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Abstract

This paper presents a hybrid (geometry- & image-based)

technique suitable for providing interactive walkthroughs of

large, complex outdoor scenes. Motion is restricted along

a smooth predefined path and the input to the system is

a sparse set of stereoscopic views at certain points (key-

positions) along that path (one view per position). An ap-

proximate local 3D model is constructed from each view,

capable of capturing photometric and geometric properties

of the scene only locally. Then during the rendering pro-

cess, a continuous morphing (both photometric & geomet-

ric) takes place between successive local 3D models, using

what we call a “morphable 3D-model”. The morphing pro-

ceeds in a physically-valid way. For this reason, a wide-

baseline image matching technique is proposed, handling

cases where the wide baseline between the two images is

mainly due to a looming of the camera.

Our system can be extended in the event of multiple

stereoscopic views (and therefore multiple local models)

per key-position of the path (related by a camera rota-

tion). In that case one local 3D-mosaic (per key-position)

is constructed comprising all local 3D models therein and a

“morphable 3D-mosaic” is used during the rendering pro-

cess. A partial-differential equation is adopted to handle

the problem of geometric consistency of each 3D-mosaic.

1. Introduction

One research problem of computer graphics that has at-

tracted a lot of attention during the last years is the cre-

ation of modeling and rendering systems capable to pro-

vide photorealistic & interactive walkthroughs of complex,

real-world environments. Two are the main approaches pro-

posed so far in the computer vision literature for this pur-

pose. On one hand (according to the purely geometric ap-

proach), a full 3D geometric model of the scene needs to

be constructed. On the other hand, image-based render-

ing (IBR) methods skip the geometric modeling part and

attempt to create novel views by appropriate resampling of

a set of images.
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While a lot of research has been done regarding small

scale scenes, there are only few examples of works dealing

with large scale environments. The current work is such an

example and follows a hybrid (geometry- & image-based)

approach, capable of providing interactive walkthroughs of

large-scale, complex outdoor environments. For this pur-

pose, a new data representation of a 3D scene is proposed

consisting of a set of morphable (both geometrically & pho-

tometrically) 3D models.

The main assumption is that during the walkthrough, the

user motion takes place along a (relatively) smooth, pre-

defined path of the environment. The input to our system

is then a sparse set of stereoscopic views captured at cer-

tain points (“key-positions”) along that path (one view per

key-position). A series of local 3D models are then con-

structed, one for each stereoscopic view, capturing the pho-

tometric & geometric properties of the scene locally. These

local models need to contain only an approximate repre-

sentation of the scene geometry. During the transition be-

tween any two successive key-positions pos1, pos2 along

the path (with corresponding local models L1 and L2), a

“morphable 3D-model” Lmorph is displayed by the render-

ing process. At point pos1 this model coincides with L1 and

while we are approaching pos2, it is gradually transformed

(both photometrically and geometrically) into L2 coincid-

ing with the latter upon reaching key-position pos2. The

morphing proceeds in a physically-valid way and for this

reason, a wide-baseline image matching technique is pro-

posed handling instances where the dominant differences in

the images appearance are due to a looming of the cam-

era. Therefore, during the rendering process a continuous

morphing (each time between successive local 3D models)

takes place.

Our system can be extended to handle the case of hav-

ing multiple stereoscopic views per key-position, which are

related by a pure rotation of the stereoscopic camera at

that position of the path. In that case, a 3D-mosaic per

key-position needs to be constructed in addition. This 3D-

mosaic comprises the multiple local models coming from

the corresponding stereoscopic views at that position.

The main advantages of our approach are:

• no global 3D model of the environment needs to be as-



sembled (a cumbersome process for large scale scenes)

• scalability to large environments since at any time only

one “morphable 3D-model” is displayed. In addition,

we make use of a rendering path that is highly opti-

mized in modern 3D graphics hardware

• being an image-based method, it can reproduce the

photorealistic richness of a scene

• ease of data acquisition (e.g. collecting data for a path

over 100 meters long took us only about 20 minutes) as

well as an almost automated processing of these data

2. Related work

There have been numerous works on geometry-based

modeling of real world scenes. For example Koch [8] uses

stereoscopic image sequences for reconstructing a global

3D model of the environment. Another example is Pollefey

et al.’s work on 3D reconstruction from hand-held cameras

[12]. Debevec et. al [4] propose a hybrid (geometry- and

image-based approach) for modeling architecture. How-

ever, they need a basic geometric model of the whole scene

as well (recovered interactively). Then they use view de-

pendent texture mapping to enhance appearance.

Lightfield [9] and Lumigraph [6] are two popular image-

based rendering methods, but they require a large number

of input images and so they are mainly used for small scale

scenes. In “plenoptic modeling” [11], a warp operation is

introduced that maps panoramic images (along with dispar-

ity) to any desired view. In [5], an image-based technique

is proposed by which an end-user can create walkthroughs

from a sequence of photographs. Finally, in the “sea of im-

ages” approach [1], a dense set of omnidirectional images

(with image spacing ≈ 1.5 inches) are captured for creating

interactive walkthroughs of large, indoor environments.

3. Overview of the modeling pipeline

We will first consider the simpler case of having one

stereoscopic view per key-position of the path. Prior to cap-

ture, a calibration of the stereoscopic camera takes place

[2]. The left & right camera calibration matrices (denoted

hereafter by Kleft & Kright) as well as the external geom-

etry of the stereo-rig are estimated. Also lens distortion is

removed. The main stages of the modeling pipeline are:

1. Local 3D models construction (section 4). A photo-

metric & geometric representation of the scene near

each key-position of the path is constructed. The ge-

ometric part of a local model must be just an approxi-

mation of the true scene geometry.

2. Relative pose estimation between successive local 3D

models (section 5). Only a coarse estimate of the rel-

ative pose is needed since this will not be used for an

exact registration of the local models but merely for

the morphing procedure that takes place later.

3. Estimation of morphing between successive local 3D

models along the path (section 6).

(a) (b)

Fig. 1: (a) Depth map Z0 of a local model (black pixels do not

belong to its valid region dom0). (b) A rendered view of the local

model using an underlying triangle mesh

4. Local 3D models construction

For each stereoscopic image pair, a 3D model describing

the scene locally (i.e. as seen from the camera viewpoint)

must be produced during this stage. To this end, a stereo

matching procedure is applied to the left & right images

(Ileft & Iright), so that disparity is estimated for all points

inside a selected image region dom0 of Ileft (we refer the

reader to [13] for a review on stereo matching). A Gaussian

as well as a median filter is further applied to the disparity

map for smoothing and removing spurious disparity values

respectively. Using this disparity map (and the calibration

matrices of the cameras) a 3D reconstruction takes place

and thus the maps X0, Y0 and Z0 are produced (see Fig.

1(a)), containing respectively x, y and z coordinates of the

reconstructed points with respect to the 3D coordinate sys-

tem of the left camera.

The set L0 = (X0, Y0, Z0, Ileft, dom0) consisting of

the images X0, Y0, Z0 (the geometric-maps), the image re-

gion dom0 (valid domain of geometric-maps) and the image

Ileft (the photometric map) makes up what we call a “local

model” L0. Hereafter that term will implicitly refer to such

a set of elements. By applying a 2D triangulation on the im-

age grid of a local model, a textured 3D triangle mesh can

be produced. The 3D coordinates of triangle vertices are

obtained from the underlying geometric maps while texture

is obtained from Ileft and mapped onto the mesh (see Fig.

1(b)). It should be noted that the geometric maps of a local

model are expected to contain only an approximation of the

scene’s corresponding geometric model.

5. Relative pose estimation between successive

local models

Let Lk=(Xk,Yk,Zk, Ik, domk) and Lk+1=(Xk+1,Yk+1,

Zk+1, Ik+1, domk+1) be 2 successive local models along

the path. For their relative pose estimation, we need to ex-

tract a set of point matches (pi, qi) between the left images

Ik, Ik+1 of models Lk, Lk+1 respectively (see section 5.1).

Assuming that such a set of matches already exists, then the

pose estimation can proceed as follows: the 3D points of

Lk corresponding to pi are Pi = (Xk(pi), Yk(pi), Zk(pi))
and so the reprojections of pi on image Ik+1 are: p′i =
Kleft(R · Pi + T ) ∈ P

2, where R (a 3 × 3 orthonormal

matrix) and T (a 3D vector) represent the unknown rotation

and translation respectively.



So the pose estimation can be achieved by minimizing

the following reprojection error:
∑

i dist(qi, p
′
i)

2, where

dist denotes euclidean image distance. For this purpose,

an iterative constrained-minimization algorithm may be ap-

plied with rotation represented internally by a quaternion q

(‖q‖=1). The essential matrix (also computable by the help

of the matches (pi, qi) and Kleft,Kright) can be used to

provide an initial estimate [7] for the iterative algorithm.

5.1. Widebaseline feature matching under camera
looming

Therefore the pose estimation problem is reduced to

that of extracting a sparse set of correspondences between

Ik, Ik+1. A usual method for tackling the latter problem is

the following: first a set of interest-points in Ik are extracted

(using an interest-point detector). Then for each interest-

point, say p, a set of candidate points CANDp inside a large

rectangular region SEARCHp of Ik+1 are examined and

the best one is selected according to a similarity measure.

Usually the candidate points are extracted by applying an

interest-point detector to region SEARCHp as well.

However unlike left/right images of a stereoscopic view,

Ik and Ik+1 are separated by a wide baseline. Simple mea-

sures like correlation have been proved extremely inefficient

in such cases. Assuming a smooth predefined path (and

therefore a smooth change in orientation between Ik, Ik+1),

it is safe to assume that the main difference at an object’s

appearance in images Ik and Ik+1, comes from the forward

camera motion along the Z axis (looming). The idea for

extracting valid correspondences is then based on the fol-

lowing observation: the dominant effect of an object being

closer to the camera in image Ik+1 is that its image region in

Ik+1 appears scaled by a certain scale factor s>1. That is, if

p∈Ik, q∈Ik+1 are corresponding pixels: Ik+1(sq) ≈ Ik(p).
So an image patch of Ik at p should look similar to an image

patch of an appropriately rescaled (by s−1) version of Ik+1.

Of course, the scale factor s varies across the image.

Therefore the following strategy, for extracting reliable

matches, can be applied:

1. Quantize the scale space of s to a discrete set of values

S = {sj}
n
j=0, where 1 = s0 < s1 < ... < sn

2. Rescale Ik+1 by the inverse scale s−1
j for all sj ∈ S to

get rescaled images Ik+1,sj

For any q ∈ Ik+1, p ∈ Ik, let us denote by Ik+1,sj
(q)

a (small) fixed-size patch around the projection of q on

Ik+1,sj
and by Ik(p) an equal-size patch of Ik at p.

3. Given any point p ∈ Ik and its set of candidate points

CANDp = {qi} in Ik+1, use correlation to find among

the patches at any qi and across any scale sj , the one

most similar to the patch of Ik at p:

(q′, s′) = arg max
qi,sj

corr( Ik+1,sj
(qi), Ik(p) )

This way, apart from a matching point q′ ∈ Ik+1, a

scale estimate s′ is provided for point p as well .

(a) (b)

Fig. 2: (a) Image Ik along with computed optical flow vectors

(blue segments) for all points marked white. (b) Image Ik+1 along

with matching points (also marked white) for all marked points of

(a). A few epipolar lines are also shown. In both images, the

yellow square around a point is analogous to the point’s estimated

scale factor (10 scales S = {1, 0.9−1, ..., 0.1−1} have been used).

The above strategy has been proved very effective, giving a

high percentage of exact matches even in cases with very

large looming. Such an example can be seen in Fig. 2

wherein the images baseline is ≈ 15 meters, resulting in

scale factors of size ≈ 2.5 for certain image regions. Even

if we set as candidate points CANDp of a point p, all points

inside SEARCHp in the other image (and not only detected

interest-points therein), the above procedure still picks the

right matches in most cases. The results in Fig. 2 have been

produced this way.

6. Morphing estimation between successive lo-

cal models along the path

At the current stage of the modeling pipeline, a series of

approximate local 3D models (along with approximate esti-

mates of the relative pose between every successive two)

are available to us. Let Lk = (Xk, Yk, Zk, Ik, domk),
Lk+1 = (Xk+1, Yk+1, Zk+1, Ik+1, domk+1) be such a pair

of successive local models and posk, posk+1 their corre-

sponding key-positions on the path. By making use of the

approximate pose estimate between Lk and Lk+1, we will

assume hereafter that the 3D vertices of both models are

expressed in a common 3D coordinate system.

Rather than trying to create a consistent global model

by combining all local ones (a rather tedious task requiring

among others high quality geometry and pose estimation)

we will instead follow a different approach which is based

on the following observation: near path point posk, model

Lk is ideal for representing the surrounding scene. On the

other hand, as we move forward along the path approach-

ing key-position of the next model Lk+1, the photometric

and geometric properties of the environment are much bet-

ter captured by the latter model. (For example compare the

fine details of the rocks that are revealed in Fig. 2(b) and are

not visible in Fig. 2(a)). So during transition from posk to

posk+1, we will try to gradually morph model Lk into a new

destination model, which should coincide with Lk+1 upon

reaching point posk+1. (In fact, only part of this destination

model can coincide with Lk+1 since in general Lk, Lk+1



will not represent exactly the same part of the scene). This

morphing should be geometric as well as photometric (the

latter wherever possible) and should proceed in a physically

valid way. For this reason, we will use what we call a “mor-

phable 3D-model”:

Lmorph = Lk ∪ (Xdst, Ydst, Zdst, Idst)

In addition to including the elements of Lk, Lmorph also

consists of maps Xdst, Ydst, Zdst and map Idst contain-

ing respectively the destination 3D vertices and destination

color values for all points of Lk. At any time during the ren-

dering process, the 3D coordinates vertij and color colij of

the vertex of Lmorph at point (i, j) will then be:

vertij =





(1 − m)Xk(i, j) + mXdst(i, j)
(1 − m)Yk(i, j) + mYdst(i, j)
(1 − m)Zk(i, j) + mZdst(i, j)



 (1)

colij = (1 − m)Ik(i, j) + mIdst(i, j) (2)

where m is a parameter determining the amount of morph-

ing ( m = 0 at posk, m = 1 at posk+1 and 0 < m < 1 in

between ). Specifying therefore Lmorph amounts to filling-

in the values of the destination maps {X,Y,Z, I}dst for

each point p ∈ domk.

For this purpose, a 2-step procedure will be followed that

depends on whether point p has a physically corresponding

point in Lk+1 or not:

1. Let Ψ be that subset of region domk ⊆ Ik, consist-

ing only of those Lk points that have physically cor-

responding points in model Lk+1 and let uk→k+1 be a

function which maps these points to their counterparts

in the Ik+1 image. (Region Ψ represents that part of

the scene which is common to both models Lk, Lk+1).

Since model Lk (after morphing) should coincide with

Lk+1, it must then holds:








Xdst(p)
Ydst(p)
Zdst(p)
Idst(p)









=









Xk+1(uk→k+1(p))
Yk+1(uk→k+1(p))
Zk+1(uk→k+1(p))
Ik+1(uk→k+1(p))









∀p ∈ Ψ (3)

Points of region Ψ are therefore transformed both pho-

tometrically and geometrically.

2. The rest of the points (that is points in Ψ̄=domk\Ψ) do

not have counterparts in model Lk+1. So these points

will retain their color value (from model Lk) at the des-

tination maps and no photometric morphing will take

place:

Idst(p) = Ik(p), ∀p ∈ Ψ̄ (4)

But we still need to apply geometric morphing to those

points so that no distortion/discontinuity in the 3D

structure is observed during transition from posk to

posk+1. Therefore we still need to fill-in the destina-

tion 3D coordinates for all points in Ψ̄.

The 2 important remaining issues (which also constitute

the core of the morphing procedure) are:

1. How to compute the mapping uk→k+1. This is equiv-

alent to estimating a 2D optical flow field between the

left images Ik and Ik+1.

2. And how to obtain the values of the destination

geometric-maps at the points inside region Ψ̄, needed

for the geometric morphing therein. Both issues will

be the subject of the two sections that follow.

6.1. Estimating optical flow between widebaseline
images Ik and Ik+1

In general, obtaining a reliable, relatively-dense optical

flow field between wide-baseline images like Ik and Ik+1

is a particularly difficult problem. Without additional in-

put, usually only a sparse set of optical flow vectors can be

obtained in the best case. The basic problems being that:

1. For every point in Ik , a large region of Ik+1 im-

age has to be searched for obtaining a corresponding

point. This way the chance of an erroneous optical

flow vector increases significantly (as well as the com-

putational cost)

2. Simple measures (like correlation) are very inefficient

for comparing pixel blocks between wide-baseline im-

ages

3. Even if both of the above problems are solved, optical

flow estimation is inherently an ill-posed problem and

additional assumptions are needed

For dealing with the first problem, we will make use of

the underlying geometric maps Xk,Yk,Zk of model Lk as

well as the relative pose between Ik and Ik+1. By using

these quantites, we can theoretically reproject any point, say

p, of Ik onto image Ik+1. In practice since all of the above

quantities are estimated only approximately, this permits us

just to restrict the searching over a smaller region Rp around

the reprojection point. The search region can be restricted

further by taking the intersection of Rp with a small zone

around the epipolar line corresponding to p. In addition,

since we are interested in searching only for points of Ik+1

that belong to domk+1 (this is where Lk+1 is defined), the

final search region SEARCHp of p will be Rp ∩ domk+1.

If SEARCHp is empty, then no optical flow vector will be

estimated and point p will be considered as not belonging

to region Ψ.

For dealing with the second problem, we will use a tech-

nique similar to the one described in section 5.1 for getting

a sparse set of correspondences. As already stated therein,

the dominant effect due to a looming of the camera is that

pixel neighborhoods in image Ik+1 are scaled by a factor

varying across the image. The solution proposed therein



(a) (b) (c)

Fig. 3: Maps1of: (a) scale factors and (b) optical flow magnitudes

for all points in Ψ, as estimated after applying the optical flow

algorithm to the images of Fig. 2 and while using 10 possible

scales S = {1, 0.9−1, ..., 0.1−1}. (c) Corresponding optical flow

magnitudes when only one scale S = {1} has been used. As

expected, in this case the algorithm fails to produce exact optical

flow for points that actually have larger scale factors.

(and which we will also follow here) was to compare Ik im-

age patches with patches not only from Ik+1 but also from

rescaled versions of the latter image. We will again use a

discrete set of scale factors S = {1=s0<s1<...<sn} and

Ik+1,s will denote Ik+1 rescaled by s−1 with s ∈ S . Also,

for any q ∈ Ik+1, p ∈ Ik we will denote by Ik+1,s(q) a

(small) fixed-size patch around the projection of q in Ik+1,s

and by Ik(p) an equal size patch of Ik at p.

Finally, to deal with the ill-posed character of the prob-

lem, we will first reduce the optical flow estimation to a

discrete labeling problem and then formulate it in terms of

energy minimization of a first order Markov Random Field

[10]. The labels will consist of vectors l = (dx, dy, s) ∈
R

2×S, where the first 2 coordinates denote the components

of the optical flow vector while the third one denotes the

scale factor. This means that after labeling, not only an op-

tical flow but also a scale estimation will be provided for

each point (see Fig. 3(a)). Given a label l, we will denote

its optical flow vector by flowl = (dx, dy) and its scale by

scalel = s.

For each point p in Ik, its possible labels will be:

LABELSp = {q − p : q ∈ SEARCHp} × S. That is we

are searching for points only inside region SEARCHp but

across all scales in S. Getting an optical flow field is then

equivalent to picking one element from the cartesian prod-

uct LABELS =
∏

p∈Ψ LABELSp. In our case, that element

f of LABELS which minimizes the following energy will

be chosen:

E(f) =
∑

(p,p′)∈ℵ

Vp,p′(fp, fp′) +
∑

p∈Ψ

D(fp)

The symbol ℵ denotes a set of interacting pairs of pixels

inside Ψ. The first term of E(f) represents the sum of po-

tentials of interacting pixels where each potential is given

by the so-called Potts model (in which case the function

V (µ, ν) is equal to a non-zero constant if its arguments are

not equal and 0 otherwise).

Regarding the terms D(fp), these measure the correla-

tion between corresponding image patches as determined

1Darker pixels (of a grayscale image) correspond to smaller values

by labeling f . According to labeling f , for a point p in Ik,

its corresponding point is the projection of p + flowfp
in

image Ik+1,scalefp
. So:

D(fp) = corr( Ik(p) , Ik+1,scalefp
(p + flowfp

) )

Energy E(f) can be minimized using either the iterated

conditional modes (ICM) algorithm [10] or recently intro-

duced algorithms based on graph cuts [3]. The results after

applying the ICM method to the images of Fig. 2 appear in

Fig. 3.

6.2. Geometric morphing in region Ψ̄

After estimation of optical flow uk→k+1, we may ap-

ply equation (3) to all points in Ψ and thus fill-in the

Xdst, Ydst, Zdst arrays therein (see Fig. 4(a)). To com-

pletely specify morphing, we still need to fill-in the values

at the rest of the points, that is at points in Ψ̄ = domk\Ψ.

In other words, we need to specify the destination vertices

for all points of Lk in Ψ̄. Since these points do not have

a physically corresponding point in Lk+1, we cannot apply

(3) to get a destination 3D coordinate from model Lk+1.

The simplest solution would be that no geometric morphing

is applied to these points and that their destination vertices

just coincide with their Lk vertices. However, in that case:

• points in Ψ will have destination vertices from Lk+1

• while points in Ψ̄ will have destination vertices from

Lk

The problem resulting out of this situation is that the pro-

duced destination maps Xdst, Ydst, Zdst (see Figs. 4(b),

5(a)) will contain discontinuities along the boundary (say

∂Ψ) between regions Ψ and Ψ̄, causing this way annoying

discontinuity artifacts (holes) in the geometry of the “mor-

phable 3D-model” during the morphing procedure. This

will happen because the geometries of Lk and Lk+1 (as

well as their relative pose) have been estimated only ap-

proximately and will not therefore match perfectly.

The right way to fill-in the destination vertices at the

points in Ψ̄ is based on the observation that a physically

valid destination 3D model should satisfy the following 2

conditions:

1. On the boundary of Ψ̄, no discontinuity in 3D structure

should exist

(a) (b) (c)

Fig. 4: (a) Destination depth map Zdst for points in Ψ after using

optical flow of Fig. 3(b) and applying eq. (3). (b) Depth map Zdst

of (a) extended to points in Ψ̄ without applying geometric morph-

ing. Observe the discontinuities along ∂Ψ. (c) Depth map Zdst

of (a) extended to points in Ψ̄ after applying geometric morphing.



(a) (b) (c)

Fig. 5: Rendered views of the morphable 3D-model during transition from the key-position corresponding to image 2(a) to the key-position

of image 2(b): (a) when no geometric morphing is applied to points in Ψ̄ and (b) when geometric morphing is applied to points in Ψ̄. (c) A

close-up view of the rendered image in (b). Although there is no geometric discontinuity, there is a difference in texture resolution between

the left part of the image (points in Ψ̄) and the right part (points in Ψ) because only points of the latter part are morphed photometrically.

2. In the interior of Ψ̄, the relative 3D structure of the

initial Lk model should be preserved

Intuitively this means that as a result of morhing, vertices

of Lk inside Ψ̄ must be deformed (without distorting their

relative 3D structure) so as to seamlessly match the 3D ver-

tices of Lk+1 along the boundary of Ψ̄ . In mathematical

terms, preserving the relative 3D structure of Lk implies:




Xdst(p) − Xdst(p
′)

Ydst(p) − Ydst(p
′)

Zdst(p) − Zdst(p
′)



 =





Xk(p) − Xk(p′)
Yk(p) − Yk(p′)
Zk(p) − Zk(p′)



 ,∀p, p′∈Ψ̄

which is easily seen to be equivalent to:




∇Xdst(p)
∇Ydst(p)
∇Zdst(p)



 =





∇Xk(p)
∇Yk(p)
∇Zk(p)



 , ∀p ∈ Ψ̄

We may then extract the destination vertices by solving

3 independent minimization problems (one for each of

Xdst, Ydst, Zdst), all of the same type. It is therefore

enough to consider only the Zdst case. Zdst is then the so-

lution to the following optimization problem:

min
Zdst

∫∫

Ψ̄

‖∇Zdst −∇Zk‖
2, given Zdst|∂Ψ̄ (5)

The finite-difference discretization of (5) (using the under-

lying pixel grid) yields a quadratic optimization problem

which can be reduced to a sparse (banded) system of linear

equations, solved easily.

An alternative solution to the problem can be given by

observing that a function minimizing (5) is also a solution

to the following Poisson equation with Dirichlet boundary

conditions [16]:

△Zdst = div(∇Zk), given Zdst|∂Ψ̄ (6)

Therefore in this case the solution can be given by solving

3 independent Poisson equations of the above type. See

Figures 4(c), 5(b) for a result produced with this method.

7. Rendering pipeline

At any time, only one “morphable 3D-model” Lmorph

needs to be displayed. Therefore, during the rendering pro-

cess just the geometric & photometric morphing of Lk (as

described in section 6) needs to take place .

For this purpose, two 3D triangle meshes triΨ, triΨ̄ are

first generated by computing 2D triangulations of regions

Ψ, Ψ̄ and by making use of the underlying geometric maps

of Lk. Then, application of the geometric morphing (as de-

fined by (1)) to the vertices of these meshes, amounts to

exploiting simple “vertex-shader” capabilities [14] of mod-

ern graphics cards (along with the {X,Y,Z}dst maps of

course).

Regarding the photometric morphing of mesh triΨ,

“multitexturing” [14] can be utilized at a first step. In this

case, both images Ik, Ik+1 will be applied as textures to

mesh triΨ and each vertex of triΨ will be assigned texture

coordinates from a point p ∈ Ik as well as its correspond-

ing point uk→k+1(p) ∈ Ik+1 (see (3)). Then, a straight-

forward “pixel-shader” [14] can be used to implement pho-

tometric morphing (as defined by (2)) for mesh triΨ. Re-

garding triΨ̄, no actual photometric morphing takes place

in there (see (4)) and so only image Ik needs to be mapped

as a texture onto this surface.

Therefore, by use of pixel- and vertex-shaders, just 2

textured triangle meshes are given as input to the graph-

ics pipeline at any time (a rendering path which is highly

optimized in modern 3D graphics hardware).

8. Extending the modeling pipeline

Up to this point we have been assuming that during

the image acquisition process, we have been capturing one

stereoscopic image-pair per key-position along the path. We

will now consider the case in which multiple stereoscopic

views per key-position are captured and these stereoscopic

views are related to each other by a simple rotation of the

stereoscopic camera. This scenario is very useful in cases

where we need to have an extended field of view (like in

large VR screens) and/or when we want to be able to look

around the environment. In this new case, multiple local 3D

models per key-position will exist and they will be related

to each other by a pure rotation in 3D space.

In order to reduce this case to the one already examined,

it suffices that a single local model per key-position (called

3D-mosaic hereafter) is constructed. This 3D model should



replace all local models at that position. Then at any time

during the rendering process, a morphing between a succes-

sive pair of these new local models (3D-mosaics) needs to

take place as before. For this reason, the term “morphable

3D-mosaics” is being used in this case.

9. 3D-mosaic construction

As already explained, a 3D-mosaic at a certain posi-

tion along the path should replace/comprise all local models

coming from captured stereoscopic views at that position.

Let Li = (Xi, Yi, Zi, Ii, domi) with i ∈ {1, . . . , n} be such

a set of local models. Then a new local model Lmosaic =
(Xmosaic, Ymosaic, Zmosaic, Imosaic, dommosaic) needs to

be constructed which amounts to filling its geometric and

photometric maps. Intuitively, Lmosaic should correspond

to a local model produced from a stereoscopic camera with

a wider field of view placed at the same path position.

It is safe to assume that the images Ii (which are the left-

camera images), correspond to views related to each other

by a pure rotation. (Actually, the relative pose between 2

such images will not be pure rotation but will also contain a

small translational part due to the fact that the stereoscopic

camera rotates around the tripod and not the optical center

of the left camera. However this translation is negligible in

practice). We may therefore assume that the local 3D mod-

els are related to each other by a pure rotation as well. An

overview of the steps that needs to be taken for the construc-

tion of Lmosaic now follows:

• As a first step the rotation between local models needs

to be estimated. This will help us in registering the

local models in 3D space.

• Then a geometric rectification of each Li must take

place so that the resulting local models are geometri-

cally consistent with each other. This is a necessary

step since the geometry of each Li has been estimated

only approximately and thus contains errors.

• Eventually, the maps of the refined and consistent local

models will be merged so that the final map of the 3D-

mosaic is produced

The most interesting problem that needs to be handled dur-

ing the 3D-mosaic construction is that of making all models

geometrically consistent so that a seamless (without discon-

tinuities) geometric-map of Lmosaic is produced. Each of

the above steps will be explained in the following sections.

9.1. Rotation (Rij) estimation between views Ii, Ij

First the homography Hij between images Ii, Ij will be

computed. (Since the views Ii, Ij are related by a rotation,

Hij will be the infinite homography induced by the plane at

infinity.) For the Hij estimation [7], a sparse set of (at least

4) point matches between Ii, Ij is first extracted and then a

robust estimation procedure (e.g. RANSAC) is applied to

cope with outliers. Inlier matches can then be used to refine

the Hij estimate by minimizing a suitable error function.

If Rij ∈SO(3) is the 3 × 3 orthonormal matrix repre-

senting rotation, then: Hij = KleftRijK
−1
left ⇔ Rij =

K−1
leftHijKleft. In practice due to errors in the computed

Hij , the above matrix will not be orthonormal. So for the

estimation of Rij [15], an iterative minimization procedure

will be applied to:
∑

k dist(p′k,KleftRijK
−1
leftpk)2, where

(pk, p′k) are the inlier matches that resulted after estimation

of Hij while dist denotes euclidean image distance. The

projection of K−1
leftHijKleft to the space SO(3) of 3D ro-

tation matrices will be given as initial value to the iterative

procedure.

9.2. Geometric rectification of local models

Since at this stage the rotation between any two local

models is known, hereafter we may assume that the 3D ver-

tices of all Li are expressed in a common 3D coordinate sys-

tem. Unfortunately Li are not geometrically consistent with

each other, so the model resulting from combining these lo-

cal models directly, would contain a lot of discontinuities at

the boundary between any 2 neighboring Li (see Fig. 6(c)).

This is true because Li have been created independently and

their geometry has been estimated only approximately.

Let RECTIFYLi
(Lj) denote an operator which takes as

input 2 local models, Li, Lj , and modifies the geometric-

maps only of the latter so that they are consistent with the

geometric-maps of the former (the geometric maps of Li do

not change during RECTIFY). Assuming that such an op-

erator exists , then ensuring consistency between all models

can be achieved by merely applying RECTIFYLi
(Lj) for

all pairs Li,Lj with i < j.

So it suffices that we define RECTIFYLi
(Lj) for any

2 models, say Li, Lj . Let X,Y,Z be the new rectified

geometric-maps of Lj that we want to estimate so that they

are geometrically consistent with those of Li. Since we

know homography Hij , we may assume that image points

of Li have been aligned to the image plane of Lj . Let

Ψ = domi ∩ domj be the overlap region of the 2 mod-

els. To be geometrically consistent, the new rectified maps

of Lj should coincide with those of Li at points inside Ψ:
[

X(p) Y (p) Z(p)
]

=
[

Xi(p) Yi(p) Zi(p)
]

, ∀p ∈ Ψ (7)

We still need to define the rectified maps on Ψ̄ = domj\Ψ.

On one hand, this must be done so that no discontinuity ap-

pears along ∂Ψ̄ (and thus seamless rectified maps are pro-

duced). On the other hand, we must try to preserve the rela-

tive 3D structure of the existing geometric-maps (of Lj) in

the interior of Ψ̄. The last statement amounts to:




X(p)−X(q)
Y (p)−Y (q)
Z(p)−Z(q)



=





Xj(p)−Xj(q)
Yj(p)−Yj(q)
Zj(p)−Zj(q)



 ∀p, q ∈ Ψ̄

or equivalently:




∇X(p)
∇Y (p)
∇Z(p)



 =





∇Xj(p)
∇Yj(p)
∇Zj(p)



 , ∀p ∈ Ψ̄ (8)



(a) (b) (c) (d) (e)

Fig. 6: Rendered views of: (a) a local model Lj (b) a local model Li (c) 3D-mosaic of Li, Lj without geometry rectification (holes are

due to discontinuities in geometry and not due to misregistration in 3D space) (d) 3D-mosaic of Li, Lj after RECTIFYLi(Lj) has been

applied (e) a 3D-mosaic created from Li, Lj plus another local model (not shown)

Then, based on (8), (7), we can extract the Z rectified

map (X,Y maps are treated analogously) by solving the

following optimization problem:

min
Z

∫∫

Ψ̄

‖∇Z −∇Zj‖
2, Z|∂Ψ̄ = Zi|∂Ψ̄ (9)

The above problem, like the one defined by (5), can be re-

duced either to a banded linear system or to a Poisson dif-

ferential equation, as explained in section 6.2. See Fig. 6(d)

for a result produced with the latter method.

Another option for the merging of the geometric maps

of Li, Lj could have been the use of a feathering-like ap-

proach. The advantage of our approach (against feathering)

is the preservation of the model’s 3D structure. This can

be illustrated with a very simple example. Let a rectangular

planar object be at constant depth Ztrue. Suppose that depth

map Zi, corresponding to most of the left part of the object,

has been estimated correctly (Zi ≡ Ztrue) but depth map

Zj , corresponding to most of the right part of the object,

has been estimated as Zj ≡ Ztrue + error. When using

a feathering-like approach, the resulting object will appear

distorted in the center (its depth will vary from Ztrue to

Ztrue + error therein). On the contrary using our method,

an object still having a planar structure will be produced.

This is important since such errors may exist in models pro-

duced from disparity estimation. In fact the magnitude of

these errors will be analogous to depth and can thus be quite

large for distant objects.

9.3. Merging the rectified local models

Since Hij is known for any i, j, we may assume that all

local models are defined on a common image plane. There-

fore, due to the fact that the rectified geometric-maps are

consistent with each other, we can directly merge them so

that the {X,Y,Z}mosaic maps are produced. For the cre-

ation of the Imosaic photometric map, a standard image-

mosaicing procedure [15] can be applied independently.

The valid region of the 3D-mosaic will be: dommosaic =
∪idomi. One 3D-mosaic so generated appears in Fig. 6(e).

10. Conclusions

A new approach for interactive walkthroughs of large,

outdoor scenes has been proposed. No global model of

the scene needs to be constructed and at any time during

the rendering process, only one “morphable 3D-mosaic”

is displayed. Our method uses a rendering path which is

highly optimized in modern 3D graphics hardware and thus

can produce photorealistic renderings at interactive frame

rates. Finally, it is worth mentioning that our system has

been also tested successfully for the case of a scene inside

Samaria Gorge, using as input 45 stereoscopic views ac-

quired along a path over 100 meters long. 15 key-positions

have been selected along the path and 3 stereoscopic views

per key-position have been captured (covering this way ap-

proximately a 120o field of view at any time).
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