backward arc qp of the

path s p→ q must be saturated i.e.:

fpq = cappq and fqp = 0 (A.4)

or else that path would also be unsaturated (which would in turn imply that

xk+1
q = c contrary to our assumption above). Due to (A.4) and (3.25) the

property then follows.

(f) The first inequality follows directly from (c) and the definition of the ‘‘APF’’.

Furthermore, if at least one change of label has taken place then according

to the reassign rule there must be at least one unsaturated arc, say sp,

between the source and some node p. This implies that fp < capsp and so

by also using (3.26) and the definition of capsp in (3.21) it is then trivial to

show that htȳ
k+1

p,xk+1
p

< htȳ
k

p,xk
p
. Due to this fact and by applying property (c) to

A.1 Proof of theorem 3.2 about the optimality properties of the PD1

algorithm 157

all other vertices the desired strict inequality follows.

Based on the previous lemma, we can directly prove lemma 3.1 of chapter 1

which is restated here for the reader’s convenience.

Lemma A.4 (Corresponds to Lemma 3.1 of chapter 3). Any pair of primal-dual

solutions (xk+1, ȳk+1) satisfies the following properties:

Property 1: If at least one vertex has changed its active label then, it holds true

that:

APF xk+1,ȳk+1

<APF xk,ȳk

Property 2: htȳ
k+1

p,xk+1
p
≤ htȳ

k+1

p,c

Property 3: If c = xk+1
p 6= xk+1

q , then ȳk+1
pq,c = ȳk

pq,c + cappq

Proof. Properties 1, 2 and 3 correspond directly to (f), (d), (e) of Lemma A.3 re-

spectively.

We can now turn to the proof of theorem 3.2 of chapter 3, which is the main

theorem of this section. This theorem ensures the optimality properties of the

PD1 algorithm and is restated here for convenience.

Theorem A.5 (Corresponds to theorem 3.2 of chapter 3). The final primal and

dual solutions generated by PD1 satisfy all conditions (3.13) - (3.16). Therefore,

(as explained in section 3.4) these solutions are feasible and satisfy the relaxed

complementary slackness conditions with f1 = 1, f2 = fapp.

Proof: Due to the integrality assumption of the quantities cp,a, wpq, dab, both the

initial dual solution as well as the capacities of the graph Gxk,ȳk

are always of

the form n0

2
with n0 ∈ N. It can then be easily verified that any balance variable,

and therefore the APF too, can take values only of that form. So after every

c-iteration any decrease of APF will always have magnitude ≥ 1/2. Based on

this observation and the fact that, as mentioned above, postedit_duals does not

alter the value of the APF function, the algorithm termination (i.e. no change of

label taking place for |L| consecutive inner iterations) is guaranteed by the APF

monotonicity property A.3(f).

158 Technical proofs for theorems of chapter 3

Feasibility conditions (3.13) are enforced by the definition of the PD1 algorithm

(see Fig. 3.7). In addition, due to the specific assignment of capacities to interior

edges (see (3.19)), the balance variables of edges pq, qp are not allowed to grow

larger than wpqdmin/2 and so constraints (3.16) are also enforced.

Furthermore, we can prove by induction that solutions xk, yk (for any k) satisfy

slackness conditions (3.15) and have all of their active balance variables nonneg-

ative i.e.

yk
pq,xk

p
≥ 0 (A.5)

These conditions are obviously true at initialization (by the definition of init_duals),

so let us assume that they hold for xk, yk and let the current iteration be a c-

iteration. We will then show that these conditions hold for xk+1, yk+1 as well. To

this end, we will consider 3 cases:

Case 1: let us first consider the case where xk+1
p = xk+1

q = c. Then loadxk+1,yk+1

pq =

0 (due to (3.12)) and so (3.15) obviously holds, while (A.5) is guaranteed to be re-

stored by the definition of postedit_duals.

Case 2: Next, let us examine the case where neither p nor q is assigned a new

label (i.e. xk+1
p = xk

p, x
k+1
q = xk

q). We can then show that:

yk+1

pq,xk+1
p

= yk
pq,xk

p
yk+1

qp,xk+1
q

= yk
qp,xk

q
(A.6)

and so both conditions (3.15), (A.5) follow directly from the induction hypothesis.

Indeed, by applying either property A.3(a) or A.3(b), depending on whether xk+1
p =

xk
p = a 6= c or xk+1

p = xk
p = c, we conclude that ȳk+1

pq,xk+1
p

= ȳk
pq,xk

p
. In addition, ȳk

pq,xk
p

=

yk
pq,xk

p
≥ 0 with the equality being true due to the definition of the preedit_duals

function and the inequality following by the induction hypothesis. Combining the

above relations we get:

ȳk+1

pq,xk+1
p

= yk
pq,xk

p
≥ 0, (A.7)

while with similar reasoning we can also show that:

ȳk+1

qp,xk+1
q

= yk
qp,xk

q
≥ 0. (A.8)

Therefore, both ȳk+1

pq,xk+1
p

, ȳk+1

qp,xk+1
q

are nonnegative and so their values will not be

A.1 Proof of theorem 3.2 about the optimality properties of the PD1

algorithm 159

altered by postedit_duals:

yk+1

pq,xk+1
p

= ȳk+1

pq,xk+1
p

yk+1

qp,xk+1
q

= ȳk+1

qp,xk+1
q

(A.9)

The above equation, in conjunction with (A.7), (A.8), implies that (A.6) holds true,

as claimed.

Case 3: Finally, let us consider the only remaining case according to which

only one of p, q (say p) is assigned a new label c i.e. xk+1
p = c 6= xk

p, while the other

one (say q) keeps its current label i.e. xk+1
q = xk

q = a with a 6= c. In this case

due to property A.3(e) and (3.19) it follows that ȳk+1
pq,c = ȳk

pq,c + cappq = wpq · dmin/2.

In addition, it holds that ȳk+1
qp,a = ȳk

qp,a = yk
qp,a ≥ 0 where the 1st equality is true

due to a 6= c and property A.3(a), the 2nd equality is true due to the definition

of preedit_duals and the inequality follows from the induction hypothesis. Since

a 6= c (or equivalently xk+1
q 6= c), postedit_duals (by definition) will alter none

of the active balance variables ȳk+1
pq,c , ȳk+1

qp,a and so yk+1
pq,c = ȳk+1

pq,c , yk+1
qp,a = ȳk+1

qp,a . By

combining all of the above equalities it is now trivial to verify that (3.15), (A.5)

hold for xk+1, yk+1 as well.

Finally, to conclude the proof of this theorem we need to show that the last

primal-dual pair of solutions satisfies condition (3.14). According to the termina-

tion criterion of the PD1 algorithm, during its last |L| inner iterations there should

be no label change. Let c be any label and consider the c-iteration out of these

last |L| iterations. During that iteration it will hold that:

htȳ
k+1

p,xk+1
p
≤ htȳ

k+1

p,c , (A.10)

where the above inequality is true due to property A.3(d). In addition, since no

change of label takes place, we can apply the same reasoning as in case 2 above

and show again that (A.9) holds for any neighboring vertices p, q. This implies that

all active balance variables are kept constant during the transition from ȳk+1 into

yk+1 which in turn implies that yk+1 = ȳk+1, since, by definition, postedit_duals

cannot touch any non-active balance variables. Therefore, the heights of labels

do not change during the transition from ȳk+1 into yk+1 and so, based on the

160 Technical proofs for theorems of chapter 3

previous inequality (A.10), it will also hold that:

hty
k+1

p,xk+1
p
≤ hty

k+1

p,c (A.11)

Furthermore, the value of htyk+1

p,xk+1
p

is not altered during any of the next iterations.

This is true because p keeps its current label (by the termination criterion) and so

we may again show that (A.6) holds for all of the remaining iterations. Similarly,

the value of hty
k+1

p,c will not change hereafter, since by assumption this is the last

c-iteration i.e. the last time the balance variables of the c labels are updated.

Therefore, inequality (A.11) will be maintained until the end of the algorithm.

Since the same reasoning can be applied to any label c, condition (3.14) will

finally hold true at the end of the last iteration.

A.2 Proof of theorem 3.3 about the optimality prop-

erties of the PD2µ algorithm

The main result of this section will be to prove theorem 3.3 of chapter 3. That

theorem guarantees that the PD2µ can always generate a solution which is fapp-

approximate in the worst case. Before that, however, we will need to state a few

lemmas.

Lemma A.6. During an inner c-iteration of the PD2µ algorithm, let p, q be two neigh-

bors (i.e. p ∼ q) with xk
p = a, xk

q = b and assume that xk, ȳk satisfy condition (3.27)

i.e. loadxk,ȳk

pq = µwpqdxk
pxk

q
. Then the following properties hold true:

(a) if a 6= c, b 6= c, then ȳk+1
pq,c ≤ µwpqdcb − ȳk

qp,b and ȳk+1
qp,c ≤ µwpqdac − ȳk

pq,a

(b) xk+1, ȳk+1 satisfy condition (3.27) as well, i.e. loadxk+1,ȳk+1

pq = µwpqdxk+1
p xk+1

q

Proof:

(a) Since both of a, b are 6= c, then (3.31), (3.32), (3.33) hold true. In addition,

by the lemma hypothesis:

loadxk,ȳk

pq = ȳk
pq,a + ȳk

qp,b = µwpqdab (A.12)

A.2 Proof of theorem 3.3 about the optimality properties of the PD2µ

algorithm 161

By property A.3(e) the maximum value of ȳk+1
pq,c will be ȳk

pq,c + cappq = ȳk
pq,c +

µwpq(dac + dcb − dab) = µwpqdcb − ȳk
qp,b where the first equality is due to

(3.31) and the last equality follows by substituting dab, dac from (A.12), (3.33).

Likewise the maximum value of ȳk+1
qp,c will be ȳk

qp,c + capqp = ȳk
qp,c = µwpqdac −

ȳk
pq,a where the first equality is due to (3.32) and the last equality follows

from (3.33).

(b) If xk+1
p = xk+1

q , then loadxk+1,ȳk+1

pq = 0 and part (b) of the lemma obviously

holds. Therefore we may hereafter assume that xk+1
p 6= xk+1

q . This assump-

tion has as a result that not both of a, b can be equal to c or else it would hold

xk+1
p = xk+1

q = c due to property A.3(b). On the other hand, if either one of a, b

is equal to c (say xk
p = a = c, xk

q = b 6= c), this implies that ȳk+1
qp,b = ȳk

qp,b (due to

b 6= c and property A.3(a)) as well as xk+1
p = c and ȳk+1

pq,c = ȳk
pq,c (due to xp

k = c

and property A.3(b)). Then necessarily xk+1
q = xk

q = b (since we assume

xk+1
q 6= xk+1

p = c and by definition of xk+1 any vertex q is either assigned label

c or else keeps its current label xk
q). By combining all of the above equalities

it follows that loadxk+1,ȳk+1

pq = ȳk+1
pq,c + ȳk+1

qp,b = ȳk
pq,c + ȳk

qp,b = loadxk,ȳk

pq = µwpqdcb

(where the last equality is true due to the lemma hypothesis) and part (b) of

the lemma therefore holds in this case.

We still need to consider only the case where both of a, b are different than

c (i.e. a 6= c, b 6= c). Since we assume xk+1
p 6= xk+1

q only one of p, q may be

assigned label c by xk+1. If label c is assigned to p but q keeps its current label

b (i.e. xk+1
p = c, xk+1

q = b), then by property A.3(e) ȳk+1
pq,c attains its maximum

value and so by part (a) ȳk+1
pq,c = µwpqdcb − ȳk

qp,b. In addition ȳk+1
qp,b = ȳk

qp,b (due

to b 6= c and property A.3(a)) and so loadxk+1,ȳk+1

pq = ȳk+1
pq,c + ȳk+1

qp,b =
(

µwpqdcb−

ȳk
qp,b

)

+ ȳk
qp,b = µwpqdcb. Likewise we can show that if label c is assigned to q

(by xk+1) but p keeps its current label a, then loadxk+1,ȳk+1

pq = µwpqdac.

Lemma A.7. During the kth inner iteration of the PD2µ algorithm, the primal-dual

solutions xk+1, yk+1 (resulting after applying the postedit_duals routine) satisfy the

following properties:

(a) loadxk+1,yk+1

pq = loadxk+1,ȳk+1

pq

(b) The primal-dual solutions xk+1, yk+1 satisfy conditions (3.27) i.e. loadxk+1,yk+1

pq =

µwpqdxk+1
p xk+1

q

162 Technical proofs for theorems of chapter 3

(c) APF xk+1,yk+1

= APF xk+1,ȳk+1

(d) yk+1
pq,a ≤ |ȳ

k+1
pq,a |, yk+1

qp,a ≤ |ȳ
k+1
qp,a | ∀ a ∈ L

(e) yk+1

pq,xk+1
p
≥ 0, yk+1

qp,xk+1
q
≥ 0

Proof: As already mention in chapter 3, the role of postedit_duals is to edit

dual solution ȳk+1 into yk+1 so that all active balance variables of yk+1 become

nonnegative. To this end, postedit_duals is applying an operator rectify(p, q) to

any pair (p, q) ∈ E.

This operator is defined as follows: let xk+1
p = a, xk+1

q = b and let us also

assume that at least one of the active balance variables ȳk+1
pq,a , ȳk+1

qp,b is negative, say

ȳk+1
qp,b < 0. Then if a = b the operator rectify(p, q) simply sets yk+1

pq,a = yk+1
qp,a = 0,

while if a 6= b it sets yk+1
pq,a = ȳk+1

pq,a + ȳk+1
qp,b , yk+1

qp,b = 0.1 During the transition from ȳk+1

to yk+1 no other balance variables are modified by the rectify operator. Based on

this definition of the rectify operator, we can now start the proof of the current

lemma.

(a) This equality can be easily verified directly from the definition of the operator

rectify.

(b) This property follows easily by induction from lemma A.6(b). Indeed, as-

suming that the pair xk, yk satisfies conditions (3.27), then the same thing

applies to pair xk, ȳk as well due to (3.34). Therefore the hypothesis of lemma

A.6 holds and by use of A.6(b) in that lemma the pair xk+1, ȳk+1 also satis-

fies (3.27). By then applying property (a) the same conclusion can be drawn

regarding the pair xk+1, yk+1 and this completes the induction.

(c) It follows by combining property (a) above and equation (A.1).

(d) This can be trivially verified based on the definition of operator rectify(p, q).

(e) Combining properties (a) and (b) we conclude that loadxk+1,ȳk+1

pq ≥ 0. Using

this fact it is then trivial to verify the property based on the definition of the

rectify operator.

1Of course we also set their conjugate balance variables as: yk+1
qp,a = −yk+1

pq,a, yk+1
pq,b = −yk+1

qp,b .

A.2 Proof of theorem 3.3 about the optimality properties of the PD2µ

algorithm 163

We are now ready to fulfill the main goal of this section, i.e. to provide a proof

for theorem 3.3 of chapter 3 which basically ensures that the solutions generated

by PD2µ are always close to the optimal solutions. Along with its proof, we also

repeat that theorem here for the reader’s convenience.

Theorem A.8 (Corresponds to theorem 3.3 of chapter 3). The final primal-dual

solutions generated by PD2µ are feasible and satisfy the relaxed complementary

slackness conditions with f1 = µfapp and f2 = fapp.

Proof: Due to the integrality assumption of the quantities cp,a, wpq, dab, both the

initial dual solution as well as the capacities of the graph Gxk,ȳk

are always of

the form n0

2
with n0 ∈ N. It is then easy to verify that the APF function can take

values only of the form n0

2
with n0 ∈ N, so any decrease of APF will necessarily

be of magnitude ≥ 1
2
. The algorithm termination is then guaranteed by the APF

monotonicity property A.3(f) and the observation that neither preedit_duals (due

to (3.35)) nor postedit_duals (due to property A.7(c)) alters the value of APF.

Also, conditions (3.28) are enforced by the definition of the PD2µ algorithm

(see Fig. 3.8), while conditions (3.27) follows directly from property A.7(b).

In order to prove that conditions (3.30) hold as well it is enough to show by

induction that yk
pq,c, y

k
qp,c ≤ µwpqdmax ∀c ∈ L. This is obviously true at initialization

so let’s assume it holds for yk
pq,c, y

k
qp,c. We will show that during a c-iteration

this holds for yk+1
pq,c , yk+1

qp,c as well. Due to property A.7(d) it is enough to show

ȳk+1
pq,c , ȳk+1

qp,c ≤ µwpqdmax. If either one of xk
p = a, xk

q = b equals c, then by property

A.3(b) ȳk+1
pq,c = ȳk

pq,c, ȳk+1
qp,c = ȳk

qp,c. Also, ȳk
pq,c = yk

pq,c, ȳk
qp,c = yk

qp,c (since preedit_duals

may alter yk
pq,c only if xk

p 6= c and xk
q 6= c). The assertion then follows from the

induction hypothesis.

If both of a, b are 6= c then by lemma A.6(a) ȳk+1
pq,c ≤ µwpqdcb − ȳk

qp,b, while

also ȳk
qp,b = yk

qp,b (since b 6= c and preedit_duals, by definition, may alter only

balance variables of the form yk
pq,c during a c-iteration). But yk

qp,b ≥ 0 since xk
q = b

i.e. this is an active balance variable (see property A.7(e)). Therefore ȳk+1
pq,c ≤

µwpqdcb ≤ µwpqdmax. Likewise, using again lemma A.6(a), we can prove that

ȳk+1
qp,c ≤ µwpqdac ≤ µwpqdmax and the assertion follows.

Finally, we may show that the last primal-dual pair of solutions (say x, y) also

satisfies conditions (3.29), by following the same reasoning that has been used

in the proof of theorem 3.2 to show the satisfiability of the equivalent conditions

164 Technical proofs for theorems of chapter 3

(3.14). Therefore all conditions (3.27)-(3.30) hold true and so (as explained in

section 3.5) the pair (x, yfit) generated by dual_fit will be feasible and will also

satisfy all required slackness conditions, thus concluding the proof of the theorem.

A.3 Proving the equivalence between algorithm PD2µ=1

and the α-expansion min-cut algorithm

The main goal of this section will be to show that the algorithms PD2µ=1 and

α-expansion are equivalent to each other. To this end, it suffices to prove that

theorem 3.4 of chapter 3 holds true. The following lemmas are going to be needed

for that purpose.

Lemma A.9. Let x be a label assignment and y a dual solution (not necessarily

feasible) satisfying the following conditions:

loadx,y
pq ≤ wpqdxpxq

∀(p, q) ∈ E (A.13)

Let us also denote by PRIMALx the value of the primal objective function at x.

Under these assumptions it is always true that APF x,y ≤ PRIMALx, while if, in

addition, conditions (A.13) hold as equalities, then APF x,y = PRIMALx.

Proof: Equation (A.1) and the assumptions of the lemma imply:

APF x,y =
∑

p

cp,xp
+

∑

(p,q)∈E

loadx,y
pq

≤
∑

p

cp,xp
+

∑

(p,q)∈E

wpqdxpxq
= PRIMALx

Lemma A.10. Let xk, yk be a primal dual pair of solutions at the start of a c-iteration

of the PD2µ=1 algorithm. Let x′ be any label assignment due to a c-expansion of xk.

(a) APF xk+1,ȳk+1

≤ APF x′,ȳk+1

(b) APF x′,ȳk+1

≤ PRIMALx′

A.3 Proving the equivalence between algorithm PD2µ=1 and the α-expansion

min-cut algorithm 165

Proof:

(a) Since x′ is a label assignment due to a c-expansion, this means that x′

may either keep the current label xk
p of a vertex p or assign label c to it. If

x′
p = xk

p 6= c (i.e. x′ keeps the current label of p) then by property A.3(c)

htȳ
k+1

p,xk+1
p
≤ htȳ

k

p,xk
p

= htȳ
k

p,x′

p
= htȳ

k+1

p,x′

p
, where the last equality is true due to

x′
p 6= c and property A.3(a). On the other hand if x′

p = c then by property

A.3(d) htȳ
k+1

p,xk+1
p
≤ htȳ

k+1

p,c = htȳ
k+1

p,x′

p
. So in any case htȳ

k+1

p,xk+1
p
≤ htȳ

k+1

p,x′

p
and there-

fore APF xk+1,ȳk+1

≤ APF x′,ȳk+1

.

(b) Let us first recall that the following equation holds:

loadxk,ȳk

pq = loadxk,yk

pq = wpqdxk
pxk

q
(A.14)

where the 1st equality is due to the preservation of the load by preedit_duals

(see (3.34)) while the 2nd one follows from the fact that all xk, yk generated

by PD2µ=1 satisfy slackness conditions (3.27).

According to lemma A.9, to prove the assertion it is enough to show that

x′, ȳk+1 satisfy (A.13). If x′
p = x′

q this is obviously true, since in that case

loadx′,ȳk+1

pq = 0 due to (3.12). If x′
p = xk

p, x
′
q = xk

q then by applying either

property A.3(a) or A.3(b) (depending on whether xk
p = a 6= c or xk

p = c) we

can conclude that ȳk+1
pq,xk

p
= ȳk

pq,xk
p
. Similarly we can show that ȳk+1

qp,xk
q

= ȳk
qp,xk

q

and so:

loadxk,ȳk+1

pq = loadxk,ȳk

pq (A.15)

The property then follows since: loadx′,ȳk+1

pq = loadxk,ȳk+1

pq = loadxk,ȳk

pq =

wpqdxk
pxk

q
= wpqdx′

px′

q
, where the first and last equalities are true due to our

assumption that x′
p = xk

p, x
′
q = xk

q , while the 2nd and 3rd equalities are true

due to equations (A.15) and (A.14) respectively. Also, if x′
p 6= c, x′

q 6= c then

necessarily x′
p = xk

p, x
′
q = xk

q (since x′ is a c-expansion) and so we fall back

into the previous case.

Therefore we still need to consider only the case where x′
p 6= x′

q, (x′
p, x

′
q) 6=

(xk
p, x

k
q) and one of x′

p, x
′
q is equal to c. Assume that x′

p = c and let us also

set xk
p = a, xk

q = b. Based on all of the above assumptions and the fact that

166 Technical proofs for theorems of chapter 3

x′ is a c-expansion of xk, one may then easily prove that: x′
q = b, a 6= c, b 6= c.

This together with (A.14) implies that the hypothesis of lemma A.6(a) holds

and so ȳk+1
pq,c ≤ wpqdcb− ȳk

qp,b while also ȳk+1
qp,b = ȳk

qp,b (due to b 6= c and property

A.3(a)). Therefore loadx′,ȳk+1

pq = ȳk+1
pq,c + ȳk+1

qp,b ≤
(

wpqdcb − ȳk
qp,b

)

+ ȳk
qp,b = wpqdcb

and the lemma follows.

Based on the previous lemmas, we are now able to provide a proof for theorem

3.4, thus showing the equivalence between the α-expansion algorithm and our

primal-dual algorithm PD2µ=1. Theorem 3.4 is restated next for the reader’s

convenience.

Theorem A.11 (Corresponds to theorem 3.4 of chapter3). The label assignment

xk+1 selected during a c-iteration of the PD2µ=1 algorithm, has the minimum primal

cost among all label assignments that can result after a c-expansion of xk.

Proof: Assignment xk+1 is indeed a c-expansion, since no c label may be replaced

during a c-iteration (see property A.3(b)). In addition loadxk+1,ȳk+1

pq = loadxk+1,yk+1

pq =

wpqdxk+1
p xk+1

q
due to properties A.7(a) and A.7(b). So, solutions xk+1, ȳk+1 sat-

isfy conditions (A.13) of lemma A.9 as equalities and therefore PRIMALxk+1

=

APF xk+1,ȳk+1

by that lemma. Let now x′ be any other label assignment due to a

c-expansion of xk. Combining the above equality with the (a) and (b) inequalities

of lemma A.10 we get: PRIMALxk+1

= APF xk+1,ȳk+1

≤ APF x′,ȳk+1

≤ PRIMALx′

and the theorem therefore follows.

Bibliography

[1] E. H. Adelson and J. R. Bergen, ‘‘The plenoptic function and the elements

of early vision’’, In Computational Models of Visual Processing, MIT Press,

Cambridge, MA, 3–20, 1991.

[2] Shivani Agarwal and Dan Roth, ‘‘Learning a sparse representation for ob-

ject detection’’, In the proceedings of the ECCV ’02: Proceedings of the 7th

European Conference on Computer Vision-Part IV , Springer-Verlag, London,

UK, 113–130, 2002.

[3] Daniel G. Aliaga, Thomas Funkhouser, Dimah Yanovsky, and Ingrid Carl-

bom, ‘‘Sea of images’’, In the proceedings of the VIS 2002, 331–338, 2002.

[4] Amir A. Amini, Terry E. Weymouth, and Ramesh Jain, ‘‘Using dynamic

programming for solving variational problems in vision.’’ IEEE Trans. Pattern

Anal. Mach. Intell., vol. 12, No. 9, 855–867, 1990.

[5] A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talvar,

and E. Tardos, ‘‘Approximate classification via earthmover metrics’’, In the

proceedings of the Proceedings of the 15th Annual ACM-SIAM Symposium on

Discrete Algorithms, 2004.

[6] Michael Ashikhmin, ‘‘Synthesizing natural textures’’, In the proceedings of

the Symposium on Interactive 3D Graphics, 217–226, 2001.

[7] Coloma Ballester, Marcelo Bertalmı́o, Vicent Caselles, Guillermo Sapiro,

and Joan Verdera, ‘‘Filling-in by joint interpolation of vector fields and gray

levels.’’ IEEE Transactions on Image Processing, vol. 10, No. 8, 1200–1211,

2001.

[8] Adrian Barbu and Song Chun Zhu, ‘‘Generalizing Swendsen-Wang to sam-

pling arbitrary posterior probabilities’’, IEEE Trans. Pattern Anal. Mach. In-

tell., vol. 27, No. 8, 1239–1253, 2005.

168 Bibliography

[9] J.L. Barron, D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt, ‘‘Performance

of optical flow techniques’’, In the proceedings of the CVPR, 236–242.

[10] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, Princeton

University Press, 1962.

[11] Marcelo Bertalmı́o, ‘‘Contrast invariant inpainting with a 3rd order, opti-

mal pde.’’ In the proceedings of the IEEE International Conference on Image

Processing.

[12] Marcelo Bertalmı́o, A. L. Bertozzi, and Guillermo Sapiro, ‘‘Navier-stokes,

fluid dynamics, and image and video inpainting.’’ In the proceedings of the

CVPR (1), 355–362, 2001.

[13] Marcelo Bertalmio, Guillermo Sapiro, Vicent Caselles, and Coloma

Ballester, ‘‘Image inpainting’’, In the proceedings of the Siggraph 2000, Com-

puter Graphics Proceedings, ACM Press / ACM SIGGRAPH / Addison Wesley

Longman, 417–424, 2000.

[14] Marcelo Bertalmı́o, Luminita A. Vese, Guillermo Sapiro, and Stanley Osher,

‘‘Simultaneous structure and texture image inpainting.’’ In the proceedings

of the CVPR (2), 707–712, 2003.

[15] J. Besag, ‘‘Spatial interaction and the statistical analysis of lattice systems’’,

Journal of the Royal Statistical Society, series B, vol. 36, No. 2, 192–236,

1974.

[16] J. Besag, ‘‘On the statistical analysis of dirty pictures’’, Journal of the Royal

Statistical Society, series B, vol. 48, 259–302, 1986.

[17] Kiran Bhat, Steven Seitz, Jessica K Hodgins, and Pradeep Khosla, ‘‘Flow-

based video synthesis and editing’’, ACM Transactions on Graphics (SIG-

GRAPH 2004), vol. 23, No. 3, August 2004.

[18] Stan Birchfield and Carlo Tomasi, ‘‘Depth discontinuities by pixel-to-pixel

stereo’’, In the proceedings of the ICCV , 1073–1080, 1998.

[19] M. J. Black and P. Anandan, ‘‘The robust estimation of multiple motions:

Parametric and piecewise-smooth flow fields’’, CVIU , vol. 63, No. 1, 75–104,

1996.

Bibliography 169

[20] A. Blake and A. Zisserman, Visual Reconstruction, Cambridge, MA: MIT

Press, 1987.

[21] Oren Boiman and Michal Irani, ‘‘Detecting irregularities in images and in

video’’, In the proceedings of the International Conference On Computer Vi-

sion, 2005.

[22] Jeremy S. De Bonet, ‘‘Multiresolution sampling procedure for analysis and

synthesis of texture images’’, Computer Graphics, vol. 31, No. Annual Con-

ference Series, 361–368, 1997.

[23] Jean Yves Bouguet, ‘‘Camera Calibration Toolbox for MATLAB’’,

http://www.vision.caltech.edu/bouguetj/calib_doc.

[24] Yuri Boykov and Marie Pierre Jolly, ‘‘Interactive organ segmentation us-

ing graph cuts’’, In the proceedings of the MICCAI ’00: Proceedings of the

Third International Conference on Medical Image Computing and Computer-

Assisted Intervention, Springer-Verlag, London, UK, 276–286, 2000.

[25] Yuri Boykov and Marie Pierre Jolly, ‘‘Interactive graph cuts for optimal

boundary and region segmentation of objects in n-d images.’’ In the pro-

ceedings of the IEEE International Conference on Computer Vision, 105–112,

2001.

[26] Y. Boykov, O. Veksler, and R. Zabih, ‘‘Markov random fields with efficient

approximations’’, In the proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 1998.

[27] Y. Boykov, O. Veksler, and R. Zabih, ‘‘Fast approximate energy minimiza-

tion via graph cuts’’, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, No. 11, 1222–1239, Nov. 2001.

[28] A. Bruhn, J. Weickert, and C. Schnörr, ‘‘Lucas/Kanade meets

Horn/Schunck: Combining local and global optic flow methods’’, IJCV ,

vol. 61, No. 3, 211–231, 2005.

[29] Chris Buehler, Michael Bosse, Leonard McMillan, Steven J. Gortler, and

Michael F. Cohen, ‘‘Unstructured lumigraph rendering.’’ In the proceedings

of the Proc. of SIGGRAPH 2001, 425–432, 2001.

170 Bibliography

[30] Michael C. Burl, Markus Weber, and Pietro Perona, ‘‘A probabilistic ap-

proach to object recognition using local photometry and global geometry.’’

In the proceedings of the ECCV (2), 628–641, 1998.

[31] V. Cerny, ‘‘Thermodynamical approach to the traveling salesman problem:

An efficient simulation algorithm’’, Journal of Optimization Theory and Ap-

plications, vol. 45(1), 41–51, 1985.

[32] T. Chan and J. Shen, ‘‘Non-texture inpaintings by curvature-driven diffu-

sions’’, J. Visual Comm. Image Rep., vol. 12(4), 436–449, 2001.

[33] S. Grace Chang, Bin Yu, and Martin Vetterli, ‘‘Spatially adaptive wavelet

thresholding with context modeling for image denoising.’’ IEEE Transactions

on Image Processing, vol. 9, No. 9, 1522–1531, 2000.

[34] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, ‘‘Approximation algorithms

for the metric labeling problem via a new linear programming formulation’’,

In the proceedings of the 12th Annual ACM-SIAM Symposium on Discrete

Algorithms, 109–118, 2001.

[35] Paul B. Chou and Christopher M. Brown, ‘‘The theory and practice of

bayesian image labeling’’, Int. J. Comput. Vision, vol. 4, No. 3, 185–210,

1990.

[36] Antonio Criminisi, P. Pérez, and K. Toyama, ‘‘Object removal by exemplar-

based inpainting.’’ In the proceedings of the CVPR, 2003.

[37] Paul E. Debevec, C. J. Taylor, and Jitendra Malik, ‘‘Modeling and render-

ing architecture from photographs: A hybrid geometry- and image-based

approach’’, In the proceedings of the SIGGRAPH 96, 11–20, 1996.

[38] Paul E. Debevec, Yizhou Yu, and George Borshukov, ‘‘Efficient view-

dependent image-based rendering with projective texture-mapping.’’ In the

proceedings of the Rendering Techniques Eurographics Workshop, 105–116,

1998.

[39] Gianfranco Doretto and Stefano Soatto, ‘‘Editable dynamic textures.’’ In the

proceedings of the CVPR (2), 137–142, 2003.

[40] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun, ‘‘Fragment-based image

completion’’, In the proceedings of the SIGGRAPH, 2003.

Bibliography 171

[41] Jaynes E., ‘‘On the rationale of maximum-entropy nethods.’’ In the proceed-

ings of the Proceedings of the IEEE, vol. 70, 626–633, 1982.

[42] Alexei A. Efros and William T. Freeman, ‘‘Image quilting for texture syn-

thesis and transfer’’, In the proceedings of the SIGGRAPH 2001, Computer

Graphics Proceedings, ACM Press / ACM SIGGRAPH, 341–346, 2001.

[43] Alexei A. Efros and Thomas K. Leung, ‘‘Texture synthesis by non-parametric

sampling.’’ In the proceedings of the ICCV , 1999.

[44] O. Faugeras, Q. T. Luong, and T. Papadopoulo, The Geometry of Multiple

Images : The Laws That Govern the Formation of Multiple Images of a Scene

and Some of Their Applications, MIT Press, 2001.

[45] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, ‘‘Efficient belief propa-

gation for early vision.’’ In the proceedings of the CVPR, 2004.

[46] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, ‘‘Pictorial structures for

object recognition.’’ International Journal of Computer Vision, vol. 61, No. 1,

55–79, 2005.

[47] R. Fergus, P. Perona, and A. Zisserman, ‘‘Object class recognition by un-

supervised scale-invariant learning’’, In the proceedings of the Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2,

264–271, june 2003.

[48] Mário A. T. Figueiredo, ‘‘Bayesian image segmentation using wavelet-based

priors.’’ In the proceedings of the CVPR (1), 437–443, 2005.

[49] Andrew W. Fitzgibbon, ‘‘Stochastic rigidity: Image registration for nowhere-

static scenes’’, In the proceedings of the ICCV , 662–669, 2001.

[50] S. Fleishman, B. Chen, A. Kaufman, and D. Cohen-Or, ‘‘Navigating through

sparse views’’, In the proceedings of the VRST99, pp. 82-87, 1999.

[51] Daniel Freedman and Matthew W. Turek, ‘‘Illumination-invariant tracking

via graph cuts.’’ In the proceedings of the CVPR (2), 10–17, 2005.

[52] Daniel Freedman and Tao Zhang, ‘‘Interactive graph cut based segmenta-

tion with shape priors.’’ In the proceedings of the CVPR (1), 755–762, 2005.

172 Bibliography

[53] William T. Freeman, Egon C. Pasztor, and Owen T. Carmichael, ‘‘Learning

low-level vision’’, International Journal of Computer Vision, vol. 40, No. 1,

October 2000.

[54] S. Geman and D. Geman, ‘‘Stochastic relaxation, gibbs distributions, and

the bayesian restoration of images’’, PAMI, vol. 6, No. 6, 721–741, nov

1984.

[55] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985.

[56] David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1989.

[57] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen, ‘‘The lumigraph’’,

In the proceedings of the SIGGRAPH 96, 43–54, 1996.

[58] G.R. Grimmett, ‘‘A theorem about random fields’’, Bulletin of the London

Mathematical Society, vol. 5, 81–84, 1973.

[59] A. Gupta and E. Tardos, ‘‘Constant factor approximation algorithms for a

class of classification problems’’, In the proceedings of the Proceedings of the

32nd Annual ACM Symposium on the theory of Computing, 652–658, 2000.

[60] R.I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,

Cambridge, 2000.

[61] David J. Heeger and James R. Bergen, ‘‘Pyramid-based texture analy-

sis/synthesis’’, In the proceedings of the SIGGRAPH, 229–238, 1995.

[62] F. Heitz and P. Bouthemy, ‘‘Multimodal estimation of discontinuous optical

flow using markov random fields’’, IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 15, No. 12, 1217–1232, 1993.

[63] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and

David H. Salesin, ‘‘Image analogies’’, In the proceedings of the SIGGRAPH

2001, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH, 327–

340, 2001.

[64] John H. Holland, Adaptation in Natural and Artificial Systems: An Introduc-

tory Analysis with Applications to Biology, Control and Artificial Intelligence,

MIT Press, Cambridge, MA, USA, 1992.

Bibliography 173

[65] Berthold K. P. Horn and Brian G. Schunck, ‘‘Determining optical flow.’’ Artif.

Intell., vol. 17, No. 1-3, 185–203, 1981.

[66] R.A. Hummel and S.W Zucker, ‘‘On the foundations of relaxation labeling

process’’, PAMI, vol. 5, 267–286, 1983.

[67] Michal Irani, ‘‘Multi-frame optical flow estimation using subspace con-

straints.’’ In the proceedings of the ICCV , 626–633, 1999.

[68] Hiroshi Ishikawa, ‘‘Exact optimization for markov random fields with convex

priors.’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, No. 10, 1333–1336,

2003.

[69] H. Ishikawa and D. Geiger, ‘‘Segmentation by grouping junctions’’, In the

proceedings of the IEEE conference on Computer Vision and Pattern Recog-

nition, 1998.

[70] Jiaya Jia and Chi Keung Tang, ‘‘Image repairing: Robust image synthesis

by adaptive nd tensor voting.’’ In the proceedings of the CVPR, 2003.

[71] Yedidia J.S., Freeman W.T., and Weiss Y, ‘‘Understanding belief propaga-

tion and its generalizations’’, In the proceedings of the International Joint

Conference on Artificial Intelligence, Distinguished Lecture track, 2001.

[72] Steven L. Kilthau, Mark S. Drew, and Torsten Möller, ‘‘Full search content

independent block matching based on the fast fourier transform.’’ In the

proceedings of the ICIP (1), 669–672, 2002.

[73] Junhwan Kim, Vladimir Kolmogorov, and Ramin Zabih, ‘‘Visual correspon-

dence using energy minimization and mutual information’’, In the proceed-

ings of the ICCV ’03: Proceedings of the Ninth IEEE International Confer-

ence on Computer Vision, IEEE Computer Society, Washington, DC, USA,

p. 1033, 2003.

[74] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ‘‘Optimization by simulated

annealing’’, Science, Number 4598, 13 May 1983, vol. 220, 4598, 671–680,

1983.

[75] J. Kleinberg and E. Tardos, ‘‘Approximation algorithms for classification

problems with pairwise relaionships: metric labeling and markov random

fields’’, Journal of the ACM , vol. 49, 616–630, 2002.

174 Bibliography

[76] R. Koch, ‘‘3d surface reconstruction from stereoscopic image sequences’’, In

the proceedings of the Proc. of the IEEE Int. Conf. on Computer Vision (ICCV

1995), 109–114, 1995.

[77] V. Kolmogorov, ‘‘Convergent tree-reweighted message passing for energy

minimization’’, Technical Report MSR-TR-2005-38, Microsoft, 2005.

[78] Vladimir Kolmogorov and Yuri Boykov, ‘‘What metrics can be approximated

by geo-cuts, or global optimization of length/area and flux.’’ In the proceed-

ings of the ICCV , 564–571, 2005.

[79] Vladimir Kolmogorov and Martin Wainwright, ‘‘On the optimality of tree-

reweighted max-product message passing’’, In the proceedings of the 21st

Conference on Uncertainty in Artificial Intelligence, 2005.

[80] Vladimir Kolmogorov and Ramin Zabih, ‘‘Computing visual correspondence

with occlusions via graph cuts.’’ In the proceedings of the ICCV , 508–515,

2001.

[81] Vladimir Kolmogorov and Ramin Zabih, ‘‘Multi-camera scene reconstruction

via graph cuts.’’ In the proceedings of the ECCV , 82–96, 2002.

[82] Vladimir Kolmogorov and Ramin Zabih, ‘‘What energy functions can be min-

imized via graph cuts?’’ In the proceedings of the ECCV , 65–81, 2002.

[83] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra, ‘‘Texture op-

timization for example-based synthesis’’, ACM Transactions on Graphics,

SIGGRAPH 2005, August 2005.

[84] Vivek Kwatra and et al, ‘‘Graphcut textures: Image and video synthesis

using graph cuts’’, In the proceedings of the SIGGRAPH, 2003.

[85] David Lee and Theo Pavlidis, ‘‘One-dimensional regularization with discon-

tinuities’’, IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, No. 6, 822–829,

1988.

[86] M. Levoy and P. Hanrahan, ‘‘Light field rendering’’, In the proceedings of

the SIGGRAPH 96, 31–42, 1996.

[87] S. Li, Markov Random Field Modeling in Computer Vision, Springer-Verlag,

1995.

Bibliography 175

[88] X. Li and M. T. Orchard, ‘‘Spatially adaptive image denoising under over-

complete expansion’’, In the proceedings of the Proc. IEEE ICIP, 2000.

[89] Lin Liang, Ce Liu, Ying Qing Xu, Baining Guo, and Heung Yeung Shum,

‘‘Real-time texture synthesis by patch-based sampling.’’ ACM Trans. Graph.,

vol. 20, No. 3, 127–150, 2001.

[90] Michael H. Lin and Carlo Tomasi, ‘‘Surfaces with occlusions from layered

stereo.’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, No. 8, 1073–1078,

2004.

[91] Jun S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Series

in Statistics, 2001.

[92] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3D Vision,

Springer, 2005.

[93] Maurits Malfait and Dirk Roose, ‘‘Wavelet-based image denoising using a

markov random field a priori model.’’ IEEE Transactions on Image Process-

ing, vol. 6, No. 4, 549–565, 1997.

[94] David R. Martin, Charless Fowlkes, and Jitendra Malik, ‘‘Learning to detect

natural image boundaries using local brightness, color, and texture cues.’’

IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, No. 5, 530–549, 2004.

[95] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and

Leonard McMillan, ‘‘Image-based visual hulls’’, In the proceedings of the

Proc. of SIGGRAPH 2000, 369–374, 2000.

[96] Leonard McMillan, An Image-Based Approach to Three-Dimensional Com-

puter Graphics, Ph.D. thesis, University of North Carolina, Apr 1997.

[97] L. McMillan and G. Bishop, ‘‘Plenoptic modeling: An image-based rendering

approach’’, In the proceedings of the SIGGRAPH95, pp. 39-46, 1995.

[98] N. Metropolis, A.W. Rceenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller,

‘‘Equation of state calculations by fast computing machines’’, Journal of

Chemical Physics, vol. 21, 1087–1092, 1953.

[99] David Nistér, ‘‘Automatic passive recovery of 3d from images and video.’’ In

the proceedings of the 3DPVT , 438–445, 2004.

176 Bibliography

[100] Faugeras O. and Berthod M., ‘‘Improving consistency and reducing am-

biguity in stochastic labelling: An optimization approach’’, PAMI, vol. 3,

412–423, 1983.

[101] Sylvain Paris, François Sillion, and Long Quan, ‘‘A surface reconstruction

method using global graph cut optimization’’, International Journal of Com-

puter Vision, vol. 66, No. 2, 141–161, February 2006.

[102] K.A. Patwardhan, G. Sapiro, and M. Bertalmio, ‘‘Video inpainting of oc-

cluding and occluded objects’’, In the proceedings of the IEEE International

Conference on Image Processing, 2005.

[103] Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1988.

[104] Aleksandra Pizurica, Wilfried Philips, Ignace Lemahieu, and Marc Acheroy,

‘‘A joint inter- and intrascale statistical model for bayesian wavelet based

image denoising.’’ IEEE Transactions on Image Processing, vol. 11, No. 5,

545–557, 2002.

[105] Tomaso Poggio, Vincent Torre, and Christof Koch, ‘‘Computational vision

and regularization theory’’, Nature, vol. 317, No. 26, 314–319, 1985.

[106] M. Pollefeys, R. Koch, M. Vergauwen, and L. Van Gool, ‘‘Hand-held acqui-

sition of 3d models with a video camera’’, In the proceedings of the Proc.

3DIM’99, 14–23, 1999.

[107] Javier Portilla and Eero P. Simoncelli, ‘‘A parametric texture model based on

joint statistics of complex wavelet coefficients.’’ IJCV , vol. 40, No. 1, 49–70,

2000.

[108] Javier Portilla, Vasily Strela, Martin J. Wainwright, and Eero P. Simoncelli,

‘‘Image denoising using scale mixtures of gaussians in the wavelet domain.’’

IEEE Transactions on Image Processing, vol. 12, No. 11, 1338–1351, 2003.

[109] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.

Vetterling, Numerical Recipes: The Art of Scientific Computing, Cambridge

University Press, 2nd ed., 1992.

Bibliography 177

[110] Christian P. Robert and George Casella, Monte Carlo Statistical Methods

(second edition), Springer Texts in Statistics, 2004.

[111] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, ‘‘Scene labeling by relaxation

operations’’, IEEE Transactions on Systems, Man and Cybernetics, vol. 6,

420–433, 1976.

[112] Carsten Rother, Sanjiv Kumar, Vladimir Kolmogorov, and Andrew Blake,

‘‘Digital tapestry’’, In the proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2005.

[113] S. Roy and I. Cox, ‘‘A maximum-flow formulation of the n-camera stereo

correspondence problem’’, In the proceedings of the Proceedings of the In-

ternational Conference on Computer Vision, 492–499, 1998.

[114] Y. Wu S. Soatto, G. Doretto, ‘‘Dynamic textures’’, In the proceedings of the

Intl. Conf. on Computer Vision, "439–446".

[115] D. Scharstein and R. Szeliski, ‘‘A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms’’, International Journal of Computer

Vision, vol. 47, No. 1/2/3, 7–42, April-June 2002.

[116] Hartmut Schirmacher, Ming Li, and Hans Peter Seidel, ‘‘On-the-fly process-

ing of generalized Lumigraphs’’, In the proceedings of the Proc. of Eurograph-

ics 2001, vol. 20, C165–C173;C543, 2001.

[117] Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan Essa, ‘‘Video tex-

tures’’, In the proceedings of the Siggraph 2000, Computer Graphics Proceed-

ings, ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 489–498,

2000.

[118] Mark Segal and Kurt Akeley, ‘‘The OpenGL Graphics System: A Specifica-

tion (Version 1.5)’’, http://www.opengl.org.

[119] Jianbo Shi and Jitendra Malik, ‘‘Normalized cuts and image segmentation’’,

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

2000.

[120] Heung Yeung Shum, Richard Szeliski, Simon Baker, Mei Han, and P. Anan-

dan, ‘‘Interactive 3d modeling from multiple images using scene regulari-

ties.’’ In the proceedings of the SMILE, 236–252, 1998.

178 Bibliography

[121] Cyril Soler, Marie Paule Cani, and Alexis Angelidis, ‘‘Hierarchical pattern

mapping.’’ In the proceedings of the SIGGRAPH, 673–680, 2002.

[122] J. L. Starck, D.L. Donoho, and E. Candès, ‘‘Very high quality image restora-

tion’’, In the proceedings of the SPIE conference on Signal and Image Pro-

cessing: Wavelet Applications in Signal and Image Processing IX, San Diego,

1-4 August, edited by A. Laine, M. Unser, and A. Aldroubi, SPIE, 2001.

[123] Christoph Strecha, Rik Fransens, and Luc J. Van Gool, ‘‘Wide-baseline

stereo from multiple views: A probabilistic account.’’ In the proceedings of

the CVPR (1), 552–559, 2004.

[124] Christoph Strecha and Luc J. Van Gool, ‘‘Pde-based multi-view depth esti-

mation.’’ In the proceedings of the 3DPVT , 416–427, 2002.

[125] Christoph Strecha, Tinne Tuytelaars, and Luc J. Van Gool, ‘‘Dense match-

ing of multiple wide-baseline views.’’ In the proceedings of the ICCV , 1194–

1201, 2003.

[126] Jian Sun, Heung Yeung Shum, and Nan Ning Zheng, ‘‘Stereo matching

using belief propagation.’’ In the proceedings of the ECCV (2), 510–524,

2002.

[127] Jian Sun, Lu Yuan, Jiaya Jia, and Heung Yeung Shum, ‘‘Image completion

with structure propagation’’, In the proceedings of the SIGGRAPH, 2005.

[128] R. Szeliski, Bayesian modeling of uncertainty in low-level vision, Kluwer

Academic Publishers, 1989.

[129] R. Szeliski, ‘‘Video mosaics for virtual environments’’, IEEE CGA, vol. 16,

No. 2, 22–30, March 1996.

[130] Martin Szummer and Rosalind W. Picard, ‘‘temporal texture modeling’’, In

the proceedings of the Proc. of Int. Conference on Image Processing, vol. 3,

823–826, 1996.

[131] S. Teller, ‘‘Automated urban model acquisition: Project rationale and sta-

tus’’, 1998.

[132] Demetri Terzopoulos, ‘‘Regularization of inverse visual problems involving

discontinuities’’, IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, No. 4, 413–

242, 1986.

Bibliography 179

[133] Zhuowen Tu, Xiangrong Chen, Alan L. Yuille, and Song Chun Zhu, ‘‘Im-

age parsing: Unifying segmentation, detection, and recognition’’, In the

proceedings of the ICCV ’03: Proceedings of the Ninth IEEE International

Conference on Computer Vision, IEEE Computer Society, Washington, DC,

USA, p. 18, 2003.

[134] Zhuowen Tu and Song Chun Zhu, ‘‘Image segmentation by data-driven

markov chain monte carlo’’, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,

No. 5, 657–673, 2002.

[135] Matthew Uyttendaele, Antonio Criminisi, Sing Binb Kang, Simon Winder,

Richard Hartley, and Richard Szeliski, ‘‘High-quality image-based interac-

tive exploration of real-world environments’’, IEEE Computer Graphics &

Applications, 2004.

[136] V. Vazirani, Approximation Algorithms, Springer, 2001.

[137] Sundar Vedula, Simon Baker, and Takeo Kanade, ‘‘Spatio-temporal view

interpolation’’, In the proceedings of the Proceedings of the 13th ACM Euro-

graphics Workshop on Rendering, June 2002.

[138] O. Veksler, Efficient graph-based energy minimization methods in computer

vision, Ph.D. thesis, Department of Computer Science, Cornell University,

1999.

[139] Olga Veksler, ‘‘Stereo correspondence by dynamic programming on a tree.’’

In the proceedings of the CVPR (2), 384–390, 2005.

[140] M. Wainwright, T. Jaakkola, and A. Willsky, ‘‘Map estimation via agreement

on (hyper)trees: messagepassing and linear programming approaches’’, In

the proceedings of the Allerton Conference on Communication, Control and

Computing, 2002.

[141] J.Y.A. Wang and E.H. Adelson, ‘‘Layered representation for motion analy-

sis’’, In the proceedings of the CVPR93, 361–366, 1993.

[142] Markus Weber, Max Welling, and Pietro Perona, ‘‘Unsupervised learning of

models for recognition’’, In the proceedings of the ECCV ’00: Proceedings

of the 6th European Conference on Computer Vision-Part I, Springer-Verlag,

London, UK, 18–32, 2000.

180 Bibliography

[143] Li Yi Wei and Marc Levoy, ‘‘Fast texture synthesis using tree-structured vec-

tor quantization’’, In the proceedings of the Siggraph 2000, Computer Graph-

ics Proceedings, ACM Press / ACM SIGGRAPH / Addison Wesley Longman,

479–488, 2000.

[144] Yair Weiss, ‘‘Segmentation using eigenvectors: A unifying view.’’ In the pro-

ceedings of the ICCV , 975–982, 1999.

[145] Yair Weiss and William T. Freeman, ‘‘On the optimality of solutions of the

max-product belief-propagation algorithm in arbitrary graphs.’’ IEEE Trans-

actions on Information Theory, vol. 47, No. 2, 736–744, 2001.

[146] Yonatan Wexler, Eli Shechtman, and Michal Irani, ‘‘Space-time video com-

pletion.’’ In the proceedings of the CVPR (1), 120–127, 2004.

[147] Gerhard Winkler, Image Analysis, Random Fields and Markov Chain Monte

Carlo Methods: A Mathematical Introduction, Springer Verlag, 2003.

[148] Zhenyu Wu and Richard M. Leahy, ‘‘An optimal graph theoretic approach

to data clustering: Theory and its application to image segmentation.’’ IEEE

Trans. Pattern Anal. Mach. Intell., vol. 15, No. 11, 1101–1113, 1993.

[149] J. Yedidia, W. Freeman, and Y. Weiss, ‘‘Constructing free energy approx-

imations and generalized belief propagation algorithms’’, Technical Report

TR2004-040, MERL, 2004.

[150] Ramin Zabih and Vladimir Kolmogorov, ‘‘Spatially coherent clustering using

graph cuts.’’ In the proceedings of the CVPR, 437–444, 2004.

[151] C. Lawrence Zitnick and Takeo Kanade, ‘‘A cooperative algorithm for stereo

matching and occlusion detection.’’ IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 22, No. 7, 675–684, 2000.

[152] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon Winder,

and Richard Szeliski, ‘‘High-quality video view interpolation using a layered

representation’’, ACM Trans. Graph., vol. 23, No. 3, 600–608, 2004.

[153] D Zwilliger, Handbook of Differential Equations, Boston, MA: Academic

Press, 1997.

Author’s publication list

• N. Komodakis and G. Tziritas, "Image Completion Using Global Optimiza-

tion", to appear in Proceedings of CVPR 2006 (IEEE International Conference

on Computer Vision and Pattern Recognition)

• N. Komodakis and G. Tziritas, "Approximate Labeling via Graph-Cuts Based

on Linear Programming", Submitted to IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (under minor revision)

• N. Komodakis and G. Tziritas, "Morphable 3D-Mosaics: a Framework for

the Visual Reconstruction of Large Natural Scenes", in video proceedings of

IEEE Conference on Computer Vision and Pattern Recognition (VPCVPR),

2006.

• N. Komodakis and G. Tziritas, "A New Framework for Approximate Labeling

via Graph Cuts", In Proceedings of ICCV 2005 (IEEE International Conference

on Computer Vision)

• N. Komodakis and G. Tziritas, "Morphable 3D-Mosaics: a Hybrid Frame-

work for the Visual Reconstruction of Large-Scale Outdoor Environments",

(submitted)

• N. Komodakis, C. Panagiotakis and G. Tziritas, "3D Visual Reconstruction

of Large Scale Natural Sites and Their Fauna", Signal Processing: Image

Communication, Vol. 20, No. 9-10, pp. 869-890, Oct. 2005.

• N. Komodakis, G. Pagonis and G. Tziritas, "Interactive walkthroughs using

morphable 3D-mosaics", In Proceedings of 2nd International Symposium on

3D Data Processing, Visualization and Transmission, 2004.

• N. Komodakis and G. Tziritas, "Approximate Labeling via the Primal-Dual

182 Author’s publication list

Schema", University of Crete (Computer Science Department), Technical Re-

port CSD-TR-05-01, February 2005

